1
|
Hagman K, Postigo T, Diez-Castro D, Ursing J, Bermejo-Martin JF, de la Fuente A, Tedim AP. Prevalence and clinical relevance of viraemia in viral respiratory tract infections: a systematic review. THE LANCET. MICROBE 2025; 6:100967. [PMID: 39342950 DOI: 10.1016/j.lanmic.2024.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 10/01/2024]
Abstract
In this Review, we analysed the prevalence of viraemia during infection with SARS-CoV-2 and other relevant respiratory viruses, including other human coronaviruses such as MERS-CoV and SARS-CoV, adenovirus, human metapneumovirus, human rhinovirus/enterovirus, influenza A and B virus, parainfluenza virus, and respiratory syncytial virus. First, a preliminary systematic search was conducted to identify articles published before May 23, 2024 that reported on viraemia during infection with respiratory viruses. The articles were then analysed for relevant terms to identify the prevalence of viraemia, its association with the disease severity and long-term consequences, and host responses. A total of 202 articles were included in the final study. The pooled prevalence of viraemia was 34% for SARS-CoV-2 and between 6% and 65% for other viruses. Association of viraemia with disease severity was extensively reported for SARS-CoV-2 and also for SARS-CoV, MERS-CoV, adenoviruses, rhinoviruses, respiratory syncytial virus, and influenza A(H1N1)pdm09 (albeit with low evidence). SARS-CoV-2 viraemia was linked to memory problems and worsened quality of life. Viraemia was associated with signatures denoting dysregulated host responses. In conclusion, the high prevalence of viraemia and its association with disease severity suggests that viraemia could be a relevant pathophysiological event with important translational implications in respiratory viral infections.
Collapse
Affiliation(s)
- Karl Hagman
- Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tamara Postigo
- Group for Biomedical Research in Respiratory Infection & Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain
| | - David Diez-Castro
- Department of Anatomy and Histology, Faculty of Medicine, University of Salamanca, Salamanca, Spain; Group for Biomedical Research in Neuroendocrinology and Obesity, IBSAL, University of Salamanca, Salamanca, Spain
| | - Johan Ursing
- Department of Infectious Diseases, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jesús F Bermejo-Martin
- Group for Biomedical Research in Respiratory Infection & Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain; Department of Medicine, Faculty of Medicine, University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES, CB22/06/00035), Instituto de Salud Carlos III, Madrid, Spain.
| | - Amanda de la Fuente
- Group for Biomedical Research in Respiratory Infection & Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES, CB22/06/00035), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana P Tedim
- Group for Biomedical Research in Respiratory Infection & Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES, CB22/06/00035), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Urdy S, Hanke M, Toledo AI, Ratto N, Jacob E, Peyronnet E, Gourlet JB, Chaves SS, Thommes E, Coudeville L, Boissel JP, Courcelles E, Bruezière L. Multi-strain modeling of influenza vaccine effectiveness in older adults and its dependence on antigenic distance. Sci Rep 2024; 14:27190. [PMID: 39516205 PMCID: PMC11549341 DOI: 10.1038/s41598-024-72716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Influenza vaccine effectiveness (VE) varies seasonally due to host, virus and vaccine characteristics. To investigate how antigenic matching and dosage impact VE, we developed a mechanistic knowledge-based mathematical model. Immunization with a split vaccine is modeled for exposure to A/H1N1 or A/H3N2 virus strains. The model accounts for cross-reactivity of immune cells elicited during previous immunizations with new antigens. We simulated vaccine effectiveness (sVE) of high dose (HD) versus standard dose (SD) vaccines in the older population, from 2011 to 2022. We find that sVE is highly dependent on antigenic matching and that higher dosage improves immunogenicity, activation and memory formation of immune cells. In alignment with clinical observations, the HD vaccine performs better than the SD vaccine in all simulations, supporting the use of the HD vaccine in the older population. This model could be adapted to predict the impact of alternative virus strain selection on clinical outcomes in future influenza seasons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sandra S Chaves
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | - Edward Thommes
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | - Laurent Coudeville
- Modeling, Edpidemiology and Data Science (MEDS), Sanofi Vaccines, Lyon, France
| | | | | | | |
Collapse
|
3
|
Hossain I, Shila RA, Uddin MM, Chowdhury EH, Parvin R, Begum JA. Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. BMC Vet Res 2024; 20:500. [PMID: 39482682 PMCID: PMC11529290 DOI: 10.1186/s12917-024-04346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. METHODS Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. RESULTS Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. CONCLUSION This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.
Collapse
Affiliation(s)
- Ismail Hossain
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rupaida Akter Shila
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Mohi Uddin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
4
|
Shahriar I, Kamra M, Kanduluru AK, Campbell CL, Nguyen TH, Srinivasarao M, Low PS. Targeted recruitment of immune effector cells for rapid eradication of influenza virus infections. Proc Natl Acad Sci U S A 2024; 121:e2408469121. [PMID: 39348541 PMCID: PMC11474073 DOI: 10.1073/pnas.2408469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.
Collapse
Affiliation(s)
- Imrul Shahriar
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Mohini Kamra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Ananda Kumar Kanduluru
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Charity Lynn Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Thanh Hiep Nguyen
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Madduri Srinivasarao
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Philip S. Low
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
5
|
Hufnagel M, Rademaekers A, Weisert A, Häberlein H, Franken S. Pharmacological profile of dicaffeoylquinic acids and their role in the treatment of respiratory diseases. Front Pharmacol 2024; 15:1371613. [PMID: 39239645 PMCID: PMC11374715 DOI: 10.3389/fphar.2024.1371613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as Echinacea species and Hedera helix, whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects. However, the beneficial pharmacological profile of DCQAs has not yet been linked to their use in treating respiratory diseases such as acute or even chronic bronchitis. The aim of this review was to assess the potential of DCQAs for respiratory indications based on published in vitro and in vivo pharmacological and pre-clinical data, with particular focus on antioxidative, anti-inflammatory, and respiratory-related effects such as antitussive or antispasmodic properties. A respective literature search revealed a large number of publications on the six DCQA isoforms. Based on this search, a focus was placed on 1,3-, 3,4-, 3,5-, and 4,5-DCQA, as the publications focused mainly on these isomers. Based on the available pre-clinical data, DCQAs trigger cellular mechanisms that are important in the treatment of respiratory diseases such as decreasing NF-κB activation, reducing oxidative stress, or activating the Nrf2 pathway. Taken together, these data suggest an essential role for DCQAs within herbal medicines used for the treatment of respiratory diseases and highlights the need for the identifications of DCQAs as lead substances within such extracts.
Collapse
Affiliation(s)
| | | | - Anika Weisert
- Engelhard Arzneimittel GmbH & Co. KG, Niederdorfelden, Germany
| | - Hanns Häberlein
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Li X, Xie Z, Wei Y, Li M, Zhang M, Luo S, Xie L. Recombinant Hemagglutinin Protein from H9N2 Avian Influenza Virus Exerts Good Immune Effects in Mice. Microorganisms 2024; 12:1552. [PMID: 39203394 PMCID: PMC11356462 DOI: 10.3390/microorganisms12081552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
The H9N2 subtype of avian influenza virus (AIV) causes enormous economic losses and poses a significant threat to public health; the development of vaccines against avian influenza is ongoing. To study the immunogenicity of hemagglutinin (HA) protein, we constructed a recombinant pET-32a-HA plasmid, induced HA protein expression with isopropyl β-D-1-thiogalactopyranoside (IPTG), verified it by SDS-PAGE and Western blotting, and determined the sensitivity of the recombinant protein to acid and heat. Subsequently, mice were immunized with the purified HA protein, and the immunization effect was evaluated according to the hemagglutination inhibition (HI) titer, serum IgG antibody titer, and cytokine secretion level of the mice. The results showed that the molecular weight of the HA protein was approximately 84 kDa, and the protein existed in both soluble and insoluble forms; in addition, the HA protein exhibited good acid and thermal stability, the HI antibody titer reached 6 log2-8 log2, and the IgG-binding antibody titer was 1:1,000,000. Moreover, the levels of IL-2, IL-4, and IL-5 in the immunized mouse spleen cells were significantly increased compared with those in the control group. However, the levels of IL-1β, IL-6, IL-13, IFN-γ, IL-18, TNF-α, and GM-CSF were decreased in the immunized group. The recombinant HA protein utilized in this study exhibited good stability and exerted beneficial immune effects, providing a theoretical basis for further research on influenza vaccines.
Collapse
Affiliation(s)
- Xiaofeng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- GuangXi Key Laboratory of Veterinary Biotechnology, GuangXi Veterinary Research Institute, Nanning 530000, China; (X.L.); (Y.W.); (M.L.); (S.L.); (L.X.)
- Key Laboratory of China (GuangXi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
7
|
Sang L, Gong X, Huang Y, Zhang L, Sun J. Immunotherapeutic implications on targeting the cytokines produced in rhinovirus-induced immunoreactions. FRONTIERS IN ALLERGY 2024; 5:1427762. [PMID: 38859875 PMCID: PMC11163110 DOI: 10.3389/falgy.2024.1427762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Rhinovirus is a widespread virus associated with several respiratory diseases, especially asthma exacerbation. Currently, there are no accurate therapies for rhinovirus. Encouragingly, it is found that during rhinovirus-induced immunoreactions the levels of certain cytokines in patients' serum will alter. These cytokines may have pivotal pro-inflammatory or anti-inflammatory effects via their specific mechanisms. Thus far, studies have shown that inhibitions of cytokines such as IL-1, IL-4, IL-5, IL-6, IL-13, IL-18, IL-25, and IL-33 may attenuate rhinovirus-induced immunoreactions, thereby relieving rhinovirus infection. Furthermore, such therapeutics for rhinovirus infection can be applied to viruses of other species, with certain practicability.
Collapse
Affiliation(s)
- Le Sang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Xia Gong
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Yunlei Huang
- Department of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, China
| | - Linling Zhang
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| | - Jian Sun
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
8
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Sathu S, Kumar R, Maley DK, Eppakayala S, Kashyap A, NynaSindhu A, Madhu Latha K, Lakkireddy M. Increased Frequency of Low Back Pain in Recent Times: Does the Answer Lie in COVID-19? Cureus 2023; 15:e50021. [PMID: 38186417 PMCID: PMC10767474 DOI: 10.7759/cureus.50021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 01/09/2024] Open
Abstract
Background The COVID-19 pandemic has impacted many people's activities of daily living and health. It has also created economic burdens and caused mental turmoil across the world. Musculoskeletal symptoms, especially low back pain, have been observed in subjects of post-COVID-19 infection and post-vaccination. Aim In this study, we aimed to investigate the relationship between low back pain and COVID-19 infection and vaccination, as well as associated factors and characteristics. Methods We conducted a questionnaire-based cross-sectional observational study at All India Institute of Medical Science (AIIMS) Bibinagar between September 2021 and March 2022. We collected data from individuals through physical and Google Forms (Google, Mountain View, California). Results We included a total of 535 individuals in the study: 274 (51.2%) were previously positive for COVID-19 infection (group A), and 261 (48.8%) were vaccinated against COVID-19 without a history of COVID-19 infection (group B). Each group was divided into two categories based on whether they had low back pain before COVID-19 infection or vaccination. In group A, 90.1% of individuals experienced an aggravation of low back pain after COVID-19 infection, which was found to be significant (p<0.001). In group B, there was an insignificant increase in low back pain following COVID-19 vaccination (p=0.275). The study also revealed a significant association between comorbidities and low back pain in both groups (p<0.001). Additionally, several differences were observed between the two groups, including duration (p<0.001), severity (p=0.012), and intensity (p<0.001) of low back pain, usage of a back support or brace (p=0.043), and intake of vitamin D (p=0.002). Conclusion Low back pain is an ignored feature of one of the musculoskeletal symptoms of COVID-19 and was aggravated by COVID-19 infection in our patients compared to those who received the vaccination. The findings of this study have implications for raising awareness, improving management and rehabilitation, and guiding future research in this area.
Collapse
Affiliation(s)
- Sreedhar Sathu
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Ravi Kumar
- Department of Orthopedics, All India Institute of Medical Sciences, Rajkot, Rajkot, IND
| | - Deepak K Maley
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Srikanth Eppakayala
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Adinarayana Kashyap
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Akula NynaSindhu
- Department of General Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Karra Madhu Latha
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| | - Maheshwar Lakkireddy
- Department of Orthopedics, All India Institute of Medical Sciences, Bibinagar, Hyderabad, IND
| |
Collapse
|
10
|
Tran TT, Phung TTB, Tran DM, Bui HT, Nguyen PTT, Vu TT, Ngo NTP, Nguyen MT, Nguyen AH, Nguyen ATV. Efficient symptomatic treatment and viral load reduction for children with influenza virus infection by nasal-spraying Bacillus spore probiotics. Sci Rep 2023; 13:14789. [PMID: 37684332 PMCID: PMC10491672 DOI: 10.1038/s41598-023-41763-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Influenza virus is a main cause of acute respiratory tract infections (ARTIs) in children. This is the first double-blind, randomized, and controlled clinical trial examining the efficacy of nasal-spraying probiotic LiveSpo Navax, which contains 5 billion of Bacillus subtilis and B. clausii spores in 5 mL, in supporting treatment of influenza viral infection in pediatric patients. We found that the nasal-spraying Bacillus spores significantly shortened the recovery period and overall treatment by 2 days and increased treatment effectiveness by 58% in resolving all ARTIs' symptoms. At day 2, the concentrations of influenza virus and co-infected bacteria were reduced by 417 and 1152 folds. Additionally, the levels of pro-inflammatory cytokines IL-8, TNF-α, and IL-6 in nasopharyngeal samples were reduced by 1.1, 3.7, and 53.9 folds, respectively. Compared to the standard control group, treatment regimen with LiveSpo Navax demonstrated significantly greater effectiveness, resulting in 26-fold reduction in viral load, 65-fold reduction in bacterial concentration, and 1.1-9.5-fold decrease in cytokine levels. Overall, nasal-spraying Bacillus spores can support the symptomatic treatment of influenza virus-induced ARTIs quickly, efficiently and could be used as a cost-effective supportive treatment for respiratory viral infection in general.Clinical trial registration no: NCT05378022 on 17/05/2022.
Collapse
Affiliation(s)
- Tu Thanh Tran
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Thuy Thi Bich Phung
- Department of Molecular Biology for Infectious Diseases, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Dien Minh Tran
- Department of Surgical Intensive Care Unit, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Huyen Thi Bui
- Key Laboratory of Enzyme and Protein Technology, VNU University of Sciences, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam
| | - Phuc Thanh Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Tam Thi Vu
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Nga Thi Phuong Ngo
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Mai Thi Nguyen
- International Center, Vietnam National Children's Hospital, No. 18/879 La Thanh, Dong Da, Hanoi, Vietnam
| | - Anh Hoa Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
- LiveSpo Pharma Ltd. Company, N03T5, Ngoai Giao Doan Urban, Bac Tu Liem, Hanoi, Vietnam.
| | - Anh Thi Van Nguyen
- Spobiotic Research Center, ANABIO R&D Ltd. Company, No. 22, Lot 7, 8 Van Khe Urban, La Khe, Ha Dong, Hanoi, Vietnam.
| |
Collapse
|
11
|
Zhang F, Luna A, Tan T, Chen Y, Sander C, Guo T. COVIDpro: Database for Mining Protein Dysregulation in Patients with COVID-19. J Proteome Res 2023; 22:2847-2859. [PMID: 37555633 DOI: 10.1021/acs.jproteome.3c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The ongoing pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 still has limited treatment options. Our understanding of the molecular dysregulations that occur in response to infection remains incomplete. We developed a web application COVIDpro (https://www.guomics.com/covidPro/) that includes proteomics data obtained from 41 original studies conducted in 32 hospitals worldwide, involving 3077 patients and covering 19 types of clinical specimens, predominantly plasma and serum. The data set encompasses 53 protein expression matrices, comprising a total of 5434 samples and 14,403 unique proteins. We identified a panel of proteins that exhibit significant dysregulation, enabling the classification of COVID-19 patients into severe and non-severe disease categories. The proteomic signatures achieved promising results in distinguishing severe cases, with a mean area under the curve of 0.87 and accuracy of 0.80 across five independent test sets. COVIDpro serves as a valuable resource for testing hypotheses and exploring potential targets for novel treatments in COVID-19 patients.
Collapse
Affiliation(s)
- Fangfei Zhang
- Fudan University, 220 Handan Road, Shanghai 200433, China
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Augustin Luna
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Cambridge, Massachusetts 02142, United States
| | - Tingting Tan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Yingdan Chen
- Westlake Omics (Hangzhou) Biotechnology Company Limited, Hangzhou, Zhejiang Province 310024, China
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Cambridge, Massachusetts 02142, United States
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
12
|
Wang Q, Fang Z, Xiao Y, Wang H, Zhang P, Lu W, Zhang H, Zhou X. Lactiplantibacillus pentoses CCFM1227 Produces Desaminotyrosine to Protect against Influenza Virus H1N1 Infection through the Type I Interferon in Mice. Nutrients 2023; 15:3659. [PMID: 37630849 PMCID: PMC10458433 DOI: 10.3390/nu15163659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Microbiota-derived desaminotyrosine (DAT) protects the host from influenza by modulating the type I interferon (IFN) response. The aim of this study was to investigate the antivirus effects of a DAT-producing bacteria strain. A comparative genomics analysis and UHPLC Q-Exactive MS were used to search for potential strains and confirm their ability to produce DAT, respectively. The anti-influenza functions of the DAT producer were evaluated using an antibiotic-treated mouse model by orally administering the specific strain before viral infection. The results showed the Lactiplantibacillus pentosus CCFM1227 contained the phy gene and produced DAT by degrading phloretin. In vivo, L. pentosus CCFM1227 re-inoculation increased the DAT level in feces, and protected from influenza through inhibiting viral replication and alleviating lung immunopathology. Furthermore, CCFM1227-derived DAT was positively correlated with the IFN-β level in the lung. The transcriptome results showed that CCFM1227 activated gene expression in the context of the defense response to the virus, and the response to interferon-beta. Moreover, CCFM1227 treatment upregulated the expression of MHC-I family genes, which regulate the adaptive immune response. In conclusion, L. pentosus CCFM1227 exerted antiviral effects by producing DAT in the gut, and this may provide a potential solution for creating effective antiviral probiotics.
Collapse
Affiliation(s)
- Qianwen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pinghu Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.W.); (Z.F.); (Y.X.); (W.L.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiuwen Zhou
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215021, China
| |
Collapse
|
13
|
Bauer L, Rijsbergen LC, Leijten L, Benavides FF, Noack D, Lamers MM, Haagmans BL, de Vries RD, de Swart RL, van Riel D. The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells. Life Sci Alliance 2023; 6:e202201837. [PMID: 37072183 PMCID: PMC10114347 DOI: 10.26508/lsa.202201837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Morbidity and mortality from influenza are associated with high levels of systemic inflammation. Endothelial cells play a key role in systemic inflammatory responses during severe influenza A virus (IAV) infections, despite being rarely infected in humans. How endothelial cells contribute to systemic inflammatory responses is unclear. Here, we developed a transwell system in which airway organoid-derived differentiated human lung epithelial cells were co-cultured with primary human lung microvascular endothelial cells (LMECs). We compared the susceptibility of LMECs to pandemic H1N1 virus and recent seasonal H1N1 and H3N2 viruses and assessed the associated pro-inflammatory responses. Despite the detection of IAV nucleoprotein in LMEC mono-cultures, there was no evidence for productive infection. In epithelial-endothelial co-cultures, abundant IAV infection of epithelial cells resulted in the breakdown of the epithelial barrier, but infection of LMECs was rarely detected. We observed a significantly higher secretion of pro-inflammatory cytokines in LMECs when co-cultured with IAV-infected epithelial cells than LMEC mono-cultures exposed to IAV. Taken together, our data show that LMECs are abortively infected by IAV but can fuel the inflammatory response.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Danny Noack
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
In Vitro Antiviral and Anti-Inflammatory Activities of N-Acetylglucosamine: Development of an Alternative and Safe Approach to Fight Viral Respiratory Infections. Int J Mol Sci 2023; 24:ijms24065129. [PMID: 36982205 PMCID: PMC10049122 DOI: 10.3390/ijms24065129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Viral respiratory tract infections (RTIs) are responsible for significant morbidity and mortality worldwide. A prominent feature of severe respiratory infections, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is the cytokine release syndrome. Therefore, there is an urgent need to develop different approaches both against viral replication and against the consequent inflammation. N-acetylglucosamine (GlcNAc), a glucosamine (GlcN) derivative, has been developed as an immunomodulatory and anti-inflammatory inexpensive and non-toxic drug for non-communicable disease treatment and/or prevention. Recent studies have suggested that GlcN, due to its anti-inflammatory activity, could be potentially useful for the control of respiratory virus infections. Our present study aimed to evaluate in two different immortalized cell lines whether GlcNAc could inhibit or reduce both viral infectivity and the inflammatory response to viral infection. Two different viruses, frequent cause of upper and lower respiratory tract infections, were used: the H1N1 Influenza A virus (IAV) (as model of enveloped RNA virus) and the Human adenovirus type 2 (Adv) (as model of naked DNA virus). Two forms of GlcNAc have been considered, bulk GlcNAc and GlcNAc in nanoform to overcome the possible pharmacokinetic limitations of GlcNAc. Our study suggests that GlcNAc restricts IAV replication but not Adv infection, whereas nano-GlcNAc inhibits both viruses. Moreover, GlcNAc and mainly its nanoformulation were able to reduce the pro-inflammatory cytokine secretion stimulated by viral infection. The correlation between inflammatory and infection inhibition is discussed.
Collapse
|
15
|
Jeon HY, Kim KS, Kim S. Effects of yogurt containing probiotics on respiratory virus infections: Influenza H1N1 and SARS-CoV-2. J Dairy Sci 2023; 106:1549-1561. [PMID: 36631322 PMCID: PMC9829060 DOI: 10.3168/jds.2022-22198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/25/2022] [Indexed: 01/11/2023]
Abstract
Respiratory virus infections are an escalating issue and have become common worldwide. Influenza and COVID-19 are typical infectious respiratory diseases, and they sometimes lead to various complications. In a situation in which no established drug or treatment exists, consumption of proper food might be beneficial in maintaining health against external infections. We studied the potential effects of mixtures of probiotic strains on various viral infections. The purpose of this study was to assess the ability of yogurt containing probiotics to reduce the risk of respiratory viruses such as influenza H1N1 and SARS-CoV-2 infection. First, we performed in vitro tests using infected Madin-Darby canine kidney (MDCK) and Vero E6 cells, to evaluate the potential effects of yogurt containing high-dose probiotics against influenza H1N1 and SARS-CoV-2 infection. The yogurt significantly reduced plaque formation in the virus-infected cells. We also performed in vivo tests using influenza H1N1-infected C57BL/6 mice and SARS-CoV-2-infected Syrian golden hamsters, to evaluate the potential effects of yogurt. Yogurt was administered orally once daily during the experimental period. Yogurt was also administered orally as pretreatment once daily for 3 wk before viral infection. Regarding influenza H1N1, it was found that yogurt caused an increase in the survival rate, body weight, and IFN-γ, IgG1, and IL-10 levels against viral infection and a decrease in the inflammatory cytokines TNF-α and IL-6. Although the SARS-CoV-2 copy number was not significantly reduced in the lungs of yogurt-treated SARS-CoV-2-infected hamsters, the body weights and histopathological findings of the lungs were improved in the yogurt-treated group. In conclusion, we suggest that consumption of yogurt containing probiotics can lead to beneficial effects to prevent respiratory viral infections.
Collapse
Affiliation(s)
- Ha-Young Jeon
- Knotus Co. Ltd. Research Center, Incheon, Korea, 22014
| | - Kyeong-Soon Kim
- Korea Research Institute of Bio-Medical Science, Daejeon, Korea, 34946
| | - Sokho Kim
- Knotus Co. Ltd. Research Center, Incheon, Korea, 22014.
| |
Collapse
|
16
|
Li K, McCaw JM, Cao P. Enhanced viral infectivity and reduced interferon production are associated with high pathogenicity for influenza viruses. PLoS Comput Biol 2023; 19:e1010886. [PMID: 36758109 PMCID: PMC9946260 DOI: 10.1371/journal.pcbi.1010886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/22/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Epidemiological and clinical evidence indicates that humans infected with the 1918 pandemic H1N1 influenza virus and highly pathogenic avian H5N1 influenza viruses often displayed severe lung pathology. High viral load and extensive infiltration of macrophages are the hallmarks of highly pathogenic (HP) influenza viral infections. However, it remains unclear what biological mechanisms primarily determine the observed difference in the kinetics of viral load and macrophages between HP and low pathogenic (LP) viral infections, and how the mechanistic differences are associated with viral pathogenicity. In this study, we develop a mathematical model of viral dynamics that includes the dynamics of different macrophage populations and interferon. We fit the model to in vivo kinetic data of viral load and macrophage level from BALB/c mice infected with an HP or LP strain of H1N1/H5N1 virus to estimate model parameters using Bayesian inference. Our primary finding is that HP viruses have a higher viral infection rate, a lower interferon production rate and a lower macrophage recruitment rate compared to LP viruses, which are strongly associated with more severe tissue damage (quantified by a higher percentage of epithelial cell loss). We also quantify the relative contribution of macrophages to viral clearance and find that macrophages do not play a dominant role in the direct clearance of free viruses although their role in mediating immune responses such as interferon production is crucial. Our work provides new insight into the mechanisms that convey the observed difference in viral and macrophage kinetics between HP and LP infections and establishes an improved model-fitting framework to enhance the analysis of new data on viral pathogenicity.
Collapse
Affiliation(s)
- Ke Li
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| | - James M. McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, VIC, Australia
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Pengxing Cao
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
18
|
Abstract
Together with inactivated influenza vaccines (IIV), live attenuated influenza vaccines (LAIV) are an important tool to prevent influenza A virus (IAV) illnesses in patients. LAIVs present the advantages to have a needle-free administration and to trigger a mucosal immune response. LAIV is approved for healthy 2- to 49-year old individuals. However, due to its replicative nature and higher rate of adverse events at-risk populations are excluded from the benefits of this vaccine. Using targeted mutagenesis, we modified the nonstructural protein 1 of the currently licensed LAIV in order to impair its ability to bind the host cellular protein CPSF30 and thus its ability to inhibit host mRNA poly-adenylation. We characterized our optimized LAIV (optiLAIV) in three different mouse models mimicking healthy and high-risk patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against homosubtypic and hetesubtypic influenza strain challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate observed following LAIV inoculation. Using a human nasal 3D tissue model, we showed an increased induction of ER stress-related genes following immunization with optiLAIV. Induction of ER stress was previously shown to improve antigen-specific immune responses and is proposed as the mechanism of action of the licensed adjuvant AS03. This study characterizes a safer LAIV candidate in two mouse models mimicking infants and severely immunocompromised patients and proposes a simple attenuation strategy that could broaden LAIV application and reduce influenza burden in high-risk populations. IMPORTANCE Live attenuated influenza vaccine (LAIV) is a needle-free, mucosal vaccine approved for healthy 2- to 49-year old individuals. Its replicative nature and higher rate of adverse events excludes at-risk populations. We propose a strategy to improve LAIV safety and explore the possibility to expand its applications in children under 2-year old and immunocompromised patients. Using a neonatal mouse model, we show faster clearance of our optimized vaccine (optiLAIV) compared to the licensed LAIV. Despite lower replication, optiLAIV equally protected mice against influenza virus challenges. We confirmed the safer profile of optiLAIV in Stat1-/- mice (highly susceptible to viral infections) by showing no signs of morbidity compared to a 50% mortality rate from LAIV. OptiLAIV could expand the applications of the current LAIV and help mitigate the burden of IAV in susceptible populations.
Collapse
|
19
|
Rommel MG, Walz L, Fotopoulou F, Kohlscheen S, Schenk F, Miskey C, Botezatu L, Krebs Y, Voelker IM, Wittwer K, Holland-Letz T, Ivics Z, von Messling V, Essers MA, Milsom MD, Pfaller CK, Modlich U. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep 2022; 41:111447. [DOI: 10.1016/j.celrep.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
20
|
Zhang F, Luna A, Tan T, Chen Y, Sander C, Guo T. COVIDpro: Database for mining protein dysregulation in patients with COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509819. [PMID: 36203550 PMCID: PMC9536031 DOI: 10.1101/2022.09.27.509819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background The ongoing pandemic of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has limited treatment options partially due to our incomplete understanding of the molecular dysregulations of the COVID-19 patients. We aimed to generate a repository and data analysis tools to examine the modulated proteins underlying COVID-19 patients for the discovery of potential therapeutic targets and diagnostic biomarkers. Methods We built a web server containing proteomic expression data from COVID-19 patients with a toolset for user-friendly data analysis and visualization. The web resource covers expert-curated proteomic data from COVID-19 patients published before May 2022. The data were collected from ProteomeXchange and from select publications via PubMed searches and aggregated into a comprehensive dataset. Protein expression by disease subgroups across projects was compared by examining differentially expressed proteins. We also visualize differentially expressed pathways and proteins. Moreover, circulating proteins that differentiated severe cases were nominated as predictive biomarkers. Findings We built and maintain a web server COVIDpro ( https://www.guomics.com/covidPro/ ) containing proteomics data generated by 41 original studies from 32 hospitals worldwide, with data from 3077 patients covering 19 types of clinical specimens, the majority from plasma and sera. 53 protein expression matrices were collected, for a total of 5434 samples and 14,403 unique proteins. Our analyses showed that the lipopolysaccharide-binding protein, as identified in the majority of the studies, was highly expressed in the blood samples of patients with severe disease. A panel of significantly dysregulated proteins was identified to separate patients with severe disease from non-severe disease. Classification of severe disease based on these proteomic signatures on five test sets reached a mean AUC of 0.87 and ACC of 0.80. Interpretation COVIDpro is an online database with an integrated analysis toolkit. It is a unique and valuable resource for testing hypotheses and identifying proteins or pathways that could be targeted by new treatments of COVID-19 patients. Funding National Key R&D Program of China: Key PDPM technologies (2021YFA1301602, 2021YFA1301601, 2021YFA1301603), Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR19C050001), Hangzhou Agriculture and Society Advancement Program (20190101A04), National Natural Science Foundation of China (81972492) and National Science Fund for Young Scholars (21904107), National Resource for Network Biology (NRNB) from the National Institute of General Medical Sciences (NIGMS-P41 GM103504). Research in context Evidence before this study: Although an increasing number of therapies against COVID-19 are being developed, they are still insufficient, especially with the rise of new variants of concern. This is partially due to our incomplete understanding of the disease’s mechanisms. As data have been collected worldwide, several questions are now worth addressing via meta-analyses. Most COVID-19 drugs function by targeting or affecting proteins. Effectiveness and resistance to therapeutics can be effectively assessed via protein measurements. Empowered by mass spectrometry-based proteomics, protein expression has been characterized in a variety of patient specimens, including body fluids (e.g., serum, plasma, urea) and tissue (i.e., formalin-fixed and paraffin-embedded (FFPE)). We expert-curated proteomic expression data from COVID-19 patients published before May 2022, from the largest proteomic data repository ProteomeXhange as well as from literature search engines. Using this resource, a COVID-19 proteome meta-analysis could provide useful insights into the mechanisms of the disease and identify new potential drug targets.Added value of this study: We integrated many published datasets from patients with COVID-19 from 11 nations, with over 3000 patients and more than 5434 proteome measurements. We collected these datasets in an online database, and generated a toolbox to easily explore, analyze, and visualize the data. Next, we used the database and its associated toolbox to identify new proteins of diagnostic and therapeutic value for COVID-19 treatment. In particular, we identified a set of significantly dysregulated proteins for distinguishing severe from non-severe patients using serum samples.Implications of all the available evidence: COVIDpro will support the navigation and analysis of patterns of dysregulated proteins in various COVID-19 clinical specimens for identification and verification of protein biomarkers and potential therapeutic targets.
Collapse
|
21
|
Yang S, Wang L, Pan X, Liang Y, Zhang Y, Li J, Zhou B. 5-Methoxyflavone-induced AMPKα activation inhibits NF-κB and P38 MAPK signaling to attenuate influenza A virus-mediated inflammation and lung injury in vitro and in vivo. Cell Mol Biol Lett 2022; 27:82. [PMID: 36180831 PMCID: PMC9524045 DOI: 10.1186/s11658-022-00381-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza-related acute lung injury (ALI) is a life-threatening condition that results mostly from uncontrolled replication of influenza virus (IV) and severe proinflammatory responses. The methoxy flavonoid compound 5-methoxyflavone (5-MF) is believed to have superior biological activity in the treatment of cancer. However, the effects and underlying mechanism of 5-MF on IV-mediated ALI are still unclear. Here, we showed that 5-MF significantly improved the survival of mice with lethal IV infection and ameliorated IV-mediated lung edema, lung histological changes, and inflammatory cell lung recruitment. We found that 5-MF has antiviral activity against influenza A virus (IAV), which was probably associated with increased expression of radical S-adenosyl methionine domain containing 2 (RSAD2) and suppression of endosomal acidification. Moreover, IV-infected A549 cells with 5-MF treatment markedly reduced proinflammatory mediator expression (IL-6, CXCL8, TNF-α, CXCL10, CCL2, CCL3, CCL4, GM-CSF, COX-2, and PGE2) and prevented P-IKBα, P-P65, and P-P38 activation. Interestingly, we demonstrated that 5-MF treatment could trigger activation of AMP-activated protein kinase (AMPK)α in IV-infected A549 cells, as evidenced by activation of the AMPKα downstream molecule P53. Importantly, the addition of AMPKα blocker compound C dramatically abolished 5-MF-mediated increased levels of RSAD2, the inhibitory effects on H1N1 virus-elicited endosomal acidification, and the suppression expression of proinflammatory mediators (IL-6, TNF-α, CXCL10, COX-2 and PGE2), as well as the inactivation of P-IKBα, P-P65, and P-P38 MAPK signaling pathways. Furthermore, inhibition of AMPKα abrogated the protective effects of 5-MF on H1N1 virus-mediated lung injury and excessive inflammation in vivo. Taken together, these results indicate that 5-MF alleviated IV-mediated ALI and suppressed excessive inflammatory responses through activation of AMPKα signaling.
Collapse
Affiliation(s)
- Sushan Yang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | | | | | - Yueyun Liang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Yuehan Zhang
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China. .,Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, 525200, China.
| |
Collapse
|
22
|
Kelley WJ, Wragg KM, Chen J, Murthy T, Xu Q, Boyne MT, Podojil JR, Elhofy A, Goldstein DR. Nanoparticles reduce monocytes within the lungs to improve outcomes after influenza virus infection in aged mice. JCI Insight 2022; 7:156320. [PMID: 35737459 PMCID: PMC9462478 DOI: 10.1172/jci.insight.156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/21/2022] [Indexed: 01/26/2023] Open
Abstract
Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.
Collapse
Affiliation(s)
| | | | - Judy Chen
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tushar Murthy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Qichen Xu
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Michael T. Boyne
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Joseph R. Podojil
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Adam Elhofy
- Research and Development, COUR Pharmaceuticals Development Company Inc., Northbrook, Illinois, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine and,Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, Michigan, USA
| |
Collapse
|
23
|
Abstract
The 1918 H1N1 influenza pandemic was among the most severe in history, taking the lives of approximately 50 million people worldwide, and novel prophylactic vaccines are urgently needed to prevent another pandemic. Given that macaques are physiologically relevant preclinical models of human immunology that have advanced the clinical treatment of infectious diseases, a lethal pandemic influenza challenge model would provide a stringent platform for testing new influenza vaccine concepts. To this end, we infected rhesus macaques and Mauritian cynomolgus macaques with highly pathogenic 1918 H1N1 influenza virus and assessed pathogenesis and disease severity. Despite infection with a high dose of 1918 influenza delivered via multiple routes, rhesus macaques demonstrated minimal signs of disease, with only intermittent viral shedding. Cynomolgus macaques infected via intrabronchial instillation demonstrated mild symptoms, with disease severity depending on the infection dose. Cynomolgus macaques infected with a high dose of 1918 influenza delivered via multiple routes experienced moderate disease characterized by consistent viral shedding, pulmonary infiltrates, and elevated inflammatory cytokine levels. However, 1918 influenza was uniformly nonlethal in these two species, demonstrating that this isolate is insufficiently pathogenic in rhesus and Mauritian cynomolgus macaques to support testing novel prophylactic influenza approaches where protection from severe disease combined with a lethal outcome is desired as a highly stringent indication of vaccine efficacy. IMPORTANCE The world remains at risk of an influenza pandemic, and the development of new therapeutic and preventative modalities is critically important for minimizing human death and suffering during the next influenza pandemic. Animal models are central to the development of new therapies and vaccine approaches. In particular, nonhuman primates like rhesus and cynomolgus macaques are highly relevant preclinical models given their physiological and immunological similarities to humans. Unfortunately, there remains a scarcity of macaque models of pandemic influenza with which to test novel antiviral modalities. Here, we demonstrate that even at the highest doses tested, 1918 influenza was not lethal in these two macaque species, suggesting that they are not ideal for the development and testing of novel pandemic influenza-specific vaccines and therapies. Therefore, other physiologically relevant nonhuman primate models of pandemic influenza are needed.
Collapse
|
24
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
25
|
Froggatt HM, Heaton NS. Nonrespiratory sites of influenza-associated disease: mechanisms and experimental systems for continued study. FEBS J 2022; 289:4038-4060. [PMID: 35060315 PMCID: PMC9300775 DOI: 10.1111/febs.16363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
The productive replication of human influenza viruses is almost exclusively restricted to cells in the respiratory tract. However, a key aspect of the host response to viral infection is the production of inflammatory cytokines and chemokines that are not similarly tissue restricted. As such, circulating inflammatory mediators, as well as the resulting activated immune cells, can induce damage throughout the body, particularly in individuals with underlying conditions. As a result, more holistic experimental approaches are required to fully understand the pathogenesis and scope of influenza virus-induced disease. This review summarizes what is known about some of the most well-appreciated nonrespiratory tract sites of influenza virus-induced disease, including neurological, cardiovascular, gastrointestinal, muscular and fetal developmental phenotypes. In the context of this discussion, we describe the in vivo experimental systems currently being used to study nonrespiratory symptoms. Finally, we highlight important future questions and potential models that can be used for a more complete understanding of influenza virus-induced disease.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Shokouhi Targhi H, Mehrbod P, Fotouhi F, Amininasab M. In vitro anti-influenza assessment of anionic compounds ascorbate, acetate and citrate. Virol J 2022; 19:88. [PMID: 35606770 PMCID: PMC9125540 DOI: 10.1186/s12985-022-01823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection remains a serious public health threat. Due to drug resistance and side effects of the conventional antiviral drugs, repurposing the available natural compounds with high tolerability and fewer side effects has attracted researchers' attention. The aim of this study was to screen in vitro anti-influenza activity of three anionic compounds ascorbate, acetate, and citrate. METHODS The non-cytotoxic concentration of the compounds was determined by MTT assay and examined for the activity against IAV in simultaneous, pre-, and post-penetration combination treatments over 1 h incubation on Madin-Darby Canine Kidney (MDCK) cell line. The virus titer and viral load were determined using hemagglutination assay (HA) and qPCR, respectively. Few pro-inflammatory and anti-inflammatory cytokines were evaluated at RNA and protein levels by qPCR and ELISA, respectively. RESULTS The non-cytotoxic concentrations of the ascorbate (200 mg/ml), acetate and citrate (both 3 mg/ml) reduced the viral titer by 6.5, 4.5, and 1.5 logs in the simultaneous combination treatment. The M protein gene copy number decreased significantly in simultaneous treatment (P < 0.01). The expression of cytokines was also affected by the treatment of these compounds. CONCLUSIONS These anionic compounds could affect the influenza virus load, thereby reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines levels.
Collapse
Affiliation(s)
- Hadiseh Shokouhi Targhi
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish Island, Iran
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Cui H, Zhang C, Zhang C, Cai Z, Chen L, Chen Z, Zhao K, Qiao S, Wang Y, Meng L, Dong S, Liu J, Guo Z. Anti-Influenza Effect and Mechanisms of Lentinan in an ICR Mouse Model. Front Cell Infect Microbiol 2022; 12:892864. [PMID: 35669119 PMCID: PMC9163413 DOI: 10.3389/fcimb.2022.892864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza virus is a serious threat to global human health and public health security. There is an urgent need to develop new anti-influenza drugs. Lentinan (LNT) has attracted increasing attention in recent years. As potential protective agent, LNT has been shown to have anti-tumor, anti-inflammatory, and antiviral properties. However, there has been no further research into the anti-influenza action of lentinan in vivo, and the mechanism is still not fully understood. In this study, the anti-influenza effect and mechanism of Lentinan were studied in the Institute of Cancer Research (ICR) mouse model. The results showed that Lentinan had a high degree of protection in mice against infection with influenza A virus, delayed the emergence of clinical manifestations, improved the survival rate of mice, significantly prolonged the middle survival days, attenuated the weight loss, and reduced the lung coefficient of mice. It alleviated the pathological damage of mice infected with the influenza virus and improved blood indices. Lentinan treatment considerably inhibited inflammatory cytokine (TNF-α, IL-1β, IL-4, IL-5, IL-6) levels in the serum and lung and improved IFN-γ cytokine levels, which reduced cytokine storms caused by influenza virus infection. The underlying mechanisms of action involved Lentinan inhibiting the inflammatory response by regulating the TLR4/MyD88 signaling pathway. This study provides a foundation for the clinical application of Lentinan, and provides new insight into the development of novel immunomodulators.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Animal Medicine, Jilin University, Changchun, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhuming Cai
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaoliang Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Sina Qiao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yingchun Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Lijia Meng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- *Correspondence: Shishan Dong, ; Juxiang Liu, ; Zhendong Guo,
| |
Collapse
|
28
|
Kwon JW, Quan H, Song J, Chung H, Jung D, Hong JJ, Na YR, Seok SH. Liposomal Dexamethasone Reduces A/H1N1 Influenza-Associated Morbidity in Mice. Front Microbiol 2022; 13:845795. [PMID: 35495698 PMCID: PMC9048800 DOI: 10.3389/fmicb.2022.845795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/23/2022] [Indexed: 01/20/2023] Open
Abstract
Re-emerging viral threats have continued to challenge the medical and public health systems. It has become clear that a significant number of severe viral infection cases are due to an overreaction of the immune system, which leads to hyperinflammation. In this study, we aimed to demonstrate the therapeutic efficacy of the dexamethasone nanomedicine in controlling the symptoms of influenza virus infection. We found that the A/Wisconsin/WSLH34939/2009 (H1N1) infection induced severe pneumonia in mice with a death rate of 80%, accompanied by significant epithelial cell damage, infiltration of immune cells, and accumulation of pro-inflammatory cytokines in the airway space. Moreover, the intranasal delivery of liposomal dexamethasone during disease progression reduced the death rate by 20%. It also significantly reduced the protein level of tumor necrosis factor-alpha (TNFα), interleukin-1β (IL-1β), IL-6, and the C-X-C motif chemokine ligand 2 (CXCL2) as well as the number of infiltrated immune cells in the bronchoalveolar lavage fluids as compared to the control and free dexamethasone. The liposomal dexamethasone was mainly distributed into the monocyte/macrophages as a major cell population for inducing the cytokine storm in the lungs. Taken together, the intranasal delivery of liposomal dexamethasone may serve as a novel promising therapeutic strategy for the treatment of influenza A-induced pneumonia.
Collapse
Affiliation(s)
- Jung Won Kwon
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hailian Quan
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Juha Song
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Chung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Daun Jung
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea.,KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Pawar RD, Balaji L, Mehta S, Cole A, Liu X, Peradze N, Grossestreuer AV, Issa MS, Patel P, Kirby JE, Rowley CF, Berg KM, Moskowitz A, Donnino MW. Viral load and disease severity in COVID-19. Intern Emerg Med 2022; 17:359-367. [PMID: 34133005 PMCID: PMC8206885 DOI: 10.1007/s11739-021-02786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
The relationship between COVID-19 severity and viral load is unknown. Our objective was to assess the association between viral load and disease severity in COVID-19. In this single center observational study of adults with laboratory confirmed SARS-CoV-2, the first positive in-hospital nasopharyngeal swab was used to calculate the log10 copies/ml [log10 copy number (CN)] of SARS-CoV-2. Four categories based on level of care and modified sequential organ failure assessment score (mSOFA) at time of swab were determined. Median log10CN was compared between different levels of care and mSOFA quartiles. Median log10CN was compared in patients who did and did not receive influenza vaccine, and the correlation between log10CN and D-dimer was examined. We found that of 396 patients, 54.3% were male, and 25% had no major comorbidity. Hospital mortality was 15.7%. Median mSOFA was 2 (IQR 0-3). Median log10CN was 5.5 (IQR 3.3-8.0). Median log10CN was highest in non-intubated ICU patients [6.4 (IQR 4.4-8.1)] and lowest in intubated ICU patients [3.6 (IQR 2.6-6.9)] (p value < 0.01). In adjusted analyses, this difference remained significant [mean difference 1.16 (95% CI 0.18-2.14)]. There was no significant difference in log10CN between other groups in the remaining pairwise comparisons. There was no association between median log10CN and mSOFA in either unadjusted or adjusted analyses or between median log10CN in patients with and without influenza immunization. There was no correlation between log10CN and D-dimer. We conclude, in our cohort, we did not find a clear association between viral load and disease severity in COVID-19 patients. Though viral load was higher in non-intubated ICU patients than in intubated ICU patients there were no other significant differences in viral load by disease severity.
Collapse
Affiliation(s)
- Rahul Dnyaneshwar Pawar
- Division of Hospital Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Road, Boston, MA, 02215, USA.
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lakshman Balaji
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Mehta
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Cole
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Natia Peradze
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anne Victoria Grossestreuer
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mahmoud Salah Issa
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Parth Patel
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - James Edward Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christopher Francis Rowley
- Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Katherine Margaret Berg
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ari Moskowitz
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael William Donnino
- Department of Emergency Medicine, Center for Resuscitation Science, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Bote J, Corkrey HA, Koupenova M. Human Platelets and Influenza Virus: Internalization and Platelet Activation. Platelets 2022; 33:184-191. [PMID: 34369285 PMCID: PMC8821732 DOI: 10.1080/09537104.2021.1961710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza infection has long been associated with prothrombotic outcomes in patients and platelets are the blood component predominantly responsible for thrombosis. In this review, we outline what is known about influenza interaction with human platelets, virion internalization, and viral RNA sensing, and the consequent impact on platelet function. We further discuss activation of platelets by IgG-influenza complexes and touch upon mechanisms of environmental platelet activation that relate to prothrombotic outcomes in patients during infection.
Collapse
Affiliation(s)
- Josiah Bote
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Heather A. Corkrey
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA
| | - Milka Koupenova
- University of Massachusetts Medical School, Department of Medicine, Division of Cardiovascular Medicine, Worcester, MA 01605, USA,Corresponding Author: Milka Koupenova, University of Massachusetts Medical School, Albert Sherman Center, 368 Plantation St, S7-1041, Worcester, MA 01605, Tel: (774) 455-6646,
| |
Collapse
|
31
|
Severity Biomarkers in Puumala Hantavirus Infection. Viruses 2021; 14:v14010045. [PMID: 35062248 PMCID: PMC8778356 DOI: 10.3390/v14010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Annually, over 10,000 cases of hemorrhagic fever with renal syndrome (HFRS) are diagnosed in Europe. Puumala hantavirus (PUUV) causes most of the European HFRS cases. PUUV causes usually a relatively mild disease, which is rarely fatal. However, the severity of the infection varies greatly, and factors affecting the severity are mostly unrevealed. Host genes are known to have an effect. The typical clinical features in PUUV infection include acute kidney injury, thrombocytopenia, and increased vascular permeability. The primary target of hantavirus is the endothelium of the vessels of different organs. Although PUUV does not cause direct cytopathology of the endothelial cells, remarkable changes in both the barrier function of the endothelium and the function of the infected endothelial cells occur. Host immune or inflammatory mechanisms are probably important in the development of the capillary leakage. Several immunoinflammatory biomarkers have been studied in the context of assessing the severity of HFRS caused by PUUV. Most of them are not used in clinical practice, but the increasing knowledge about the biomarkers has elucidated the pathogenesis of PUUV infection.
Collapse
|
32
|
Assessment of neck pain, low back pain and disability in patients isolated at home due to mild-COVID-19: a cross-sectional study. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.996523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021; 12:770066. [PMID: 34777390 PMCID: PMC8581451 DOI: 10.3389/fimmu.2021.770066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ellesandra C Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa I Labzin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Specific Cytokine Profiles Predict the Severity of Influenza A Pneumonia: A Prospectively Multicenter Pilot Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9533044. [PMID: 34692846 PMCID: PMC8528594 DOI: 10.1155/2021/9533044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Purpose Studying the cytokine profiles in influenza A pneumonia could be helpful to better understand the pathogenesis of the disease and predict its prognosis. Patients and Methods. Patients with influenza A pneumonia (including 2009H1N1, H1N1, H3N1, and H7N1) hospitalized in six hospitals from January 2017 to October 2018 were enrolled (ClinicalTrials.gov ID, NCT03093220). Sputum samples were collected within 24 hours after admission and subsequently analyzed for cytokine profiles using a Luminex assay. Results A total of 35 patients with influenza A pneumonia were included in the study. The levels of IL-6, IFN-γ, and IL-2 were increased in patients with severe influenza A pneumonia (n =10) (P = 0.002, 0.009, and 0.008, respectively), while those of IL-5, IL-25, IL-17A, and IL-22 were decreased compared to patients with nonsevere pneumonia (P = 0.0001, 0.009, 0.0001, and 0.006, respectively). The levels of IL-2 and IL-6 in the nonsurvivors (n = 5) were significantly higher than those in the survivors (P = 0.043 and 0.0001, respectively), while the levels of IL-5, IL-17A, and IL-22 were significantly lower (P = 0.001, 0.012, and 0.043, respectively). The IL-4/IL-17A ratio has the potential to be a good predictor (AUC = 0.94, P < 0.05, sensitivity = 88.89%, specificity = 92.31%) and an independent risk factor (OR, 95% CI: 3.772, 1.188-11.975; P < 0.05) for intermittent positive pressure ventilation (n = 9). Conclusion Significant dysregulation of cytokine profiles can be observed in patients with severe influenza A pneumonia.
Collapse
|
35
|
Type I interferon therapies of multiple sclerosis and hepatitis C virus infection. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Interferons type I (IFN-I), activated following a bacterial or viral infection, play a major role in the induction and regulation of the immune system. The immune response results in viral RNA and binds to receptors such as RIG-I-like receptors (RLRs) or Toll-like receptors, leading to the IFN-I signaling cascade. Thanks to its cellular function, IFN-I is widely used in therapies for such diseases as multiple sclerosis (MS) and hepatitis C disease (HCD).
MS is a neurological, autoimmune, chronic inflammatory disease of the central nervous system (CNS). During MS, nerve cell demyelination is observed due to the myelin heaths and oligodendrocyte damage. As a result, neuronal signal and neuron communication are attenuated. The mechanism of MS is still unknown. MS therapy applies interferon-β (IFN-β). IFN-β therapy has been used since the last century, but the therapeutic mechanism of IFN-β has not been completely understood. MS can lead to four syndromes: clinically isolated syndrome (CIS), relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS).
HCD occurs as a result of infection with the hepatitis C virus (HCV), belonging to the Flaviviridae family. HCV is a blood-borne virus with a positive single-stranded RNA. A vaccine for HCV is not available yet. HCD can lead to liver damage or cancer. In HCD interferon-α therapy (IFN-α) is applied. As with MS, the mechanism of IFN-α therapy is not completely known.
Collapse
|
36
|
Sabbaghi A, Malek M, Abdolahi S, Miri SM, Alizadeh L, Samadi M, Mohebbi SR, Ghaemi A. A formulated poly (I:C)/CCL21 as an effective mucosal adjuvant for gamma-irradiated influenza vaccine. Virol J 2021; 18:201. [PMID: 34627297 PMCID: PMC8501930 DOI: 10.1186/s12985-021-01672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several studies on gamma-irradiated influenza A virus (γ-Flu) have revealed its superior efficacy for inducing homologous and heterologous virus-specific immunity. However, many inactivated vaccines, notably in nasal delivery, require adjuvants to increase the quality and magnitude of vaccine responses. METHODS To illustrate the impacts of co-administration of the gamma-irradiated H1N1 vaccine with poly (I:C) and recombinant murine CCL21, either alone or in combination with each other, as adjuvants on the vaccine potency, mice were inoculated intranasally 3 times at one-week interval with γ-Flu alone or with any of the three adjuvant combinations and then challenged with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific humoral, mucosal, and cell-mediated immunity, as well as cytokine profiles in the spleen (IFN-γ, IL-12, and IL-4), and in the lung homogenates (IL-6 and IL-10) were measured by ELISA. The proliferative response of restimulated splenocytes was also determined by MTT assay. RESULTS The findings showed that the co-delivery of the γ-Flu vaccine and CCL21 or Poly (I:C) significantly increased the vaccine immunogenicity compared to the non-adjuvanted vaccine, associated with more potent protection following challenge infection. However, the mice given a combination of CCL21 with poly (I:C) had strong antibody- and cell-mediated immunity, which were considerably higher than responses of mice receiving the γ-Flu vaccine with each adjuvant separately. This combination also reduced inflammatory mediator levels (notably IL-10) in lung homogenate samples. CONCLUSIONS The results indicate that adjuvantation with the CCL21 and poly (I:C) can successfully induce vigorous vaccine-mediated protection, suggesting a robust propensity for CCL21 plus poly (I:C) as a potent mucosal adjuvant.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Masoud Malek
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mehdi Samadi
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|
37
|
Vu DL, Martinez-Murillo P, Pigny F, Vono M, Meyer B, Eberhardt CS, Lemeille S, Von Dach E, Blanchard-Rohner G, Eckerle I, Huttner A, Siegrist CA, Kaiser L, Didierlaurent AM. Longitudinal Analysis of Inflammatory Response to SARS-CoV-2 in the Upper Respiratory Tract Reveals an Association with Viral Load, Independent of Symptoms. J Clin Immunol 2021; 41:1723-1732. [PMID: 34581925 PMCID: PMC8476983 DOI: 10.1007/s10875-021-01134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/05/2021] [Indexed: 12/23/2022]
Abstract
Background SARS-CoV-2 infection leads to high viral loads in the upper respiratory tract that may be determinant in virus dissemination. The extent of intranasal antiviral response in relation to symptoms is unknown. Understanding how local innate responses control virus is key in the development of therapeutic approaches. Methods SARS-CoV-2-infected patients were enrolled in an observational study conducted at the Geneva University Hospitals, Switzerland, investigating virological and immunological characteristics. Nasal wash and serum specimens from a subset of patients were collected to measure viral load, IgA specific for the S1 domain of the spike protein, and a cytokine panel at different time points after infection; cytokine levels were analyzed in relation to symptoms. Results Samples from 13 SARS-CoV-2-infected patients and six controls were analyzed. We found an increase in CXCL10 and IL-6, whose levels remained elevated for up to 3 weeks after symptom onset. SARS-CoV-2 infection also induced CCL2 and GM-CSF, suggesting local recruitment and activation of myeloid cells. Local cytokine levels correlated with viral load but not with serum cytokine levels, nor with specific symptoms, including anosmia. Some patients had S1-specific IgA in the nasal cavity while almost none had IgG. Conclusion The nasal epithelium is an active site of cytokine response against SARS-CoV-2 that can last more than 2 weeks; in this mild COVID-19 cohort, anosmia was not associated with increases in any locally produced cytokines. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01134-z.
Collapse
Affiliation(s)
- Diem-Lan Vu
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.
- University of Geneva Medical School, Geneva, Switzerland.
| | - Paola Martinez-Murillo
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Fiona Pigny
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - Maria Vono
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Christiane S Eberhardt
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Elodie Von Dach
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
| | - Géraldine Blanchard-Rohner
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
- Unit of Immunology and Vaccinology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Isabella Eckerle
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- University of Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- University of Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Arnaud M Didierlaurent
- Department of Pathology and Immunology, Faculty of Medicine, Center of Vaccinology, University of Geneva, Geneva, Switzerland.
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
38
|
Chaiqin Qingning Capsule Inhibits Influenza Virus Infection and Inflammation In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6640731. [PMID: 34552653 PMCID: PMC8452396 DOI: 10.1155/2021/6640731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/21/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
Background Chaiqin Qingning Capsule (CQ-C) is a traditional Chinese medicine (TCM) formula commonly used to treat respiratory infectious diseases in China. The aim of this study was to detect the effect and mechanism of CQ-C treated with influenza virus in vitro and vivo. Methods The cytotoxicity and antiviral activity of CQ-C in vitro was determined by methyl thiazolyl tetrazolium (MTT) assay. The regulation of CQ-C on cytokine/chemokine expression was evaluated using RT-qPCR. In addition, the effect of CQ-C on the pathway protein, NF-κB, and its phosphorylation level was verified by western blotting. After virus inoculation, BALB/c mice were administered with CQ-C of different concentrations for 7 days. Body weight, viral titer, lung pathology, and mortality of the mice were measured, and the level of inflammatory cytokines was also examined using real-time RT-qPCR. Results CQ-C inhibited the proliferation of influenza virus of various strains in vitro, with the 50% inhibitory concentration (IC50) ranging from 49 to 59 µg/mL. CQ-C downregulated virus-induced gene expression of IL-6, TNF-α, CXCL8, CXCL10, CCL5, and COX-2 in a dose-dependent manner in A549 cells. Also, CQ-C inhibited the expression of NF-κB protein of the signaling pathway. Moreover, a decrease of the lung index and mortality of mice was observed in the CQ-C (1 g/kg/d) group. The related cytokine/chemokine expression was also decreased in the early stages of infection in the mRNA level. Conclusion As a clinically applied Chinese prescription, our study shows that CQ-C has a wide range of effects on several influenza viruses. Moreover, CQ-C could play an important role in anti-influenza activity and anti-inflammation in vitro and in vivo. Thus, CQ-C may be a promising treatment option for influenza.
Collapse
|
39
|
Hirschenberger M, Hunszinger V, Sparrer KMJ. Implications of Innate Immunity in Post-Acute Sequelae of Non-Persistent Viral Infections. Cells 2021; 10:2134. [PMID: 34440903 PMCID: PMC8391718 DOI: 10.3390/cells10082134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Non-persistent viruses classically cause transient, acute infections triggering immune responses aimed at the elimination of the pathogen. Successful viruses evolved strategies to manipulate and evade these anti-viral defenses. Symptoms during the acute phase are often linked to dysregulated immune responses that disappear once the patient recovers. In some patients, however, symptoms persist or new symptoms emerge beyond the acute phase. Conditions resulting from previous transient infection are termed post-acute sequelae (PAS) and were reported for a wide range of non-persistent viruses such as rota-, influenza- or polioviruses. Here we provide an overview of non-persistent viral pathogens reported to be associated with diverse PAS, among them chronic fatigue, auto-immune disorders, or neurological complications and highlight known mechanistic details. Recently, the emergence of post-acute sequelae of COVID-19 (PASC) or long COVID highlighted the impact of PAS. Notably, PAS of non-persistent infections often resemble symptoms of persistent viral infections, defined by chronic inflammation. Inflammation maintained after the acute phase may be a key driver of PAS of non-persistent viruses. Therefore, we explore current insights into aberrant activation of innate immune signaling pathways in the post-acute phase of non-persistent viruses. Finally, conclusions are drawn and future perspectives for treatment and prevention of PAS are discussed.
Collapse
|
40
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
41
|
Gu Y, Zuo X, Zhang S, Ouyang Z, Jiang S, Wang F, Wang G. The Mechanism behind Influenza Virus Cytokine Storm. Viruses 2021; 13:1362. [PMID: 34372568 PMCID: PMC8310017 DOI: 10.3390/v13071362] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza viruses are still a serious threat to human health. Cytokines are essential for cell-to-cell communication and viral clearance in the immune system, but excessive cytokines can cause serious immune pathology. Deaths caused by severe influenza are usually related to cytokine storms. The recent literature has described the mechanism behind the cytokine-storm network and how it can exacerbate host pathological damage. Biological factors such as sex, age, and obesity may cause biological differences between different individuals, which affects cytokine storms induced by the influenza virus. In this review, we summarize the mechanism behind influenza virus cytokine storms and the differences in cytokine storms of different ages and sexes, and in obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (X.Z.); (S.Z.); (Z.O.); (S.J.)
| |
Collapse
|
42
|
Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021; 19:425-441. [PMID: 33824495 PMCID: PMC8023351 DOI: 10.1038/s41579-021-00542-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 01/31/2023]
Abstract
Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host's response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
43
|
Batur EB, Korez MK, Gezer IA, Levendoglu F, Ural O. Musculoskeletal symptoms and relationship with laboratory findings in patients with COVID-19. Int J Clin Pract 2021; 75:e14135. [PMID: 33686741 PMCID: PMC8250333 DOI: 10.1111/ijcp.14135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate the frequency of fatigue and musculoskeletal symptoms and their correlation with laboratory data in patients with COVID-19. METHODS This study included 80 patients hospitalised and treated for COVID-19 in the infectious diseases clinic between March 2020 and May 2020. Data analysis was performed retrospectively from the hospital medical charts. Demographic data, clinical symptoms, and laboratory findings were noted. Clinical symptoms and correlations with laboratory results were assessed. Besides, an analysis of patients with and without chronic disease was performed for clinical symptoms and laboratory findings. RESULTS The frequencies of myalgia and fatigue were 46.1% and 50%, respectively. In the laboratory data, there was a significant increase in creatinine kinase (CK) level and lymphocyte count in the patients with myalgia symptoms (P < .05). There were no other significant results in the laboratory data. Of the patients with chronic disease, it has been shown that hemoglobin levels were significantly decreased (P < .05), while D-dimer was markedly increased (P < .05). CONCLUSION The laboratory findings of COVID-19-related myalgia suggested that patients might have a risk of progressive muscle injury. Therefore, these patients should also be followed up in terms of the myopathic process.
Collapse
Affiliation(s)
- Elif Balevi Batur
- Physical Medicine and RehabilitationSelcuk University Faculty of MedicineKonyaTurkey
| | | | - Ilknur Albayrak Gezer
- Physical Medicine and RehabilitationSelcuk University Faculty of MedicineKonyaTurkey
| | - Funda Levendoglu
- Physical Medicine and RehabilitationSelcuk University Faculty of MedicineKonyaTurkey
| | - Onur Ural
- Infectious DiseasesSelcuk University Faculty of MedicineKonyaTurkey
| |
Collapse
|
44
|
Lu W, Yang L, Li X, Sun M, Zhang A, Qi S, Chen Z, Zhang L, Li J, Xiong H. Early immune responses and prognostic factors in children with COVID-19: a single-center retrospective analysis. BMC Pediatr 2021; 21:181. [PMID: 33865340 PMCID: PMC8052550 DOI: 10.1186/s12887-021-02561-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Early diagnostic indicators and the identification of possible progression to severe or critical COVID-19 in children are unknown. To investigate the immune characteristics of early SARS-CoV-2 infection in children and possible key prognostic factors for early identification of critical COVID-19, a retrospective study including 121 children with COVID-19 was conducted. Peripheral blood lymphocyte subset counts, T cell-derived cytokine concentrations, inflammatory factor concentrations, and routine blood counts were analyzed statistically at the initial presentation. RESULTS The T lymphocyte subset and natural killer cell counts decreased with increasing disease severity. Group III (critical cases) had a higher Th/Tc ratio than groups I and II (common and severe cases); group I had a higher B cell count than groups II and III. IL-6, IL-10, IFN-γ, SAA, and procalcitonin levels increased with increasing disease severity. Hemoglobin concentration, and RBC and eosinophil counts decreased with increasing disease severity. Groups II and III had significantly lower lymphocyte counts than group I. T, Th, Tc, IL-6, IL-10, RBC, and hemoglobin had relatively high contribution and area under the curve values. CONCLUSIONS Decreased T, Th, Tc, RBC, hemoglobin and increased IL-6 and IL-10 in early SARS-CoV-2 infection in children are valuable indices for early diagnosis of severe disease. The significantly reduced Th and Tc cells and significantly increased IL-6, IL-10, ferritin, procalcitonin, and SAA at this stage in children with critical COVID-19 may be closely associated with the systemic cytokine storm caused by immune dysregulation.
Collapse
Affiliation(s)
- Wenjie Lu
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ming Sun
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiping Zhang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Qi
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhi Chen
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lannan Zhang
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianxin Li
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xiong
- Department of Hematology, Wuhan Children's Hospital (Wuhan Medical Care Center for Women and Children), Tongji College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Dawson RE, Jenkins BJ, Saad MI. IL-6 family cytokines in respiratory health and disease. Cytokine 2021; 143:155520. [PMID: 33875334 DOI: 10.1016/j.cyto.2021.155520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.
Collapse
Affiliation(s)
- Ruby E Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
46
|
Collins ML, Cheney GA, Yehl JL, Sullivan GA, Stewart JT, Catalano G. Postviral Depression. J Psychiatr Pract 2021; 27:126-130. [PMID: 33656819 DOI: 10.1097/pra.0000000000000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A previously healthy 68-year-old man rapidly developed a severe melancholic depression following influenza infection. There is an evolving understanding of the complex and possibly bidirectional relationship between depression and inflammation. We review the literature concerning this relationship in the context of viral infection and discuss possible implications for treatment.
Collapse
|
47
|
Pandey P, Karupiah G. Targeting tumour necrosis factor to ameliorate viral pneumonia. FEBS J 2021; 289:883-900. [PMID: 33624419 DOI: 10.1111/febs.15782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Pneumonia is a serious complication associated with inflammation of the lungs due to infection with viral pathogens. Seasonal and pandemic influenza viruses, variola virus (agent of smallpox) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; agent of COVID-19) are some leading examples. Viral pneumonia is triggered by excessive inflammation associated with dysregulated cytokine production, termed 'cytokine storm'. Several cytokines have been implicated but tumour necrosis factor (TNF) plays a critical role in driving lung inflammation, severe lung pathology and death. Despite this, the exact role TNF plays in the aetiology and pathogenesis of virus infection-induced respiratory complications is not well understood. In this review, we discuss the pathological and immunomodulatory roles of TNF in contributing to immunopathology and resolution of lung inflammation, respectively, in mouse models of influenza- and smallpox (mousepox)-induced pneumonia. We review studies that have investigated dampening of inflammation on the outcome of severe influenza and orthopoxvirus infections. Most studies on the influenza model have evaluated the efficacy of treatment with anti-inflammatory drugs, including anti-TNF agents, in animal models on the day of viral infection. We question the merits of those studies as they are not transferable to the clinic given that individuals generally present at a hospital only after the onset of disease symptoms and not on the day of infection. We propose that research should be directed at determining whether dampening lung inflammation after the onset of disease symptoms will reduce morbidity and mortality. Such a treatment strategy will be more relevant clinically.
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
48
|
Belon L, Skidmore P, Mehra R, Walter E. Effect of a fever in viral infections — the ‘Goldilocks’ phenomenon? World J Clin Cases 2021; 9:296-307. [PMID: 33521098 PMCID: PMC7812885 DOI: 10.12998/wjcc.v9.i2.296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute infections, including those due to Coronaviridae and other viruses, often stimulate a febrile response. A mild fever appears to improve outcome; it appears to diminish viral replication by several mechanisms, including virion entry into host cells and genome transcription, and improving host defence mechanisms against the pathogen. However, a fever may also damage host cellular and tissue function and increase metabolic demands. At temperatures at the lower end of the febrile range, the benefit of the fever appears to outweigh the detrimental effects. However, at higher temperatures, the outcome worsens, suggesting that the disadvantages of fever on the host predominate. A non-infective fever is associated with a worse outcome at lower temperatures, suggesting that hyperthermia carries less benefit in the absence of infection. This review discusses the risks and benefits of a fever on the host response, focusing on the effects of a fever on viral replication and host response, and the detrimental effect on the host.
Collapse
Affiliation(s)
- Lucas Belon
- Department of Intensive Care Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Peter Skidmore
- Department of General Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Rohan Mehra
- Department of General Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Edward Walter
- Department of Intensive Care Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| |
Collapse
|
49
|
Protective cellular and mucosal immune responses following nasal administration of a whole gamma-irradiated influenza A (subtype H1N1) vaccine adjuvanted with interleukin-28B in a mouse model. Arch Virol 2021; 166:545-557. [PMID: 33409549 PMCID: PMC7787640 DOI: 10.1007/s00705-020-04900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The use of gamma-irradiated influenza A virus (γ-Flu), retains most of the viral structural antigens, represent a promising option for vaccine development. However, despite the high effectiveness of γ-Flu vaccines, the need to incorporate an adjuvant to improve vaccine-mediated protection seems inevitable. Here, we examined the protective efficacy of an intranasal gamma-irradiated HIN1 vaccine co-administered with a plasmid encoding mouse interleukin-28B (mIL-28B) as a novel adjuvant in BALB/c mice. Animals were immunized intranasally three times at one-week intervals with γ-Flu, alone or in combination with the mIL-28B adjuvant, followed by viral challenge with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific antibody, cellular and mucosal responses, and the balance of cytokines in the spleen IFN-γ, IL-12, and IL-4) and in lung homogenates (IL-6 and IL-10) were measured by ELISA. The lymphoproliferative activity of restimulated spleen cells was also determined by MTT assay. Furthermore, virus production in the lungs of infected mice was estimated using the Madin-Darby canine kidney (MDCK)/hemagglutination assay (HA). Our data showed that intranasal immunization with adjuvanted γ-Flu vaccine efficiently promoted humoral, cellular, and mucosal immune responses and efficiently decreased lung virus titers, all of which are associated with protection against challenge. This combination also reduced IL-6 and IL-10 levels in lung homogenates. The results suggest that IL-28B can enhance the ability of the vaccine to elicit virus-specific immune responses and could potentially be used as an effective adjuvant.
Collapse
|
50
|
Ti H, Mai Z, Wang Z, Zhang W, Xiao M, Yang Z, Shaw P. Bisabolane-type sesquiterpenoids from Curcuma longa L. exert anti-influenza and anti-inflammatory activities through NF-κB/MAPK and RIG-1/STAT1/2 signaling pathways. Food Funct 2021; 12:6697-6711. [PMID: 34179914 DOI: 10.1039/d1fo01212f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Influenza is a viral respiratory illness that causes seasonal epidemics and occasional pandemics. Disease severity may be contributed by influenza virus-induced cytokine dysregulation. The study was designed to investigate the isolation and identification of bisabolane-type sesquiterpenoids from Curcuma longa L., their antiviral and anti-inflammatory activities against H1N1 and their potential role in regulating host immune response in vitro. A pair of new bisabolane-type sesquiterpenoids, (6S,7S)-3-hydroxy-3-hydroxymethylbisabola-1,10-diene-9-one (18) together with seventeen known analogs (1-17), was isolated and elucidated from Curcuma longa L. Compounds 2, 11 and 14 could significantly inhibit A/PR/8/34 (H1N1) replication in MDCK cells, and compound 2 could significantly inhibit A/PR/8/34 (H1N1) replication in A549 cells. Compounds 4, 8, 9, 13 and 17 could markedly reduce pro-inflammatory cytokine (TNF-α, IL-6, IL-8 and IP-10) production at the mRNA and protein levels in A549 cells. Compound 4 regulated the levels of steroid biosynthesis, oxidative phosphorylation and protein processing in the endoplasmic reticulum, thereby inhibiting immune responses by proteomics analysis. Furthermore, compound 4 could inhibit the expression of p-NF-κB p65, NF-κB p65, IκBα, p-p38 MAPK, p-IκBα, RIG-1, STAT-1/2 and p-STAT-1/2 in the signaling pathways. These findings indicate that bisabolane-type sesquiterpenoids of C. longa could inhibit the expression of inflammatory cytokines induced by the virus and regulate the activity of NF-κB/MAPK and RIG-1/STAT-1/2 signaling pathways in vitro.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|