1
|
Saponjic J, Mejías R, Nikolovski N, Dragic M, Canak A, Papoutsopoulou S, Gürsoy-Özdemir Y, Fladmark KE, Ntavaroukas P, Bayar Muluk N, Zeljkovic Jovanovic M, Fontán-Lozano Á, Comi C, Marino F. Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:4330. [PMID: 38673915 PMCID: PMC11050170 DOI: 10.3390/ijms25084330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.
Collapse
Affiliation(s)
- Jasna Saponjic
- Department of Neurobiology, Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences–National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Asuman Canak
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | | | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, 5020 Bergen, Norway;
| | - Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Franca Marino
- Center for Research in Medical Pharmacology, School of Medicine, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
2
|
Virel A, Johansson J, Axelsson J, Ericsson M, Laterveer R, Ögren M, Orädd G, Jakobson Mo S, Af Bjerkén S. N-acetylcysteine decreases dopamine transporter availability in the non-lesioned striatum of the 6-OHDA hemiparkinsonian rat. Neurosci Lett 2021; 770:136420. [PMID: 34958912 DOI: 10.1016/j.neulet.2021.136420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to explore the beneficial effects of the antioxidant N-acetylcysteine (NAC) on the degenerated dopamine system. The short- and long-term regulatory mechanisms of NAC on the 6-OHDA hemiparkinsonian rat model were longitudinally investigated by performing positron emission tomography (PET) imaging using the specific dopamine transporter (DAT) radioligand [18F]FE-PE2I. The results demonstrate that after a unilateral dopamine insult NAC has a strong influence on the non-lesioned hemisphere by decreasing the levels of DAT in the striatum early after the lesion. We interpret this early and short-term decrease of DAT in the healthy striatum of NAC-treated animals as a beneficial compensatory effect induced by NAC.
Collapse
Affiliation(s)
- Ana Virel
- Department of Integrative Medical Biology. Umeå University, Umeå, Sweden.
| | - Jarkko Johansson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Madelene Ericsson
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Rutger Laterveer
- Department of Integrative Medical Biology. Umeå University, Umeå, Sweden
| | - Mattias Ögren
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Susanna Jakobson Mo
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Af Bjerkén
- Department of Integrative Medical Biology. Umeå University, Umeå, Sweden; Department of Clinical Science, Neurosciences. Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Li X, Si W, Li Z, Tian Y, Liu X, Ye S, Huang Z, Ji Y, Zhao C, Hao X, Chen D, Zhu M. miR‑335 promotes ferroptosis by targeting ferritin heavy chain 1 in in vivo and in vitro models of Parkinson's disease. Int J Mol Med 2021; 47:61. [PMID: 33649797 PMCID: PMC7910012 DOI: 10.3892/ijmm.2021.4894] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN). In a previous study, the authors demonstrated that ferritin heavy chain 1 (FTH1) inhibited ferroptosis in a model of 6-hydroxydopamine (6-OHDA)-induced PD. However, whether and how microRNAs (miRNAs/miRs) modulate FTH1 in PD ferroptosis is not yet well understood. In the present study, in vivo and in vitro models of PD induced by 6-OHDA were established. The results in vivo and in vitro revealed that the levels of the ferroptosis marker protein, glutathione peroxidase 4 (GPX4), and the PD marker protein, tyrosine hydroxylase (TH), were decreased in the model group, associated with a decreased FTH1 expression and the upregulation of miR-335. In both the in vivo and in vitro models, miR-335 mimic led to a lower FTH1 expression, exacerbated ferroptosis and an enhanced PD pathology. The luciferase 3′-untranslated region reporter results identified FTH1 as the direct target of miR-335. The silencing of FTH1 in 6-OHDA-stimulated cells enhanced the effects of miR-335 on ferroptosis and promoted PD pathology. Mechanistically, miR-335 enhanced ferroptosis through the degradation of FTH1 to increase iron release, lipid peroxidation and reactive oxygen species (ROS) accumulation, and to decrease mitochondrial membrane potential (MMP). On the whole, the findings of the present study reveal that miR-335 promotes ferroptosis by targeting FTH1 in in vitro and in vivo models of PD, providing a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Wenwen Si
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Zhan Li
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma and Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510010, P.R. China
| | - Ye Tian
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Xuelei Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Yichun Ji
- Baoan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Shenzhen, Guangdong 518101, P.R. China
| | - Caiping Zhao
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xiaoqian Hao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong 518104, P.R. China
| |
Collapse
|
4
|
The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IκBα/NF-κB pathway. Exp Gerontol 2019; 128:110743. [DOI: 10.1016/j.exger.2019.110743] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023]
|
5
|
Neuroplasticity and Neuroprotective Effect of Treadmill Training in the Chronic Mouse Model of Parkinson's Disease. Neural Plast 2019; 2019:8215017. [PMID: 31073303 PMCID: PMC6470436 DOI: 10.1155/2019/8215017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 01/16/2023] Open
Abstract
Physical training confers protection to dopaminergic neurons in rodent models of parkinsonism produced by neurotoxins. The sparing effect of physical training on dopaminergic neurons can be tested with training applied during chronic MPTP treatment, while the neurorestorative effect when training is applied after completing such treatment. In this study, the effect of the onset of training respective to chronic MPTP treatment was specifically addressed. Three groups of mice were injected with 10 doses of MPTP (12.5 mg/kg/injection) over 5 weeks. The first group remained sedentary; the second one underwent early onset training, which started 1 week before commencing MPTP treatment, continued throughout 5 weeks of treatment and 4 weeks thereafter; the third group underwent late-onset training of the same length and intensity as the former group, except that it started immediately after the end of MPTP treatment. Two groups served as controls: a saline-injected group that remained sedentary and saline-injected group, which underwent the same training as the early and late-onset training groups. Both early and late-onset physical training saved almost all nigral and VTA dopaminergic neurons, prevented inflammatory response, and increased the BDNF and GDNF levels to a similar extent. From these results one may conclude that early and late-onset training schedules were equipotent in their neuroprotective effect and that the mechanism of neuroprotection was similar. The sparing effect of early onset training may be satisfactorily explained by assuming that the increased level of BDNF and GDNF prevented the degeneration of dopaminergic neurons. To explain a similar number of dopaminergic neurons detected at the end of the early and late-onset training, one should additionally assume that the former training schedule induced neurogenesis. Results of this study support the view that physical activity may be neuroprotective even at a more advanced stage of PD and justify starting physical activity at any point of the disease.
Collapse
|
6
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
7
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
8
|
Mendes-Oliveira J, Lopes Campos F, Videira RA, Baltazar G. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment. Brain Behav Immun 2017; 64:296-307. [PMID: 28450223 DOI: 10.1016/j.bbi.2017.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Julieta Mendes-Oliveira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Filipa Lopes Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Rita Alexandra Videira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
9
|
Pittman JT, Dodd CA, Klein BG. Immunohistochemical Changes in the Mouse Striatum Induced by the Pyrethroid Insecticide Permethrin. Int J Toxicol 2016; 22:359-70. [PMID: 14555407 DOI: 10.1177/109158180302200504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have linked insecticide exposure and Parkinson's disease. In addition, some insecticides produce damage or physiological disruption within the dopaminergic nigrostriatal pathway of non-humans. This study employed immunohistochemical analysis in striatum of the C57BL/6 mouse to clarify tissue changes suggested by previous pharmacological studies of the pyrethroid insecticide permethrin. Dopamine transporter, tyrosine hydroxylase, and glial fibrillary acidic protein immunoreactivities were examined in caudate-putamen to distinguish changes in amount of dopamine transporter immunoreactive protein from degeneration or other damage to dopaminergic neuropil. Weight-matched pairs of pesticide-treated and vehicle-control mice were dosed and sacrificed on the same days. Permethrin at 0.8, 1.5 and 3.0 mg/kg were the low doses and at 200 mg/kg the high dose. Brains from matched pairs of mice were processed on the same slides using the avidin-biotin technique. Four fields were morphometrically located in each of the serial sections of caudateputamen, digitally photographed, and immunopositive image pixels were counted and compared between members of matched pairs of permethrin-treated and vehicle-control mice. For low doses, only 3.0 mg/kg produced a significant decrease in dopamine transporter immunostaining. The high dose of permethrin did not produce a significant change in dopamine transporter or tyrosine hydroxylase immunostaining, but resulted in a significant increase in glial fibrillary acidic protein immunostaining. These data suggest that a low dose of permethrin can reduce the amount of dopamine transporter immunoreactive protein in the caudate-putamen. They also suggest that previously reported reductions in dopamine uptake of striatal synaptosomes of high-dose mice may be due to nondegenerative tissue damage within this region as opposed to reductions of dopamine transporter protein or death of nigrostriatal terminals. These data provide further evidence that insecticides can affect the primary neurodegenerative substrate of Parkinson's disease.
Collapse
Affiliation(s)
- Julian T Pittman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
10
|
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY, Wang ZY. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol 2016; 280:13-23. [PMID: 26996132 DOI: 10.1016/j.expneurol.2016.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Accumulating evidence suggests that an abnormal accumulation of iron in the substantia nigra (SN) is one of the defining characteristics of Parkinson's disease (PD). Accordingly, the potential neuroprotection of Fe chelators is widely acknowledged for the treatment of PD. Although desferrioxamine (DFO), an iron chelator widely used in clinical settings, has been reported to improve motor deficits and dopaminergic neuronal survival in animal models of PD, DFO has poor penetration to cross the blood-brain barrier and elicits side effects. We evaluated whether an intranasal administration of DFO improves the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons in the nigrostriatal axis and investigated the molecular mechanisms of intranasal DFO treatment in preventing MPTP-induced neurodegeneration. Treatment with DFO efficiently alleviated behavioral deficits, increased the survival of tyrosine hydroxylase (TH)-positive neurons, and decreased the action of astrocytes in the SN and striatum in an MPTP-induced PD mouse model. Interestingly, we found that DFO up-regulated the expression of HIF-1α protein, TH, vascular endothelial growth factor (VEGF), and growth associated protein 43 (GAP43) and down-regulated the expression of α-synuclein, divalent metal transporter with iron-responsive element (DMT1+IRE), and transferrin receptor (TFR). This was accompanied by a decrease in iron-positive cells in the SN and striatum of the DFO-treated group. We further revealed that DFO treatment significantly inhibited the MPTP-induced phosphorylation of the c-Jun N-terminal kinase (JNK) and differentially enhanced the phosphorylation of extracellular regulated protein kinases (ERK) and mitogen-activated protein kinase (MAPK)/P38 kinase. Additionally, the effects of DFO on increasing the Bcl-2/Bax ratio were further validated in vitro and in vivo. In SH-SY5Y cells, the DFO-mediated up-regulation of HIF-1α occurred via the activation of the ERK and P38MAPK signaling pathway. Collectively, the present data suggest that intranasal DFO treatment is effective in reversing MPTP-induced brain abnormalities and that HIF-1-pathway activation is a potential therapy target for the attenuation of neurodegeneration.
Collapse
Affiliation(s)
- Chuang Guo
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Li-Juan Hao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhao-Hui Yang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Rui Chai
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Shuai Zhang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yu Gu
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Hui-Ling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Man-Li Zhong
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Tao Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Zhan-You Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
11
|
Aumann TD. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra. J Chem Neuroanat 2015; 73:21-32. [PMID: 26718607 DOI: 10.1016/j.jchemneu.2015.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/10/2023]
Abstract
The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2) Imbalances in midbrain DA cause symptoms associated with several prominent brain and behavioral disorders such as schizophrenia, addiction, obsessive-compulsive disorder, depression, Parkinson's disease and attention-deficit and hyperactivity disorder. Midbrain DA neurotransmitter plasticity may therefore play a role in the etiology of these symptoms, and might also offer new treatment options.
Collapse
Affiliation(s)
- Tim D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Aguirre P, Mena NP, Carrasco CM, Muñoz Y, Pérez-Henríquez P, Morales RA, Cassels BK, Méndez-Gálvez C, García-Beltrán O, González-Billault C, Núñez MT. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons. PLoS One 2015; 10:e0144848. [PMID: 26658949 PMCID: PMC4684383 DOI: 10.1371/journal.pone.0144848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023] Open
Abstract
Neuronal death in Parkinson’s disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2’-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.
Collapse
Affiliation(s)
- Pabla Aguirre
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
| | - Natalia P. Mena
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos M. Carrasco
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
| | - Yorka Muñoz
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
| | - Patricio Pérez-Henríquez
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo A. Morales
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Bruce K. Cassels
- Chemobiodynamics Laboratory, Chemistry Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Carolina Méndez-Gálvez
- Chemobiodynamics Laboratory, Chemistry Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Olimpo García-Beltrán
- Chemobiodynamics Laboratory, Chemistry Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Christian González-Billault
- Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
- Neuronal and Cellular Dynamics Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Marco T. Núñez
- Iron and Biology of Aging Laboratory, Biology Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Research Ring on Oxidative Stress in the Nervous System, Santiago, Chile
- * E-mail:
| |
Collapse
|
13
|
Tate CC, Chou VP, Campos C, Moalem AS, Di Monte DA, McGrogan M, Case CC, Manning-Bog AB. Mesenchymal stromal SB623 cell implantation mitigates nigrostriatal dopaminergic damage in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 2015; 11:1835-1843. [PMID: 26440859 DOI: 10.1002/term.2081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
Regenerative medicine for the treatment of motor features in Parkinson's disease (PD) is a promising therapeutic option. Donor cells can simultaneously address multiple pathological mechanisms while responding to the needs of the host tissue. Previous studies have demonstrated that mesenchymal stromal cells (MSCs) promote recovery using various animal models of PD. SanBio Inc. has developed a novel cell type designated SB623, which are adult bone marrow-derived MSCs transfected with Notch intracellular domain. In this preclinical study, SB623 cells protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal injury when transplanted unilaterally into C57BL/6 mouse striatum 3 days prior to toxin exposure. Specifically, mice with the SB623 cell transplants revealed significantly higher levels of striatal dopamine, tyrosine hydroxylase immunoreactivity and stereological nigral cell counts in the ipsilateral hemisphere vs vehicle-treated mice following MPTP administration. Interestingly, improvement in markers of striatal dopaminergic integrity was also noted in the contralateral hemisphere. These data indicate that MSCs transplantation, specifically SB623 cells, may represent a novel therapeutic option to ameliorate damage related to PD, not only at the level of striatal terminals (i.e. the site of implantation) but also at the level of the nigral cell body. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Vivian P Chou
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Carla Campos
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vezoli J, Dzahini K, Costes N, Wilson CRE, Fifel K, Cooper HM, Kennedy H, Procyk E. Increased DAT binding in the early stage of the dopaminergic lesion: a longitudinal [11C]PE2I binding study in the MPTP-monkey. Neuroimage 2014; 102 Pt 2:249-61. [PMID: 25108180 DOI: 10.1016/j.neuroimage.2014.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
The delayed appearance of motor symptoms in PD poses a crucial challenge for early detection of the disease. We measured the binding potential of the selective dopamine active transporter (DAT) radiotracer [(11)C]PE2I in MPTP-treated macaque monkeys, thus establishing a detailed profile of the nigrostriatal DA status following MPTP intoxication and its relation to induced motor and non-motor symptoms. Clinical score and cognitive performance were followed throughout the study. We measured longitudinally in vivo the non-displaceable binding potential to DAT in premotor, motor-recovered (i.e. both non-symptomatic) and symptomatic MPTP-treated monkeys. Results show an unexpected and pronounced dissociation between clinical scores and [(11)C]PE2I-BP(ND) during the premotor phase i.e. DAT binding in the striatum of premotor animals was increased around 20%. Importantly, this broad increase of DAT binding in the caudate, ventral striatum and anterior putamen was accompanied by i) deteriorated cognitive performance, showing a likely causal role of the observed hyperdopaminergic state (Cools, 2011; Cools and D'Esposito, 2011) and ii) an asymmetric decrease of DAT binding at a focal point of the posterior putamen, suggesting that increased DAT is one of the earliest, intrinsic compensatory mechanisms. Following spontaneous recovery from motor deficits, DAT binding was greatly reduced as recently shown in-vivo with other radiotracers (Blesa et al., 2010, 2012). Finally, high clinical scores were correlated to considerably low levels of DAT only after the induction of a stable parkinsonian state. We additionally show that the only striatal region which was significantly correlated to the degree of motor impairments is the ventral striatum. Further research on this period should allow better understanding of DA compensation at premature stages of PD and potentially identify new diagnosis and therapeutic index.
Collapse
Affiliation(s)
- Julien Vezoli
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France.
| | - Kwamivi Dzahini
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France; Primastem (LifeStemCells), Bron, France
| | | | - Charles R E Wilson
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Karim Fifel
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Howard M Cooper
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Henry Kennedy
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| | - Emmanuel Procyk
- INSERM U846, Stem Cell and Brain Research Institute, Bron, France; Université de Lyon, Université Lyon1, Lyon, France
| |
Collapse
|
15
|
Aznavour N, Cendres-Bozzi C, Lemoine L, Buda C, Sastre JP, Mincheva Z, Zimmer L, Lin JS. MPTP animal model of Parkinsonism: dopamine cell death or only tyrosine hydroxylase impairment? A study using PET imaging, autoradiography, and immunohistochemistry in the cat. CNS Neurosci Ther 2013; 18:934-41. [PMID: 23106974 DOI: 10.1111/cns.12009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to produce experimental models of Parkinson's disease in laboratory animals. It is believed to cause a selective destruction of substantia nigra dopamine neurons, mainly based on a large reduction of tyrosine hydroxylase (TH), the catecholamine's synthesizing enzyme. Unlike Parkinson's disease in humans, however, all animal models are able to recover more or less rapidly from the MPTP induced Parkinsonian syndrome. This raises the question as whether MPTP causes a cell death with a decrease in dopamine transporter or a simple impairment of TH. METHODS To respond to this question, we quantified in a cat model of Parkinson's disease (MPTP 5 mg/kg i.p. during 5 days) the dopamine transporter using positron emission tomography (PET) imaging and autoradiography of [(11) C]PE2I and compared the data with the TH-immunoreactivity. RESULTS We found no changes in [(11) C]PE2I PET binding either 5 or 26 days after MPTP treatment when compared to baseline levels. Similarly, there were no significant changes in [(11) C]PE2I autoradiographic binding in the cat brain one week after MPTP treatment. In sharp contrast, MPTP treated cats exhibited severe Parkinson-like motor syndrome during the acute period with a marked decrease in TH-immunoreactivity in the striatum. CONCLUSION These data suggest that MPTP toxicity impairs efficiently TH and that such an effect is not necessarily accompanied by significant reduction of dopamine transporter seen with in vitro or in vivo [(11) C]PE2I binding.
Collapse
|
16
|
Aumann T, Horne M. Activity‐dependent regulation of the dopamine phenotype in substantia nigra neurons. J Neurochem 2012; 121:497-515. [DOI: 10.1111/j.1471-4159.2012.07703.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tim Aumann
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neuroscience, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Mal Horne
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
- St Vincent’s Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
17
|
Radcliffe PM, Sterling CR, Tank AW. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone. J Neurochem 2009; 109:1272-84. [PMID: 19476543 DOI: 10.1111/j.1471-4159.2009.06056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 h, but less than 3 h, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene.
Collapse
Affiliation(s)
- Pheona M Radcliffe
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
18
|
Chen X, Xu L, Radcliffe P, Sun B, Tank AW. Activation of tyrosine hydroxylase mRNA translation by cAMP in midbrain dopaminergic neurons. Mol Pharmacol 2008; 73:1816-28. [PMID: 18349104 DOI: 10.1124/mol.107.043968] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During prolonged stress or chronic treatment with neurotoxins, robust compensatory mechanisms occur that maintain sufficient levels of catecholamine neurotransmitters in terminal regions. One of these mechanisms is the up-regulation of tyrosine hydroxylase (TH), the enzyme that controls catecholamine biosynthesis. In neurons of the periphery and locus coeruleus, this up-regulation is associated with an initial induction of TH mRNA. In contrast, this induction either does not occur or it is nominal in mesencephalic dopamine neurons. The reasons for this lack of compensatory TH mRNA induction remain obscure, because so little is known about the regulation of TH expression in these neurons. In this study, we test whether activation of the cAMP signaling pathway regulates TH gene expression in two rodent models of midbrain dopamine neurons, ventral midbrain organotypic slice cultures and MN9D cells. Our results demonstrate that elevation of cAMP leads to induction of TH protein and TH activity in both model systems; however, TH mRNA levels are not up-regulated by cAMP. The induction of TH protein is the result of a novel post-transcriptional mechanism that activates TH mRNA translation. This translational activation is mediated by sequences within the 3' untranslated region (UTR) of TH mRNA. Our results support a model in which cAMP induces or activates trans-factors that interact with the TH mRNA 3'UTR to increase TH protein synthesis. An understanding of this novel regulatory mechanism may help to explain the control of TH gene expression and consequently dopamine biosynthesis in midbrain neurons under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiqun Chen
- Department of Pharmacology and Physiology, Box 711, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
19
|
Wu AK, McCairn KW, Zada G, Wu T, Turner RS. Motor cortex stimulation: mild transient benefit in a primate model of Parkinson disease. J Neurosurg 2007; 106:695-700. [PMID: 17432724 PMCID: PMC4416648 DOI: 10.3171/jns.2007.106.4.695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors sought to examine the therapeutic efficacy of motor cortex stimulation (MCS) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated macaques and to characterize therapeutic differences with varying modes, frequencies, and durations of stimulation. METHODS Motor cortex stimulation was delivered at currents below motor threshold and at frequencies between 5 and 150 Hz through epidural electrodes over the primary motor cortex. The animals were studied during and without MCS using video analysis, activity logging, and food retrieval tasks. Animals were examined using two different stimulation protocols. The first protocol consisted of 1 hour of MCS therapy daily. The second protocol exposed the animal to continuous MCS for more than 24 hours with at least 2 weeks between MCS treatments. CONCLUSIONS Daily MCS yielded no consistent change in symptoms, but MCS at 2-week intervals resulted in significant increases in activity. Effects of biweekly MCS disappeared, however, within 24 hours of the onset of continuous MCS. In this study, MCS only temporarily reduced the severity of MPTP-induced parkinsonism.
Collapse
Affiliation(s)
- Alex K Wu
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
20
|
Richter F, Hamann M, Richter A. Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice. J Neurosci Res 2007; 85:681-91. [PMID: 17171705 DOI: 10.1002/jnr.21159] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been hypothesized that exposures to neurotoxic pesticides together with aging and genetic factors increase the risk for developing Parkinson's disease (PD) which is characterized by a progressive degeneration of the nigrostriatal dopaminergic pathway. Chronic treatment with the pesticide rotenone has been reported to induce parkinsonism in rats. Although transgenic mice (but not transgenic rats) are available to investigate the importance of environmental factors in genetically predisposed animals, the effects of chronic rotenone exposure have so far not been examined in intact mice. Therefore, we investigated the effects of chronic exposure to rotenone (2.5 or 4.0-5.0 mg/kg s.c. for 30-45 days) in mice aged 2.5, 5, or 12 months. During the treatment period, the effects on vitality and motor behavior were investigated. Furthermore, the toxicity of rotenone on dopaminergic nigrostriatal neurons and peripheral tissues was examined. In comparison with control mice, rotenone-treated mice had a decreased spontaneous motor activity, but the density of nigral dopaminergic neurons failed to show any significant changes, except for a tendency to decrease in old mice treated with 4 mg/kg. At the tested doses, rotenone caused a moderate hepatic fatty degeneration. The data indicate that rotenone is not able to cause the neuropathological characteristics of PD in mice under these testing paradigms, which were similar to those of the rotenone rat model. Further studies will have to clarify whether genetic mouse models of PD might be more sensitive to the neurotoxic effects of rotenone.
Collapse
Affiliation(s)
- Franziska Richter
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
21
|
Ciesielska A, Joniec I, Kurkowska-Jastrzebska I, Przybyłkowski A, Gromadzka G, Członkowska A, Członkowski A. Influence of age and gender on cytokine expression in a murine model of Parkinson's disease. Neuroimmunomodulation 2007; 14:255-65. [PMID: 18196934 DOI: 10.1159/000113432] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/10/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The neuroinflammatory reaction has been linked with Parkinson's disease. One of the hypotheses to explain the significance of age and gender (male predominance) effects on neurodegeneration in Parkinson's disease may result from a link between these risk factors and the inflammatory processes. Here, we investigated the expression of inflammatory mediators in relation to 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine (MPTP)-induced neurodegenerative processes in nigrostriatal pathway in young and aged male and female mice. METHODS AND RESULTS We simultaneously assessed striatal tyrosine hydroxylase (TH) protein concentrations (Western blotting) and cytokine (TNFalpha, IFNgamma, IL-1beta, IL-6 and TGFbeta(1)) mRNA levels (RT-PCR) in young and aged (2- and 12-month-old) C57BL/6 male and female mice after 6 h, 1, 3, 7, 14, 21 days after MPTP intoxication. Western blotting analysis showed that at the early time points, males showed a greater reduction in striatal TH versus females. Additionally, in contrast to the aged mice, in young males and females the TH concentration gradually increased between the 7th and the 21st day after intoxication. The increases in TNFalpha, IL-1beta and IFNgamma after intoxication were faster in both young and aged males than females. In males (both ages), we observed an increase in TGFbeta(1) at the early time points. In contrast, in females (both ages) TGFbeta(1) was elevated at later time points. MPTP caused an increase in IL-6 in males and females, but this increase was significantly higher in females. CONCLUSIONS A gender and age skewing of the cytokine gene expression in the striatum after intoxication may be related to the greater susceptibility in males as well as older animals to the detrimental effects of MPTP.
Collapse
Affiliation(s)
- Agnieszka Ciesielska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Petzinger GM, Fisher B, Hogg E, Abernathy A, Arevalo P, Nixon K, Jakowec MW. Behavioral motor recovery in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned squirrel monkey (Saimiri sciureus): Changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins. J Neurosci Res 2006; 83:332-47. [PMID: 16385585 DOI: 10.1002/jnr.20730] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) provides an excellent opportunity to study repair and response to injury in the basal ganglia. Administration to mammals leads to the destruction of nigrostriatal dopaminergic neurons and depletion of striatal dopamine. In the squirrel monkey (Saimiri sciureus), MPTP-lesioning results in parkinsonian motor symptoms including bradykinesia, postural instability, and rigidity. Over time animals display motor behavioral recovery. To better understand this mechanism we employed a lesioning regimen of two or six subcutaneous injections of MPTP (2.0 mg/kg, free-base) to generate mild or moderate parkinsonism. Brain tissue was harvested at 6 weeks or 9 months after the last injection and analyzed for dopamine and its metabolites by high performance liquid chromatography (HPLC), and by immunohistochemical staining and Western immunoblotting for the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine- and cAMP-responsive protein phosphatase of 32 kDa (DARPP-32), an effector molecule enriched in striatal medium spiny neurons. Several months after MPTP-lesioning, when squirrel monkeys displayed full motor behavioral recovery, striatal dopamine levels remained low with a greater return in the ventral striatum. This finding is consistent with other reports using neurotoxicant-lesioning models of the basal ganglia in rodents and other species of nonhuman primates. Elevated dopamine turnover ratio and decreased DAT expression appeared in early behavioral recovery at the 6-week time point in both mild- and moderate-parkinsonian monkeys. Tyrosine hydroxylase and DAT expression was increased in late stage recovery even within dopamine-depleted regions and supports sprouting. Altered DARPP-32 expression suggests a role of medium spiny neurons in recovery.
Collapse
Affiliation(s)
- Giselle M Petzinger
- George and MaryLou Boone Parkinson's Disease and Movement Disorders Research Center, Department of Neurology, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | |
Collapse
|
23
|
Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behav Brain Res 2005; 162:1-10. [PMID: 15922062 DOI: 10.1016/j.bbr.2005.02.023] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/22/2005] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Several toxin-induced animals models simulate the motor deficits occurring in PD. Among them, the unilateral 6-hydroxydopamine (6-OHDA) model is frequently used in rats and has the advantage of presenting side-biased motor impairments. However, the behavioral consequences of a unilateral 6-OHDA-lesion have, so far, not been described in detail in mice. The aim of this study was to characterize mice with unilateral 6-OHDA-lesions placed in the median forebrain bundle using several motor behavioral tests in order to identify the most suitable predictor of nigral cell loss. Mice underwent various drug-induced (amphetamine- and apomorphine-induced rotation) and spontaneous motor tests (cylinder, rotarod, elevated body swing, and stride length test). The amphetamine-induced rotation test, the cylinder and the rotarod test were most sensitive and reliable in detecting loss of tyrosine hydroxylase-immunoreactive cells in the substantia nigra. This study demonstrates that substantial and stable unilateral 6-OHDA-induced lesions can be established in mice, and that these lesions can be functionally assessed using several different side-bias-based behavioral tests. This mouse model offers the opportunity to use transgenic mouse strains and study the interactions between genes of interest and toxins in relation to Parkinson's disease etiology in the future.
Collapse
Affiliation(s)
- Ruxandra Iancu
- Neuronal Survival Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Sciences, Lunds University, BMC A10, 22184 Lund, Sweden
| | | | | | | |
Collapse
|
24
|
Liu B, Xie JX, Rowlands DK, Gou YL, Leung CC, Chung YW, Chan HC. Neuroprotective effects of Bak Foong Pill in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-induced Parkinson's disease model mice. Biol Pharm Bull 2005; 27:1245-50. [PMID: 15305030 DOI: 10.1248/bpb.27.1245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroprotective effects of estrogen and estrogen-like chemicals on neurodegenerative diseases, especially Parkinson's disease, have been well established. In the present study, we compared the effects of Bak Foong Pill (BFP), a well-known gynaecological tonic in China, and 17beta-estradiol, on dopamine transporter (DAT) and tyrosine hydroxylase (TH) gene expression patterns in ovariectomized, 1-methyl-4-phenyl-1,2,3,6-tetrahyrdropyridine (MPTP)-induced Parkinson's disease (PD) model mice, using multiplex reverse transcription-polymerase chain reaction (RT-PCR). MPTP, a specific dopaminergic neurotoxin, significantly decreased DAT and TH mRNA levels in the striatum, midbrain and cerebellum, but not the cortex, of C57BL/6 mice. However, MPTP-challenge with BFP pretreatment demonstrated reduced neurotoxicity, with DAT and TH mRNA levels either not affected by MPTP or affected to a significantly lesser extent in the midbrain and striatum as compared to the MPTP treated controls. 17beta-estradiol treatment prevented MPTP-induced reduction of DAT expression in striatum and midbrain, but failed to alter TH expression. These results suggest that BFP is able to protect dopaminergic neurons against MPTP-induced neuronal damage in a mechanism that is different from the protective effect of estrogen.
Collapse
Affiliation(s)
- Bin Liu
- Epithelial Cell Biology Research Center, Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, P.R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Striatal preprotachykinin (PPT) gene expression was measured in MPTP-treated cats when symptomatic and during various stages of recovery from parkinsonism using in situ hybridization histochemistry. Animals expressing severe (1 week post-MPTP) or moderate (3 weeks post-MPTP) parkinsonian sensorimotor deficits had significantly reduced striatal PPT mRNA expression. In contrast, fully recovered animals (6 weeks post-MPTP) had striatal PPT mRNA levels that were not significantly different from normal. Thus, PPT gene expression in the striatum appears to reflect presence or absence of sensorimotor deficits in MPTP-treated cats.
Collapse
Affiliation(s)
- Timothy V Wade
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust St., Rm. 521 Jefferson Alumni Hall, Philadelphia, PA 19107, USA
| | | |
Collapse
|
26
|
Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 2003; 88:443-53. [PMID: 14690532 DOI: 10.1111/j.1471-4159.2004.02190.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic deficiency in the brain of zebrafish was produced by systemic administration of two catecholaminergic neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the neurochemical and behavioural changes were characterized. The levels of dopamine and noradrenaline decreased significantly after the injection of MPTP and 6-OHDA. Corresponding to these changes, fish exhibited characteristic changes in locomotor behaviour, i.e. the total distance moved and velocity decreased after both neurotoxins. Tyrosine hydroxylase and caspase 3 protein levels were not altered after MPTP or 6-OHDA injections, as studied by immunohistochemistry and western blotting. The catecholaminergic cell clusters suggested to correspond to the mammalian nigrostriatal cell group displayed normal tyrosine hydroxylase immunoreactivity after the toxin treatment and did not show signs of DNA fragmentation that would indicate activation of cascades that lead to cell death. The results show that single systemic injections of MPTP and 6-OHDA induce both biochemical and behavioural changes in zebrafish, albeit failing to produce any significant morphological alteration in catecholaminergic cell clusters at the tested doses. This approach may be used for the screening of chemicals affecting the dopaminergic system. The model may be especially useful for evaluation of the role of novel genes in neurotoxicity, as a large number of zebrafish mutants are becoming available.
Collapse
Affiliation(s)
- Oleg V Anichtchik
- Neuroscience Center, Biomedicum Helsinki, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Cook R, Lu L, Gu J, Williams RW, Smeyne RJ. Identification of a single QTL, Mptp1, for susceptibility to MPTP-induced substantia nigra pars compacta neuron loss in mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:279-88. [PMID: 12591164 DOI: 10.1016/s0169-328x(02)00659-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of substantia nigra pars compacta (SNpc) neurons seen in idiopathic Parkinson's disease is hypothesized to result from a genetic susceptibility to an unknown environmental toxin. MPTP has been used as a prototypical toxin, since exposure to this drug results in variable SNpc cell death in several vertebrate species, including man and mouse. Previously, we have shown that C57BL/6J mice are sensitive to this compound, while Swiss-Webster mice are resistant. In this study, we intercrossed these mouse strains to map quantitative trait loci (QTL) for MPTP sensitivity. Using genome wide PCR analysis, we found that a single major QTLs, Mptp1, located near the distal end of chromosome 1 between D1Mit113 and D1Mit293, accounts for the majority of the strain sensitivity to MPTP.
Collapse
Affiliation(s)
- Ruby Cook
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105-2794, USA
| | | | | | | | | |
Collapse
|