1
|
Gi Byun W, Lee M, Ko M, Hyae Lee J, Yi S, Lee J, Kim S, Bum Park S. Broad-Spectrum Antiviral Agents against SARS-CoV-2 Variants Inhibit the Conserved Viral Protein Nsp1-RNA Interaction. Angew Chem Int Ed Engl 2024; 63:e202405472. [PMID: 39132967 DOI: 10.1002/anie.202405472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
The ongoing global threats posed by COVID-19 pandemic, catalyzed by SARS-CoV-2, underscores the pressing need for effective antiviral strategies. The viral non-structural protein 1 (Nsp1) significantly influences pathogenicity by impeding host protein expression and enhancing viral RNA translation through its interaction with the stem-loop 1 (SL1) in the 5' untranslated region (UTR). We have developed a novel dual-luciferase reporter assay, designed to investigate the critical Nsp1-SL1 interaction, and identified P23E02 as a potential inhibitor. Our investigation, combining molecular docking studies and alanine mutagenesis, has unveiled that P23E02 disrupts Nsp1-40S ribosomal subunit interaction, liberating translational inhibition and empowering host antiviral responses. P23E02 exhibits antiviral efficacy against various sarbecoviruses, making it a promising candidate for combatting COVID-19 and related diseases. This study underscores the therapeutic potential of targeting the Nsp1/SL1 axis and lays the foundation for innovative antiviral interventions, ultimately fortifying global preparedness against future viral threats.
Collapse
Affiliation(s)
- Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Minha Lee
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Meehyun Ko
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Ji Hyae Lee
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| | - JinAh Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, 13488, Seongnam, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, 08826, Seoul, Korea
| |
Collapse
|
2
|
Oduro-Kwateng E, Soliman ME. DON/DRP-104 as potent serine protease inhibitors implicated in SARS-CoV-2 infection: Comparative binding modes with human TMPRSS2 and novel therapeutic approach. J Cell Biochem 2024; 125:e30528. [PMID: 38284235 DOI: 10.1002/jcb.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Human transmembrane serine protease 2 (TMPRSS2) is an important member of the type 2 transmembrane serine protease (TTSP) family with significant therapeutic markings. The search for potent TMPRSS2 inhibitors against severe acute respiratory syndrome coronavirus 2 infection with favorable tissue specificity and off-site toxicity profiles remains limited. Therefore, probing the anti-TMPRSS2 potential of enhanced drug delivery systems, such as nanotechnology and prodrug systems, has become compelling. We report the first in silico study of TMPRSS2 against a prodrug, [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] also known as DRP-104 synthesized from 6-Diazo-5-oxo-l-norleucine (DON). We performed comparative studies on DON and DRP-104 against a clinically potent TMPRSS2 inhibitor, nafamostat, and a standard serine protease inhibitor, 4-(2-Aminoethyl) benzenesulfonyl fluoride (AEBSF) against TMPRSS2 and found improved TMPRSS2 inhibition through synergistic binding of the S1/S1' subdomains. Both DON and DRP-104 had better thermodynamic profiles than AEBSF and nafamostat. DON was found to confer structural stability with strong positive correlated inter-residue motions, whereas DRP-104 was found to confer kinetic stability with restricted residue displacements and reduced loop flexibility. Interestingly, the Scavenger Receptor Cysteine-Rich (SRCR) domain of TMPRSS2 may be involved in its inhibition mechanics. Two previously unidentified loops, designated X (270-275) and Y (293-296) underwent minimal and major structural transitions, respectively. In addition, residues 273-277 consistently transitioned to a turn conformation in all ligated systems, whereas unique transitions were identified for other transitioning residue groups in each TMPRSS2-inhibitor complex. Intriguingly, while both DON and DRP-104 showed similar loop transition patterns, DRP-104 preserved loop structural integrity. As evident from our systematic comparative study using experimentally/clinically validated inhibitors, DRP-104 may serve as a potent and novel TMPRSS2 inhibitor and warrants further clinical investigation.
Collapse
Affiliation(s)
- Ernest Oduro-Kwateng
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| | - Mahmoud E Soliman
- School of Health Sciences, Molecular Bio-Computation and Drug Design Research Group, Westville Campus, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
3
|
Abla N, Almond LM, Bonner JJ, Richardson N, Wells TNC, Möhrle JJ. PBPK-led assessment of antimalarial drugs as candidates for Covid-19: Simulating concentrations at the site of action to inform repurposing strategies. Clin Transl Sci 2024; 17:e13865. [PMID: 39020517 PMCID: PMC11254780 DOI: 10.1111/cts.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/19/2024] Open
Abstract
The urgent need for safe, efficacious, and accessible drug treatments to treat coronavirus disease 2019 (COVID-19) prompted a global effort to evaluate drug repurposing opportunities. Pyronaridine and amodiaquine are both components of approved antimalarials with in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro activity does not always translate to clinical efficacy across a therapeutic dose range. This study applied available, verified, physiologically based pharmacokinetic (PBPK) models for pyronaridine, amodiaquine, and its active metabolite N-desethylamodiaquine (DEAQ) to predict drug concentrations in lung tissue relative to plasma or blood in the default healthy virtual population. Lung exposures were compared to published data across the reported range of in vitro EC50 values against SARS-CoV-2. In the multicompartment permeability-limited PBPK model, the predicted total Cmax in lung mass for pyronaridine was 34.2 μM on Day 3, 30.5-fold greater than in blood (1.12 μM) and for amodiaquine was 0.530 μM, 8.83-fold greater than in plasma (0.060 μM). In the perfusion-limited PBPK model, the DEAQ predicted total Cmax on Day 3 in lung mass (30.2 μM) was 21.4-fold greater than for plasma (1.41 μM). Based on the available in vitro data, predicted drug concentrations in lung tissue for pyronaridine and DEAQ, but not amodiaquine, appeared sufficient to inhibit SARS-CoV-2 replication. Simulations indicated standard dosing regimens of pyronaridine-artesunate and artesunate-amodiaquine have potential to treat COVID-19. These findings informed repurposing strategies to select the most relevant compounds for clinical investigation in COVID-19. Clinical data for model verification may become available from ongoing clinical studies.
Collapse
Affiliation(s)
- Nada Abla
- MMV Medicines for Malaria VentureGenevaSwitzerland
| | | | | | | | | | | |
Collapse
|
4
|
Hernández-Mitre MP, Morpeth SC, Venkatesh B, Hills TE, Davis J, Mahar RK, McPhee G, Jones M, Totterdell J, Tong SYC, Roberts JA. TMPRSS2 inhibitors for the treatment of COVID-19 in adults: a systematic review and meta-analysis of randomized clinical trials of nafamostat and camostat mesylate. Clin Microbiol Infect 2024; 30:743-754. [PMID: 38331253 DOI: 10.1016/j.cmi.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Synthetic serine protease inhibitors block the cellular enzyme transmembrane protease serine 2, thus preventing SARS-CoV-2 cell entry. There are two relevant drugs in this class, namely, nafamostat (intravenous formulation) and camostat (oral formulation). OBJECTIVE To determine whether transmembrane protease serine 2 inhibition with nafamostat or camostat is associated with a reduced risk of 30-day all-cause mortality in adults with COVID-19. DATA SOURCES Scientific databases and clinical trial registry platforms. STUDY ELIGIBILITY CRITERIA, INTERVENTIONS, AND PARTICIPANTS Preprints or published randomized clinical trials (RCTs) of nafamostat or camostat vs. usual care or placebo in adults requiring treatment for COVID-19. METHODS OF DATA SYNTHESIS AND RISK-OF-BIAS ASSESSMENT The primary outcome of the meta-analysis was 30-day all-cause mortality. Secondary outcomes included time to recovery, adverse events, and serious adverse events. Risk of bias (RoB) was assessed using the revised Cochrane RoB 2 tool for individually randomized trials. Meta-analysis was conducted in the R package meta (v7.0-0) using inverse variance and random effects. Protocol registration number was INPLASY202320120. RESULTS Twelve RCTs were included. Overall, the number of available patients was small (nafamostat = 387; camostat = 1061), the number of enrolled patients meeting the primary outcome was low (nafamostat = 12; camostat = 13), and heterogeneity was high. In hospitalized adults, we did not identify differences in 30-day all-cause mortality (risk ratio [95% CI]: 0.58 [0.19, 1.80], p 0.34; I2 = 0%; n = 6) and time to recovery (mean difference [95% CI]: 0.08 days [-0.74, 0.89], p 0.86; n = 2) between nafamostat vs. usual care; and for 30-day all-cause mortality (risk ratio [95% CI]: 0.99 [0.31, 3.18], p 0.99; n = 2) between camostat vs. placebo. CONCLUSION The RCT evidence is inconclusive to determine whether there is a mortality reduction and safety with either nafamostat or camostat for the treatment of adults with COVID-19. There were high RoB, small sample size, and high heterogeneity between RCTs.
Collapse
Affiliation(s)
| | - Susan C Morpeth
- Departments of Microbiology and Infectious Diseases, Middlemore Hospital, Te Whatu Ora Counties Manukau, New Zealand; Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Balasubramanian Venkatesh
- Intensive Care, Princess Alexandra Hospital, The University of Queensland, Brisbane, Queensland, Australia; Intensive Care, Wesley Hospital, Brisbane, Queensland, Australia; The George Institute for Global Health, UNSW Sydney, New South Wales, Australia
| | - Thomas E Hills
- Departments of Immunology and Infectious Diseases, Auckland District Health Board, Auckland, New Zealand; Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Joshua Davis
- Infection Research Program, Hunter Medical Research Institute, Univerity of Newcastle, Newcastle, New South Wales, Australia
| | - Robert K Mahar
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Grace McPhee
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark Jones
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - James Totterdell
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia; Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Herston, Queensland, Australia.
| |
Collapse
|
5
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
6
|
de Almeida Marques DP, Andrade LAF, Reis EVS, Clarindo FA, Moraes TDFS, Lourenço KL, De Barros WA, Costa NEM, Andrade LMD, Lopes-Ribeiro Á, Coêlho Maciel MS, Corrêa-Dias LC, de Almeida IN, Arantes TS, Litwinski VCV, de Oliveira LC, Serafim MSM, Maltarollo VG, Guatimosim SC, Silva MM, Tsuji M, Ferreira RS, Barreto LV, Barbosa-Stancioli EF, da Fonseca FG, De Fátima Â, Coelho-Dos-Reis JGA. New anti-SARS-CoV-2 aminoadamantane compounds as antiviral candidates for the treatment of COVID-19. Virus Res 2024; 340:199291. [PMID: 38065303 PMCID: PMC10733093 DOI: 10.1016/j.virusres.2023.199291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Daisymara Priscila de Almeida Marques
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luis Adan Flores Andrade
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Erik Vinicius Sousa Reis
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Alves Clarindo
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thaís de Fátima Silva Moraes
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karine Lima Lourenço
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Wellington Alves De Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nathália Evelyn Morais Costa
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lídia Maria de Andrade
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariella Sousa Coêlho Maciel
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laura Cardoso Corrêa-Dias
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isabela Neves de Almeida
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Laboratório de Micobacterioses, Faculdade de Medicina, Universidade Federal de, Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thalita Souza Arantes
- Centro de Microscopia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Costa Vasconcelos Litwinski
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Leonardo Camilo de Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Mateus Sá Magalhães Serafim
- Laboratório de Virus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Vinicius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos da Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Silvia Carolina Guatimosim
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Mário Morais Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Luiza Valença Barreto
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, Brazil
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada (LVBA), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro Tecnológico de Vacinas (CT Vacinas), Belo Horizonte, MG, Brazil
| | - Ângelo De Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | |
Collapse
|
7
|
Chen K, Wang F. Cell-specific genome-scale metabolic modeling of SARS-CoV-2-infected lung to identify antiviral enzymes. FEBS Open Bio 2023; 13:2172-2186. [PMID: 37734920 PMCID: PMC10699103 DOI: 10.1002/2211-5463.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023] Open
Abstract
Computational systems biology plays a key role in the discovery of suitable antiviral targets. We designed a cell-specific, constraint-based modeling technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs. We used the gene sequence of the alpha variant of SARS-CoV-2 to build a viral biomass reaction (VBR). We also used the mass proportion of lipids between the viral biomass and its host cell to estimate the stoichiometric coefficients of viral lipids in the reaction. We then integrated the VBR, the gene expression of the alpha variant of SARS-CoV-2, and the generic human metabolic network Recon3D to reconstruct a cell-specific genome-scale metabolic model. An antiviral target discovery (AVTD) platform was introduced using this model to identify therapeutic drug targets for combating COVID-19. The AVTD platform not only identified antiviral genes for eliminating viral replication but also predicted side effects of treatments. Our computational results revealed that knocking out dihydroorotate dehydrogenase (DHODH) might reduce the synthesis rate of cytidine-5'-triphosphate and uridine-5'-triphosphate, which terminate the viral building blocks of DNA and RNA for SARS-CoV-2 replication. Our results also indicated that DHODH is a promising antiviral target that causes minor side effects, which is consistent with the results of recent reports. Moreover, we discovered that the genes that participate in the de novo biosynthesis of glycerophospholipids and ceramides become unidentifiable if the VBR does not involve the stoichiometry of lipids.
Collapse
Affiliation(s)
- Ke‐Lin Chen
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayiTaiwan
| | - Feng‐Sheng Wang
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayiTaiwan
| |
Collapse
|
8
|
Marques GVDL, Marques DPDA, Clarindo FA, Avendaño-Villarreal JA, Guerra FS, Fernandes PD, Dos Santos EN, Gusevskaya EV, Kohlhoff M, Moreira FDA, Andrade LAF, Fonseca FGD, Dos-Reis JGAC, Oliveira RBD. Synthesis of cannabidiol-based compounds as ACE2 inhibitors with potential application in the treatment of COVID-19. Eur J Med Chem 2023; 260:115760. [PMID: 37657273 DOI: 10.1016/j.ejmech.2023.115760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Cannabis is a general name for plants of the genus Cannabis. Used as fiber, medicine, drug, for religious, therapeutic, and hedonistic purposes along the millenia, it is mostly known for its psychoactive properties. One of its major constituents, cannabidiol (CBD), a non-psychoactive substance, among many other biological activities, has shown potential as an anti-SARS-CoV-2 drug. In this work, three derivatives and an analogue of CBD were synthesized, and cell viability and antiviral activities were evaluated. None of the compounds showed cytotoxicity up to a maximum concentration of 100 μM and, in contrast, displayed a significant antiviral activity, superior to remdesivir and nafamostat mesylate, with IC50 values ranging from 9.4 to 1.9 μM. In order to search for a possible molecular target, the inhibitory activity of the compounds against ACE2 was investigated, with expressive results (IC50 ranging from 3.96 μM to 0.01 μM).
Collapse
Affiliation(s)
- Gabriel Vitor de Lima Marques
- Universidade Federal de Minas Gerais, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Belo Horizonte, Brazil
| | | | - Felipe Alves Clarindo
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | | | - Fabiana Sélos Guerra
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Programa de Pesquisa em Descoberta de Fármacos, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Eduardo Nicolau Dos Santos
- Universidade Federal de Minas Gerais, Departamento de Química, Instituto de Ciências Exatas, Belo Horizonte, Brazil
| | - Elena Vitalievna Gusevskaya
- Universidade Federal de Minas Gerais, Departamento de Química, Instituto de Ciências Exatas, Belo Horizonte, Brazil
| | - Markus Kohlhoff
- Instituto René Rachou (IRR) - FIOCRUZ Minas, Química de Produtos Naturais Bioativos (QPNB), Belo Horizonte, Brazil
| | - Fabrício de Araújo Moreira
- Universidade Federal de Minas Gerais, Departamento de Farmacologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Luis Adan Flores Andrade
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Centro de Tecnologia de Vacinas - CT Vacinas, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Universidade Federal de Minas Gerais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Centro de Tecnologia de Vacinas - CT Vacinas, Belo Horizonte, Brazil
| | | | - Renata Barbosa de Oliveira
- Universidade Federal de Minas Gerais, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Zhai C, Wang M, Jin Y, Chung HJ, Kim S, Kim HJ, Hong ST. Oral delivery of a host-directed antiviral, niclosamide, as a cholate-coated nanoformulation. Int J Antimicrob Agents 2023; 62:106973. [PMID: 37741586 DOI: 10.1016/j.ijantimicag.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Potentially significant drug candidates often face elimination from consideration due to the lack of an effective method for systemic delivery. The poor solubility of these candidates has posed a major obstacle for their development as oral pills or injectables. Niclosamide, a host-directed antiviral, is a good example. In this study, a nanoformulation technology that allows for the non-covalent formulation of niclosamide with cholic acids was developed. This formulation enables efficient systemic delivery through endocytosis and enterohepatic circulation of bile-acid-coated nanoparticles. The oral bioavailability of niclosamide-delivery nanoparticles (NDNs) was significantly enhanced to 38.3%, representing an eight-fold increase compared with pure niclosamide. Consequently, the plasma concentration of niclosamide for the NDN formulation reached 1179.6 ng/mL, which is 11 times higher than the therapeutic plasma level. This substantial increase in plasma level contributed to the complete resolution of clinical symptoms in animals infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This nanoformulation not only provides an orally deliverable antiviral drug for SARS-CoV-2 with improved pharmaceutical bioavailability, but also offers a solution to the systemic delivery challenges faced by potentially significant drug candidates.
Collapse
Affiliation(s)
- Chongkai Zhai
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea; Animal Diseases and Public Health Engineering Research Centre of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Mingda Wang
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea
| | - Yanyan Jin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hea-Jong Chung
- Gwangju Centre, Korea Basic Science Institute, Gwangju, South Korea
| | - Sura Kim
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea
| | - Hyeon-Jin Kim
- SNJ Pharma Inc., BioLabs-LA at the Lundquist Institute for BioMedical Innovation at Harbor UCLA, Torrance, CA, USA.
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea.
| |
Collapse
|
10
|
Morpeth SC, Venkatesh B, Totterdell JA, McPhee GM, Mahar RK, Jones M, Bandara M, Barina LA, Basnet BK, Bowen AC, Burke AJ, Cochrane B, Denholm JT, Dhungana A, Dore GJ, Dotel R, Duffy E, Dummer J, Foo H, Gilbey TL, Hammond NE, Hudson BJ, Jha V, Jevaji PR, John O, Joshi R, Kang G, Kaur B, Kim S, Das SK, Lau JSY, Littleford R, Marsh JA, Marschner IC, Matthews G, Maze MJ, McArthur CJ, McFadyen JD, McMahon JH, McQuilten ZK, Molton J, Mora JM, Mudaliar V, Nguyen V, O'Sullivan MVN, Pant S, Park JE, Paterson DL, Price DJ, Raymond N, Rees MA, Robinson JO, Rogers BA, Ryu WS, Sasadeusz J, Shum O, Snelling TL, Sommerville C, Trask N, Lewin SR, Hills TE, Davis JS, Roberts JA, Tong SYC. A Randomized Trial of Nafamostat for Covid-19. NEJM EVIDENCE 2023; 2:EVIDoa2300132. [PMID: 38320527 DOI: 10.1056/evidoa2300132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND: Nafamostat mesylate is a potent in vitro antiviral agent that inhibits the host transmembrane protease serine 2 enzyme used by severe acute respiratory syndrome coronavirus 2 for cell entry. METHODS: This open-label, pragmatic, randomized clinical trial in Australia, New Zealand, and Nepal included noncritically ill hospitalized patients with coronavirus disease 2019 (Covid-19). Participants were randomly assigned to usual care or usual care plus nafamostat. The primary end point was death (any cause) or receipt of new invasive or noninvasive ventilation or vasopressor support within 28 days after randomization. Analysis was with a Bayesian logistic model in which an adjusted odds ratio <1.0 indicates improved outcomes with nafamostat. Enrollment was closed due to falling numbers of eligible patients. RESULTS: We screened 647 patients in 21 hospitals (15 in Australia, 4 in New Zealand, and 2 in Nepal) and enrolled 160 participants from May 2021 to August 2022. In the intention-to-treat population, the primary end point occurred in 8 (11%) of 73 patients with usual care and 4 (5%) of 82 with nafamostat. The median adjusted odds ratio for the primary end point for nafamostat was 0.40 (95% credible interval, 0.12 to 1.34) with a posterior probability of effectiveness (adjusted odds ratio <1.0) of 93%. For usual care compared with nafamostat, hyperkalemia occurred in 1 (1%) of 67 and 7 (9%) of 78 participants, respectively, and clinically relevant bleeding occurred in 1 (1%) of 73 and 7 (8%) of 82 participants. CONCLUSIONS: Among hospitalized patients with Covid-19, there was a 93% posterior probability that nafamostat reduced the odds of death or organ support. Prespecified stopping criteria were not met, precluding definitive conclusions. Hyperkalemia and bleeding were more common with nafamostat. (Funded by ASCOT and others; ClinicalTrials.gov number, NCT04483960.)
Collapse
Affiliation(s)
- Susan C Morpeth
- Department of Microbiology and Infectious Diseases, Middlemore Hospital, Te Whatu Ora Counties Makukau, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Balasubramanian Venkatesh
- Department of Intensive Care Medicine, The University of Queensland at Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Department of Intensive Care Medicine, The University of Queensland at The Wesley Hospital, Toowong, QLD, Australia
- The George Institute for Global Health, Newtown, NSW, Australia
| | - James A Totterdell
- Faculty of Medicine and Health, The University of Sydney School of Public Health, Sydney
| | - Grace M McPhee
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Mahar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Mark Jones
- Department of Health and Clinical Analytics, The University of Sydney School of Public Health, Sydney
| | - Methma Bandara
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Lauren A Barina
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Bhupendra K Basnet
- Department of Medicine, Bir Hospital, Kathmandu, Nepal
- Department of Infectious Diseases, Perth Children's Hospital, Perth, WA, Australia
| | - Asha C Bowen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Andrew J Burke
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Department of Infectious Diseases, Prince Charles Hospital, Merthyr Tydfil, United Kingdom
| | - Belinda Cochrane
- Department of Respiratory and Sleep Medicine, Campbelltown Hospital, Campbelltown, NSW, Australia
- Western Sydney University School of Medicine, Campbelltown, NSW, Australia
| | - Justin T Denholm
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ashesh Dhungana
- Department of Medicine, National Academy of Medical Sciences at Bir Hospital, Kathmandu, Nepal
| | - Gregory J Dore
- Viral Hepatitis Clinical Research Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
- Department of Infectious Diseases, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Ravindra Dotel
- Department of Infectious Diseases, Blacktown Hospital, Blacktown, NSW, Australia
| | - Eamon Duffy
- Department of Infectious Diseases, Te Whatu Ora Health New Zealand at Auckland City Hospital, Auckland, New Zealand
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jack Dummer
- Department of Medicine, University of Otago, Dunedin, New Zealand
- Respiratory Services, Dunedin Hospital, Dunedin, New Zealand
| | - Hong Foo
- Department of Microbiology and Infectious Diseases, NSW Health Pathology Liverpool, Liverpool, NSW, Australia
| | - Timothy L Gilbey
- Department of Medicine and Infectious Diseases, Wagga Wagga Base Hospital, Wagga Wagga, Australia
| | - Naomi E Hammond
- Critical Care Program, The George Institute for Global Health, New Town, NSW, Australia
- Critical Care Program, The University of New South Wales, Sydney
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Bernard J Hudson
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, St. Leonards, St. Leonards, NSW, Australia
| | - Vivekanand Jha
- The George Institute for Global Health, Newtown, NSW, Australia
| | - Purnima R Jevaji
- Department of Research, The George Institute for Global Health, Pune, Maharashta, India
| | - Oommen John
- Department of Research, The George Institute for Global Health, Vellore, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Karnataka, India
| | - Rajesh Joshi
- Department of Research, The George Institute for Global Health, Pune, Maharashta, India
| | - Gagandeep Kang
- Wellcome Trust Research Laboratory, Chartered Accountants Australia and New Zealand, Sydney
| | - Baldeep Kaur
- Critical Care Program, The George Institute for Global Health, New Town, NSW, Australia
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Santa Kumar Das
- Department of Internal Medicine, Maharajgunj Medical Campus, Institute of Medicine, Maharajgunj, Nepal
| | - Jillian S Y Lau
- Department of Infectious Diseases, Eastern Health, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Roberta Littleford
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Queensland, QLD, Australia
| | - Julie A Marsh
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia Medical School, Nedlands, WA, Australia
| | - Ian C Marschner
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney
| | - Gail Matthews
- Department of Infectious Diseases, St. Vincent's Hospital Sydney, Sydney
- Therapeutic and Vaccine Research Program, The Kirby Institute at The University of New South Wales, Kensington, NSW, Australia
| | - Michael J Maze
- Department of Medicine, University of Otago Christchurch, Christchurch, New England
| | - Colin J McArthur
- Department of Critical Care Medicine, Te Whatu Ora - Health New Zealand, Wellington, New Zealand
| | - James D McFadyen
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James H McMahon
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Zoe K McQuilten
- Department of Haematology, Monash Health, Melbourne, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - James Molton
- Department of Infectious Diseases, Western Health, Footscray, VIC, Australia
| | - Jocelyn M Mora
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Vijaybabu Mudaliar
- Department of Research, The George Institute for Global Health, Pune, Maharashta, India
| | - Vi Nguyen
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew V N O'Sullivan
- Department of Microbiology and Infectious Diseases, NSW Health Pathology Westmead Hospital, Newcastle, NSW, Australia
- Faculty of Medicine and Health, University of Sydney Westmead Clinical School, Sydney
| | - Suman Pant
- Department of Internal Medicine, Maharajgunj Medical Campus, Institute of Medicine, Maharajgunj, Nepal
| | - Jaha E Park
- Business Development Team, Chong Kun Dang Pharmaceutical Corp., Dongbaekjukjeon-daero, Giheung-gu Yongin, Kyeonggi-do, Republic of Korea
| | - David L Paterson
- Saw Swee Hock School of Public Health, National Institute of Singapore, Singapore
| | - David J Price
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Nigel Raymond
- Department of Medicine, Te Whatu Ora Health New Zealand Capital, Coast and Hutt Valley, Wellington, New Zealand
- Department of Medicine, Wellington School of Medicine, University of Otago, Wellington, New Zealand
| | - Megan A Rees
- Department of Respiratory and Sleep Medicine, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - James O Robinson
- Department of Infectious Diseases, Royal Perth Hospital, Perth, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, Australia
| | - Benjamin A Rogers
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Infectious Diseases, Monash Health, Clayton, VIC, Australia
| | - Wang-Shick Ryu
- Virology, Institute Pasteur Korea, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Joe Sasadeusz
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Omar Shum
- Department of Infectious Diseases, Wollongong Hospital, Kingoonya, NSW, Australia
- Graduate School of Medicine, University of Wollongong, Wollonngong, NSW, Australia
| | - Thomas L Snelling
- Faculty of Medicine and Health, The University of Sydney School of Public Health, Sydney
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Nedlands, WA, Australia
| | - Christine Sommerville
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Nanette Trask
- Chartered Accountants Australia and New Zealand, Sydney
| | - Sharon R Lewin
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Thomas E Hills
- Department of Clinical Research, Medical Research Institute of New Zealand, Wellington, New Zealand
- Department of Infectious Diseases, Auckland City Hospital, Auckland, New Zealand
| | - Joshua S Davis
- School of Medicine and Public Health, The University of Newcastle, New Castle, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Jason A Roberts
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, QLD, Australia
- Metro North Health, Herston Infectious Diseases Institute, Herston, QLD, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Division of Anaesthesiology, Critical Care Emergency and Pain Medicine, Nîmes University Hospital at The University of Montpellier, Nîmes, France
| | - Steven Y C Tong
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Chu SW, Wang FS. Fuzzy optimization for identifying antiviral targets for treating SARS-CoV-2 infection in the heart. BMC Bioinformatics 2023; 24:364. [PMID: 37759157 PMCID: PMC10537911 DOI: 10.1186/s12859-023-05487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.
Collapse
Affiliation(s)
- Sz-Wei Chu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, 621301, Taiwan
| | - Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi, 621301, Taiwan.
| |
Collapse
|
12
|
Alassafi MO, Khan IR, AlGhamdi R, Aziz W, Alshdadi AA, Dessouky MM, Bahaddad A, Altalbe A, Albishry N. Studying Dynamical Characteristics of Oxygen Saturation Variability Signals Using Haar Wavelet. Healthcare (Basel) 2023; 11:2280. [PMID: 37628478 PMCID: PMC10454822 DOI: 10.3390/healthcare11162280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification. In this work, we present a novel technique that used Haar wavelets to analyze the complexity of OSV signals of subjects during COVID-19 infection and after recovery. The data used to evaluate the performance of the proposed algorithms comprised recordings of OSV signals from 44 COVID-19 patients during illness and after recovery. The performance of the proposed technique was compared with four, scale-based entropy measures: multiscale entropy (MSE); multiscale permutation entropy (MPE); multiscale fuzzy entropy (MFE); multiscale amplitude-aware permutation entropy (MAMPE). Preliminary results of the pilot study revealed that the proposed algorithm outperformed MSE, MPE, MFE, and MMAPE in terms of better accuracy and time efficiency for separating during and after recovery the OSV signals of COVID-19 subjects. Further studies are needed to evaluate the potential of the proposed algorithm for large datasets and in the context of other biomedical signal classifications.
Collapse
Affiliation(s)
- Madini O. Alassafi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.O.A.); (A.B.); (A.A.); (N.A.)
| | - Ishtiaq Rasool Khan
- College of Computer Science and Engineering, University of Jeddah, Jeddah 21725, Saudi Arabia; (I.R.K.); (A.A.A.); (M.M.D.)
| | - Rayed AlGhamdi
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.O.A.); (A.B.); (A.A.); (N.A.)
| | - Wajid Aziz
- Department of Computer Science and Information Technology, King Abdullah Campus, University of Azad Jammu and Kashmir Muzaffarabad (AK), Azad Jammu and Kashmir 13100, Pakistan;
| | - Abdulrahman A. Alshdadi
- College of Computer Science and Engineering, University of Jeddah, Jeddah 21725, Saudi Arabia; (I.R.K.); (A.A.A.); (M.M.D.)
| | - Mohamed M. Dessouky
- College of Computer Science and Engineering, University of Jeddah, Jeddah 21725, Saudi Arabia; (I.R.K.); (A.A.A.); (M.M.D.)
- Department of Computer Science & Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 12548, Egypt
| | - Adel Bahaddad
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.O.A.); (A.B.); (A.A.); (N.A.)
| | - Ali Altalbe
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.O.A.); (A.B.); (A.A.); (N.A.)
| | - Nabeel Albishry
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.O.A.); (A.B.); (A.A.); (N.A.)
| |
Collapse
|
13
|
Hernández-Mitre MP, Won H, Wallis SC, Parker SL, Roberts JA. Stability of nafamostat in intravenous infusion solutions, human whole blood and extracted plasma: implications for clinical effectiveness studies. Bioanalysis 2023; 15:673-681. [PMID: 37272603 DOI: 10.4155/bio-2023-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Aim: To describe the stability of nafamostat in infusion solutions, during blood sample collection and in extracted plasma samples in the autosampler. Methods: Nafamostat infusion solutions were stored at room temperature in the light for 24 h. For sample collection stability, fresh blood spiked with nafamostat was subjected to combinations of anticoagulants, added esterase inhibitor and temperature. Nafamostat was monitored in the extracted plasma samples in the autosampler. Results: Nafamostat was stable in infusion solutions. Nafamostat in whole blood was stable for 3 h before centrifugation when collected in sodium fluoride/potassium oxalate tubes (4°C). Nafamostat in extracted plasma samples degraded at 4.7 ± 0.7% per h. Conclusion: Viable samples can be obtained using blood collection tubes with sodium fluoride, chilling and processing promptly.
Collapse
Affiliation(s)
| | - Hayoung Won
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Steven C Wallis
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, 4029, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, 4029, Australia
- Departments of Pharmacy & Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, 4029, Australia
- Division of Anaesthesiology Critical Care Emergency & Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, 30029, France
| |
Collapse
|
14
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Shin YS, Lee JY, Jeon S, Myung S, Gong HJ, Kim S, Kim HR, Jeong LS, Park CM. Discovery of 2-aminoquinolone acid derivatives as potent inhibitors of SARS-CoV-2. Bioorg Med Chem Lett 2023; 85:129214. [PMID: 36870624 PMCID: PMC9979702 DOI: 10.1016/j.bmcl.2023.129214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten human health and create socioeconomic problems worldwide. A library of 200,000 small molecules from the Korea Chemical Bank (KCB) were evaluated for their inhibitory activities against SARS-CoV-2 in a phenotypic-based screening assay to discover new therapeutics to combat COVID-19. A primary hit of this screen was the quinolone structure-containing compound 1. Based on the structure of compound 1 and enoxacin, which is a quinolone-based antibiotic previously reported to have weak activity against SARS-CoV-2, we designed and synthesized 2-aminoquinolone acid derivatives. Among them, compound 9b exhibited potent antiviral activity against SARS-CoV-2 (EC50 = 1.5 µM) without causing toxicity, while having satisfactory in vitro PK profiles. This study shows that 2-aminoquinolone acid 9b provides a promising new template for developing anti-SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Young Sup Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jun Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Subeen Myung
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea
| | - Hyun June Gong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
16
|
Needham D. Extraction of niclosamide from commercial approved tablets into aqueous buffered solution creates potentially approvable oral and nasal sprays against COVID-19 and other respiratory infections. AAPS OPEN 2023; 9:9. [PMID: 37073302 PMCID: PMC10101733 DOI: 10.1186/s41120-023-00072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/09/2023] [Indexed: 04/20/2023] Open
Abstract
Motivation The low solubility, weak acid drug, niclosamide is a host cell modulator with broad-spectrum anti-viral cell-activity against many viruses, including stopping the SARS-CoV-2 virus from infecting cells in cell culture. As a result, a simple universal nasal spray preventative was proposed and investigated in earlier work regarding the dissolution of niclosamide into simple buffers. However, starting with pharmaceutical grade, niclosamide represents a new 505(b)(2) application. The motivation for this second paper in the series was therefore to explore if and to what extent niclosamide could be extracted from commercially available and regulatory-approved niclosamide oral tablets that could serve as a preventative nasal spray and an early treatment oral/throat spray, with possibly more expeditious testing and regulatory approval. Experimental Measurements of supernatant niclosamide concentrations were made by calibrated UV-Vis for the dissolution of niclosamide from commercially available Yomesan crushed into a powder for dissolution into Tris Buffer (TB) solutions. Parameters tested were as follows: time (0-2 days), concentration (300 µM to -1 mM), pH (7.41 to 9.35), and anhydrous/hydrated state. Optical microscopy was used to view the morphologies of the initial crushed powder, and the dissolving and equilibrating undissolved excess particles to detect morphologic changes that might occur. Results Concentration dependence: Niclosamide was readily extracted from powdered Yomesan at pH 9.34 TB at starting Yomesan niclosamide equivalents concentrations of 300 µM, 600 µM, and 1 mM. Peak dissolved niclosamide supernatant concentrations of 264 µM, 216 µM, and 172 µM were achieved in 1 h, 1 h, and 3 h respectively. These peaks though were followed by a reduction in supernatant concentration to an average of 112.3 µM ± 28.4 µM after overnight stir on day 2. pH dependence: For nominal pHs of 7.41, 8.35, 8.85, and 9.35, peak niclosamide concentrations were 4 µM, 22.4 µM, 96.2 µM, and 215.8 µM, respectively. Similarly, the day 2 values all reduced to 3 µM, 12.9 µM, 35.1 µM, and 112.3 µM. A heat-treatment to 200 °C dehydrated the niclosamide and showed a high 3 h concentration (262 µM) and the least day-2 reduction (to 229 µM). This indicated that the presence, or formation during exposure to buffer, of lower solubility polymorphs was responsible for the reductions in total solubilities. These morphologic changes were confirmed by optical microscopy that showed initially featureless particulate-aggregates of niclosamide could grow multiple needle-shaped crystals and form needle masses, especially in the presence of Tris-buffered sodium chloride, where new red needles were rapidly made. Scale up: A scaled-up 1 L solution of niclosamide was made achieving 165 µM supernatant niclosamide in 3 h by dissolution of just one fifth (100 mg niclosamide) of a Yomesan tablet. Conclusion These comprehensive results provide a guide as to how to utilize commercially available and approved tablets of niclosamide to generate aqueous niclosamide solutions from a simple dissolution protocol. As shown here, just one 4-tablet pack of Yomesan could readily make 165 L of a 20 µM niclosamide solution giving 16,500 10 mL bottles. One million bottles, from just 60 packs of Yomesan, would provide 100 million single spray doses for distribution to mitigate a host of respiratory infections as a universal preventative-nasal and early treatment oral/throat sprays throughout the world. Graphical Abstract pH dependence of niclosamide extraction from crushed Yomesan tablet material into Tris buffer (yellow-green in vial) and Tris-buffered saline solution (orange-red in vial). Initial anhydrous dissolution concentration is reduced by overnight stirring to likely monohydrate niclosamide; and is even lower if in TBSS forming new niclosamide sodium needle crystals grown from the original particles. Supplementary Information The online version contains supplementary material available at 10.1186/s41120-023-00072-x.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708 USA
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
17
|
Boytz R, Słabicki M, Ramaswamy S, Patten J, Zou C, Meng C, Hurst BL, Wang J, Nowak RP, Yang PL, Sattler M, Stone RM, Griffin JD, Gray NS, Gummuluru S, Davey RA, Weisberg E. Anti-SARS-CoV-2 activity of targeted kinase inhibitors: Repurposing clinically available drugs for COVID-19 therapy. J Med Virol 2023; 95:e28157. [PMID: 36117402 PMCID: PMC9538324 DOI: 10.1002/jmv.28157] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) remains a major public health concern, and vaccine unavailability, hesitancy, or failure underscore the need for discovery of efficacious antiviral drug therapies. Numerous approved drugs target protein kinases associated with viral life cycle and symptoms of infection. Repurposing of kinase inhibitors is appealing as they have been vetted for safety and are more accessible for COVID-19 treatment. However, an understanding of drug mechanism is needed to improve our understanding of the factors involved in pathogenesis. We tested the in vitro activity of three kinase inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including inhibitors of AXL kinase, a host cell factor that contributes to successful SARS-CoV-2 infection. Using multiple cell-based assays and approaches, gilteritinib, nintedanib, and imatinib were thoroughly evaluated for activity against SARS-CoV-2 variants. Each drug exhibited antiviral activity, but with stark differences in potency, suggesting differences in host dependency for kinase targets. Importantly, for gilteritinib, the amount of compound needed to achieve 90% infection inhibition, at least in part involving blockade of spike protein-mediated viral entry and at concentrations not inducing phospholipidosis (PLD), approached a clinically achievable concentration. Knockout of AXL, a target of gilteritinib and nintedanib, impaired SARS-CoV-2 variant infectivity, supporting a role for AXL in SARS-CoV-2 infection and supporting further investigation of drug-mediated AXL inhibition as a COVID-19 treatment. This study supports further evaluation of AXL-targeting kinase inhibitors as potential antiviral agents and treatments for COVID-19. Additional mechanistic studies are needed to determine underlying differences in virus response.
Collapse
Affiliation(s)
- RuthMabel Boytz
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sita Ramaswamy
- Department of Microbiology, Boston University, Boston, MA
| | - J.J. Patten
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Charles Zou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Radosław P. Nowak
- Department of Medicine, Harvard Medical School, Boston, MA, USA,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Priscilla L. Yang
- Cancer Biology, Dana-Farber Cancer Institute, MA, USA,Department of Microbiology, Harvard Medical School, Boston, MA, USA; current address Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard M. Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Robert A. Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Yun JS, Song H, Kim NH, Cha SY, Hwang KH, Lee JE, Jeong CH, Song SH, Kim S, Cho ES, Kim HS, Yook JI. Glycogen Synthase Kinase-3 Interaction Domain Enhances Phosphorylation of SARS-CoV-2 Nucleocapsid Protein. Mol Cells 2022; 45:911-922. [PMID: 36572560 PMCID: PMC9794558 DOI: 10.14348/molcells.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/28/2022] Open
Abstract
A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.
Collapse
Affiliation(s)
- Jun Seop Yun
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyeeun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - So Young Cha
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kyu Ho Hwang
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jae Eun Lee
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Cheol-Hee Jeong
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sang Hyun Song
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Seonghun Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Eunae Sandra Cho
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
19
|
Mascolini A, Cardamone D, Ponzio F, Di Cataldo S, Ficarra E. Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations. BMC Bioinformatics 2022; 23:295. [PMID: 35871688 PMCID: PMC9308954 DOI: 10.1186/s12859-022-04845-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Motivation Computer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper, we present Generative Adversarial Network Discriminator Learner (GAN-DL), a novel self-supervised learning paradigm based on the StyleGAN2 architecture, which we employ for self-supervised image representation learning in the case of fluorescent biological images. Results We show that Wasserstein Generative Adversarial Networks enable high-throughput compound screening based on raw images. We demonstrate this by classifying active and inactive compounds tested for the inhibition of SARS-CoV-2 infection in two different cell models: the primary human renal cortical epithelial cells (HRCE) and the African green monkey kidney epithelial cells (VERO). In contrast to previous methods, our deep learning-based approach does not require any annotation, and can also be used to solve subtle tasks it was not specifically trained on, in a self-supervised manner. For example, it can effectively derive a dose-response curve for the tested treatments. Availability and implementation Our code and embeddings are available at https://gitlab.com/AlesioRFM/gan-dl StyleGAN2 is available at https://github.com/NVlabs/stylegan2.
Collapse
|
20
|
Li J, Xue Y, Wang X, Smith LS, He B, Liu S, Zhu H. Tissue- and cell-expression of druggable host proteins provide insights into repurposing drugs for COVID-19. Clin Transl Sci 2022; 15:2796-2811. [PMID: 36259251 PMCID: PMC9747131 DOI: 10.1111/cts.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Several human host proteins play important roles in the lifecycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many drugs targeting these host proteins have been investigated as potential therapeutics for coronavirus disease 2019 (COVID-19). The tissue-specific expressions of selected host proteins were summarized using proteomics data retrieved from the Human Protein Atlas, ProteomicsDB, Human Proteome Map databases, and a clinical COVID-19 study. Protein expression features in different cell lines were summarized based on recent proteomics studies. The half-maximal effective concentration or half-maximal inhibitory concentration values were collected from in vitro studies. The pharmacokinetic data were mainly from studies in healthy subjects or non-COVID-19 patients. Considerable tissue-specific expression patterns were observed for several host proteins. ACE2 expression in the lungs was significantly lower than in many other tissues (e.g., the kidneys and intestines); TMPRSS2 expression in the lungs was significantly lower than in other tissues (e.g., the prostate and intestines). The expression levels of endocytosis-associated proteins CTSL, CLTC, NPC1, and PIKfyve in the lungs were comparable to or higher than most other tissues. TMPRSS2 expression was markedly different between cell lines, which could be associated with the cell-dependent antiviral activities of several drugs. Drug delivery receptor ICAM1 and CTSB were expressed at a higher level in the lungs than in other tissues. In conclusion, the cell- and tissue-specific proteomics data could help interpret the in vitro antiviral activities of host-directed drugs in various cells and aid the transition of the in vitro findings to clinical research to develop safe and effective therapeutics for COVID-19.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Yanling Xue
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical University College of PharmacyRootstownOhioUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Shuhan Liu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| |
Collapse
|
21
|
Jade D, Alzahrani A, Critchley W, Ponnambalam S, Harrison MA. Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening. Struct Chem 2022; 34:1005-1019. [PMID: 36467260 PMCID: PMC9702953 DOI: 10.1007/s11224-022-02072-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
Abstract
The SARS-CoV-2 coronavirus is responsible for the COVID-19 outbreak, which overwhelmed millions of people worldwide; hence, there is an urgency to identify appropriate antiviral drugs. This study focuses on screening compounds that inhibit RNA-dependent RNA-polymerase (RdRp) essential for RNA synthesis required for replication of positive-strand RNA viruses. Computational screening against RdRp using Food and Drug Administration (FDA)-approved drugs identified ten prominent compounds with binding energies of more than - 10.00 kcal/mol, each a potential inhibitor of RdRp. These compounds' binding energy is comparable to known RdRp inhibitors remdesivir (IC50 = 10.09 μM, SI = 4.96) and molnupiravir (EC50 = 0.67 - 2.66 µM) and 0.32-2.03 µM). Remdesivir and molnupiravir have been tested in clinical trial and remain authorized for emergency use in the treatment of COVID-19. In docking simulations, selected compounds are bound to the substrate-binding pocket of RdRp and showed hydrophobic and hydrogen bond interaction. For molecular dynamics simulation, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate were selected from the initial ten candidate compounds. MD simulation indicated that these compounds are stable at 50-ns MD simulation when bound to RdRp protein. The screen hit compounds, remdesivir, molnupiravir, and GS-441524, are bound in the substrate binding pocket with good binding-free energy. As a consequence, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate are potential new inhibitors of RdRp protein with potential of limiting COVID-19 infection by blocking RNA synthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02072-1.
Collapse
Affiliation(s)
- Dhananjay Jade
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | - William Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
22
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
23
|
Hernández-Mitre MP, Tong SYC, Denholm JT, Dore GJ, Bowen AC, Lewin SR, Venkatesh B, Hills TE, McQuilten Z, Paterson DL, Morpeth SC, Roberts JA. Nafamostat Mesylate for Treatment of COVID-19 in Hospitalised Patients: A Structured, Narrative Review. Clin Pharmacokinet 2022; 61:1331-1343. [PMID: 36040613 PMCID: PMC9425784 DOI: 10.1007/s40262-022-01170-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 01/06/2024]
Abstract
The search for clinically effective antivirals against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is ongoing. Repurposing of drugs licensed for non-coronavirus disease 2019 (COVID-19) indications has been extensively investigated in laboratory models and in clinical studies with mixed results. Nafamostat mesylate (nafamostat) is a drug licensed in Japan and Korea for indications including acute pancreatitis and disseminated intravascular coagulation. It is available only for continuous intravenous infusion. In vitro human lung cell line studies with nafamostat demonstrate high antiviral potency against SARS-CoV-2 (half maximal inhibitory concentration [IC50] of 0.0022 µM [compared to remdesivir 1.3 µM]), ostensibly via inhibition of the cellular enzyme transmembrane protease serine 2 (TMPRSS2) preventing viral entry into human cells. In addition, the established antithrombotic activity is hypothesised to be advantageous given thrombosis-associated sequelae of COVID-19. Clinical reports to date are limited, but indicate a potential benefit of nafamostat in patients with moderate to severe COVID-19. In this review, we will explore the pre-clinical, pharmacokinetic and clinical outcome data presently available for nafamostat as a treatment for COVID-19. The recruitment to ongoing clinical trials is a priority to provide more robust data on the safety and efficacy of nafamostat as a treatment for COVID-19.
Collapse
Affiliation(s)
| | - Steven Y C Tong
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Menzies School of Health Research, Charles Darwin University, Casuarina, NT, Australia
| | - Justin T Denholm
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Gregory J Dore
- Kirby Institute, UNSW Sydney, New South Wales, Australia
| | - Asha C Bowen
- Department of Infectious Diseases, Perth Children's Hospital, Perth, WA, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | - Sharon R Lewin
- Victorian Infectious Disease Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
- The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Balasubramanian Venkatesh
- Intensive Care, Princess Alexandra, and Wesley Hospital, The University of Queensland, Brisbane, QLD, Australia
- The George Institute for Global Health, UNSW Sydney, New South Wales, Australia
| | - Thomas E Hills
- Departments of Immunology and Infectious Diseases, Auckland District Health Broad, Auckland, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Zoe McQuilten
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Australia
- Department of Haematology, Monash Health, Melbourne, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | | | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
24
|
Qayed WS, Ferreira RS, Silva JRA. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022; 27:molecules27185988. [PMID: 36144718 PMCID: PMC9505381 DOI: 10.3390/molecules27185988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins—papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)—in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Wesam S. Qayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (W.S.Q.); (J.R.A.S.)
| | - Rafaela S. Ferreira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence: (W.S.Q.); (J.R.A.S.)
| |
Collapse
|
25
|
Sirijatuphat R, Manosuthi W, Niyomnaitham S, Owen A, Copeland KK, Charoenpong L, Rattanasompattikul M, Mahasirimongkol S, Wichukchinda N, Chokephaibulkit K. Early Treatment of Favipiravir in COVID-19 Patients Without Pneumonia: A Multicentre, Open-Labelled, Randomized Control Study. Emerg Microbes Infect 2022; 11:2197-2206. [PMID: 35997325 PMCID: PMC9518247 DOI: 10.1080/22221751.2022.2117092] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated Favipiravir (FPV) efficacy in mild cases of COVID-19 without pneumonia and its effects towards viral clearance, clinical condition, and risk of COVID-19 pneumonia development. PCR-confirmed SARS-CoV-2-infected patients without pneumonia were enrolled (2:1) within 10 days of symptomatic onset into FPV and control arms. The former received 1800 mg FPV twice-daily (BID) on Day 1 and 800 mg BID 5-14 days thereafter until negative viral detection, while the latter received only supportive care. The primary endpoint was time to clinical improvement, defined by a National Early Warning Score (NEWS) of ≤1. 62 patients (41 female) comprised the FPV arm (median age: 32 years, median BMI: 22 kg/m²) and 31 patients (19 female) comprised the control arm (median age: 28 years, median BMI: 22 kg/m²). The median time to sustained clinical improvement, by NEWS, was 2 and 14 days for FPV and control arms respectively (adjusted hazard ratio (aHR) of 2.77, 95% CI 1.57-4.88, P < 0.001). The FPV arm also had significantly higher likelihoods of clinical improvement within 14 days after enrolment by NEWS (79% vs 32% respectively, P < 0.001), particularly female patients (aOR 6.35, 95% CI 1.49-27.07, P < 0.001). 8 (12.9%) and 7 (22.6%) patients in FPV and control arms developed mild pneumonia at a median (range) of 6.5 (1-13) and 7 (1-13) days after treatment, respectively (P = 0.316). All recovered well without complications. We can conclude that early treatment of FPV in symptomatic COVID-19 patients without pneumonia was associated with faster clinical improvement.Trial registration: Thai Clinical Trials Registry identifier: TCTR20200514001..
Collapse
Affiliation(s)
- Rujipas Sirijatuphat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Weerawat Manosuthi
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Suvimol Niyomnaitham
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand.,Siriraj Institute of Clinical Research (SICRES), Mahidol University, Thailand
| | - Andrew Owen
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | | | - Lantharita Charoenpong
- Bamrasnaradura Infectious Diseases Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Manoch Rattanasompattikul
- Medical Department, Golden Jubilee Medical Centre, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Surakameth Mahasirimongkol
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nuanjun Wichukchinda
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES), Mahidol University, Thailand.,Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
26
|
Assmus F, Driouich JS, Abdelnabi R, Vangeel L, Touret F, Adehin A, Chotsiri P, Cochin M, Foo CS, Jochmans D, Kim S, Luciani L, Moureau G, Park S, Pétit PR, Shum D, Wattanakul T, Weynand B, Fraisse L, Ioset JR, Mowbray CE, Owen A, Hoglund RM, Tarning J, de Lamballerie X, Nougairède A, Neyts J, Sjö P, Escudié F, Scandale I, Chatelain E. Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms 2022; 10:1639. [PMID: 36014057 PMCID: PMC9460261 DOI: 10.3390/microorganisms10081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Touret
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Caroline S. Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Seungtaek Kim
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Léa Luciani
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Soonju Park
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Paul-Rémi Pétit
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Birgit Weynand
- Departmet of Imaging and Pathology, Katholieke Universiteit Leuven, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Charles E. Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Andrew Owen
- Centre for Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7ZX, UK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| |
Collapse
|
27
|
Chakraborty R, Bhattacharje G, Baral J, Manna B, Mullick J, Mathapati BS, Abraham P, J M, Hasija Y, Ghosh A, Das AK. In-silico screening and in-vitro assay show the antiviral effect of Indomethacin against SARS-CoV-2. Comput Biol Med 2022; 147:105788. [PMID: 35809412 PMCID: PMC9245396 DOI: 10.1016/j.compbiomed.2022.105788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive therapeutic cure is yet to be achieved. In this study, we applied computational drug repurposing methods complemented with the analyses of the already existing gene expression data to find better therapeutics in treatment and recovery. Primarily, we identified the most crucial proteins of SARS-CoV-2 and host human cells responsible for viral infection and host response. An in-silico screening of the existing drugs was performed against the crucial proteins for SARS-CoV-2 infection, and a few existing drugs were shortlisted. Further, we analyzed the gene expression data of SARS-CoV-2 in human lung epithelial cells and investigated the molecules that can reverse the cellular mRNA expression profiles in the diseased state. LINCS L1000 and Comparative Toxicogenomics Database (CTD) were utilized to obtain two sets of compounds that can be used to counter SARS-CoV-2 infection from the gene expression perspective. Indomethacin, a nonsteroidal anti-inflammatory drug (NSAID), and Vitamin-A were found in two sets of compounds, and in the in-silico screening of existing drugs to treat SARS-CoV-2. Our in-silico findings on Indomethacin were further successfully validated by in-vitro testing in Vero CCL-81 cells with an IC50 of 12 μM. Along with these findings, we briefly discuss the possible roles of Indomethacin and Vitamin-A to counter the SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Rajkumar Chakraborty
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad Daulatpur, Delhi, 110042, India
| | - Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Joydeep Baral
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Pune, 411001, India
| | | | - Priya Abraham
- ICMR-National Institute of Virology, Pune, 411001, India
| | - Madhumathi J
- Indian Council of Medical Research, Delhi, 110029, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad Daulatpur, Delhi, 110042, India.
| | - Amit Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Amit Kumar Das
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
28
|
Priya P, Basit A, Bandyopadhyay P. A strategy to optimize the peptide-based inhibitors against different mutants of the spike protein of SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35881159 DOI: 10.1080/07391102.2022.2103587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The SARS-CoV-2 virus has caused high-priority health concerns at a global level. Vaccines have stalled the proliferation of viruses to some extent. Yet, the emergence of newer, potentially more infectious, and dangerous mutants such as Delta and Omicron are among the major challenges in finding a more permanent solution for this pandemic. The effectiveness of antivirals Molnupiravir and Paxlovid, authorized for emergency use by the FDA, are yet to be assessed on a larger population. Patients with a high risk of disease progression have received treatment with antibody-cocktail. Most of the mutations leading to the new lineage of SARS-CoV-2 are found in the spike protein of this virus that plays a key role in facilitating host entry. The current study has investigated how to modify a promising peptide-based inhibitor of spike protein, LCB3, against common mutations, N501Y and K417N in the target protein so that it retains its efficacy against the spike protein. LCB3 being a prototype for protein-based inhibitors is an ideal testing system to learn about protein-based inhibitors. This study proposes the substitutions of amino acid residues of LCB3 inhibitor using a structure-based approach that considers free energy decomposition of residues, the distance between atoms, and the interaction among amino acids. The binding free energy calculations suggest a possible improvement in the binding affinity of existing inhibitor LCB3 to the mutant forms of the S-protein using simple substitutions at specific positions of the inhibitor. This approach, being general, can be used in different inhibitors and other mutations and help in fighting against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prerna Priya
- Department of Botany, Purnea Mahila College, Purnea University, Purnia, Bihar, India
| | - Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Vanhulle E, Stroobants J, Provinciael B, Camps A, Noppen S, Maes P, Vermeire K. SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening. Antiviral Res 2022; 203:105342. [PMID: 35595082 PMCID: PMC9113983 DOI: 10.1016/j.antiviral.2022.105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.
Collapse
Affiliation(s)
- Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Joren Stroobants
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Becky Provinciael
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Anita Camps
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Noppen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
30
|
Kanchibhotla D, Subramanian S, Ravi Kumar RM, Venkatesh Hari KR, Pathania M. An In-vitro evaluation of a polyherbal formulation, against SARS-Cov-2. J Ayurveda Integr Med 2022; 13:100581. [PMID: 35753154 PMCID: PMC9222090 DOI: 10.1016/j.jaim.2022.100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/19/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In the last two years, COVID-19 pandemic caused by SARS-CoV-2 has created a mass destruction among humanity causing a major health crisis around the world. With the emergence of new strains of the virus, lack of targeted drugs and antimicrobial resistance, there is a dire need to discover specific antiviral with minimum side effects targeted against COVID-19. OBJECTIVE The present study evaluates the antiviral efficacy of a novel Ayurvedic polyherbal formulation, NOQ19, composed of a 13 well known herbs, in a cell-based setting. METHODOLOGY Vero E6 (CL1008), the African green monkey kidney epithelial cell, were infected with SARS-CoV-2 virus (isolate USA-WA1/2020) in a 96 well-plate. NOQ19 test material was diluted at different concentration: 0.05 mg/ml, 0.1 mg/ml, 0.2 mg/ml, 0.3 mg/ml, 0.4 mg/ml, 0.5 mg/ml, 0.6 mg/ml, 0.7 mg/ml, 0.8 mg/ml and 0.9 mg/ml. These different concentrations of NOQ19 were added to infected cells respectively and incubated for 3 days in 5% CO2 incubator. Remdesivir was used as a positive control. The cells were finally fixed with formaldehyde, stained with crystal violet and plaques were visualized. The number of plaques were counted to determine the PFU(plaque forming units)/ml. RESULTS The results of the present study demonstrated an excellent an antiviral efficacy of NOQ19 at 0.9 mg/ml concentration, eliminating 100% virus. The IC50 of the drug was found to be 0.2 mg/ml. CONCLUSION There is limited data around pre-clinical efficacy of polyherbal Ayurvedic drugs. Ayurvedic and herbal formations need to be tested in a preclinical setting to support the human data. The results of the present study demonstrated viral load reduction using NOQ19 in Vero E6 cell lines infected with SARS-CoV-2 virus. These result along with other preclinical and clinical trials could further evaluate the efficacy of NOQ19 as a potential therapeutic option in the fighting the COVID-19 challenge.
Collapse
|
31
|
A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants. Viruses 2022; 14:v14071369. [PMID: 35891350 PMCID: PMC9318744 DOI: 10.3390/v14071369] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022] Open
Abstract
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, causing surges, breakthrough infections, and devastating losses—underscoring the importance of identifying SARS-CoV-2 antivirals. A simple, accessible human cell culture model permissive to SARS-CoV-2 variants is critical for identifying and assessing antivirals in a high-throughput manner. Although human alveolar A549 cells are a valuable model for studying respiratory virus infections, they lack two essential host factors for SARS-CoV-2 infection: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). SARS-CoV-2 uses the ACE2 receptor for viral entry and TMPRSS2 to prime the SARS-CoV-2 spike protein, both of which are negligibly expressed in A549 cells. Here, we report the generation of a suitable human cell line for SARS-CoV-2 studies by transducing human ACE2 and TMPRSS2 into A549 cells. We show that subclones highly expressing ACE2 and TMPRSS2 (“ACE2plus” and the subclone “ACE2plusC3”) are susceptible to infection with SARS-CoV-2, including the delta and omicron variants. These subclones express more ACE2 and TMPRSS2 transcripts than existing commercial A549 cells engineered to express ACE2 and TMPRSS2. Additionally, the antiviral drugs EIDD-1931, remdesivir, nirmatrelvir, and nelfinavir strongly inhibit SARS-CoV-2 variants in our infection model. Our data show that ACE2plusC3 cells are highly permissive to SARS-CoV-2 infection and can be used to identify anti-SARS-CoV-2 drugs.
Collapse
|
32
|
Rangu R, Wander PL, Barrow BM, Zraika S. Going viral in the islet: mediators of SARS-CoV-2 entry beyond ACE2. J Mol Endocrinol 2022; 69:R63-R79. [PMID: 35521990 PMCID: PMC10622140 DOI: 10.1530/jme-21-0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Following initial infection of airway epithelia, SARS-CoV-2 invades a wide range of cells in multiple organs, including pancreatic islet cells. Diabetes is now recognised as a risk factor for severe COVID-19 outcomes, including hospitalisation and death. Additionally, COVID-19 is associated with a higher risk of new-onset diabetes and metabolic complications of diabetes. One mechanism by which these deleterious outcomes may occur is via the destruction of insulin-producing islet β cells, either directly by SARS-CoV-2 entry into β cells or indirectly due to inflammation and fibrosis in the surrounding microenvironment. While the canonical pathway of viral entry via angiotensin-converting enzyme 2 (ACE2) has been established as a major route of SARS-CoV-2 infection in the lung, it may not be solely responsible for viral entry into the endocrine pancreas. This is likely due to the divergent expression of viral entry factors among different tissues. For example, expression of ACE2 has not been unequivocally demonstrated in β cells. Thus, it is important to understand how other proteins known to be highly expressed in pancreatic endocrine cells may be involved in SARS-CoV-2 entry, with the view that these could be targeted to prevent the demise of the β cell in COVID-19. To that end, this review discusses alternate receptors of SARS-CoV-2 (CD147 and GRP78), as well as mediators (furin, TMPRSS2, cathepsin L, ADAM17, neuropilin-1, and heparan sulphate) that may facilitate SARS-CoV-2 entry into pancreatic islets independent of or in conjunction with ACE2.
Collapse
Affiliation(s)
- Rohita Rangu
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Pandora L. Wander
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| | - Breanne M. Barrow
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
33
|
Kim HA, Kim JE. Development of Nafamostat Mesylate Immediate-Release Tablet by Drug Repositioning Using Quality-by-Design Approach. Pharmaceutics 2022; 14:1219. [PMID: 35745792 PMCID: PMC9228348 DOI: 10.3390/pharmaceutics14061219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to develop nafamostat mesylate immediate-release tablets for the treatment of COVID-19 through drug repositioning studies of nafamostat mesylate injection. Nafamostat mesylate is a serine protease inhibitor known to inhibit the activity of the transmembrane protease, serine 2 enzyme that affects the penetration of the COVID-19 virus, thereby preventing the binding of the angiotensin-converting enzyme 2 receptor in vivo and the spike protein of the COVID-19 virus. The formulation was selected through a stability study after manufacturing by a wet granulation process and a direct tableting process to develop a stable nafamostat mesylate immediate-release tablet. Formulation issues for the selected processes were addressed using the design of experiments and quality-by-design approaches. The dissolution rate of the developed tablet was confirmed to be >90% within 30 min in the four major dissolutions, except in the pH 6.8 dissolution medium. Additionally, an in vivo pharmacokinetic study was performed in monkeys, and the pharmacokinetic profiles of nafamostat injections, oral solutions, and tablets were compared. The half-life during oral administration was confirmed to be significantly longer than the reported literature value of 8 min, and the bioavailability of the tablet was approximately 25% higher than that of the oral solution.
Collapse
Affiliation(s)
| | - Joo-Eun Kim
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Hayang-Ro 13-13, Gyeongsan City 38430, Korea;
| |
Collapse
|
34
|
Delandre O, Gendrot M, Jardot P, Le Bideau M, Boxberger M, Boschi C, Fonta I, Mosnier J, Hutter S, Levasseur A, La Scola B, Pradines B. Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants. Pharmaceuticals (Basel) 2022; 15:445. [PMID: 35455442 PMCID: PMC9024598 DOI: 10.3390/ph15040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past two years, several variants of SARS-CoV-2 have emerged and spread all over the world. However, infectivity, clinical severity, re-infection, virulence, transmissibility, vaccine responses and escape, and epidemiological aspects have differed between SARS-CoV-2 variants. Currently, very few treatments are recommended against SARS-CoV-2. Identification of effective drugs among repurposing FDA-approved drugs is a rapid, efficient and low-cost strategy against SARS-CoV-2. One of those drugs is ivermectin. Ivermectin is an antihelminthic agent that previously showed in vitro effects against a SARS-CoV-2 isolate (Australia/VI01/2020 isolate) with an IC50 of around 2 µM. We evaluated the in vitro activity of ivermectin on Vero E6 cells infected with 30 clinically isolated SARS-CoV-2 strains belonging to 14 different variants, and particularly 17 strains belonging to six variants of concern (VOC) (variants related to Wuhan, alpha, beta, gamma, delta and omicron). The in vitro activity of ivermectin was compared to those of chloroquine and remdesivir. Unlike chloroquine (EC50 from 4.3 ± 2.5 to 29.3 ± 5.2 µM) or remdesivir (EC50 from 0.4 ± 0.3 to 25.2 ± 9.4 µM), ivermectin showed a relatively homogeneous in vitro activity against SARS-CoV-2 regardless of the strains or variants (EC50 from 5.1 ± 0.5 to 6.7 ± 0.4 µM), except for one omicron strain (EC50 = 1.3 ± 0.5 µM). Ivermectin (No. EC50 = 219, mean EC50 = 5.7 ± 1.0 µM) was, overall, more potent in vitro than chloroquine (No. EC50 = 214, mean EC50 = 16.1 ± 9.0 µM) (p = 1.3 × 10-34) and remdesivir (No. EC50 = 201, mean EC50 = 11.9 ± 10.0 µM) (p = 1.6 × 10-13). These results should be interpreted with caution regarding the potential use of ivermectin in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results into actual clinical treatment in patients.
Collapse
Affiliation(s)
- Océane Delandre
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Priscilla Jardot
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Céline Boschi
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| | - Sébastien Hutter
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
| | - Anthony Levasseur
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (O.D.); (M.G.); (I.F.); (J.M.)
- Aix Marseille University, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France;
- IHU Méditerranée Infection, 13005 Marseille, France; (P.J.); (M.L.B.); (M.B.); (C.B.); (A.L.); (B.L.S.)
- Centre National de Référence du Paludisme, 13005 Marseille, France
| |
Collapse
|
35
|
Wang FS, Chen KL, Chu SW. Human/SARS-CoV-2 genome-scale metabolic modeling to discover potential antiviral targets for COVID-19. J Taiwan Inst Chem Eng 2022; 133:104273. [PMID: 35186172 PMCID: PMC8843340 DOI: 10.1016/j.jtice.2022.104273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has caused a substantial increase in mortality and economic and social disruption. The absence of US Food and Drug Administration-approved drugs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for new therapeutic drugs to combat COVID-19. METHODS The present study proposed a fuzzy hierarchical optimization framework for identifying potential antiviral targets for COVID-19. The objectives in the decision-making problem were not only to evaluate the elimination of the virus growth, but also to minimize side effects causing treatment. The identified candidate targets could promote processes of drug discovery and development. SIGNIFICANT FINDINGS Our gene-centric method revealed that dihydroorotate dehydrogenase (DHODH) inhibition could reduce viral biomass growth and metabolic deviation by 99.4% and 65.6%, respectively, and increase cell viability by 70.4%. We also identified two-target combinations that could completely block viral biomass growth and more effectively prevent metabolic deviation. We also discovered that the inhibition of two antiviral metabolites, cytidine triphosphate (CTP) and uridine-5'-triphosphate (UTP), exhibits effects similar to those of molnupiravir, which is undergoing phase III clinical trials. Our predictions also indicate that CTP and UTP inhibition blocks viral RNA replication through a similar mechanism to that of molnupiravir.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Ke-Lin Chen
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Sz-Wei Chu
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621301, Taiwan
| |
Collapse
|
36
|
Kodama K, Imai T, Asai Y, Kozu Y, Hayashi K, Shimizu T, Gon Y, Ootsuka S. Incidence and risk factors for hyperkalaemia in patients treated for COVID-19 with nafamostat mesylate. J Clin Pharm Ther 2022; 47:1070-1078. [PMID: 35313385 PMCID: PMC9114925 DOI: 10.1111/jcpt.13646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
What is known and objective Nafamostat mesylate (NM) is used clinically in combination with antiviral drugs to treat coronavirus disease (COVID‐19). One of the adverse events of NM is hyperkalaemia due to inhibition of the amiloride‐sensitive sodium channels (ENaC). The incidence and risk factors for hyperkalaemia due to NM have been studied in patients with pancreatitis but not in COVID‐19. COVID‐19 can be associated with hypokalaemia or hyperkalaemia, and SARS‐CoV‐2 is thought to inhibit ENaC. Therefore, frequency and risk factors for hyperkalaemia due to NM may differ between COVID‐19 and pancreatitis. Hyperkalaemia may worsen the respiratory condition of patients. The objective of this study was to determine the incidence and risk factors for hyperkalaemia in COVID‐19 patients treated with favipiravir, dexamethasone and NM. Methods This retrospective study reviewed the records of hospitalized COVID‐19 patients treated with favipiravir and dexamethasone, with or without NM, between March 2020 and January 2021. Multivariable logistic regression analysis was performed to identify the risk factors for hyperkalaemia. Results and Discussion Of 45 patients who received favipiravir and dexamethasone with NM for the treatment of COVID‐19, 21 (47%) experienced hyperkalaemia. The duration of NM administration was a significant predictor of hyperkalaemia (odds ratio: 1.55, 95% confidence interval: 1.04–2.31, p = 0.031). The receiver‐operating characteristic curve analysis determined that the cut‐off value for predicting the number of days until the onset of hyperkalaemia was 6 days and the area under the curve was 0.707. What is new and conclusion This study revealed that the incidence of hyperkalaemia is high in patients treated for COVID‐19 with NM, and that the duration of NM administration is a key risk factor. When NM is administered for the treatment of COVID‐19, it should be discontinued within 6 days to minimize the risk of hyperkalaemia.
Collapse
Affiliation(s)
- Kentaro Kodama
- Department of Pharmacy, Nihon University Itabashi Hospital, Itabashi-ku, Japan
| | - Toru Imai
- Department of Pharmacy, Nihon University Itabashi Hospital, Itabashi-ku, Japan
| | - Yasuo Asai
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Kentaro Hayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Susumu Ootsuka
- Department of Pharmacy, Nihon University Itabashi Hospital, Itabashi-ku, Japan
| |
Collapse
|
37
|
Piplani S, Singh P, Petrovsky N, Winkler DA. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Front Mol Biosci 2022; 9:781039. [PMID: 35359601 PMCID: PMC8964187 DOI: 10.3389/fmolb.2022.781039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds experimentally validated in vivo or in vitro to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive in silico screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Puneet Singh
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| | - David A. Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| |
Collapse
|
38
|
Ray R, Birangal SR, Fathima F, Bhat GV, Rao M, Shenoy GG. Repurposing of approved drugs and nutraceuticals to identify potential inhibitors of SARS-COV-2’s entry into human host cells: a structural analysis using induced-fit docking, MMGBSA and molecular dynamics simulation approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.2016741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Varadaraj Bhat
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - G. Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
39
|
Quinn TM, Gaughan EE, Bruce A, Antonelli J, O'Connor R, Li F, McNamara S, Koch O, MacKintosh C, Dockrell D, Walsh T, Blyth KG, Church C, Schwarze J, Boz C, Valanciute A, Burgess M, Emanuel P, Mills B, Rinaldi G, Hardisty G, Mills R, Findlay EG, Jabbal S, Duncan A, Plant S, Marshall ADL, Young I, Russell K, Scholefield E, Nimmo AF, Nazarov IB, Churchill GC, McCullagh JSO, Ebrahimi KH, Ferrett C, Templeton K, Rannard S, Owen A, Moore A, Finlayson K, Shankar-Hari M, Norrie J, Parker RA, Akram AR, Anthony DC, Dear JW, Hirani N, Dhaliwal K. Randomised controlled trial of intravenous nafamostat mesylate in COVID pneumonitis: Phase 1b/2a experimental study to investigate safety, Pharmacokinetics and Pharmacodynamics. EBioMedicine 2022; 76:103856. [PMID: 35152152 PMCID: PMC8831100 DOI: 10.1016/j.ebiom.2022.103856] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).
Collapse
Affiliation(s)
- Tom M Quinn
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Erin E Gaughan
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Annya Bruce
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jean Antonelli
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Richard O'Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Feng Li
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah McNamara
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Oliver Koch
- Regional Infectious Disease Unit, NHS Lothian, UK
| | | | - David Dockrell
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Regional Infectious Disease Unit, NHS Lothian, UK
| | - Timothy Walsh
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Kevin G Blyth
- Institute of Cancer Sciences, University of Glasgow, UK
| | - Colin Church
- Department of Respiratory Medicine, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow, UK
| | - Jürgen Schwarze
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Cecilia Boz
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Asta Valanciute
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Matthew Burgess
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Philip Emanuel
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Bethany Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Giulia Rinaldi
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Ross Mills
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sunny Jabbal
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | | | - Sinéad Plant
- Regional Infectious Disease Unit, NHS Lothian, UK
| | - Adam D L Marshall
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Irene Young
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Kay Russell
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Emma Scholefield
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Alastair F Nimmo
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Islom B Nazarov
- Latus Therapeutics, Oxford, UK; Department of Pharmacology, University of Oxford, Oxford, UK
| | | | | | | | - Colin Ferrett
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kate Templeton
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Steve Rannard
- Centre of Excellence for Long-acting Therapeutics, Materials Innovation Factory and Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Andrew Owen
- Centre of Excellence for Long-acting Therapeutics, Materials Innovation Factory and Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | - Anne Moore
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Keith Finlayson
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK
| | - John Norrie
- Centre for Cardiovascular Science, Queen's Medical Research Institute, Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Richard A Parker
- Edinburgh Clinical Trials Unit (ECTU), Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | | | - James W Dear
- Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh,; Centre for Cardiovascular Science, Queen's Medical Research Institute, Bioquarter, University of Edinburgh, Edinburgh, UK
| | - Nik Hirani
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen's Medical Research Institute, BioQuarter, University of Edinburgh, Edinburgh, UK; Royal Infirmary of Edinburgh, BioQuarter, Little France, Edinburgh,.
| |
Collapse
|
40
|
Kim S. COVID-19 Drug Development. J Microbiol Biotechnol 2022; 32:1-5. [PMID: 34866128 PMCID: PMC9628783 DOI: 10.4014/jmb.2110.10029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Diagnostics, vaccines, and drugs are indispensable tools and control measures employed to overcome infectious diseases such as coronavirus disease 2019 (COVID-19). Diagnostic tools based on RT-PCR were developed early in the COVID-19 pandemic and were urgently required for quarantine (testing, tracing and isolation). Vaccines such as mRNA vaccines and virus-vectored vaccines were also successfully developed using new platform technologies within one year after identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19. Drug development has been conducted in various ways including drug repurposing, convalescent plasma therapy, and monoclonal antibody development. Among the above efforts, this review examines COVID-19 drug development along with the related and upcoming challenges.
Collapse
Affiliation(s)
- Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| |
Collapse
|
41
|
Abstract
It is currently unknown if SARS-CoV-2 can spread through cell–cell contacts, and if so, the underlying mechanisms and implications. In this work, we show, by using lentiviral pseudotyped virus, that the spike protein of SARS-CoV-2 mediates the viral cell-to-cell transmission, with an efficiency higher than that of SARS-CoV. We also find that cell–cell fusion contributes to cell-to-cell transmission, yet ACE2 is not absolutely required. While the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) differ in cell-free infectivity from wild type and from each other, these VOCs have similar cell-to-cell transmission capability and exhibit differential sensitivity to neutralization by vaccinee sera. Results from our study will contribute to a better understanding of SARS-CoV-2 spread and pathogenesis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell–cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell–cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.
Collapse
|
42
|
Pagliano P, Sellitto C, Scarpati G, Ascione T, Conti V, Franci G, Piazza O, Filippelli A. An overview of the preclinical discovery and development of remdesivir for the treatment of coronavirus disease 2019 (COVID-19). Expert Opin Drug Discov 2022; 17:9-18. [PMID: 34412564 PMCID: PMC8425432 DOI: 10.1080/17460441.2021.1970743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Remdesivir (RDV) is an inhibitor of the viral RNA-dependent RNA polymerases that are active in some RNA viruses, including the Ebola virus and zoonotic coronaviruses. When severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) was identified as the etiologic agent of the coronavirus disease 2019 (COVID-19), several investigations have assessed the potential activity of RDV in inhibiting viral replication, giving rise to hope for an effective treatment. AREAS COVERED In this review, the authors describe the main investigations leading to the discovery of RDV and its subsequent development as an antiviral agent, focusing on the main clinical trials investigating its efficacy in terms of symptom resolution and mortality reduction. EXPERT OPINION RDV is the most widely investigated antiviral drug for the treatment of COVID-19. This attention on RDV activity against SARS-CoV-2 is justified by promising in vitro studies, which demonstrated that RDV was able to suppress viral replication without significant toxicity. Such activity was confirmed by an investigation in an animal model and by the results of preliminary clinical investigations. Nevertheless, the efficacy of RDV in reducing mortality has not been clearly demonstrated.
Collapse
Affiliation(s)
- Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Infectious Diseases, University of Salerno, Baronissi, Italy
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Tiziana Ascione
- Department of Medicine, Service of Infectious Diseases, Cardarelli Hospital, Naples, Italy
| | - Valeria Conti
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Unit of Microbiology, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Anesthesiology, University of Salerno, Baronissi, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Unit of Pharmacology, University of Salerno, Baronissi, Italy
| |
Collapse
|
43
|
White JM, Schiffer JT, Bender Ignacio RA, Xu S, Kainov D, Ianevski A, Aittokallio T, Frieman M, Olinger GG, Polyak SJ. Drug Combinations as a First Line of Defense against Coronaviruses and Other Emerging Viruses. mBio 2021; 12:e0334721. [PMID: 34933447 PMCID: PMC8689562 DOI: 10.1128/mbio.03347-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.
Collapse
Affiliation(s)
- Judith M. White
- University of Virginia, Department of Cell Biology, Charlottesville, Virginia, USA
- University of Virginia, Department of Microbiology, Charlottesville, Virginia, USA
| | - Joshua T. Schiffer
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Rachel A. Bender Ignacio
- University of Washington, Division of Allergy and Infectious Diseases, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Shuang Xu
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, Washington, USA
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Technology, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Stephen J. Polyak
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
44
|
Sugiyama MG, Cui H, Redka DS, Karimzadeh M, Rujas E, Maan H, Hayat S, Cheung K, Misra R, McPhee JB, Viirre RD, Haller A, Botelho RJ, Karshafian R, Sabatinos SA, Fairn GD, Madani Tonekaboni SA, Windemuth A, Julien JP, Shahani V, MacKinnon SS, Wang B, Antonescu CN. Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Sci Rep 2021; 11:23315. [PMID: 34857794 PMCID: PMC8640055 DOI: 10.1038/s41598-021-02432-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Haotian Cui
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | | | | | - Edurne Rujas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Hassaan Maan
- Vector Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada
| | - Sikander Hayat
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Kyle Cheung
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Rahul Misra
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Russell D Viirre
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Andrew Haller
- Phoenox Pharma, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Raffi Karshafian
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, Canada
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Sarah A Sabatinos
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Immunology, Toronto, ON, Canada
| | | | | | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Vector Institute, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
45
|
Al-Kuraishy HM, Al-Gareeb AI, Alzahrani KJ, Alexiou A, Batiha GES. Niclosamide for Covid-19: bridging the gap. Mol Biol Rep 2021; 48:8195-8202. [PMID: 34664162 PMCID: PMC8522539 DOI: 10.1007/s11033-021-06770-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
AIM/PURPOSE Niclosamide (NCL) is an anthelminthic drug, which is widely used to treat various diseases due to its pleiotropic anti-inflammatory and antiviral activities. NCL modulates of uncoupling oxidative phosphorylation and different signaling pathways in human biological processes. The wide-spectrum antiviral effect of NCL makes it a possible candidate for recent pandemic SARS-CoV-2 infection and may reduce Covid-19 severity. Therefore, the aim of the present study was to review and clarify the potential role of NCL in Covid-19. METHODS This study reviewed and highlighted the protective role of NCL therapy in Covid-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. RESULTS NCL has noteworthy anti-inflammatory and antiviral effects. The primary antiviral mechanism of NCL is through neutralization of endosomal PH and inhibition of viral protein maturation. NCL acts as a proton carrier, inhibits homeostasis of endosomal PH, which limiting of viral proliferation and release. The anti-inflammatory effects of NCL are mediated by suppression of inflammatory signaling pathways and release of pro-inflammatory cytokines. However, the major limitation in using NCL is low aqueous solubility, which reduces oral bioavailability and therapeutic serum concentration that reducing the in vivo effect of NCL against SARS-CoV-2. CONCLUSIONS NCL has anti-inflammatory and immune regulatory effects by modulating the release of pro-inflammatory cytokines, inhibition of NF-κB /NLRP3 inflammasome and mTOR signaling pathway. NCL has an anti-SARS-CoV-2 effect via interruption of viral life-cycle and/or induction of cytopathic effect. Prospective clinical studies and clinical trials are mandatory to confirm the potential role of NCL in patients with Covid-19 concerning the severity and clinical outcomes.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif, 21944, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
- AFNP Med Austria, Wien, Austria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt.
| |
Collapse
|
46
|
ACE2 : S1 RBD Interaction-Targeted Peptides and Small Molecules as Potential COVID-19 Therapeutics. Adv Pharmacol Pharm Sci 2021; 2021:1828792. [PMID: 34746794 PMCID: PMC8564205 DOI: 10.1155/2021/1828792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic that began in late 2019 continues with new challenges arising due to antigenic drift as well as individuals who cannot or choose not to take the vaccine. There is therefore an urgent need for additional therapies that complement vaccines and approved therapies such as antibodies in the fight to end or slow down the pandemic. SARS-CoV-2 initiates invasion of the human target cell through direct contact between the receptor-binding domain of its Spike protein and its cellular receptor, angiotensin-converting enzyme-2 (ACE2). The ACE2 and S1 RBD interaction, therefore, represents an attractive therapeutic intervention to prevent viral entry and spread. In this study, we developed a proximity-based AlphaScreen™ assay that can be utilized to quickly and efficiently screen for inhibitors that perturb the ACE2 : S1 RBD interaction. We then designed several peptides candidates from motifs in ACE2 and S1 RBD that play critical roles in the interaction, with and without modifications to the native sequences. We also assessed the possibility of reprofiling of candidate small molecules that previously have been shown to interfere with the viral entry of SARS-CoV. Using our optimized AlphaScreen™ assay, we evaluated the activity and specificity of these peptides and small molecules in inhibiting the binding of ACE2 : S1 RBD. This screen identified cepharanthine as a promising candidate for development as a SARS-CoV-2 entry inhibitor.
Collapse
|
47
|
Aherfi S, Pradines B, Devaux C, Honore S, Colson P, Scola BL, Raoult D. Drug repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol 2021; 16:1341-1370. [PMID: 34755538 PMCID: PMC8579950 DOI: 10.2217/fmb-2021-0019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, large in silico screening studies and numerous in vitro studies have assessed the antiviral activity of various drugs on SARS-CoV-2. In the context of health emergency, drug repurposing represents the most relevant strategy because of the reduced time for approval by international medicines agencies, the low cost of development and the well-known toxicity profile of such drugs. Herein, we aim to review drugs with in vitro antiviral activity against SARS-CoV-2, combined with molecular docking data and results from preliminary clinical studies. Finally, when considering all these previous findings, as well as the possibility of oral administration, 11 molecules consisting of nelfinavir, favipiravir, azithromycin, clofoctol, clofazimine, ivermectin, nitazoxanide, amodiaquine, heparin, chloroquine and hydroxychloroquine, show an interesting antiviral activity that could be exploited as possible drug candidates for COVID-19 treatment.
Collapse
Affiliation(s)
- Sarah Aherfi
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bruno Pradines
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, 13005, France
- Centre national de référence du paludisme, Marseille, 13005, France
| | - Christian Devaux
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| | - Stéphane Honore
- Aix Marseille Université, Laboratoire de Pharmacie Clinique, Marseille, 13005, France
- AP-HM, hôpital Timone, service pharmacie, Marseille, 13005, France
| | - Philippe Colson
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Bernard La Scola
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
- Microbes, Evolution, Phylogeny & Infection (MEΦI), Marseille, 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Assistance Publique – Hôpitaux de Marseille (AP-HM), Marseille, 13005, France
- Institut Hospitalo-Universitaire (IHU) – Méditerranée Infection, Marseille, 13005, France
| |
Collapse
|
48
|
Zhuravel SV, Khmelnitskiy OK, Burlaka OO, Gritsan AI, Goloshchekin BM, Kim S, Hong KY. Nafamostat in hospitalized patients with moderate to severe COVID-19 pneumonia: a randomised Phase II clinical trial. EClinicalMedicine 2021; 41:101169. [PMID: 34723164 PMCID: PMC8548051 DOI: 10.1016/j.eclinm.2021.101169] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nafamostat, a serine protease inhibitor, has been used for the treatment of disseminated intravascular coagulation and pancreatitis. In vitro studies and clinical reports suggest its beneficial effect in the treatment of COVID-19 pneumonia. METHODS This phase 2 open-label, randomised, multicentre, controlled trial evaluated nafamostat (4.8 mg/kg/day) plus standard-of-care (SOC) in hospitalised patients with COVID-19 pneumonia (i.e., those requiring nasal high-flow oxygen therapy and/or non-invasive mechanical ventilation). The primary outcome was the time to clinical improvement. Key secondary outcomes included the time to recovery, rates of recovery and National Early Warning Score (NEWS). The trial is registered with ClinicalTrials.gov Identifier: NCT04623021. FINDINGS A total of 104 patients, mean age 58.6 years were enrolled in 13 clinical centres in Russia between 25/9/2020 and 14/11/2020 and randomised to nafamostat plus SOC (n=53) or SOC alone (n=51). There was no significant difference in time to clinical improvement (primary endpoint) between the nafamostat and SOC groups (median 11 [interquartile range (IQR) 9 to 14) vs 11 [IQR 9 to 14] days; Rate Ratio [RR; the ratio for clinical improvement], 1.00; 95% CI, 0.65 to 1.57; p=0.953). In 36 patients with baseline NEWS ≥7, nafamostat was superior to SOC alone in median time to clinical improvement (11 vs 14 days; RR, 2.89; 95% CI, 1.17 to 7.14; p=0.012). Patients receiving nafamostat in this subgroup had a significantly higher recovery rate compared with SOC alone (61.1% (11/18) vs 11.1 % (2/18) by Day 11, p=0.002). The 28-day mortality was 1.9% (1/52) for nafamostat and 8.0% (4/50) for SOC (95% CI, -17.0 to 3.4; p=0.155). No case of COVID-19 related serious adverse events leading to death was recorded in the patients receiving nafamostat. INTERPRETATION Our study found no significant difference in time to clinical improvement between the nafamostat and SOC groups, but a shorter median time to clinical improvement in a small group of high-risk COVID-19 patients requiring oxygen treatment. To assess the efficacy further, a larger Phase 3 clinical trial is warranted. FUNDING Korea Research Institute of Bioscience and Biotechnology [2020M3A9H5108928] and Chong Kun Dang (CKD) Pharm (Seoul, Korea).
Collapse
Affiliation(s)
- Sergey V Zhuravel
- State Budgetary Healthcare Institution "N.V. Sklifosovsky Research Institute for Emergency Medicine of Health Department of Moscow", Russia
- Corresponding author: Dr. Sergey Vladimirovich Zhuravel, State Budgetary Healthcare Institution "N.V. Sklifosovsky Research Institute for Emergency Medicine of Health Department of Moscow", Russia.
| | - Oleg K Khmelnitskiy
- St Petersburg State Budgetary Health Pokrovskaya City Hospital, St Petersburg, Russia
| | - Oleg O Burlaka
- St Petersburg State Budgetary Healthcare Institution “City Aleksandrovskaya Hospital”, St Petersburg, Russia
| | - Alexey I Gritsan
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Regional State Budgetary Healthcare Institution, “Krasnoyarsk Regional Clinical Hospital”, Krasnoyarsk, Russia
| | - Boris M Goloshchekin
- St Petersburg State Budget Healthcare Institution City Hospital 15, St Petersburg, Russia
| | - Seieun Kim
- Chong Kun Dang (CKD) Pharm., Seoul, South Korea
| | | |
Collapse
|
49
|
Haberland A, Müller J. Lack of efficacy of mono-mode of action therapeutics in COVID-19 therapy - How the lack of predictive power of preclinical cell and animal studies leads developments astray. Chem Biol Drug Des 2021; 99:32-45. [PMID: 34549885 PMCID: PMC8653042 DOI: 10.1111/cbdd.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Abstract
The diverse experiences regarding the failure of tested drugs in the fight against COVID‐19 made it clear that one should at least question the requirement to apply classical preclinical development strategies that demand cell and animal efficacy models to be tested before going into clinical trials. Most animals are not susceptible to infection with SARS‐CoV‐2, and so this led to one‐sided virus replication experiments in cells and the use of animal models that have little in common with the complex pathogenesis of COVID‐19 in humans. Therefore, non‐clinical development strategies were designed to meet regulatory requirements, but they did not truly reflect the situation in the clinic. This has led the search for effective agents astray in many cases. As proof of this statement, we now bring together the results of such required preclinical experiments and compare with the results in clinical trials. Two clear conclusions that can be drawn from the experience to date: The required preclinical models are unsuitable for the development of innovative treatments medical devices in the case of COVID‐19 and mono‐action strategies (e.g. direct antivirals) are of very little or no benefit to patients under randomized,blinded conditions. Our hypothesis is that the complex situation of COVID‐19 may benefit from multi‐mode drugs. Here, the molecular class of aptamers could be a solution.
Collapse
|
50
|
Piplani S, Singh PK, Winkler DA, Petrovsky N. Computationally repurposed drugs and natural products against RNA dependent RNA polymerase as potential COVID-19 therapies. MOLECULAR BIOMEDICINE 2021; 2:28. [PMID: 34766004 PMCID: PMC8450033 DOI: 10.1186/s43556-021-00050-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Repurposing of existing drugs and drug candidates is an ideal approach to identify new potential therapies for SARS-CoV-2 that can be tested without delay in human trials of infected patients. Here we applied a virtual screening approach using Autodock Vina and molecular dynamics simulation in tandem to calculate binding energies for repurposed drugs against the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). We thereby identified 80 promising compounds with potential activity against SARS-Cov2, consisting of a mixture of antiviral drugs, natural products and drugs with diverse modes of action. A substantial proportion of the top 80 compounds identified in this study had been shown by others to have SARS-CoV-2 antiviral effects in vitro or in vivo, thereby validating our approach. Amongst our top hits not previously reported to have SARS-CoV-2 activity, were eribulin, a macrocyclic ketone analogue of the marine compound halichondrin B and an anticancer drug, the AXL receptor tyrosine kinase inhibitor bemcentinib. Our top hits from our RdRp drug screen may not only have utility in treating COVID-19 but may provide a useful starting point for therapeutics against other coronaviruses. Hence, our modelling approach successfully identified multiple drugs with potential activity against SARS-CoV-2 RdRp. Supplementary Information The online version contains supplementary material available at 10.1186/s43556-021-00050-3.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford Park, 5046 Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, 5046 Australia
| | | | - David A. Winkler
- School of Biochemistry and Genetics, La Trobe University, Bundoora, 3086 Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Australia
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford Park, 5046 Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, 5046 Australia
| |
Collapse
|