1
|
Shinozaki A, Sanchez-Heredia JD, Andersen MP, Redda M, Dang DA, Hansen ESS, Schulte RF, Laustsen C, Tyler DJ, Grist JT. Enabling SENSE accelerated 2D CSI for hyperpolarized carbon-13 imaging. Sci Rep 2024; 14:20591. [PMID: 39231982 PMCID: PMC11375102 DOI: 10.1038/s41598-024-70892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
As hyperpolarized (HP) carbon-13 (13C) metabolic imaging is clinically translated, there is a need for easy-to-implement, fast, and robust imaging techniques. However, achieving high temporal resolution without decreasing spatial and/or spectral resolution, whilst maintaining the usability of the imaging sequence is challenging. Therefore, this study looked to accelerate HP 13C MRI by combining a well-established and robust sequence called two-dimensional Chemical Shift Imaging (2D CSI) with prospective under sampling and SENSitivity Encoding (SENSE) reconstruction. Due to the low natural abundance of 13C, the sensitivity maps cannot be pre-acquired for the reconstruction. As such, the implementation of sodium (23Na) sensitivity maps for SENSE reconstructed 13C CSI was demonstrated in a phantom and in vivo in the pig kidney. Results showed that SENSE reconstruction using 23Na sensitivity maps corrected aliased images with a four-fold acceleration. With high temporal resolution, the kidney spectra produced a detailed metabolic arrival and decay curve, useful for further metabolite kinetic modelling or denoising. Metabolic ratio maps were produced in three pigs demonstrating the technique's ability for repeat metabolic measurements. In cases with unknown metabolite spectra or limited HP MRI specialist knowledge, this robust acceleration method ensures comprehensive capture of metabolic signals, mitigating the risk of missing spectral data.
Collapse
Affiliation(s)
- Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | | | | | - Mohsen Redda
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Duy A Dang
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Damian J Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Radiology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
2
|
Wang Z, Luo G, Li Y, Cao P. Using a deep learning prior for accelerating hyperpolarized 13C MRSI on synthetic cancer datasets. Magn Reson Med 2024; 92:945-955. [PMID: 38440832 DOI: 10.1002/mrm.30053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE We aimed to incorporate a deep learning prior with k-space data fidelity for accelerating hyperpolarized carbon-13 MRSI, demonstrated on synthetic cancer datasets. METHODS A two-site exchange model, derived from the Bloch equation of MR signal evolution, was firstly used in simulating training and testing data, that is, synthetic phantom datasets. Five singular maps generated from each simulated dataset were used to train a deep learning prior, which was then employed with the fidelity term to reconstruct the undersampled MRI k-space data. The proposed method was assessed on synthetic human brain tumor images (N = 33), prostate cancer images (N = 72), and mouse tumor images (N = 58) for three undersampling factors and 2.5% additive Gaussian noise. Furthermore, varied levels of Gaussian noise with SDs of 2.5%, 5%, and 10% were added on synthetic prostate cancer data, and corresponding reconstruction results were evaluated. RESULTS For quantitative evaluation, peak SNRs were approximately 32 dB, and the accuracy was generally improved for 5 to 8 dB compared with those from compressed sensing with L1-norm regularization or total variation regularization. Reasonable normalized RMS error were obtained. Our method also worked robustly against noise, even on a data with noise SD of 10%. CONCLUSION The proposed singular value decomposition + iterative deep learning model could be considered as a general framework that extended the application of deep learning MRI reconstruction to metabolic imaging. The morphology of tumors and metabolic images could be measured robustly in six times acceleration using our method.
Collapse
Affiliation(s)
- Zuojun Wang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Guanxiong Luo
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ye Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
3
|
Mei R, Fries LM, Hune TLK, Santi MD, Rodriguez GG, Sternkopf S, Glöggler S. Hyperpolarization of 15N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo Studies. Angew Chem Int Ed Engl 2024; 63:e202403144. [PMID: 38773847 DOI: 10.1002/anie.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on 13C nuclei, a milestone advance in this area is the emergence of 15N hyperpolarized contrast agents. Currently, the reported 15N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced 15N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor 15N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with para-hydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H2O2 level usually represents a hallmark of pathophysiological conditions. This H2O2 probe exhibited rapid responsiveness toward H2O2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo 15N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.
Collapse
Affiliation(s)
- Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| |
Collapse
|
4
|
Clarke WT, Ligneul C, Cottaar M, Betina Ip I, Jbabdi S. Universal dynamic fitting of magnetic resonance spectroscopy. Magn Reson Med 2024; 91:2229-2246. [PMID: 38265152 PMCID: PMC7616727 DOI: 10.1002/mrm.30001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Dynamic (2D) MRS is a collection of techniques where acquisitions of spectra are repeated under varying experimental or physiological conditions. Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative insights into multiple physiological or microstructural processes. Conventional approaches to dynamic MRS analysis ignore the shared information between spectra, and instead proceed by independently fitting noisy individual spectra before modeling temporal changes in the parameters. Here, we propose a universal dynamic MRS toolbox which allows simultaneous fitting of dynamic spectra of arbitrary type. METHODS A simple user-interface allows information to be shared and precisely modeled across spectra to make inferences on both spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in three types of dynamic MRS techniques. Simulations of functional and edited MRS are used to demonstrate the advantages of dynamic fitting. RESULTS Analysis of synthetic functional 1H-MRS data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis with our tool replicates the results of two previously published studies using the original in vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion orientation models is demonstrated in synthetic data. CONCLUSION A toolbox for generalized and universal fitting of dynamic, interrelated MR spectra has been released and validated. The toolbox is shared as a fully open-source software with comprehensive documentation, example data, and tutorials.
Collapse
Affiliation(s)
| | - Clémence Ligneul
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - I. Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Frijia F, Flori A, Giovannetti G, Barison A, Menichetti L, Santarelli MF, Positano V. MRI Application and Challenges of Hyperpolarized Carbon-13 Pyruvate in Translational and Clinical Cardiovascular Studies: A Literature Review. Diagnostics (Basel) 2024; 14:1035. [PMID: 38786333 PMCID: PMC11120300 DOI: 10.3390/diagnostics14101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular disease shows, or may even be caused by, changes in metabolism. Hyperpolarized magnetic resonance spectroscopy and imaging is a technique that could assess the role of different aspects of metabolism in heart disease, allowing real-time metabolic flux assessment in vivo. In this review, we introduce the main hyperpolarization techniques. Then, we summarize the use of dedicated radiofrequency 13C coils, and report a state of the art of 13C data acquisition. Finally, this review provides an overview of the pre-clinical and clinical studies on cardiac metabolism in the healthy and diseased heart. We furthermore show what advances have been made to translate this technique into the clinic in the near future and what technical challenges still remain, such as exploring other metabolic substrates.
Collapse
Affiliation(s)
- Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Alessandra Flori
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Andrea Barison
- Cardiology and Cardiovascular Medicine Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy;
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Maria Filomena Santarelli
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy; (G.G.); (L.M.); (M.F.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione Toscana G. Monasterio, 56124 Pisa, Italy; (A.F.); (V.P.)
| |
Collapse
|
6
|
Adamson PM, Datta K, Watkins R, Recht LD, Hurd RE, Spielman DM. Deuterium metabolic imaging for 3D mapping of glucose metabolism in humans with central nervous system lesions at 3T. Magn Reson Med 2024; 91:39-50. [PMID: 37796151 PMCID: PMC10841984 DOI: 10.1002/mrm.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.
Collapse
Affiliation(s)
- Philip M. Adamson
- Department of Electrical Engineering, Stanford University, Stanford, California USA
| | - Keshav Datta
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ron Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Lawrence D. Recht
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
7
|
Peters JP, Brahms A, Janicaud V, Anikeeva M, Peschke E, Ellermann F, Ferrari A, Hellmold D, Held-Feindt J, Kim NM, Meiser J, Aden K, Herges R, Hövener JB, Pravdivtsev AN. Nitrogen-15 dynamic nuclear polarization of nicotinamide derivatives in biocompatible solutions. SCIENCE ADVANCES 2023; 9:eadd3643. [PMID: 37611105 PMCID: PMC10446501 DOI: 10.1126/sciadv.add3643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) increases the sensitivity of magnetic resonance imaging by more than 10,000 times, enabling in vivo metabolic imaging to be performed noninvasively in real time. Here, we are developing a group of dDNP polarized tracers based on nicotinamide (NAM). We synthesized 1-15N-NAM and 1-15N nicotinic acid and hyperpolarized them with dDNP, reaching (13.0 ± 1.9)% 15N polarization. We found that the lifetime of hyperpolarized 1-15N-NAM is strongly field- and pH-dependent, with T1 being as long as 41 s at a pH of 12 and 1 T while as short as a few seconds at neutral pH and fields below 1 T. The remarkably short 1-15N lifetime at low magnetic fields and neutral pH drove us to establish a unique pH neutralization procedure. Using 15N dDNP and an inexpensive rodent imaging probe designed in-house, we acquired a 15N MRI of 1-15N-NAM (previously hyperpolarized for more than an hour) in less than 1 s.
Collapse
Affiliation(s)
- Josh P. Peters
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arne Brahms
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Vivian Janicaud
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Maria Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Kiel, Arnold-Heller-Str. 3, House D, 24105 Kiel, Germany
| | - Na-mi Kim
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, 1210 Luxembourg, Luxembourg
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Straße 12, 24105 Kiel, Germany
- Department of Internal Medicine I, University Medical Center Kiel, Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn Platz 4, 24098 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
8
|
Guarin DO, Joshi SM, Samoilenko A, Kabir MSH, Hardy EE, Takahashi AM, Ardenkjaer-Larsen JH, Chekmenev EY, Yen YF. Development of Dissolution Dynamic Nuclear Polarization of [ 15 N 3 ]Metronidazole: A Clinically Approved Antibiotic. Angew Chem Int Ed Engl 2023; 62:e202219181. [PMID: 37247411 PMCID: PMC10524734 DOI: 10.1002/anie.202219181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
We report dissolution Dynamic Nuclear Polarization (d-DNP) of [15 N3 ]metronidazole ([15 N3 ]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia-sensing molecular probe using 15 N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15 N3 ]MNZ with an exponential build-up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15 N3 ]MNZ lasted remarkably long with T1 values up to 343 s and 15 N polarizations up to 6.4 %. A time series of HP [15 N3 ]MNZ images was acquired in vitro using a steady state free precession sequence on the 15 NO2 peak. The signal lasted over 13 min with notably long T2 of 20.5 s. HP [15 N3 ]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP 15 N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.
Collapse
Affiliation(s)
- David O Guarin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
| | - Sameer M Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Erin E Hardy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| | - Atsush M Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, MA 02139, Cambridge, USA
| | - Jan H Ardenkjaer-Larsen
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
- Department of Health Technology, Technical University of Denmark, 348, Ørsteds Pl., 2800, Kongens Lyngby, Denmark
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| |
Collapse
|
9
|
Grist JT, Bøgh N, Hansen ES, Schneider AM, Healicon R, Ball V, Miller JJJJ, Smart S, Couch Y, Buchan AM, Tyler DJ, Laustsen C. Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging. Sci Rep 2023; 13:1613. [PMID: 36709217 PMCID: PMC9884306 DOI: 10.1038/s41598-023-28643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Radiology, Oxford University Hospitals Trust, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaj Bøgh
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Hansen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anna M Schneider
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Healicon
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Vicky Ball
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jack J J J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Sean Smart
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.
- Aarhus University Hospital, MR Center, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
10
|
Fan L, Yang W, Tu W, Zhou X, Zou Q, Zhang H, Feng Y, Liu S. Thoracic Imaging in China: Yesterday, Today, and Tomorrow. J Thorac Imaging 2022; 37:366-373. [PMID: 35980382 PMCID: PMC9592175 DOI: 10.1097/rti.0000000000000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thoracic imaging has been revolutionized through advances in technology and research around the world, and so has China. Thoracic imaging in China has progressed from anatomic observation to quantitative and functional evaluation, from using traditional approaches to using artificial intelligence. This article will review the past, present, and future of thoracic imaging in China, in an attempt to establish new accepted strategies moving forward.
Collapse
Affiliation(s)
- Li Fan
- Second Affiliated Hospital, Naval Medical University
| | - Wenjie Yang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenting Tu
- Second Affiliated Hospital, Naval Medical University
| | - Xiuxiu Zhou
- Second Affiliated Hospital, Naval Medical University
| | - Qin Zou
- Second Affiliated Hospital, Naval Medical University
| | - Hanxiao Zhang
- Second Affiliated Hospital, Naval Medical University
| | - Yan Feng
- Second Affiliated Hospital, Naval Medical University
| | - Shiyuan Liu
- Second Affiliated Hospital, Naval Medical University
| |
Collapse
|
11
|
Park H, Chen J, Dimitrov IE, Park JM, Wang Q. Design and Characterization of Hyperpolarized 15N-BBCP as a H 2O 2-Sensing Probe. ACS Sens 2022; 7:2928-2933. [PMID: 36255172 PMCID: PMC9908030 DOI: 10.1021/acssensors.2c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen peroxide (H2O2) is a type of reactive oxygen species that regulates essential biological processes. Despite the central role of H2O2 in pathophysiological states, available molecular probes for assessing H2O2 in vivo are still limited. This work develops hyperpolarized 15N-boronobenzyl-4-cyanopyridinium (15N-BBCP) as a rationally designed molecular probe for detecting H2O2. The 15N-BBCP demonstrated favorable physicochemical and biochemical properties for H2O2 detection and dynamic nuclear polarization, allowing noninvasive detection of H2O2. In particular, 15N-BBCP and the products possessed long spin-lattice relaxation times and spectrally resolvable 15N chemical shift differences. The performance of hyperpolarized 15N-BBCP was demonstrated both in vitro and in vivo with time-resolved 15N-MRS. This study highlights a promising approach to designing a reaction-based 15N-labeled molecular imaging agent for detecting oxidative stress in vivo.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University, Durham, NC 27708
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ivan E. Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Philips Healthcare, Dallas, TX 75390
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qiu Wang
- Department of Chemistry, Duke University, Durham, NC 27708
| |
Collapse
|
12
|
Wei Y, Yang C, Jiang H, Li Q, Che F, Wan S, Yao S, Gao F, Zhang T, Wang J, Song B. Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions. Insights Imaging 2022; 13:135. [PMID: 35976510 PMCID: PMC9382599 DOI: 10.1186/s13244-022-01262-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
With the development of heteronuclear fluorine, sodium, phosphorus, and other probes and imaging technologies as well as the optimization of magnetic resonance imaging (MRI) equipment and sequences, multi-nuclear magnetic resonance (multi-NMR) has enabled localize molecular activities in vivo that are central to a variety of diseases, including cardiovascular disease, neurodegenerative pathologies, metabolic diseases, kidney, and tumor, to shift from the traditional morphological imaging to the molecular imaging, precision diagnosis, and treatment mode. However, due to the low natural abundance and low gyromagnetic ratios, the clinical application of multi-NMR has been hampered. Several techniques have been developed to amplify the NMR sensitivity such as the dynamic nuclear polarization, spin-exchange optical pumping, and brute-force polarization. Meanwhile, a wide range of nuclei can be hyperpolarized, such as 2H, 3He, 13C, 15 N, 31P, and 129Xe. The signal can be increased and allows real-time observation of biological perfusion, metabolite transport, and metabolic reactions in vivo, overcoming the disadvantages of conventional magnetic resonance of low sensitivity. HP-NMR imaging of different nuclear substrates provides a unique opportunity and invention to map the metabolic changes in various organs without invasive procedures. This review aims to focus on the recent applications of multi-NMR technology not only in a range of preliminary animal experiments but also in various disease spectrum in human. Furthermore, we will discuss the future challenges and opportunities of this multi-NMR from a clinical perspective, in the hope of truly bridging the gap between cutting-edge molecular biology and clinical applications.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Caiwei Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shang Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China. .,Department of Radiology, Sanya People's Hospital, Sanya, China.
| |
Collapse
|
13
|
Hsieh CY, Sung CH, Shen YL(E, Lai YC, Lu KY, Lin G. Developing a Method to Estimate the Downstream Metabolite Signals from Hyperpolarized [1- 13C]Pyruvate. SENSORS (BASEL, SWITZERLAND) 2022; 22:5480. [PMID: 35897987 PMCID: PMC9332172 DOI: 10.3390/s22155480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hyperpolarized carbon-13 MRI has the advantage of allowing the study of glycolytic flow in vivo or in vitro dynamically in real-time. The apparent exchange rate constant of a metabolite dynamic signal reflects the metabolite changes of a disease. Downstream metabolites can have a low signal-to-noise ratio (SNR), causing apparent exchange rate constant inconsistencies. Thus, we developed a method that estimates a more accurate metabolite signal. This method utilizes a kinetic model and background noise to estimate metabolite signals. Simulations and in vitro studies with photon-irradiated and control groups were used to evaluate the procedure. Simulated and in vitro exchange rate constants estimated using our method were compared with the raw signal values. In vitro data were also compared to the Area-Under-Curve (AUC) of the cell medium in 13C Nuclear Magnetic Resonance (NMR). In the simulations and in vitro experiments, our technique minimized metabolite signal fluctuations and maintained reliable apparent exchange rate constants. In addition, the apparent exchange rate constants of the metabolites showed differences between the irradiation and control groups after using our method. Comparing the in vitro results obtained using our method and NMR, both solutions showed consistency when uncertainty was considered, demonstrating that our method can accurately measure metabolite signals and show how glycolytic flow changes. The method enhanced the signals of the metabolites and clarified the metabolic phenotyping of tumor cells, which could benefit personalized health care and patient stratification in the future.
Collapse
Affiliation(s)
- Ching-Yi Hsieh
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.H.); (C.-H.S.)
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Cheng-Hsuan Sung
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.H.); (C.-H.S.)
| | - Yi-Liang (Eric) Shen
- Department of Radiation Oncology and Proton Therapy Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan;
| | - Kuan-Ying Lu
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan;
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
14
|
Park H, Wang Q. State-of-the-art accounts of hyperpolarized 15N-labeled molecular imaging probes for magnetic resonance spectroscopy and imaging. Chem Sci 2022; 13:7378-7391. [PMID: 35872812 PMCID: PMC9241963 DOI: 10.1039/d2sc01264b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Hyperpolarized isotope-labeled agents have significantly advanced nuclear magnetic resonance spectroscopy and imaging (MRS/MRI) of physicochemical activities at molecular levels. An emerging advance in this area is exciting developments of 15N-labeled hyperpolarized MR agents to enable acquisition of highly valuable information that was previously inaccessible and expand the applications of MRS/MRI beyond commonly studied 13C nuclei. This review will present recent developments of these hyperpolarized 15N-labeled molecular imaging probes, ranging from endogenous and drug molecules, and chemical sensors, to various 15N-tagged biomolecules. Through these examples, this review will provide insights into the target selection and probe design rationale and inherent challenges of HP imaging in hopes of facilitating future developments of 15N-based biomedical imaging agents and their applications.
Collapse
Affiliation(s)
- Hyejin Park
- Department of Chemistry, Duke University Durham NC 27708 USA
| | - Qiu Wang
- Department of Chemistry, Duke University Durham NC 27708 USA
| |
Collapse
|
15
|
Pham P, Mandal R, Qi C, Hilty C. Interfacing Liquid State Hyperpolarization Methods with NMR Instrumentation. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100052. [PMID: 35530721 PMCID: PMC9070690 DOI: 10.1016/j.jmro.2022.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advances in liquid state hyperpolarization methods have enabled new applications of high-resolution NMR spectroscopy. Utilizing strong signal enhancements from hyperpolarization allows performing NMR spectroscopy at low concentration, or with high time resolution. Making use of the high, but rapidly decaying hyperpolarization in the liquid state requires new techniques to interface hyperpolarization equipment with liquid state NMR spectrometers. This article highlights rapid injection, high resolution NMR spectroscopy with hyperpolarization produced by the techniques of dissolution dynamic nuclear polarization (D-DNP) and para-hydrogen induced polarization (PHIP). These are popular, albeit not the only methods to produce high polarization levels for liquid samples. Gas and liquid driven sample injection techniques are compatible with both of these hyperpolarization methods. The rapid sample injection techniques are combined with adapted NMR experiments working in a single, or small number of scans. They expand the application of liquid state hyperpolarization to spins with comparably short relaxation times, provide enhanced control over sample conditions, and allow for mixing experiments to study reactions in real time.
Collapse
|
16
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13 C Magnetic Resonance. Angew Chem Int Ed Engl 2022; 61:e202112982. [PMID: 34679201 PMCID: PMC7612908 DOI: 10.1002/anie.202112982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/25/2022]
Abstract
Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
18
|
Gaunt AP, Lewis JS, Hesse F, Cheng T, Marco‐Rius I, Brindle KM, Comment A. Labile Photo-Induced Free Radical in α-Ketoglutaric Acid: a Universal Endogenous Polarizing Agent for In Vivo Hyperpolarized 13C Magnetic Resonance. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112982. [PMID: 38505340 PMCID: PMC10947361 DOI: 10.1002/ange.202112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Hyperpolarized (HP) 13C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13C-molecules such as [1-13C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13C relaxation time in frozen HP 13C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13C]lactate.
Collapse
Affiliation(s)
- Adam P. Gaunt
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Jennifer S. Lewis
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Friederike Hesse
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Tian Cheng
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Irene Marco‐Rius
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Kevin M. Brindle
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
| | - Arnaud Comment
- Cancer Research UKCambridge InstituteUniversity of CambridgeRobinson WayCambridgeCB2 0REUK
- General Electric HealthcarePollards Wood, Nightingales LaneChalfont St GilesHP8 4SPUK
| |
Collapse
|
19
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parahydrogen-Induced Polarization of Amino Acids. Angew Chem Int Ed Engl 2021; 60:23496-23507. [PMID: 33635601 PMCID: PMC8596608 DOI: 10.1002/anie.202100109] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Nuclear magnetic resonance (NMR) has become a universal method for biochemical and biomedical studies, including metabolomics, proteomics, and magnetic resonance imaging (MRI). By increasing the signal of selected molecules, the hyperpolarization of nuclear spin has expanded the reach of NMR and MRI even further (e.g. hyperpolarized solid-state NMR and metabolic imaging in vivo). Parahydrogen (pH2 ) offers a fast and cost-efficient way to achieve hyperpolarization, and the last decade has seen extensive advances, including the synthesis of new tracers, catalysts, and transfer methods. The portfolio of hyperpolarized molecules now includes amino acids, which are of great interest for many applications. Here, we provide an overview of the current literature and developments in the hyperpolarization of amino acids and peptides.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| | - Gerd Buntkowsky
- Technical University DarmstadtEduard-Zintl-Institute for Inorganic and Physical ChemistryAlarich-Weiss-Strasse 864287DarmstadtGermany
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM)Department of ChemistryUniversity of York, HeslingtonYorkYO10 5NYUK
| | - Igor V. Koptyug
- International Tomography CenterSB RAS3A Institutskaya st.630090NovosibirskRussia
- Novosibirsk State University2 Pirogova st.630090NovosibirskRussia
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center Schleswig-Holstein (UKSH)Kiel UniversityAm Botanischen Garten 1424118KielGermany
| |
Collapse
|
20
|
Pravdivtsev AN, Buntkowsky G, Duckett SB, Koptyug IV, Hövener J. Parawasserstoff‐induzierte Polarisation von Aminosäuren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Gerd Buntkowsky
- Technical University Darmstadt Eduard-Zintl-Institute for Inorganic and Physical Chemistry Alarich-Weiss-Straße 8 64287 Darmstadt Deutschland
| | - Simon B. Duckett
- Department Center for Hyperpolarization in Magnetic Resonance (CHyM) Department of Chemistry University of York, Heslington York YO10 5NY Vereinigtes Königreich
| | - Igor V. Koptyug
- International Tomography Center SB RAS 3A Institutskaya st. 630090 Novosibirsk Russland
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russland
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH) Kiel University Am Botanischen Garten 14 24118 Kiel Deutschland
| |
Collapse
|
21
|
Herr K, Fleckenstein M, Brodrecht M, Höfler MV, Heise H, Aussenac F, Gutmann T, Reggelin M, Buntkowsky G. A novel strategy for site selective spin-labeling to investigate bioactive entities by DNP and EPR spectroscopy. Sci Rep 2021; 11:13714. [PMID: 34211027 PMCID: PMC8249612 DOI: 10.1038/s41598-021-92975-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
A novel specific spin-labeling strategy for bioactive molecules is presented for eptifibatide (integrilin) an antiplatelet aggregation inhibitor, which derives from the venom of certain rattlesnakes. By specifically labeling the disulfide bridge this molecule becomes accessible for analytical techniques such as Electron Paramagnetic Resonance (EPR) and solid state Dynamic Nuclear Polarization (DNP). The necessary spin-label was synthesized and inserted into the disulfide bridge of eptifibatide via reductive followed by insertion by a double Michael addition under physiological conditions. This procedure is universally applicable for disulfide containing biomolecules and is expected to preserve their tertiary structure with minimal change due to the small size of the label and restoring of the previous disulfide connection. HPLC and MS analysis show the successful introduction of the spin label and EPR spectroscopy confirms its activity. DNP-enhanced solid state NMR experiments show signal enhancement factors of up to 19 in 13C CP MAS experiments which corresponds to time saving factors of up to 361. This clearly shows the high potential of our new spin labeling strategy for the introduction of site selective radical spin labels into biomolecules and biosolids without compromising its conformational integrity for structural investigations employing solid-state DNP or advanced EPR techniques.
Collapse
Affiliation(s)
- Kevin Herr
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Max Fleckenstein
- Institute of Organic Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Martin Brodrecht
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Mark V Höfler
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Henrike Heise
- Structural Biochemistry (ICS-6), Institute of Complex Systems, Forschungszentrum Jülich, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Fabien Aussenac
- Bruker France SAS, 34 rue de l'industrie, 67160, Wissembourg, France
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Michael Reggelin
- Institute of Organic Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany.
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
22
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
23
|
Stewart NJ, Matsumoto S. Biomedical Applications of the Dynamic Nuclear Polarization and Parahydrogen Induced Polarization Techniques for Hyperpolarized 13C MR Imaging. Magn Reson Med Sci 2021; 20:1-17. [PMID: 31902907 PMCID: PMC7952198 DOI: 10.2463/mrms.rev.2019-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Since the first pioneering report of hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) of the Warburg effect in prostate cancer patients, clinical dissemination of the technique has been rapid; close to 10 sites worldwide now possess a polarizer fit for the clinic, and more than 30 clinical trials, predominantly for oncological applications, are already registered on the US and European clinical trials databases. Hyperpolarized 13C probes to study pathophysiological processes beyond the Warburg effect, including tricarboxylic acid cycle metabolism, intra-cellular pH and cellular necrosis have also been demonstrated in the preclinical arena and are pending clinical translation, and the simultaneous injection of multiple co-polarized agents is opening the door to high-sensitivity, multi-functional molecular MRI with a single dose. Here, we review the biomedical applications to date of the two polarization methods that have been used for in vivo hyperpolarized 13C molecular MRI; namely, dissolution dynamic nuclear polarization and parahydrogen-induced polarization. The basic concept of hyperpolarization and the fundamental theory underpinning these two key 13C hyperpolarization methods, along with recent technological advances that have facilitated biomedical realization, are also covered.
Collapse
Affiliation(s)
- Neil J. Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
24
|
Bøgh N, Hansen ESS, Mariager CØ, Bertelsen LB, Ringgaard S, Laustsen C. Cardiac pH-Imaging With Hyperpolarized MRI. Front Cardiovasc Med 2020; 7:603674. [PMID: 33244471 PMCID: PMC7683793 DOI: 10.3389/fcvm.2020.603674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Regardless of the importance of acid-base disturbances in cardiac disease, there are currently no methods for clinical detection of pH in the heart. Several magnetic resonance imaging techniques hold translational promise and may enable in-vivo mapping of pH. We provide a brief overview of these emerging techniques. A particular focus is on the promising advance of magnetic resonance spectroscopy and imaging with hyperpolarized 13C-subtrates as biomarkers of myocardial pH. Hyperpolarization allows quantification of key metabolic substrates and their metabolites. Hereby, pH-sensitive reactions can be probed to provide a measure of acid-base alterations. To date, the most used substrates are [1-13C]pyruvate and 13C-labeled bicarbonate; however, others have been suggested. In cardiovascular medicine, hyperpolarized magnetic resonance spectroscopy has been used to probe acid-base disturbances following pharmacological stress, ischemia and heart failure in animals. In addition to pH-estimation, the technique can quantify fluxes such as the pivotal conversion of pyruvate to lactate via lactate dehydrogenase. This capability, a good safety profile and the fact that the technique is employable in clinical scanners have led to recent translation in early clinical trials. Thus, magnetic resonance spectroscopy and imaging may provide clinical pH-imaging in the near future.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lotte Bonde Bertelsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Hyperpolarization via dissolution dynamic nuclear polarization: new technological and methodological advances. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:5-23. [PMID: 33185800 DOI: 10.1007/s10334-020-00894-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Dissolution-DNP is a method to boost liquid-state NMR sensitivity by several orders of magnitude. The technique consists in hyperpolarizing samples by solid-state dynamic nuclear polarization at low temperature and moderate magnetic field, followed by an instantaneous melting and dilution of the sample happening inside the polarizer. Although the technique is well established and the outstanding signal enhancement paved the way towards many applications precluded to conventional NMR, the race to develop new methods allowing higher throughput, faster and higher polarization, and longer exploitation of the signal is still vivid. In this work, we review the most recent advances on dissolution-DNP methods trying to overcome the original technique's shortcomings. The review describes some of the new approaches in the field, first, in terms of sample formulation and properties, and second, in terms of instrumentation.
Collapse
|
26
|
Smith LM, Wade TP, Friesen‐Waldner LJ, McKenzie CA. Optimizing SNR for multi-metabolite hyperpolarized carbon-13 MRI using a hybrid flip-angle scheme. Magn Reson Med 2020; 84:1510-1517. [PMID: 32011018 PMCID: PMC7318277 DOI: 10.1002/mrm.28194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To improve the SNR of hyperpolarized carbon-13 MRI of [1-13 C]pyruvate using a multispectral variable flip angle (msVFA) scheme in which the spectral profile and flip angle vary dynamically with time. METHODS Each image acquisition in a time-resolved imaging experiment used a unique spectrally varying RF pulse shape for msVFA. Therefore, the flip angle for every acquisition was optimized for pyruvate and each of its metabolites to yield the highest SNR across the acquisition. Multispectral VFA was compared with a spectrally varying constant flip-angle excitation model through simulations and in vivo. A modified broadband chemical shift-encoded gradient-echo sequence was used for in vivo experiments on six pregnant guinea pigs. Regions of interest placed in the placentae, maternal liver, and maternal kidneys were used as areas for SNR measurement. RESULTS In vivo experiments showed significant increases in SNR for msVFA relative to constant flip angle of up to 250% for multiple metabolites. CONCLUSION Hyperpolarized carbon-13 imaging with msVFA excitation produces improved SNR for all metabolites in organs of interest.
Collapse
Affiliation(s)
- Lauren M. Smith
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Division of MaternalFetal and Newborn HealthChildren’s Health Research InstituteLondonOntarioCanada
| | - Trevor P. Wade
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
| | | | - Charles A. McKenzie
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
- Division of MaternalFetal and Newborn HealthChildren’s Health Research InstituteLondonOntarioCanada
- Robarts Research InstituteUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
27
|
Qin H, Zhang V, Bok RA, Santos RD, Cunha JA, Hsu IC, Santos Bs JD, Lee JE, Sukumar S, Larson PEZ, Vigneron DB, Wilson DM, Sriram R, Kurhanewicz J. Simultaneous Metabolic and Perfusion Imaging Using Hyperpolarized 13C MRI Can Evaluate Early and Dose-Dependent Response to Radiation Therapy in a Prostate Cancer Mouse Model. Int J Radiat Oncol Biol Phys 2020; 107:887-896. [PMID: 32339646 DOI: 10.1016/j.ijrobp.2020.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate use of a novel imaging approach, hyperpolarized (HP) 13C magnetic resonance imaging (MRI) for simultaneous metabolism and perfusion assessment, to evaluate early and dose-dependent response to radiation therapy (RT) in a prostate cancer mouse model. METHODS AND MATERIALS Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice (n = 18) underwent single-fraction RT (4-14 Gy steep dose across the tumor) and were imaged serially at pre-RT baseline and 1, 4, and 7 days after RT using HP 13C MRI with combined [1-13C]pyruvate (metabolic active agent) and [13C]urea (perfusion agent), coupled with conventional multiparametric 1H MRI including T2-weighted, dynamic contrast-enhanced, and diffusion-weighted imaging. Tumor tissues were collected 4 and 7 days after RT for biological correlative studies. RESULTS We found a significant decrease in HP pyruvate-to-lactate conversion in tumors responding to RT, with concomitant significant increases in HP pyruvate-to-alanine conversion and HP urea signal; the opposite changes were observed in tumors resistant to RT. Moreover, HP lactate change was dependent on radiation dose; tumor regions treated with higher radiation doses (10-14 Gy) exhibited a greater decrease in HP lactate signal than low-dose regions (4-7 Gy) as early as 1 day post-RT, consistent with lactate dehydrogenase enzyme activity and expression data. We also found that HP [13C]urea MRI provided assessments of tumor perfusion similar to those provided by 1H dynamic contrast-enhanced MRI in this animal model. However, apparent diffusion coefficien , a conventional 1H MRI functional biomarker, did not exhibit statistically significant changes within 7 days after RT. CONCLUSION These results demonstrate the ability of HP 13C MRI to monitor radiation-induced physiologic changes in a timely and dose-dependent manner, providing the basic science premise for further clinical investigation and translation.
Collapse
Affiliation(s)
- Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California; Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Vickie Zhang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - J Adam Cunha
- Department of Radiation Oncology, University of California, San Francisco, California
| | - I-Chow Hsu
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Justin Delos Santos Bs
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Jessie E Lee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Subramaniam Sukumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California; Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California; Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California; Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California.
| |
Collapse
|
28
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
29
|
Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1- 13C] pyruvate MR spectroscopy. Sci Rep 2019; 9:18427. [PMID: 31804591 PMCID: PMC6895171 DOI: 10.1038/s41598-019-54965-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate real-time early detection of metabolic alteration in a rat model with acute myocardial ischemia-reperfusion (AMI/R) injury and myocardial necrosis, as well as its correlation with intracellular pH level using in vivo hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy (MRS). Hyperpolarized 13C MRS was performed on the myocardium of 8 sham-operated control rats and 8 rats with AMI/R injury, and 8 sham-operated control rats and 8 rats with AMI-induced necrosis. Also, the correlations of levels of [1-13C] metabolites with pH were analyzed by Spearman’s correlation test. The AMI/R and necrosis groups showed significantly higher ratios of [1-13C] lactate (Lac)/bicarbonate (Bicar) and [1-13C] Lac/total carbon (tC), and lower ratios of 13C Bicar/Lac + alanine (Ala), and 13C Bicar/tC than those of the sham-operated control group. Moreover, the necrosis group showed significantly higher ratios of [1-13C] Lac/Bicar and [1-13C] Lac/tC, and lower ratios of 13C Bicar/Lac + Ala and 13C Bicar/tC than those of the AMI/R group. These results were consistent with the pattern for in vivo the area under the curve (AUC) ratios. In addition, levels of [1-13C] Lac/Bicar and [1-13C] Lac/tC were negatively correlated with pH levels, whereas 13C Bicar/Lac + Ala and 13C Bicar/tC levels were positively correlated with pH levels. The levels of [1-13C] Lac and 13C Bicar will be helpful for non-invasively evaluating the early stage of AMI/R and necrosis in conjunction with reperfusion injury of the heart. These findings have potential application to real-time evaluation of cardiac malfunction accompanied by changes in intracellular pH level and enzymatic activity.
Collapse
|
30
|
Kishimoto S, Oshima N, Krishna MC, Gillies RJ. Direct and indirect assessment of cancer metabolism explored by MRI. NMR IN BIOMEDICINE 2019; 32:e3966. [PMID: 30169896 DOI: 10.1002/nbm.3966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Magnetic resonance-based approaches to obtain metabolic information on cancer have been explored for decades. Electron paramagnetic resonance (EPR) has been developed to pursue metabolic profiling and successfully used to monitor several physiologic parameters such as pO2 , pH, and redox status. All these parameters are associated with pathophysiology of various diseases. Especially in oncology, cancer hypoxia has been intensively studied because of its relationship with metabolic alterations, acquiring treatment resistance, or a malignant phenotype. Thus, pO2 imaging leads to an indirect metabolic assessment in this regard. Proton electron double-resonance imaging (PEDRI) is an imaging technique to visualize EPR by using the Overhauser effect. Most biological parameters assessed in EPR can be visualized using PEDRI. However, EPR and PEDRI have not been evaluated sufficiently for clinical application due to limitations such as toxicity of the probes or high specific absorption rate. Hyperpolarized (HP) 13 C MRI is a novel imaging technique that can directly visualize the metabolic profile. Production of metabolites of the HP 13 C probe delivered to target tissue are evaluated in this modality. Unlike EPR or PEDRI, which require the injection of radical probes, 13 C MRI requires a probe that can be physiologically metabolized and efficiently hyperpolarized. Among several methods for hyperpolarizing probes, dissolution dynamic nuclear hyperpolarization is a widely used technique for in vivo imaging. Pyruvate is the most suitable probe for HP 13 C MRI because it is part of the glycolytic pathway and the high efficiency of pyruvate-to-lactate conversion is a distinguishing feature of cancer. Its clinical applicability also makes it a promising metabolic imaging modality. Here, we summarize the applications of these indirect and direct MR-based metabolic assessments focusing on pO2 and pyruvate-to-lactate conversion. The two parameters are strongly associated with each other, hence the acquired information is potentially interchangeable when evaluating treatment response to oxygen-dependent cancer therapies.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Nobu Oshima
- Urologic Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
31
|
Zacharias NM, Baran N, Shanmugavelandy SS, Lee J, Lujan JV, Dutta P, Millward SW, Cai T, Wood CG, Piwnica-Worms D, Konopleva M, Bhattacharya PK. Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:1937-1946. [PMID: 31387889 DOI: 10.1158/1535-7163.mct-18-0985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/17/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic disease characterized by glutamine-dependent metabolism. A novel glutaminase (GLS) inhibitor, CB-839, is currently under evaluation for treatment of hematopoietic malignancies and solid tumors. Our purpose was to measure cellular changes in AML associated with CB-839 treatment and to test the ability of hyperpolarized pyruvate for interrogating these changes to OCI-AML3 cells. Our results show that treatment with CB-839 interfered with the citric acid cycle, reduced the NADH/NAD+ ratio and ATP levels, reduced cell proliferation and viability, and reduced the basal and maximal respiratory capacities [oxygen consumption rate (OCR)]. We observed a reduction of the conversion of hyperpolarized pyruvate to lactate in cell lines and in a mouse AML model after CB-839 treatment. Our in vitro and in vivo results support the hypothesis that, in AML, glutamine is utilized to generate reducing equivalents (NADH, FADH2) through the citric acid cycle and that reduction in redox state by GLS inhibition decreases the rate of pyruvate to lactate conversion catalyzed by lactate dehydrogenase. We propose hyperpolarized pyruvate/lactate measurement as a method for direct monitoring of metabolic changes occurring in AML patients receiving CB-839. With further optimization, this method may provide a noninvasive imaging tool to assess the early efficacy of therapeutic intervention with GLS inhibitors.
Collapse
Affiliation(s)
- Niki M Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sriram S Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juliana Velez Lujan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven W Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tianyu Cai
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
Zacharias N, Lee J, Ramachandran S, Shanmugavelandy S, McHenry J, Dutta P, Millward S, Gammon S, Efstathiou E, Troncoso P, Frigo DE, Piwnica-Worms D, Logothetis CJ, Maity SN, Titus MA, Bhattacharya P. Androgen Receptor Signaling in Castration-Resistant Prostate Cancer Alters Hyperpolarized Pyruvate to Lactate Conversion and Lactate Levels In Vivo. Mol Imaging Biol 2019; 21:86-94. [PMID: 29748904 DOI: 10.1007/s11307-018-1199-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Androgen receptor (AR) signaling affects prostate cancer (PCa) growth, metabolism, and progression. Often, PCa progresses from androgen-sensitive to castration-resistant prostate cancer (CRPC) following androgen-deprivation therapy. Clinicopathologic and genomic characterizations of CRPC tumors lead to subdividing CRPC into two subtypes: (1) AR-dependent CRPC containing dysregulation of AR signaling alterations in AR such as amplification, point mutations, and/or generation of splice variants in the AR gene; and (2) an aggressive variant PCa (AVPC) subtype that is phenotypically similar to small cell prostate cancer and is defined by chemotherapy sensitivity, gain of neuroendocrine or pro-neural marker expression, loss of AR expression, and combined alterations of PTEN, TP53, and RB1 tumor suppressors. Previously, we reported patient-derived xenograft (PDX) animal models that contain characteristics of these CRPC subtypes. In this study, we have employed the PDX models to test metabolic alterations in the CRPC subtypes. PROCEDURES Mass spectrometry and nuclear magnetic resonance analysis along with in vivo hyperpolarized 1-[13C]pyruvate spectroscopy experiments were performed on prostate PDX animal models. RESULTS Using hyperpolarized 1-[13C]pyruvate conversion to 1-[13C]lactate in vivo as well as lactate measurements ex vivo, we have found increased lactate production in AR-dependent CRPC PDX models even under low-hormone levels (castrated mouse) compared to AR-negative AVPC PDX models. CONCLUSIONS Our analysis underscores the potential of hyperpolarized metabolic imaging in determining the underlying biology and in vivo phenotyping of CRPC.
Collapse
Affiliation(s)
- Niki Zacharias
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sriram Shanmugavelandy
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - James McHenry
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Steven Millward
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Seth Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Clinical Therapeutics, University of Athens, Athens, Greece
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Unit 1907, Houston, TX, 77054, USA.
| |
Collapse
|
33
|
Grist JT, McLean MA, Riemer F, Schulte RF, Deen SS, Zaccagna F, Woitek R, Daniels CJ, Kaggie JD, Matys T, Patterson I, Slough R, Gill AB, Chhabra A, Eichenberger R, Laurent MC, Comment A, Gillard JH, Coles AJ, Tyler DJ, Wilkinson I, Basu B, Lomas DJ, Graves MJ, Brindle KM, Gallagher FA. Quantifying normal human brain metabolism using hyperpolarized [1- 13C]pyruvate and magnetic resonance imaging. Neuroimage 2019; 189:171-179. [PMID: 30639333 PMCID: PMC6435102 DOI: 10.1016/j.neuroimage.2019.01.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Hyperpolarized 13C Magnetic Resonance Imaging (13C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1-13C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13C images demonstrated 13C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (kPL) for exchange of the hyperpolarized 13C label between [1-13C]pyruvate and the endogenous lactate pool was 0.012 ± 0.006 s-1 and the apparent rate constant (kPB) for the irreversible flux of [1-13C]pyruvate to [13C]bicarbonate was 0.002 ± 0.002 s-1. Imaging also revealed that [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1-13C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies.
Collapse
Affiliation(s)
- James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ilse Patterson
- Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Rhys Slough
- Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anita Chhabra
- Pharmacy, Cambridge University Hospitals, Cambridge, UK
| | | | | | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; GE Healthcare, Chalfont St Giles, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge and Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - David J Lomas
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
34
|
Crémillieux Y, Dumont U, Mazuel L, Salvati R, Zhendre V, Rizzitelli S, Blanc J, Roumes H, Pinaud N, Bouzier-Sore AK. Online Quantification of Lactate Concentration in Microdialysate During Cerebral Activation Using 1H-MRS and Sensitive NMR Microcoil. Front Cell Neurosci 2019; 13:89. [PMID: 30941014 PMCID: PMC6433703 DOI: 10.3389/fncel.2019.00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/21/2019] [Indexed: 11/22/2022] Open
Abstract
The dynamic in vivo profiling of lactate is of uppermost importance in both neuroenergetics and neuroprotection fields, considering its central suspected role as a metabolic and signaling molecule. For this purpose, we implemented proton magnetic resonance spectroscopy (1H-MRS) directly on brain microdialysate to monitor online the fluctuation of lactate contents during neuronal stimulation. Brain activation was obtained by right whisker stimulation of rats, which leads to the activation of the left barrel cortex area in which the microdialysis probe was implanted. The experimental protocol relies on the use of dedicated and sensitive home-made NMR microcoil able to perform lactate NMR profiling at submillimolar concentration. The MRS measurements of extracellular lactate concentration were performed inside a pre-clinical MRI scanner allowing simultaneous visualization of the correct location of the microprobe by MRI and detection of metabolites contained in the microdialysis by MRS. A 40% increase in lactate concentration was measured during whisker stimulation in the corresponding barrel cortex. This combination of microdialysis with online MRS/MRI provides a new approach to follow in vivo lactate fluctuations, and can be further implemented in physio-pathological conditions to get new insights on the role of lactate in brain metabolism and signaling.
Collapse
Affiliation(s)
- Yannick Crémillieux
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Ursule Dumont
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Leslie Mazuel
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Roberto Salvati
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Vanessa Zhendre
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Silvia Rizzitelli
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Jordy Blanc
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Hélène Roumes
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| | - Noël Pinaud
- Université de Bordeaux, Bordeaux, France.,UMR5255 Institut des Sciences Moléculaires (ISM), Talence, France
| | - Anne-Karine Bouzier-Sore
- Université de Bordeaux, Bordeaux, France.,UMR5536 Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), Bordeaux, France
| |
Collapse
|
35
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
36
|
Bachawal SV, Park JM, Valluru KS, Loft MD, Felt SA, Vilches-Moure JG, Saenz YF, Daniel B, Iagaru A, Sonn G, Cheng Z, Spielman DM, Willmann JK. Multimodality Hyperpolarized C-13 MRS/PET/Multiparametric MR Imaging for Detection and Image-Guided Biopsy of Prostate Cancer: First Experience in a Canine Prostate Cancer Model. Mol Imaging Biol 2019; 21:861-870. [DOI: 10.1007/s11307-018-1235-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Abstract
Experimental screening for protein-ligand interactions is a central task in drug discovery. Nuclear magnetic resonance (NMR) spectroscopy enables the determination of binding affinities, as well as the measurement of structural and dynamic parameters governing the interaction. With traditional liquid-state NMR relying on a nuclear spin polarization on the order of 10-5, hyperpolarization methods such as dissolution dynamic nuclear polarization (D-DNP) can increase signals by several orders of magnitude. The resulting increase in sensitivity has the potential to reduce requirements for the concentration of protein and ligands, improve the accuracy of the detection of interaction by allowing the use of near-stoichiometric conditions, and increase throughput. This chapter introduces a selection of basic techniques for the application of D-DNP to screening. Procedures for hyperpolarization are briefly reviewed, followed by the description of NMR methods for detection of binding through changes in chemical shift and relaxation parameters. Experiments employing competitive binding with a known ligand are shown, which can be used to determine binding affinity or yield structural information on the pharmacophore. The specific challenges of working with nonrenewable hyperpolarization are reviewed, and solutions including the use of multiplexed NMR detection are described. Altogether, the methods summarized in this chapter are intended to allow for the efficient detection of binding affinity, structure, and dynamics facilitated through substantial signal enhancements provided by hyperpolarization.
Collapse
Affiliation(s)
- Yaewon Kim
- Chemistry Department, Texas A&M University, College Station, TX, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
38
|
Vishwanath V, Mayer D, Fu D, Wnorowski A, Siddiqui MM. Hyperpolarized 13C magnetic resonance imaging, using metabolic imaging to improve the detection and management of prostate, bladder, and kidney urologic malignancies. Transl Androl Urol 2018; 7:855-863. [PMID: 30456188 PMCID: PMC6212626 DOI: 10.21037/tau.2018.08.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 25% of the 2 million new cancer diagnoses in the United States in 2018 were comprised of malignancies of the urogenital system. Of these cancers, 75% occurred in the kidney/renal pelvis, prostate, and urinary bladder. Early diagnosis is beneficial to long-term survival. Currently, urologists rely heavily on computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), and positron emission tomography (PET) to both diagnose and offer prognoses, but these techniques are limited in their resolution and are more effective when cancers have reached macroscopic size in later stages. Recent developments in cancer metabolomics have revealed that cancerous cells preferentially upregulate specific metabolic pathways as a means of conserving their resources and maximizing their growth potential. This has opened a new avenue for early diagnosis with much higher resolution, reliability, and accuracy through 13C hyperpolarized MRI. Preferential cancer pathways can be elucidated through this technique using 13C-labeled molecules utilized for energy generation and tumor growth. As these pathways are identified, targeted therapies are being designed to inhibit these pathways to allow for treatment that is cytotoxic to malignant cells but preserves native cells. In this paper, we review the current understanding of urologic cancer metabolomics, specifically in the kidney, prostate, and bladder. We will review the basic physics of MRI and demonstrate how hyperpolarized 13C MRI offers an innovative solution to early diagnosis as well as creates novel avenues for more targeted therapy.
Collapse
Affiliation(s)
- Vijay Vishwanath
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dexue Fu
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amelia Wnorowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohummad Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,The Veterans Health Administration Research and Development Service, Baltimore, MD, USA
| |
Collapse
|
39
|
Abstract
Magnetic resonance spectroscopy (MRS) can be performed in vivo using commercial MRI systems to obtain biochemical information about tissues and cancers. Applications in brain, prostate and breast aid lesion detection and characterisation (differential diagnosis), treatment planning and response assessment. Multi-centre clinical trials have been performed in all these tissues. Single centre studies have been performed in many other tissues including cervix, uterus, musculoskeletal and liver. While generally MRS is used to study endogenous metabolites it has also been used in drug studies, for example those that include 19F as part of their structure. Recently the hyperpolarisation of compounds enriched with 13C such as [1-13C] pyruvate has been demonstrated in animal models and now in preliminary clinical studies, permitting the monitoring of biochemical processes with unprecedented sensitivity. This review briefly introduces the underlying methods and then discusses the current status of these applications.
Collapse
Affiliation(s)
- Geoffrey S Payne
- University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
40
|
Niedbalski P, Kiswandhi A, Parish C, Wang Q, Khashami F, Lumata L. NMR Spectroscopy Unchained: Attaining the Highest Signal Enhancements in Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2018; 9:5481-5489. [PMID: 30179503 DOI: 10.1021/acs.jpclett.8b01687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method is one of the most successful methods for alleviating the inherently low Boltzmann-dictated sensitivity in nuclear magnetic resonance (NMR) spectroscopy. This emerging technology has already begun to positively impact chemical and metabolic research by providing the much-needed enhancement of the liquid-state NMR signals of insensitive nuclei such as 13C by several thousand-fold. In this Perspective, we present our viewpoints regarding the key elements needed to maximize the NMR signal enhancements in dissolution DNP, from the very core of the DNP process at cryogenic temperatures, DNP instrumental conditions, and chemical tuning in sample preparation to current developments in minimizing hyperpolarization losses during the dissolution transfer process. The optimization steps discussed herein could potentially provide important experimental and theoretical considerations in harnessing the best possible sensitivity gains in NMR spectroscopy as afforded by optimized dissolution DNP technology.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Andhika Kiswandhi
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Christopher Parish
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Qing Wang
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Fatemeh Khashami
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| | - Lloyd Lumata
- Department of Physics , The University of Texas at Dallas , 800 West Campbell Road , Richardson , Texas 75080 , United States
| |
Collapse
|
41
|
Riis-Vestergaard MJ, Breining P, Pedersen SB, Laustsen C, Stødkilde-Jørgensen H, Borghammer P, Jessen N, Richelsen B. Evaluation of Active Brown Adipose Tissue by the Use of Hyperpolarized [1- 13C]Pyruvate MRI in Mice. Int J Mol Sci 2018; 19:ijms19092597. [PMID: 30200469 PMCID: PMC6164296 DOI: 10.3390/ijms19092597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The capacity to increase energy expenditure makes brown adipose tissue (BAT) a putative target for treatment of metabolic diseases such as obesity. Presently, investigation of BAT in vivo is mainly performed by fluoro-d-glucose positron emission tomography (FDG PET)/CT. However, non-radioactive methods that add information on, for example, substrate metabolism are warranted. Thus, the aim of this study was to evaluate the potential of hyperpolarized [1-13C]pyruvate Magnetic Resonance Imaging (HP-MRI) to determine BAT activity in mice following chronic cold exposure. Cold (6 °C) and thermo-neutral (30 °C) acclimated mice were scanned with HP-MRI for assessment of the interscapular BAT (iBAT) activity. Comparable mice were scanned with the conventional method FDG PET/MRI. Finally, iBAT was evaluated for gene expression and protein levels of the specific thermogenic marker, uncoupling protein 1 (UCP1). Cold exposure increased the thermogenic capacity 3–4 fold (p < 0.05) as measured by UCP1 gene and protein analysis. Furthermore, cold exposure as compared with thermo-neutrality increased iBAT pyruvate metabolism by 5.5-fold determined by HP-MRI which is in good agreement with the 5-fold increment in FDG uptake (p < 0.05) measured by FDG PET/MRI. iBAT activity is detectable in mice using HP-MRI in which potential changes in intracellular metabolism may add useful information to the conventional FDG PET studies. HP-MRI may also be a promising radiation-free tool for repetitive BAT studies in humans.
Collapse
Affiliation(s)
- Mette Ji Riis-Vestergaard
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Peter Breining
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Steen Bønløkke Pedersen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | - Christoffer Laustsen
- MR Research Center, Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| | | | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Bjørn Richelsen
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.
| |
Collapse
|
42
|
Zhang G, Hilty C. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:566-582. [PMID: 29602263 DOI: 10.1002/mrc.4735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 05/15/2023]
Abstract
Sensitivity of detection is one of the most limiting aspects when applying NMR spectroscopy to current problems in the molecular sciences. A number of hyperpolarization methods exist for increasing the population difference between nuclear spin Zeeman states and enhance the signal-to-noise ratio by orders of magnitude. Among these methods, dissolution dynamic nuclear polarization (D-DNP) is unique in its capability of providing high spin polarization for many types of molecules in the liquid state. Originally proposed for biomedical applications including in vivo imaging, applications in high resolution NMR spectroscopy are now emerging. These applications are the focus of the present review. Using D-DNP, a small sample aliquot is first hyperpolarized as a frozen solid at low temperature, followed by dissolution into the liquid state. D-DNP extends the capabilities of liquid state NMR spectroscopy towards shorter timescales and enables the study of nonequilibrium processes, such as the kinetics and mechanisms of reactions. It allows the determination of intermolecular interactions, in particular based on spin relaxation parameters. At the same time, a challenge in the application of this hyperpolarization method is that spin polarization is nonrenewable. Substantial effort has been devoted to develop methods for enabling rapid correlation spectroscopy, the measurement of time-dependent signals, and the extension of the observable time window. With these methods, D-DNP has the potential to open new application areas in the chemical and biochemical sciences.
Collapse
Affiliation(s)
- Guannan Zhang
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
43
|
Flori A, Giovannetti G, Santarelli MF, Aquaro GD, De Marchi D, Burchielli S, Frijia F, Positano V, Landini L, Menichetti L. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:153-160. [PMID: 29597071 DOI: 10.1016/j.saa.2018.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/19/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the 13C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample. In this study, we describe and quantify the effects of the different sample components on the dissolution Dynamic Nuclear Polarization performance of [1-13C]butyrate. In particular, we focus on the polarization enhancement provided by the incremental addition of the glassy agent dimethyl sulfoxide and gadolinium chelate to the formulation. Finally, preliminary results obtained after injection in healthy rats are also reported, showing the feasibility of an in vivo Magnetic Resonance Spectroscopy study with hyperpolarized [1-13C]butyrate using a 3T clinical set-up.
Collapse
Affiliation(s)
- Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy; Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | | | | | | | | | - Luigi Landini
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy; Department of Electronic Engineering, University of Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy; Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
44
|
Cavallari E, Carrera C, Sorge M, Bonne G, Muchir A, Aime S, Reineri F. The 13C hyperpolarized pyruvate generated by ParaHydrogen detects the response of the heart to altered metabolism in real time. Sci Rep 2018; 8:8366. [PMID: 29849091 PMCID: PMC5976640 DOI: 10.1038/s41598-018-26583-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/14/2018] [Indexed: 01/13/2023] Open
Abstract
Many imaging methods have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarkers characteristics of the injured organ have not yet been described. Hyperpolarized [1-13C]pyruvate allows real time monitoring of metabolism in vivo. ParaHydrogen Induced Polarization (PHIP) is a portable, cost effective technique able to generate 13C MR hyperpolarized molecules within seconds. The introduction of the Side Arm Hydrogenation (SAH) strategy offered a way to widen the field of PHIP generated systems and to make this approach competitive with the currently applied dissolution-DNP (Dynamic Nuclear Polarization) method. Herein, we describe the first in vivo metabolic imaging study using the PHIP-SAH hyperpolarized [1-13C]pyruvate. In vivo maps of pyruvate and of its metabolic product lactate have been acquired on a 1 T MRI scanner. By comparing pyruvate/lactate 13C label exchange rate in a mouse model of dilated cardiomyopathy, it has been found that the metabolic dysfunction occurring in the cardiac muscle of the diseased mice can be detected well before the disease can be assessed by echocardiographic investigations.
Collapse
Affiliation(s)
- Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Carla Carrera
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS974, Center of Research in Myology, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Antoine Muchir
- Sorbonne Université, Inserm UMRS974, Center of Research in Myology, Institut de Myologie, G.H. Pitie-Salpetriere, Paris, France
| | - Silvio Aime
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Reineri
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
45
|
Zaccagna F, Grist JT, Deen SS, Woitek R, Lechermann LMT, McLean MA, Basu B, Gallagher FA. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 2018; 91:20170688. [PMID: 29293376 PMCID: PMC6190784 DOI: 10.1259/bjr.20170688] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with (18F)2-fluoro-2-deoxy-D-glucose (18F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
46
|
Leavesley A, Wilson CB, Sherwin M, Han S. Effect of water/glycerol polymorphism on dynamic nuclear polarization. Phys Chem Chem Phys 2018; 20:9897-9903. [PMID: 29619477 DOI: 10.1039/c8cp00358k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A paramount feature of robust experimental methods is acquiring consistent data. However, in dynamic nuclear polarization (DNP), it has been observed that the DNP-induced NMR signal enhancement of nominally the same sample can vary between different experimental sessions. We investigated the impact of various freezing conditions on the DNP results for a standard sample, a 50/40/10 by volume d8-glycerol/D2O/H2O solution of 40 mM 4-amino TEMPO, and found that annealing the samples 10 K above the glass transition temperature (Tg) causes significant changes to the DNP profiles and enhancements compared to that in rapidly frozen samples. When varying the glycerol composition to yield a solution of 60/30/10 d8-glycerol/D2O/H2O, the DNP performance became markedly more consistent, even for samples prepared under vastly different sample freezing methods, in stark contrast with that of the 50/40/10 solution. The EPR lineshapes, Tm, and glass transition temperature, Tg, were measured under the same sample and experimental conditions as used for the DNP experiments to support the conclusion that different freezing methods change the distribution of 4-amino TEMPO radials in the 50/40/10 solution due to the formation of different polymorphs of the glass, which is mitigated in the 60/30/10 solution and is consistent with the water/glycerol vitrification literature.
Collapse
Affiliation(s)
- Alisa Leavesley
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | | | | | | |
Collapse
|
47
|
Wright AJ, Husson ZM, Hu D, Callejo G, Brindle KM, Smith ESJ. Increased hyperpolarized [1- 13 C] lactate production in a model of joint inflammation is not accompanied by tissue acidosis as assessed using hyperpolarized 13 C-labelled bicarbonate. NMR IN BIOMEDICINE 2018; 31:e3892. [PMID: 29380927 PMCID: PMC5887936 DOI: 10.1002/nbm.3892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 05/11/2023]
Abstract
Arthritic conditions are a major source of chronic pain. Furthering our understanding of disease mechanisms creates the opportunity to develop more targeted therapeutics. In rheumatoid arthritis (RA), measurements of pH in human synovial fluid suggest that acidosis occurs, but that this is highly variable between individuals. Here we sought to determine if tissue acidosis occurs in a widely used rodent arthritis model: complete Freund's adjuvant (CFA)-induced inflammation. CFA robustly evoked paw and ankle swelling, concomitant with worsening clinical scores over time. We used magnetic resonance spectroscopic imaging of hyperpolarized [1-13 C]pyruvate metabolism to demonstrate that CFA induces an increase in the lactate-to-pyruvate ratio. This increase is indicative of enhanced glycolysis and an increased lactate concentration, as has been observed in the synovial fluid from RA patients, and which was correlated with acidosis. We also measured the 13 CO2 /H13 CO3- ratio, in animals injected with hyperpolarized H13 CO3- , to estimate extracellular tissue pH and showed that despite the apparent increase in glycolytic activity in CFA-induced inflammation there was no accompanying decrease in extracellular pH. The pH was 7.23 ± 0.06 in control paws and 7.32 ± 0.09 in inflamed paws. These results could explain why mice lacking acid-sensing ion channel subunits 1, 2 and 3 do not display any changes in mechanical or thermal hyperalgesia in CFA-induced inflammation.
Collapse
Affiliation(s)
- Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUK
| | - Zoé M.A. Husson
- Department of PharmacologyUniversity of Cambridge, Tennis Court RoadCambridgeUK
| | - De‐En Hu
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUK
| | - Gerard Callejo
- Department of PharmacologyUniversity of Cambridge, Tennis Court RoadCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Li Ka Shing Centre, Robinson WayCambridgeUK
- Department of BiochemistryUniversity of Cambridge, Tennis Court RoadCambridgeUK
| | - Ewan St. John Smith
- Department of PharmacologyUniversity of Cambridge, Tennis Court RoadCambridgeUK
| |
Collapse
|
48
|
Qi H, Nielsen PM, Schroeder M, Bertelsen LB, Palm F, Laustsen C. Acute renal metabolic effect of metformin assessed with hyperpolarised MRI in rats. Diabetologia 2018; 61:445-454. [PMID: 28936623 DOI: 10.1007/s00125-017-4445-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Metformin inhibits hepatic mitochondrial glycerol phosphate dehydrogenase, thereby increasing cytosolic lactate and suppressing gluconeogenesis flux in the liver. This inhibition alters cytosolic and mitochondrial reduction-oxidation (redox) potential, which has been reported to protect organ function in several disease states including diabetes. In this study, we investigated the acute metabolic and functional changes induced by metformin in the kidneys of both healthy and insulinopenic Wistar rats used as a model of diabetes. METHODS Diabetes was induced by intravenous injection of streptozotocin, and kidney metabolism in healthy and diabetic animals was investigated 4 weeks thereafter using hyperpolarised 13C-MRI, Clark-type electrodes and biochemical analysis. RESULTS Metformin increased renal blood flow, but did not change total kidney oxygen consumption. In healthy rat kidneys, metformin increased [1-13C]lactate production and reduced mitochondrial [1-13C]pyruvate oxidation (decreased the 13C-bicarbonate/[1-13C]pyruvate ratio) within 30 min of administration. Corresponding alterations to indices of mitochondrial, cytosolic and whole-cell redox potential were observed. Pyruvate oxidation was maintained in the diabetic rats, suggesting that the diabetic state abrogates metabolic reprogramming caused by metformin. CONCLUSIONS/INTERPRETATION This study demonstrates that metformin-induced acute metabolic alterations in healthy kidneys favoured anaerobic metabolism at the expense of aerobic metabolism. The results suggest that metformin directly alters the renal redox state, with elevated renal cytosolic redox states as well as decreased mitochondrial redox state. These findings suggest redox biology as a novel target to eliminate the renal complications associated with metformin treatment in individuals with impaired renal function.
Collapse
Affiliation(s)
- Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per M Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Marie Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Lotte B Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
49
|
Johansen DH, Sanchez-Heredia JD, Petersen JR, Johansen TK, Zhurbenko V, Ardenkjaer-Larsen JH. Cryogenic Preamplifiers for Magnetic Resonance Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:202-210. [PMID: 29377808 DOI: 10.1109/tbcas.2017.2776256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner showed an 8% increased signal-to-noise ratio from 365 to 399 when lowering the temperature of the preamplifier from 296 to 77 K while keeping the coil at room temperature. This paper thus enables the merger of cryogenic coils and preamplifiers in the hopes of reaching the ultimate limit of detection for MRI.
Collapse
|
50
|
Wang J, Wright AJ, Hesketh RL, Hu D, Brindle KM. A referenceless Nyquist ghost correction workflow for echo planar imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate. NMR IN BIOMEDICINE 2018; 31:e3866. [PMID: 29215773 PMCID: PMC5814908 DOI: 10.1002/nbm.3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/10/2023]
Abstract
Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Richard L. Hesketh
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|