1
|
Leek AN, Quinn JA, Krapf D, Tamkun MM. GLT-1a glutamate transporter nanocluster localization is associated with astrocytic actin and neuronal Kv2 clusters at sites of neuron-astrocyte contact. Front Cell Dev Biol 2024; 12:1334861. [PMID: 38362041 PMCID: PMC10867268 DOI: 10.3389/fcell.2024.1334861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction: Astrocytic GLT-1 glutamate transporters ensure the fidelity of glutamic neurotransmission by spatially and temporally limiting glutamate signals. The ability to limit neuronal hyperactivity relies on the localization and diffusion of GLT-1 on the astrocytic surface, however, little is known about the underlying mechanisms. We show that two isoforms of GLT-1, GLT-1a and GLT-1b, form nanoclusters on the surface of transfected astrocytes and HEK-293 cells. Methods: We used both fixed and live cell super-resolution imaging of fluorescent protein and epitope tagged proteins in co-cultures of rat astrocytes and neurons. Immunofluorescence techniques were also used. GLT1 diffusion was assessed via single particle tracking and fluorescence recovery after photobleach (FRAP). Results: We found GLT-1a, but not GLT-1b, nanoclusters concentrated adjacent to actin filaments which was maintained after addition of glutamate. GLT-1a nanocluster concentration near actin filaments was prevented by expression of a cytosolic GLT-1a C-terminus, suggesting the C-terminus is involved in the localization adjacent to cortical actin. Using super-resolution imaging, we show that astrocytic GLT-1a and actin co-localize in net-like structures around neuronal Kv2.1 clusters at points of neuron/astrocyte contact. Conclusion: Overall, these data describe a novel relationship between GLT-1a and cortical actin filaments, which localizes GLT-1a near neuronal structures responsive to ischemic insult.
Collapse
Affiliation(s)
- Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
| | - Josiah A. Quinn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
3
|
Zheng Y, Huo J, Yang M, Zhang G, Wan S, Chen X, Zhang B, Liu H. ERK1/2 Signalling Pathway Regulates Tubulin-Binding Cofactor B Expression and Affects Astrocyte Process Formation after Acute Foetal Alcohol Exposure. Brain Sci 2022; 12:brainsci12070813. [PMID: 35884621 PMCID: PMC9312805 DOI: 10.3390/brainsci12070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Foetal alcohol spectrum disorders (FASDs) are a spectrum of neurological disorders whose neurological symptoms, besides the neuronal damage caused by alcohol, may also be associated with neuroglial damage. Tubulin-binding cofactor B (TBCB) may be involved in the pathogenesis of FASD. To understand the mechanism and provide new insights into the pathogenesis of FASD, acute foetal alcohol exposure model on astrocytes was established and the interference experiments were carried out. First, after alcohol exposure, the nascent astrocyte processes were reduced or lost, accompanied by the absence of TBCB expression and the disruption of microtubules (MTs) in processes. Subsequently, TBCB was silenced with siRNA. It was severely reduced or lost in nascent astrocyte processes, with a dramatic reduction in astrocyte processes, indicating that TBCB plays a vital role in astrocyte process formation. Finally, the regulating mechanism was studied and it was found that the extracellular signal-regulated protease 1/2 (ERK1/2) signalling pathway was one of the main pathways regulating TBCB expression in astrocytes after alcohol injury. In summary, after acute foetal alcohol exposure, the decreased TBCB in nascent astrocyte processes, regulated by the ERK1/2 signalling pathway, was the main factor leading to the disorder of astrocyte process formation, which could contribute to the neurological symptoms of FASD.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Jiechao Huo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
- Correspondence: (Y.Z.); (J.H.)
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400063, China;
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital & Institute, Chengdu 610044, China;
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; (M.Y.); (X.C.); (B.Z.); (H.L.)
| |
Collapse
|
4
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
5
|
Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Cell Rep 2019; 22:1647-1656. [PMID: 29444420 PMCID: PMC5831198 DOI: 10.1016/j.celrep.2018.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interface between the brain and the circulation. Ethanol tolerance development requires the A kinase anchoring protein Akap200 specifically in perineurial glia. Akap200 tightly coordinates protein kinase A, actin, and calcium signaling at the membrane to control tolerance. Furthermore, ethanol causes a structural remodeling of the actin cytoskeleton and perineurial membrane topology in an Akap200-dependent manner, without disrupting classical barrier functions. Our findings reveal an active molecular signaling process in the cells at the blood-brain interface that permits a form of behavioral plasticity induced by ethanol.
Collapse
Affiliation(s)
- Sarah J Parkhurst
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Pratik Adhikari
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Jovana S Navarrete
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Arièle Legendre
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Miguel Manansala
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA; Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
6
|
Zhao Y, Ge Y, Zheng ZL. Brain Imaging-Guided Analysis Reveals DNA Methylation Profiles Correlated with Insular Surface Area and Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:628-639. [PMID: 30830696 PMCID: PMC6443499 DOI: 10.1111/acer.13971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/26/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a wide-spread, heritable brain disease, but few studies have linked genetic variants or epigenetic factors to brain structures related to AUD in humans, due to many factors including the high-dimensional nature of imaging and genomic data. METHODS To provide potential insights into the links among epigenetic regulation, brain structure, and AUD, we have performed an integrative analysis of brain structural imaging and blood DNA methylome data from 52 AUD and 58 healthy control (HC) subjects collected in the Nathan Kline Institute-Rockland Sample. RESULTS We first found that AUD subjects had significantly larger insular surface area than HC in both left and right hemispheres. We then found that 7,827 DNA methylation probes on the HumanMethylation450K BeadChip had significant correlations with the right insular surface area (false discovery rate [FDR] < 0.05). Furthermore, we showed that 44 of the insular surface area-correlated methylation probes were also strongly correlated with AUD status (FDR < 0.05). These AUD-correlated probes are annotated to 36 protein-coding genes, with 16 genes (44%) having been reported by others to be related to AUD or alcohol response, including TAS2R16 and PER2. The remaining 20 genes, in particular ARHGAP22, might represent novel genes involved in AUD or responsive to alcohol. CONCLUSIONS We have identified 36 insular surface area- and AUD-correlated protein-coding genes that are either known to be AUD- or alcohol-related or not yet reported by prior studies. Therefore, our study suggests that the brain imaging-guided epigenetic analysis has a potential of identifying possible epigenetic mechanisms involved in AUD.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Behavioral Science Research, Department of Health Policy & Health Services Research, Boston University, Boston, MA 02118, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| |
Collapse
|
7
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
8
|
Kim HJ, Park SD, Lee RM, Lee BH, Choi SH, Hwang SH, Rhim H, Kim HC, Nah SY. Gintonin attenuates depressive-like behaviors associated with alcohol withdrawal in mice. J Affect Disord 2017; 215:23-29. [PMID: 28314177 DOI: 10.1016/j.jad.2017.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Panax ginseng Meyer extracts have been used to improve mood and alleviate symptoms of depression. However, little is known about the extracts' active ingredients and the molecular mechanisms underlying their reported anti-depressive effects. METHODS Gintonin is an exogenous lysophosphatidic acid (LPA) receptor ligand isolated from P. ginseng. BON cells, an enterochromaffin cell line, and C57BL/6 mice were used to investigate whether gintonin stimulates serotonin release. Furthermore, the effects of gintonin on depressive-like behaviors following alcohol withdrawal were evaluated using the forced swim and tail suspension tests. RESULTS Treatment of BON cells with gintonin induced a transient increase in the intracellular calcium concentration and serotonin release in a concentration- and time-dependent manner via the LPA receptor signaling pathway. Oral administration of the gintonin-enriched fraction (GEF) induced an increase in the plasma serotonin concentration in the mice. Oral administration of the GEF in mice with alcohol withdrawal decreased the immobility time in two depression-like behavioral tests and restored the alcohol withdrawal-induced serotonin decrease in plasma levels. LIMITATIONS We cannot exclude the possibility that the gintonin-mediated regulation of adrenal catecholamine release in the peripheral system, and acetylcholine and glutamate release in the central nervous system, could also contribute to the alleviation of depressive-like behaviors. CONCLUSION The GEF-mediated attenuation of depressive-like behavior induced by alcohol withdrawal may be mediated by serotonin release from intestinal enterochromaffin cells. Therefore, the GEF might be responsible for the ginseng extract-induced alleviation of depression-related symptoms.
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang-Deuk Park
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Cabezas R, Vega-Vela NE, González-Sanmiguel J, González J, Esquinas P, Echeverria V, Barreto GE. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol 2017; 55:3085-3095. [DOI: 10.1007/s12035-017-0567-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
|
10
|
Barcia JM, Portolés S, Portolés L, Urdaneta AC, Ausina V, Pérez-Pastor GMA, Romero FJ, Villar VM. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome? Front Physiol 2017; 8:22. [PMID: 28179886 PMCID: PMC5263147 DOI: 10.3389/fphys.2017.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Collapse
Affiliation(s)
- Jorge M. Barcia
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Sandra Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Laura Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Alba C. Urdaneta
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Verónica Ausina
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Gema M. A. Pérez-Pastor
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Francisco J. Romero
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Vincent M. Villar
- Department of Biomedical Sciences, Universidad Cardenal Herrera, CEUMoncada, Spain
| |
Collapse
|
11
|
Champeil-Potokar G, Hennebelle M, Latour A, Vancassel S, Denis I. Docosahexaenoic acid (DHA) prevents corticosterone-induced changes in astrocyte morphology and function. J Neurochem 2016; 136:1155-1167. [PMID: 26709611 DOI: 10.1111/jnc.13510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 01/02/2023]
Abstract
The many functions of astrocytes, such as glutamate recycling and morphological plasticity, enable them to stabilize synapses environment and protect neurons. Little is known about how they adapt to glucocorticoid-induced stress, and even less about the influence of dietary factors. We previously showed that omega-3 polyunsaturated fatty acids (ω3PUFA), dietary fats which alleviate stress responses, influence the way astroglia regulate glutamatergic synapses. We have explored the role of docosahexaenoic acid (DHA), the main ω3PUFA, in the astroglial responses to corticosterone, the main stress hormone in rodents to determine whether ω3PUFA help astrocytes resist stress. Cultured rat astrocytes were enriched in DHA or arachidonic acid (AA, the main ω6PUFA) and given 100 nM corticosterone for several days. Corticosterone stimulated astrocyte glutamate recycling by increasing glutamate uptake and glutamine synthetase (GS), and altered the astrocyte cytoskeleton. DHA-enriched astrocytes no longer responded to the action of corticosterone on glutamate uptake, had decreased GS, and the cytoskeletal effect of corticosterone was delayed, while AA-enriched cells were unaffected. The DHA-dependent anti-corticosterone effect was related to fewer glucocorticoid receptors, while corticosterone increased DHA incorporation into astrocyte membranes. Thus, DHA helps astrocytes resist the influence of corticosterone, so perhaps promoting a sustainable response by the stressed brain. We show that corticosterone increases the glutamate recycling capacity of rat cortical astrocytes in culture, and alters their morphology, which may be detrimental in the long term. Increasing the membrane incorporation of docosahexaenoic acid (DHA), the main omega-3 in brain, reduces the amount of glucocorticoid receptors (GR) and prevents the effects of corticosterone. This may help the astrocytes maintain a functional phenotype in chronic stress situations.
Collapse
Affiliation(s)
| | - Marie Hennebelle
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Alizée Latour
- INRA, Nutrition et Régulation Lipidique des Fonctions Cérébrales U0902 NURELICE, Jouy-en-Josas, France
| | - Sylvie Vancassel
- INRA, NutriNeurO UMR INRA 1286, Université Victor Segalen Bordeaux 2, Bordeaux Cedex, France
| | - Isabelle Denis
- INRA, Neurobiologie de l'Olfaction U1197 NBO, Domaine de Vilvert, Jouy-en-Josas, France
| |
Collapse
|
12
|
Traphagen N, Tian Z, Allen-Gipson D. Chronic Ethanol Exposure: Pathogenesis of Pulmonary Disease and Dysfunction. Biomolecules 2015; 5:2840-53. [PMID: 26492278 PMCID: PMC4693259 DOI: 10.3390/biom5042840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/04/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
Ethanol (EtOH) is the world’s most commonly used drug, and has been widely recognized as a risk factor for developing lung disorders. Chronic EtOH exposure affects all of the organ systems in the body and increases the risk of developing pulmonary diseases such as acute lung injury and pneumonia, while exacerbating the symptoms and resulting in increased mortality in many other lung disorders. EtOH and its metabolites inhibit the immune response of alveolar macrophages (AMs), increase airway leakage, produce damaging reactive oxygen species (ROS), and disrupt the balance of antioxidants/oxidants within the lungs. In this article, we review the role of EtOH exposure in the pathogenesis and progression of pulmonary disease.
Collapse
Affiliation(s)
- Nicole Traphagen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Zhi Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
| | - Diane Allen-Gipson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Health, Tampa, FL 33612, USA.
- Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida Health, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2014; 24:471-84. [PMID: 24077615 DOI: 10.1515/revneuro-2013-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.
Collapse
|
14
|
Pascual-Lucas M, Fernandez-Lizarbe S, Montesinos J, Guerri C. LPS or ethanol triggers clathrin- and rafts/caveolae-dependent endocytosis of TLR4 in cortical astrocytes. J Neurochem 2014; 129:448-62. [PMID: 24345077 DOI: 10.1111/jnc.12639] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 4 (TLR4) activation and signalling in glial cells play critical roles in neurological disorders and in alcohol-induced brain damage. TLR4 endocytosis upon lipopolysaccharide (LPS) stimulation regulates which signalling pathway is activated, the MyD88-dependent or the TIR-domain-containing adapter-inducing interferon-β (TRIF)-dependent pathway. However, it remains elusive whether ethanol-induced TLR4 signalling is associated with receptor internalization and trafficking, and which endocytic pathway(s) are used in cortical astrocytes. Using the adenoviral over-expression of TLR4(GFP) , confocal microscopy and the imagestream technique, we show that upon ethanol or LPS stimulation, TLR4 co-localizes with markers of the clathrin and caveolin endocytic pathways, and that this endocytosis is dependent on dynamin. Using chlorpromazin and filipin as inhibitors of the clathrin and rafts/caveolae endocytic pathways, respectively, we demostrate that TRIF-dependent signalling relies on an intact clathrin pathway, whereas disruption of rafts/caveolae inhibits the MyD88- and TRIF-dependent signalling pathways. Immunofluorescence studies also suggest that lipid rafts and clathrin cooperate for appropriate TLR4 internalization. We also show that ethanol can trigger similar endocytic pathways as LPS does, although ethanol delays clathrin internalization and alters TLR4 vesicular trafficking. Our results provide new insights into the effects of ethanol or LPS on TLR4 signalling in cortical astrocytes, events that may underlie neuroinflammation and brain damage. The results demonstrate that ethanol or lipopolysaccharide (LPS) triggers toll-like receptor 4 (TLR4) endocytosis by caveolae and clathrin-dependent pathways in astrocytes. We proposed that while clathrin is the protein responsible for TLR4 internalization, caveolin-1/lipid rafts membrane microdomains are required for TLR4 signaling. The results provide new insights into the effects of ethanol on TLR4 signalling in astrocytes, events that may underlie neuroinflammation.
Collapse
Affiliation(s)
- Maya Pascual-Lucas
- Department of Cellular Pathology, Príncipe Felipe Research Centre, Valencia, Spain
| | | | | | | |
Collapse
|
15
|
Santos-Ledo A, Cavodeassi F, Carreño H, Aijón J, Arévalo R. Ethanol alters gene expression and cell organization during optic vesicle evagination. Neuroscience 2013; 250:493-506. [PMID: 23892006 PMCID: PMC3988994 DOI: 10.1016/j.neuroscience.2013.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 01/12/2023]
Abstract
Ethanol alters eye morphogenesis at early stages of embryogenesis. The expression patterns of some genes important for eye morphogenesis are perturbed. Ethanol is related to alterations in cell morphology. Ethanol interferes with the optic vesicles evagination.
Ethanol has been described as a teratogen in vertebrate development. During early stages of brain formation, ethanol affects the evagination of the optic vesicles, resulting in synophthalmia or cyclopia, phenotypes where the optic vesicles partially or totally fuse. The mechanisms by which ethanol affects the morphogenesis of the optic vesicles are however largely unknown. In this study we make use of in situ hybridization, electron microscopy and immunohistochemistry to show that ethanol has profound effects on cell organization and gene expression during the evagination of the optic vesicles. Exposure to ethanol during early eye development alters the expression patterns of some genes known to be important for eye morphogenesis, such as rx3/1 and six3a. Furthermore, exposure to ethanol interferes with the acquisition of neuroepithelial features by the eye field cells, which is clear at ultrastructual level. Indeed, ethanol disrupts the acquisition of fusiform cellular shapes within the eye field. In addition, tight junctions do not form and retinal progenitors do not properly polarize, as suggested by the mis-localization and down-regulation of zo1. We also show that the ethanol-induced cyclopic phenotype is significantly different to that observed in cyclopic mutants, suggesting a complex effect of ethanol on a variety of targets. Our results show that ethanol not only disrupts the expression pattern of genes involved in retinal morphogenesis, such as rx3 and rx1, but also disrupts the changes in cell polarity that normally occur during eye field splitting. Thus, ethylic teratology seems to be related not only to modifications in gene expression and cell death but also to alterations in cell morphology.
Collapse
Affiliation(s)
- A Santos-Ledo
- Departamento de Biología Celular y Patología, IBSAL-Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
16
|
Wei J, Mialki RK, Dong S, Khoo A, Mallampalli RK, Zhao Y, Zhao J. A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2757-2764. [PMID: 23871831 DOI: 10.1016/j.bbamcr.2013.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023]
Abstract
RhoA is a small GTPase multifunctional protein that regulates cell proliferation and cytoskeletal reorganization. Regulation of its protein stability plays an important role in its biological functions. We have shown that a Skp1-Cul1-F-box (SCF) FBXL19 E3 ubiquitin ligase targets Rac1, a related member of the Rho family for ubiquitination and degradation. Here, SCF(FBXL19) mediates RhoA ubiquitination and proteasomal degradation in lung epithelial cells. Ectopically expressed FBXL19 decreased RhoA wild type, active, and inactive forms. Cellular depletion of FBXL19 increased RhoA protein levels and extended its half-life. FBXL19 bound the small GTPase in the cytoplasm leading to RhoA ubiquitination at Lys(135). A RhoA(K135R) mutant protein was resistant to SCF(FBXL19)-mediated ubiquitination and degradation and exhibited a longer lifespan. Protein kinase Erk2-mediated phosphorylation of RhoA was both sufficient and required for SCF(FBXL19)-mediated RhoA ubiquitination and degradation. Thus, SCF(FBXL19) targets RhoA for its disposal, a process regulated by Erk2. Ectopically expressed FBXL19 reduced phosphorylation of p27 and cell proliferation, a process mediated by RhoA. Further, FBXL19 cellular expression diminished lysophosphatidic acid (LPA)-induced phosphorylation of myosin light chain (MLC) and stress fiber formation. Hence, SCF(FBXL19) functions as a RhoA antagonist during cell proliferation and cytoskeleton rearrangement. These results provide the first evidence of an F-box protein targeting RhoA thereby modulating its cellular lifespan that impacts cell proliferation and cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Jianxin Wei
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachel K Mialki
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Su Dong
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Anesthesia, First Hospital of Jilin University, Changchun, Jilin, China
| | - Andrew Khoo
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Yutong Zhao
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Zhao
- Department of Medicine and the Acute Lung Injury Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Romero AM, Renau-Piqueras J, Pilar Marin M, Timoneda J, Berciano MT, Lafarga M, Esteban-Pretel G. Chronic alcohol alters dendritic spine development in neurons in primary culture. Neurotox Res 2013; 24:532-48. [PMID: 23820986 DOI: 10.1007/s12640-013-9409-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 06/21/2013] [Indexed: 12/24/2022]
Abstract
Dendritic spines are specialised membrane protrusions of neuronal dendrites that receive the majority of excitatory synaptic inputs. Abnormal changes in their density, size and morphology have been associated with various neurological and psychiatric disorders, including those deriving from drug addiction. Dendritic spine formation, morphology and synaptic functions are governed by the actin cytoskeleton. Previous in vivo studies have shown that ethanol alters the number and morphology of spines, although the mechanisms underlying these alterations remain unknown. It has also been described how chronic ethanol exposure affects the levels, assembly and cellular organisation of the actin cytoskeleton in hippocampal neurons in primary culture. Therefore, we hypothesised that the ethanol-induced alterations in the number and shape of dendritic spines are due to alterations in the mechanisms regulating actin cytoskeleton integrity. The results presented herein show that chronic exposure to moderate levels of alcohol (30 mM) during the first 2 weeks of culture reduces dendritic spine density and alters the proportion of the different morphologies of these structures in hippocampal neurons, which affects the formation of mature spines. Apparently, these effects are associated with an increase in the G-actin/F-actin ratio due to a reduction of the F-actin fraction, leading to changes in the levels of the different factors regulating the organisation of this cytoskeletal component. The data presented herein indicate that these effects occur between weeks 1 and 2 of culture, an important period in dendritic spines development. These changes may be related to the dysfunction in the memory and learning processes present in children prenatally exposed to ethanol.
Collapse
Affiliation(s)
- Ana M Romero
- Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario ''La Fe'', Avenida Campanar 21, 46009, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 2013; 3:941-63. [PMID: 24961432 PMCID: PMC4061865 DOI: 10.3390/brainsci3020941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/08/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA) receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-I), and basic fibroblast growth factor (bFGF). In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.
Collapse
|
19
|
Souza DG, Bellaver B, Souza DO, Quincozes-Santos A. Characterization of adult rat astrocyte cultures. PLoS One 2013; 8:e60282. [PMID: 23555943 PMCID: PMC3610681 DOI: 10.1371/journal.pone.0060282] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/24/2013] [Indexed: 11/22/2022] Open
Abstract
Astrocytes, a major class of glial cells, regulate neurotransmitter systems, synaptic processing, ion homeostasis, antioxidant defenses and energy metabolism. Astrocyte cultures derived from rodent brains have been extensively used to characterize astrocytes' biochemical, pharmacological and morphological properties. The aims of this study were to develop a protocol for routine preparation and to characterize a primary astrocyte culture from the brains of adult (90 days old) Wistar rats. For this we used enzymatic digestion (trypsin and papain) and mechanical dissociation. Medium exchange occurred from 24 h after obtaining a culture and after, twice a week up to reach the confluence (around the 4th to 5th week). Under basal conditions, adult astrocytes presented a polygonal to fusiform and flat morphology. Furthermore, approximately 95% the cells were positive for the main glial markers, including GFAP, glutamate transporters, glutamine synthetase and S100B. Moreover, the astrocytes were able to take up glucose and glutamate. Adult astrocytes were also able to respond to acute H2O2 exposure, which led to an increase in reactive oxygen species (ROS) levels and a decrease in glutamate uptake. The antioxidant compound resveratrol was able to protect adult astrocytes from oxidative damage. A response of adult astrocytes to an inflammatory stimulus with LPS was also observed. Changes in the actin cytoskeleton were induced in stimulated astrocytes, most likely by a mechanism dependent on MAPK and Rho A signaling pathways. Taken together, these findings indicate that the culture model described in this study exhibits the biochemical and physiological properties of astrocytes and may be useful for elucidating the mechanisms related to the adult brain, exploring changes between neonatal and adult astrocytes, as well as investigating compounds involved in cytotoxicity and cytoprotection.
Collapse
Affiliation(s)
- Débora Guerini Souza
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
20
|
Rothenfluh A, Cowan CW. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin'? Curr Opin Neurobiol 2013; 23:507-12. [PMID: 23428655 DOI: 10.1016/j.conb.2013.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail.
Collapse
Affiliation(s)
- Adrian Rothenfluh
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| | | |
Collapse
|
21
|
Esteban-Pretel G, Marín MP, Romero AM, Timoneda J, Ponsoda X, Ballestín R, Renau-Piqueras J. Polyphosphoinositide metabolism and Golgi complex morphology in hippocampal neurons in primary culture is altered by chronic ethanol exposure. Alcohol Alcohol 2012; 48:15-27. [PMID: 23118092 DOI: 10.1093/alcalc/ags117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Ethanol affects not only the cytoskeletal organization and activity, but also intracellular trafficking in neurons in the primary culture. Polyphosphoinositide (PPIn) are essential regulators of many important cell functions, including those mentioned, cytoskeleton integrity and intracellular vesicle trafficking. Since information about the effect of chronic ethanol exposure on PPIn metabolism in neurons is scarce, this study analysed the effect of this treatment on three of these phospholipids. METHODS Phosphatidylinositol (PtdIns) levels as well as the activity and/or levels of enzymes involved in their metabolism were analysed in neurons chronically exposed to ethanol. The levels of phospholipases C and D, and phosphatidylethanol formation were also assessed. The consequence of the possible alterations in the levels of PtdIns on the Golgi complex (GC) was also analysed. RESULTS We show that phosphatidylinositol (4,5)-bisphosphate and phosphatidylinositol (3,4,5)-trisphosphate levels, both involved in the control of intracellular trafficking and cytoskeleton organization, decrease in ethanol-exposed hippocampal neurons. In contrast, several kinases that participate in the metabolism of these phospholipids, and the level and/or activity of phospholipases C and D, increase in cells after ethanol exposure. Ethanol also promotes phosphatidylethanol formation in neurons, which can result in the suppression of phosphatidic acid synthesis and, therefore, in PPIn biosynthesis. This treatment also lowers the phosphatidylinositol 4-phosphate levels, the main PPIn in the GC, with alterations in their morphology and in the levels of some of the proteins involved in structure maintenance. CONCLUSIONS The deregulation of the metabolism of PtdIns may underlie the ethanol-induced alterations on different neuronal processes, including intracellular trafficking and cytoskeletal integrity.
Collapse
Affiliation(s)
- Guillermo Esteban-Pretel
- Corresponding author: Sección de Biología y Patología Celular, Centro de Investigación, Hospital Universitario La Fe, Avda. Campanar 21, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Turski CA, Ikonomidou C. Neuropathological sequelae of developmental exposure to antiepileptic and anesthetic drugs. Front Neurol 2012; 3:120. [PMID: 23015798 PMCID: PMC3449494 DOI: 10.3389/fneur.2012.00120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/09/2012] [Indexed: 01/18/2023] Open
Abstract
Glutamate (Glu) and γ-aminobutyric acid (GABA) are major neurotransmitters in the mammalian brain which regulate brain development at molecular, cellular, and systems level. Sedative, anesthetic, and antiepileptic drugs (AEDs) interact with glutamate and GABA receptors to produce their desired effects. The question is posed whether such interference with glutamatergic and GABAergic neurotransmission may exert undesired, and perhaps even detrimental effects on human brain development. Preclinical research in rodents and non-human primates has provided extensive evidence that sedative, anesthetic, and AEDs can trigger suicide of neurons and oligodendroglia, suppress neurogenesis, and inhibit normal synapse development and sculpting. Behavioral correlates in rodents and non-human primates consist of long-lasting cognitive impairment. Retrospective clinical studies in humans exposed to anesthetics or AEDs in utero, during infancy or early childhood have delivered conflicting but concerning results in terms of a correlation between drug exposure and impaired neurodevelopmental outcomes. Prospective studies are currently ongoing. This review provides a short overview of the current state of knowledge on this topic.
Collapse
|
23
|
Lindsley TA, Shah SN, Ruggiero EA. Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcohol Clin Exp Res 2012; 35:1321-30. [PMID: 21676004 DOI: 10.1111/j.1530-0277.2011.01468.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The effects of ethanol on development of postmitotic neurons include altered neurite outgrowth and differentiation, which may contribute to neuropathology associated with fetal alcohol spectrum disorders. We previously reported that ethanol exposure alters axon growth dynamics in dissociated cultures of rat hippocampal pyramidal neurons. Given the important regulatory role of small Rho guanosine triphosphatases (GTPases) in cytoskeletal reorganization associated with axon growth, and reports that ethanol alters whole cell Rho GTPase activity in other cell types, this study explored the hypothesis that ethanol alters Rho GTPase activity specifically in axonal growth cones. METHODS Fetal rat hippocampal pyramidal neurons were maintained in dissociated cultures for 1 day in control medium or medium containing 11 to 43 mM ethanol. Some cultures were also treated with brain-derived neurotrophic factor (BDNF), an activator of Rac1 and Cdc42 GTPases that promotes axon extension. Levels of active Rho GTPases in growth cones were measured using in situ binding assays for GTP-bound Rac1, Cdc42, and RhoA. Axon length, growth cone area, and growth cone surface expression of tyrosine kinase B (TrkB), the receptor for BDNF, were assessed by digital morphometry and immunocytochemistry. RESULTS Although ethanol increased the surface area of growth cones, the levels of active Rho GTPases in axonal growth cones were not affected in the absence of exogenous BDNF. In contrast, ethanol exposure inhibited BDNF-induced Rac1/Cdc42 activation in a dose-dependent manner and increased RhoA activation at the highest concentration tested. Similar TrkB expression was observed on the surface of axonal growth cones of control and ethanol-treated neurons. CONCLUSIONS These results reveal an inhibitory effect of ethanol on growth cone signaling via small Rho GTPases during early stages of hippocampal development in vitro, and suggest a mechanism whereby ethanol may disrupt neurotrophic factor regulation of axon growth and guidance.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology & Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | |
Collapse
|
24
|
Peris B, Gonzalez-Granero S, Ballester-Lurbe B, García-Verdugo JM, Pérez-Roger I, Guerri C, Terrado J, Guasch RM. Neuronal polarization is impaired in mice lacking RhoE expression. J Neurochem 2012; 121:903-14. [DOI: 10.1111/j.1471-4159.2012.07733.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Karavitis J, Murdoch EL, Deburghgraeve C, Ramirez L, Kovacs EJ. Ethanol suppresses phagosomal adhesion maturation, Rac activation, and subsequent actin polymerization during FcγR-mediated phagocytosis. Cell Immunol 2012; 274:61-71. [PMID: 22381996 PMCID: PMC3334404 DOI: 10.1016/j.cellimm.2012.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 12/16/2022]
Abstract
Clinical and laboratory investigations have provided evidence that ethanol suppresses normal lung immunity. Our initial studies revealed that acute ethanol exposure results in transient suppression of phagocytosis of Pseudomonas aeruginosa by macrophages as early as 3 h after initial exposure. Focusing on mechanisms by which ethanol decreases macrophage Fcγ-receptor (FcγR) phagocytosis we targeted the study on the focal adhesion and cytoskeletal elements that are necessary for phagosome progression. Ethanol inhibited macrophage phagocytosis of IgG-coated bead recruitment of actin to the site of the phagosome, dampened the phosphorylation of vinculin, but had no effect on paxillin phosphorylation suggesting a loss in "phagosomal adhesion" maturation. Moreover, our observations revealed that FcγR-phagocytosis induced Rac activation, which was increased by only 50% in ethanol exposed cells, compared to 175% in the absence of ethanol. This work is the first to show evidence of the cellular mechanisms involved in the ethanol-induced suppression of FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- John Karavitis
- Program of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
26
|
An in vitro model for studying the effects of continuous ethanol exposure on N-methyl-D-aspartate receptor function. Alcohol 2012; 46:3-16. [PMID: 21925827 DOI: 10.1016/j.alcohol.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 08/07/2011] [Accepted: 08/11/2011] [Indexed: 11/22/2022]
Abstract
Long-term ethanol exposure has deleterious effects on both glial and neuronal function. We assessed alterations in both astrocytic and neuronal viability, and alterations in N-methyl-d-aspartate receptor (NMDAR) function, in cocultures of rat cerebellar granule cells (CGCs) and astrocytes after continuous ethanol exposure (CEE). Treatment of cells with 100 mM EtOH once every 24 h for 4 days resulted in a mean ethanol concentration of 57.3 ± 2.1 mM. Comparisons between control and post-ethanol-treated cells were made 4 days after the last ethanol treatment. CEE did not alter glial cell viability, as indicated by the absence of either changes in astrocytic morphology, actin depolymerization, or disruption of astrocytic intracellular mitochondrial distribution at any day postethanol treatment. The CGCs were healthy and viable after CEE, as indicated by phase-contrast microscopy and the trypan-blue exclusion method. Whole-cell patch-clamp experiments indicated that NMDA-induced currents (I(NMDA)) were altered by CEE treatment. Similar to previous results obtained during the withdrawal phase from chronic ethanol exposure, I(NMDA) from CEE-treated cells were significantly larger than I(NMDA) from NMDARs in control CGCs, but returned to control values by the fourth day post-CEE. However, after the last ethanol dosing and during a time when ethanol concentrations remained high, I(NMDA) were significantly smaller than control values. Identical results were observed in CGCs expressing the NR2A or NR2B subunit. In summary, both neurons and astrocytes remained healthy following exposure to CEE with no signs of neurotoxicity at the cellular level, and modulation of NMDAR function is consistent with findings from prior experiments. Thus, we conclude that the CEE paradigm in glial-neuronal cocultures readily lends itself to long-term in vitro studies of ethanol effects that include glial-neuronal interactions and the ability to study ethanol withdrawal-induced neurotoxicity.
Collapse
|
27
|
|
28
|
Lunardi N, Hucklenbruch C, Latham JR, Scarpa J, Jevtovic-Todorovic V. Isoflurane impairs immature astroglia development in vitro: the role of actin cytoskeleton. J Neuropathol Exp Neurol 2011; 70:281-91. [PMID: 21412172 DOI: 10.1097/nen.0b013e31821284e9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
General anesthetics, either alone or in combination, can be detrimental to the developing mammalian brain and induce extensive apoptotic degeneration of immature neurons when they are administered at the peak of synaptogenesis. Because neuron development and normal functions depend on the integrity of astroglia, we sought to determine whether general anesthesia also causes disturbances in the early development of astroglia. Using isoflurane, an inhaled anesthetic that is highly toxic to immature neurons, we studied primary astroglia cultures, focusing on very early development (Day-In-Vitro 4 treatment). Exposure to 3% isoflurane for 24 hours delayed morphological differentiation and impaired the growth of immature astrocytes. The timing of delayed astroglia maturation and growth coincided with a major disturbance in actin cytoskeleton sculpting that was manifest as impaired actin stress fiber formation and cytoskeletal organization and downregulation of the focal adhesion protein, paxillin. Isoflurane-induced actin cytoskeletal changes were accompanied by a significant decrease in protein levels of the endogenous GTPase RhoA that regulates the phosphorylation of myosin light chain protein, suggesting that isoflurane-induced impairment in glial growth and morphological development is, in part, mediated by the RhoA/myosin light chain protein signaling pathway.
Collapse
Affiliation(s)
- Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Eukaryotic cells comprise a set of organelles, surrounded by membranes with a unique composition, which is maintained by a complex synthesis and transport system. Cells also synthesize the proteins destined for secretion. Together, these processes are known as the secretory pathway or exocytosis. In addition, many molecules can be internalized by cells through a process called endocytosis. Chronic and acute alcohol (ethanol) exposure alters the secretion of different essential products, such as hormones, neurotransmitters and others in a variety of cells, including central nervous system cells. This effect could be due to a range of mechanisms, including alcohol-induced alterations in the different steps involved in intracellular transport, such as glycosylation and vesicular transport along cytoskeleton elements. Moreover, alcohol consumption during pregnancy disrupts developmental processes in the central nervous system. No single mechanism has proved sufficient to account for these effects, and multiple factors are likely involved. One such mechanism indicates that ethanol also perturbs protein trafficking. The purpose of this review is to summarize our understanding of how ethanol exposure alters the trafficking of proteins in different cell systems, especially in central nervous system cells (neurons and astrocytes) in adult and developing brains.
Collapse
|
30
|
de la Monte SM, Tong M, Bowling N, Moskal P. si-RNA inhibition of brain insulin or insulin-like growth factor receptors causes developmental cerebellar abnormalities: relevance to fetal alcohol spectrum disorder. Mol Brain 2011; 4:13. [PMID: 21443795 PMCID: PMC3077327 DOI: 10.1186/1756-6606-4-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/28/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In experimental models of fetal alcohol spectrum disorder (FASD), cerebellar hypoplasia and hypofoliation are associated with insulin and insulin-like growth factor (IGF) resistance with impaired signaling through pathways that mediate growth, survival, plasticity, metabolism, and neurotransmitter function. To more directly assess the roles of impaired insulin and IGF signaling during brain development, we administered intracerebroventricular (ICV) injections of si-RNA targeting the insulin receptor, (InR), IGF-1 receptor (IGF-1R), or IGF-2R into postnatal day 2 (P2) Long Evans rat pups and examined the sustained effects on cerebellar function, structure, and neurotransmitter-related gene expression (P20). RESULTS Rotarod tests on P20 demonstrated significant impairments in motor function, and histological studies revealed pronounced cerebellar hypotrophy, hypoplasia, and hypofoliation in si-InR, si-IGF-1R, and si-IGF-2R treated rats. Quantitative RT-PCR analysis showed that si-InR, and to a lesser extent si-IGF-2R, broadly inhibited expression of insulin and IGF-2 polypeptides, and insulin, IGF-1, and IGF-2 receptors in the brain. ELISA studies showed that si-InR increased cerebellar levels of tau, phospho-tau and β-actin, and inhibited GAPDH. In addition, si-InR, si-IGF-1R, and si-IGF-2R inhibited expression of choline acetyltransferase, which mediates motor function. Although the ICV si-RNA treatments generally spared the neurotrophin and neurotrophin receptor expression, si-InR and si-IGF-1R inhibited NT3, while si-IGF-1R suppressed BDNF. CONCLUSIONS early postnatal inhibition of brain InR expression, and to lesser extents, IGF-R, causes structural and functional abnormalities that resemble effects of FASD. The findings suggest that major abnormalities in brains with FASD are mediated by impairments in insulin/IGF signaling. Potential therapeutic strategies to reduce the long-term impact of prenatal alcohol exposure may include treatment with agents that restore brain insulin and IGF responsiveness.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Department of Pathology and Division of Neuropathology, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| | | | | | | |
Collapse
|
31
|
Yang S, Tian YS, Lee YJ, Yu FH, Kim HM. Mechanisms by which the inhibition of specific intracellular signaling pathways increase osteoblast proliferation on apatite surfaces. Biomaterials 2011; 32:2851-61. [PMID: 21288570 DOI: 10.1016/j.biomaterials.2011.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 12/30/2022]
Abstract
Osteoblasts proliferate slowly on the surface of calcium phosphate apatite which is widely used as a substrate biomaterial in bone regeneration. Owing to poor adhesion signaling in the cells grown on the calcium phosphate surface, inadequate growth factor signaling is generated to trigger cell cycle progression. The present study investigated an intracellular signal transduction pathway involved in the slow cell proliferation in osteoblasts grown on the calcium phosphate surface. Small GTPase RhoA and phosphatase and tensin homolog (PTEN) were more activated in cells grown on the surface of calcium phosphate apatite than on tissue culture plate. Specific inhibition of RhoA and PTEN induced the cells on calcium phosphate apatite surface to proliferate at a similar rate as cells on tissue culture plate surface. Specific inhibition of ROCK, which is a downstream effector of RhoA and an upstream activator of PTEN also increased proliferation of these osteoblasts. Present results indicate that physical property of calcium phosphate crystals that impede cell proliferation may be surmounted by the inhibition of the RhoA/ROCK/PTEN pathway to rescue delayed proliferation of osteoblasts on the calcium phosphate apatite surface. In addition, specific inhibition of ROCK promoted cell migration and osteoblast differentiation. Inhibition of the RhoA/ROCK/PTEN intracellular signaling pathway is expected to enhance cell activity to promote and accelerate bone regeneration on the calcium phosphate apatite surface.
Collapse
Affiliation(s)
- Seungwon Yang
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Taléns-Visconti R, Sanchez-Vera I, Kostic J, Perez-Arago MA, Erceg S, Stojkovic M, Guerri C. Neural differentiation from human embryonic stem cells as a tool to study early brain development and the neuroteratogenic effects of ethanol. Stem Cells Dev 2010; 20:327-39. [PMID: 20491543 DOI: 10.1089/scd.2010.0037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The in vitro generation of neural cells from human embryonic stem cells is a powerful tool to acquire better knowledge of the cellular and molecular events involved in early human neural and brain development under physiological and pathological conditions. Prenatal alcohol exposure can induce important anomalies in the developing brain, the embryogenesis being an important critical period for the craniofacial defects and mental disabilities associated with fetal alcohol syndrome. Here, we report the generation of neural progenitors (NPs) from human embryonic stem cells. Neuroepithelial progenitors display the morphological and functional characteristics of their embryonic counterparts and the proper timing of neurons and glia cells generation. Immunocytochemical and real time (RT)-polymerase chain reaction analyses reveal that cells appeared as clusters during neuroepithelial cell proliferation and that the genes associated with the neuroectodermal (Pax-6) and the endodermic (α-fetoprotein) lineages decreased in parallel to the upregulation of the genes of NPs (nestin and Tuj1), followed by their differentiation into neurons (MAP-2+, GABA+), oligodendrocytes [galactocerebroside (GalC+)], and astrocytes (GFAP+). We further demonstrate, for the first time, that human NPs express the endocannabinoid receptors (CB1 and CB2) and the enzymes involved in endocannabinoids synthesis (NAPE-PLD) and degradation (FAAH). Using this in vitro culture, we demonstrate that ethanol exposure impairs NPs survival, affects the differentiation of NPs into neurons and astrocytes, disrupts the actin cytoskeleton, and affects the expression of different genes associated with neural differentiation. The results provide new insights into the effects of ethanol on human embryogenesis and neuroprogenitors and offer an opportunity to delineate potential therapeutic strategies to restore early ethanol-induced brain damage.
Collapse
|
33
|
Acute ethanol exposure disrupts actin cytoskeleton and generates reactive oxygen species in c6 cells. Toxicol In Vitro 2010; 25:28-36. [PMID: 20837132 DOI: 10.1016/j.tiv.2010.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 02/02/2023]
Abstract
Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.
Collapse
|
34
|
Romero AM, Esteban-Pretel G, Marín MP, Ponsoda X, Ballestín R, Canales JJ, Renau-Piqueras J. Chronic ethanol exposure alters the levels, assembly, and cellular organization of the actin cytoskeleton and microtubules in hippocampal neurons in primary culture. Toxicol Sci 2010; 118:602-12. [PMID: 20829428 DOI: 10.1093/toxsci/kfq260] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effects by morphological and biochemical methods. In the experiments described below, we provide the first evidence that chronic alcohol exposure decreases the amount of both filamentous actin and polymerized tubulin in neurons and that the number of MTs in dendrites lowers in treated cells. Alcohol also diminishes the MT-associated protein-2 levels, which mainly localizes in the somatodendritic compartment in neurons. Ethanol decreases the levels of total Rac, Cdc42, and RhoA, three small guanosine triphosphatases (GTPases) involved in the organization and dynamics of the actin cytoskeleton and MTs. Yet when alcohol decreases the levels of the active forms (GTP bound) of Rac1 and Cdc42, it does not affect the active form of RhoA. We also investigated the levels of several effector and regulator molecules of these GTPases to find that alcohol induces heterogeneous results. In conclusion, our results show that MT, actin cytoskeleton organization, and Rho GTPase signaling pathways are targets for the toxic effects of ethanol in neurons.
Collapse
Affiliation(s)
- Ana M Romero
- Section of Biología y Patología Celular, Centro Investigación, Hospital La Fe, E-46009 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Marín MP, Esteban-Pretel G, Ponsoda X, Romero AM, Ballestín R, López C, Megías L, Timoneda J, Molowny A, Canales JJ, Renau-Piqueras J. Endocytosis in Cultured Neurons Is Altered by Chronic Alcohol Exposure. Toxicol Sci 2010; 115:202-13. [DOI: 10.1093/toxsci/kfq040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Talens-Visconti R, Peris B, Guerri C, Guasch RM. RhoE stimulates neurite-like outgrowth in PC12 cells through inhibition of the RhoA/ROCK-I signalling. J Neurochem 2009; 112:1074-87. [PMID: 19968760 DOI: 10.1111/j.1471-4159.2009.06526.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurite formation involves coordinated changes between the actin cytoskeleton and the microtubule network. Rho GTPases are clearly implicated in several aspects of neuronal development and function. Indeed, RhoA is a negative regulator of neurite outgrowth and its effector Rho-kinase mediates the Rho-driven neurite retraction. Considering that RhoE/round protein (Rnd3) acts antagonistically to RhoA and it is also able to bind and inhibit rho kinase-I (p160ROCK) - ROCK-I, it is tempting to speculate a role of RhoE in neurite formation. We show for the first time that, in the absence of nerve growth factor (NGF), RhoE induces neurite-like outgrowth. Our results demonstrate that over-expression of RhoE decreases the activity of RhoA and reduces the expression of both ROCK-I and the phosphorylated myosin light chain phosphatase (MLCPp). Conversely, over-expression of either active RhoA or ROCK-I abolishes the RhoE-promoted neurite outgrowth, suggesting that RhoE induces neurite-like formation through inhibition of the RhoA/ROCK-I signalling. We also show that Rac and Cdc42 have a role in RhoE-induced neurite outgrowth. Finally, the present data further indicate that RhoE may be involved in the NGF-induced neurite outgrowth in PC12 cells, as depletion of RhoE by siRNA reduces the neurite formation induced by NGF. These findings provide new insights into the molecular mechanism implicated in neuronal development and may provide novel therapeutic targets in neurodegenerative disorders.
Collapse
Affiliation(s)
- Raquel Talens-Visconti
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
37
|
Quincozes-Santos A, Nardin P, de Souza DF, Gelain DP, Moreira JC, Latini A, Gonçalves CA, Gottfried C. The Janus Face of Resveratrol in Astroglial Cells. Neurotox Res 2009; 16:30-41. [DOI: 10.1007/s12640-009-9042-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/28/2009] [Accepted: 03/06/2009] [Indexed: 01/07/2023]
|
38
|
Actin depolymerization contributes to ethanol inhibition of NMDA receptors in primary cultured cerebellar granule cells. Alcohol 2008; 42:525-39. [PMID: 18789629 DOI: 10.1016/j.alcohol.2008.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/22/2022]
Abstract
We have previously reported that a 30s ethanol (10 and 100mM) pre-exposure significantly enhanced EtOH inhibition of N-methyl-d-aspartate (NMDA-induced currents)-induced peak currents in primary cultured cerebellar granule cells (CGCs). The purpose of this study was to determine if intracellular factors play a role in ethanol pre-exposure-enhanced inhibition of NMDA-induced currents and if so, to identify the intracellular target(s) mediating this effect. Ethanol pre-exposure-enhanced inhibition was reduced when ethanol was present intracellularly prior to the initiation of the pretreatment protocol. Similar to results acquired with the whole-cell configuration, ethanol pre-exposure-enhanced inhibition of NMDA-induced currents was also observed in the perforated patch-clamp mode. Collectively, these results suggest an intracellular target not easily dialyzed from the cell. Perturbation of the actin cytoskeleton was responsible for the ethanol pre-exposure-enhanced inhibition of NMDA-induced currents was supported by the observation that the intracellular presence of the actin stabilizer phalloidin prevented ethanol pre-exposure-enhanced inhibition. Similar to the effects of ethanol, the depolymerizing agent latrunculin A inhibited NMDA-induced currents after a 30s pretreatment exposure with full recovery of receptor function after washout of the drug. Furthermore, latrunculin A occluded the enhanced inhibition of NMDA-induced currents by ethanol pre-exposure for both 10 and 100mM ethanol. The microtubule depolymerizing agent taxol had no affect on ethanol pretreatment-enhanced inhibition of NMDA-induced currents. Confocal microscopy with phalloidin-FITC indicated that F-actin filaments in neurites were depolymerized after a 30s treatment of either latrunculin A or 100mM ethanol. Our observations indicate that ethanol inhibition of NMDAR function may involve perturbation of the actin cytoskeleton.
Collapse
|
39
|
Marín MP, Tomas M, Esteban-Pretel G, Megías L, López-Iglesias C, Egea G, Renau-Piqueras J. Chronic ethanol exposure induces alterations in the nucleocytoplasmic transport in growing astrocytes. J Neurochem 2008; 106:1914-28. [DOI: 10.1111/j.1471-4159.2008.05514.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol 2008; 76:1352-64. [PMID: 18708031 DOI: 10.1016/j.bcp.2008.07.023] [Citation(s) in RCA: 378] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 02/08/2023]
Abstract
Cell to matrix adhesion is a key factor for cellular homeostasis and disruption of such interaction has adverse effects on cell survival. It leads to a specific type of apoptosis known as "anoikis" in most non-transformed cell types. This kind of apoptosis following loss of cell anchorage is important for development, tissue homeostasis and several diseases. Integrins sense mechanical forces arising from the matrix, thereby converting these stimuli to downstream signals modulating cell viability. Anchorage-independent growth is a crucial step during tumorigenesis and in particular during the metastatic spreading of cancer cells. The disruption of the tight control leading an "homeless" cell to death is therefore able to violate the cell defences against transformation. This review analyses the recent investigations into the molecular mechanisms governing anoikis, discussing the different ways in which adhesion can influence this process and addressing the relevance of this unique apoptosis mode in the development of metastatic cancers, as well as in other diseases.
Collapse
Affiliation(s)
- Paola Chiarugi
- Department of Biochemical Sciences, University of Florence, Italy.
| | | |
Collapse
|
41
|
Konat GW, Krasowska-Zoladek A, Kraszpulski M. Statins enhance toll-like receptor 4-mediated cytokine gene expression in astrocytes: Implication of Rho proteins in negative feedback regulation. J Neurosci Res 2008; 86:603-9. [PMID: 17896797 DOI: 10.1002/jnr.21509] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Toll-like receptors (TLRs) are sentinels of innate immunity that recognize pathogenic molecules and trigger inflammatory response. Because inflammatory mediators are detrimental to the host, the TLR response is regulated by feedback inhibition. Statins, the inhibitors of isoprenoid biosynthesis, have been shown to be potent modulators of TLR activity, and this modulation may provide insight regarding mechanisms of the feedback inhibition. In the present study, we examined feedback mechanisms that regulate TLR4 activity in astrocytes using statins to perturb postligational signaling. Astrocytic cultures established from newborn rat brains were exposed to lipopolysaccharide (LPS), the ligand for TLR4. The up-regulation of expression of genes encoding interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNFalpha) was determined by real-time RT-PCR. Pretreatment of the cells with either atorvastatin or simvastatin enhanced the LPS-induced up-regulation of cytokine gene expression. The most profound enhancement of approximately 17-fold was observed for the Il-6 gene. The enhancements for the Tnfa and Il-1b genes were approximately 5- and 3.5-fold, respectively. Mevalonate fully reversed the effects of statins, indicating that these drugs act through the inhibition of isoprenoid synthesis. The inhibition of protein geranylgeranylation, but not protein farnesylation, mimicked the effects of statins, strongly indicating that the enhancement is mediated by the Rho proteins. In support of this notion, pretreatment of cells with toxin B, a specific inhibitor of the Rho proteins, also enhanced LPS-triggered up-regulation of the cytokine genes. These results indicate that the Rho proteins are involved in the activation of negative feedback inhibition of TLR4 signaling in astrocytes.
Collapse
Affiliation(s)
- Gregory W Konat
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, West Virginia 26506-9128, USA.
| | | | | |
Collapse
|
42
|
Zamoner A, Funchal C, Jacques-Silva MC, Gottfried C, Barreto Silva FRM, Pessoa-Pureur R. Thyroid hormones reorganize the cytoskeleton of glial cells through Gfap phosphorylation and Rhoa-dependent mechanisms. Cell Mol Neurobiol 2007; 27:845-65. [PMID: 17334943 DOI: 10.1007/s10571-006-9084-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 05/05/2006] [Indexed: 01/15/2023]
Abstract
Thyroid hormones (3,5,3'-triiodo-L: -thyronine, T3; 3,5,3',5'-L: -tetraiodothyronine, T4; TH) play crucial roles in the growth and differentiation of the central nervous system. In this study, we investigated the actions of TH on proliferation, viability, cell morphology, in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and actin reorganization in C6 glioma cells. We first observe that long-term exposure to TH stimulates cell proliferation without induce cell death. We also demonstrate that after 3, 6, 12, 18, and 24 h treatment with TH, C6 cells and cortical astrocytes show a process-bearing shape. Furthermore, immunocytochemistry with anti-actin and anti-GFAP antibodies reveals that TH induces reorganization of actin and GFAP cytoskeleton. We also observe an increased in vitro 32P incorporation into GFAP recovered into the high-salt Triton insoluble cytoskeletal fraction after 3 and 24 h exposure to 5 x 10(-8) and 10(-6) M T3, and only after 24 h exposure to 10(-9) M T4. These results show a T3 action on the phosphorylating system associated to GFAP and suggest a T3-independent effect of T4 on this cytoskeletal protein. In addition, C6 cells and astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations induced by TH, indicating that this effect could be mediated by the RhoA signaling pathway. Considering that IF network can be regulated by phosphorylation leading to reorganization of IF filamentous structure and that alterations of the microfilament organization may have important implications in glial functions, the effects of TH on glial cell cytoskeleton could be implicated in essential neural events such as brain development.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Guasch RM, Blanco AM, Pérez-Aragó A, Miñambres R, Talens-Visconti R, Peris B, Guerri C. RhoE participates in the stimulation of the inflammatory response induced by ethanol in astrocytes. Exp Cell Res 2007; 313:3779-88. [PMID: 17707794 DOI: 10.1016/j.yexcr.2007.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/19/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Astroglial cells are involved in the neuropathogenesis of several inflammatory diseases of the brain, where the activation of inflammatory mediators and cytokines plays an important role. We have previously demonstrated that ethanol up-regulates inflammatory mediators in both brain and astroglial cells. Since Rho GTPases are involved in inflammatory responses of astrocytes where loss of stress fibers takes place and RhoE/Rnd3 disorganizes the actin cytoskeleton, the aim of the present study was to investigate the implication of this protein in the stimulation of inflammatory signaling induced by ethanol. Our findings show that RhoE expression induces a decrease in both RhoA and Rac. In addition, RhoE not only induces actin cytoskeleton disorganization but it also stimulates both the IRAK/ERK/NF-kappaB pathway and the COX-2 expression associated with the inflammatory response in these cells. Our results also show that ethanol exposure induces RhoE signaling in astrocytes. Preincubation of astrocytes with GF109203X, an inhibitor of PKCs, reduces the RhoE levels and abolishes the ethanol-induced activation of IRAK, NF-kappaB and the COX-2 expression. Furthermore, RhoE overexpression restores ethanol responses in astrocytes treated with the PKCs inhibitor. Altogether, our findings suggest that this small GTPase is involved in the stimulation of the inflammatory signaling induced by ethanol in astrocytes. These findings provide new insights into the molecular mechanism involved in the inflammatory responses in astrocytes.
Collapse
Affiliation(s)
- Rosa M Guasch
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
44
|
Martínez SE, Lázaro-Diéguez F, Selva J, Calvo F, Piqueras JR, Crespo P, Claro E, Egea G. Lysophosphatidic acid rescues RhoA activation and phosphoinositides levels in astrocytes exposed to ethanol. J Neurochem 2007; 102:1044-52. [PMID: 17442046 DOI: 10.1111/j.1471-4159.2007.04581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-term ethanol treatment substantially impairs glycosylation and membrane trafficking in primary cultures of rat astrocytes. Our previous studies indicated that these effects were attributable to a primary alteration in the dynamics and organization of the actin cytoskeleton, although the molecular mechanism(s) remains to be elucidated. As small Rho GTPases and phosphoinositides are involved in the actin cytoskeleton organization, we now explore the effects of chronic ethanol treatment on these pathways. We show that chronic ethanol treatment of rat astrocytes specifically reduced endogenous levels of active RhoA as a result of the increase of in the RhoGAP activity. Furthermore, ethanol-treated astrocytes showed reduced phosphoinositides levels. When lysophosphatidic acid was added to ethanol-treated astrocytes, it rapidly reverted actin cytoskeleton reorganization and raised active RhoA levels and phosphoinositides content to those observed in untreated astrocytes. Overall, our results indicate that the harmful effects of chronic exposure to ethanol on a variety of actin dynamics-associated cellular events are primarily because of alterations of activated RhoA and phosphoinositides pools.
Collapse
Affiliation(s)
- Susana E Martínez
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Villegas SN, Njaine B, Linden R, Carri NG. Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Res Bull 2006; 71:116-26. [PMID: 17113937 DOI: 10.1016/j.brainresbull.2006.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 12/14/2022]
Abstract
We investigated the neuroprotective effect of glial-derived neurotrophic factor (GDNF) upon alcohol-exposed B92 cultures, as well as the role of the cytoskeleton and mitogen-activated protein kinase (MAPK) pathways in this effect. Ethanol (EtOH) was added to cultures, either alone or in combination with 30 ng/ml GDNF. Exposure to EtOH (86 and 172 mM; 60 and 120 min) increased the frequency of apoptotic cells identified by nuclear DNA staining with 4,6-diamidino-2-phenylindole (DAPI). Cultures treated with GDNF showed a decrease in ethanol-induced apoptosis. A jun N-terminal kinase (JNK) pathway is activated by EtOH and their pharmacological inhibition (by SP600125) neutralized ethanol-induced apoptosis, suggesting a role for JNK in EtOH neurotoxicity. Immunocytochemically detected phospho-JNK (p-JNK) showed an unusual filamental expression, and localized together with actin stress fibers. Examination of the cytoskeleton showed that EtOH depolymerized actin filaments, inducing p-JNK dissociation and translocation to the nucleus, which suggests that released p-JNK may contribute to glial cell death after EtOH exposure. Treatment with GDNF, in turn, may neutralize the ethanol-induced cell death pathway. Either a phosphatidylinositol 3-kinase (PI3K)/AKT pathway inhibitor (LY294002) or an inhibitor of the extracellular signal-regulated kinase (ERK) 1, 2 pathways (UO126) failed to neutralize GDNF protective effects. However, the simultaneous use of both inhibitors blocked the protective effect of GDNF, suggesting a role for both signaling cascades in the GDNF protection. These findings provide further insight into the mechanism involved in ethanol-induced apoptosis and the neurotrophic protection of glial cells.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Molecular Biology, IMBICE, Camino Belgrano y 526, CC 403, 1900 La Plata, Argentina; Instituto de Biofísica da UFRJ, CCS, Bloco G, Cidade Universitaria, 21949-900 Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
46
|
Thakur V, Pritchard MT, McMullen MR, Wang Q, Nagy LE. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production. J Leukoc Biol 2006; 79:1348-56. [PMID: 16554353 PMCID: PMC1959405 DOI: 10.1189/jlb.1005613] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the development of chronic ethanol-induced liver injury. Although ROS modulate the activity of many signal transduction pathways, the molecular targets of ROS during ethanol exposure are not well understood. Here, we investigated whether specific ROS-sensitive signal transduction pathways contribute to increased tumor necrosis factor alpha (TNF-alpha) production by Kupffer cells after chronic ethanol feeding to rats. Lipopolysaccharide (LPS) rapidly increased ROS production, measured by dihydrorhodamine fluorescence, in Kupffer cells from ethanol- and pair-fed rats, and ROS production was 2.5-fold greater in ethanol-fed compared with pair-fed. Pretreatment with diphenyleneiodonium (DPI), which inhibits reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalized ROS production in Kupffer cells from ethanol-fed rats. LPS rapidly increased Rac1-guanosinetriphosphatase (GTPase) activity and p67(phox) translocation to the plasma membrane in Kupffer cells from pair-fed rats. After ethanol feeding, Rac1-GTPase activity was already increased over pair-fed at baseline and remained elevated over pair-fed after LPS stimulation. Further, LPS-stimulated p67(phox) translocation to the plasma membrane was enhanced after chronic ethanol feeding. LPS-stimulated extracellular signal-regulated kinase (ERK)1/2 and p38 phosphorylation, two signaling pathways regulated by ROS, were increased twofold in Kupffer cells from ethanol-fed rats compared with pair-fed controls. However, only LPS-stimulated ERK1/2 phosphorylation was inhibited by DPI, which also reduced LPS-stimulated TNF-alpha production in Kupffer cells from pair- and ethanol-fed rats. These results demonstrate that chronic ethanol feeding increases LPS-stimulated NADPH oxidase-dependent production of ROS in Kupffer cells. Further, ERK1/2 is an important target of NADPH oxidase-derived ROS in Kupffer cells, contributing to enhanced LPS-stimulated TNF-alpha production by Kupffer cells after chronic ethanol feeding.
Collapse
Affiliation(s)
| | | | | | | | - Laura E. Nagy
- Correspondence: Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4906. E-mail:
| |
Collapse
|
47
|
Miñambres R, Guasch RM, Perez-Aragó A, Guerri C. The RhoA/ROCK-I/MLC pathway is involved in the ethanol-induced apoptosis by anoikis in astrocytes. J Cell Sci 2006; 119:271-82. [PMID: 16390872 DOI: 10.1242/jcs.02723] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anoikis is a programmed cell death induced by loss of anchorage that is involved in tissue homeostasis and disease. Ethanol is an important teratogen that induces marked central nervous system (CNS) dysfunctions. Here we show that astrocytes exposed to ethanol undergo morphological changes associated with anoikis, including the peripheral reorganization of both focal adhesions and actin-myosin system, cell contraction, membrane blebbing and chromatin condensation. We found that either the small GTPase RhoA or its effector ROCK-I (Rho kinase), promotes membrane blebbing in astrocytes. Ethanol induces a ROCK-I activation that is mediated by RhoA, rather than by caspase-3 cleavage. Accordingly, the RhoA inhibitor C3, completely abolishes the ethanol-induced ROCK-I activation. Furthermore, inhibition of both RhoA and ROCK prevents the membrane blebbing induced by ethanol. Ethanol also promotes myosin light chain (MLC) phosphorylation, which might be involved in the actin-myosin contraction. All of these findings strongly support that ethanol-exposed astrocytes undergo apoptosis by anoikis and also that the RhoA/ROCK-I/MLC pathway participates in this process.
Collapse
Affiliation(s)
- Rebeca Miñambres
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, c/EP Autopista del Saler 16-3, 46013-Valencia, Spain
| | | | | | | |
Collapse
|
48
|
Blanco AM, Vallés SL, Pascual M, Guerri C. Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. THE JOURNAL OF IMMUNOLOGY 2006; 175:6893-9. [PMID: 16272348 DOI: 10.4049/jimmunol.175.10.6893] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.
Collapse
Affiliation(s)
- Ana M Blanco
- Unidad de Patología Celular, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
49
|
Sebastian BM, Nagy LE. Decreased insulin-dependent glucose transport by chronic ethanol feeding is associated with dysregulation of the Cbl/TC10 pathway in rat adipocytes. Am J Physiol Endocrinol Metab 2005; 289:E1077-84. [PMID: 16105861 PMCID: PMC1283127 DOI: 10.1152/ajpendo.00296.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy alcohol consumption is an independent risk factor for type 2 diabetes. Although the exact mechanism by which alcohol contributes to the increased risk is unknown, impaired glucose disposal is a likely target. Insulin-stimulated glucose disposal in adipocytes is regulated by two separate and independent pathways, the PI3K pathway and the Cbl/TC10 pathway. Previous studies suggest that chronic ethanol feeding impairs insulin-stimulated glucose transport in adipocytes in a PI3K-independent manner. In search of potential targets of ethanol that would affect insulin-stimulated glucose transport, we investigated the effects of 4-wk ethanol feeding to male Wistar rats on the Cbl/TC10 pathway in isolated adipocytes. Chronic ethanol feeding inhibited insulin-stimulated cCbl phosphorylation compared with pair feeding. Insulin receptor and Akt/PKB phosphorylation were not affected by ethanol feeding. Chronic ethanol exposure also impaired cCbl and TC10 recruitment to a lipid raft fraction isolated from adipocytes by detergent extraction. Furthermore, chronic ethanol feeding increased the amount of activated TC10 and filamentous actin in adipocytes at baseline and abrogated the ability of insulin to further activate TC10 or polymerize actin. These results demonstrate that the impairment in insulin-stimulated glucose transport observed in adipocytes after chronic ethanol feeding to rats is associated with a disruption of insulin-mediated Cbl/TC10 signaling and actin polymerization.
Collapse
Affiliation(s)
- Becky M Sebastian
- Dept. of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4906, USA
| | | |
Collapse
|
50
|
Funchal C, Gottfried C, de Almeida LMV, dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain alpha-amino acids accumulating in maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol 2005; 25:851-67. [PMID: 16133938 DOI: 10.1007/s10571-005-4938-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 07/03/2005] [Indexed: 12/16/2022]
Abstract
1. Maple syrup urine disease (MSUD) is an inherited metabolic disorder predominantly characterized by neurological dysfunction and cerebral atrophy whose patophysiology is poorly known. 2. We investigated here whether the branched-chain amino acids (BCAA) leucine (Leu), isoleucine (Ile) and valine (Val), which are the biochemical hallmark of this disorder, could alter astrocyte morphology and cytoskeleton reorganization by exposing cultured astrocytes from cerebral cortex of neonatal rats to various concentrations of the amino acids. A change of cell morphology from the usual polygonal to the appearance of fusiform or process-bearing cells was caused by the BCAA. Cell death was also observed when astrocytes were incubated in the presence of BCAA for longer periods. 3. Val-treated astrocytes presented the most dramatic morphological alterations. Immunocytochemistry with anti-actin and anti-GFAP antibodies revealed that all BCAA induced reorganization of actin and GFAP cytoskeleton. In addition, lysophosphatidic acid, an activator of RhoA GTPase pathway, was able to totally prevent the morphological alterations and cytoskeletal reorganization induced by Val, indicating that the RhoA signaling pathway was involved in these effects. 4. Furthermore, creatine attenuated the morphological alterations provoked by the BCAA, the protection being more pronounced for Val, suggesting that impairment of energy homeostasis is partially involved in BCAA cytotoxic action. The data indicate that the BCAA accumulating in MSUD are toxic to astrocyte cells, a fact that may be related to the pathogenesis of the neurological dysfunction of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|