1
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Kantor S, Lanigan M, Giggins L, Lione L, Magomedova L, de Lannoy I, Upton N, Duxon M. Ketamine supresses REM sleep and markedly increases EEG gamma oscillations in the Wistar Kyoto rat model of treatment-resistant depression. Behav Brain Res 2023; 449:114473. [PMID: 37146722 DOI: 10.1016/j.bbr.2023.114473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
Wistar-Kyoto (WKY) rats exhibit depression-like characteristics and decreased sensitivity to monoamine-based antidepressants, making them a suitable model of treatment-resistant depression (TRD). Ketamine has emerged recently as a rapidly acting antidepressant with high efficacy in TRD. Our aim was to determine whether subanaesthetic doses of ketamine can correct sleep and electroencephalogram (EEG) alterations in WKY rats and whether any ketamine-induced changes differentially affect WKY rats compared to Sprague-Dawley (SD) rats. Thus, we surgically implanted 8SD and 8 WKY adult male rats with telemetry transmitters and recorded their EEG, electromyogram, and locomotor activity after vehicle or ketamine (3, 5 or 10mg/kg, s.c.) treatment. We also monitored the plasma concentration of ketamine and its metabolites, norketamine and hydroxynorketamine in satellite animals. We found that WKY rats, have an increased amount of rapid eye movement (REM) sleep, fragmented sleep-wake pattern, and increased EEG delta power during non-REM sleep compared to SD rats. Ketamine suppressed REM sleep and increased EEG gamma power during wakefulness in both strains, but the gamma increase was almost twice as large in WKY rats than in SD rats. Ketamine also increased beta oscillations, but only in WKY rats. These differences in sleep and EEG are unlikely to be caused by dissimilarities in ketamine metabolism as the plasma concentrations of ketamine and its metabolites were similar in both strains. Our data suggest an enhanced antidepressant-like response to ketamine in WKY rats, and further support the predictive validity of acute REM sleep suppression as a measure of antidepressant responsiveness.
Collapse
Affiliation(s)
- Sandor Kantor
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada.
| | - Michael Lanigan
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | - Lauren Giggins
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Lisa Lione
- University of Hertfordshire, College Lane, Hatfield, Herts, AL10 9AD, United Kingdom
| | | | | | - Neil Upton
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom
| | - Mark Duxon
- Transpharmation Ltd, 2 Royal College Street, London, NW1 0NH, United Kingdom; Transpharmation Canada, Fergus, ON, N1M 2W8, Canada
| |
Collapse
|
3
|
Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019; 97:1515-1520. [PMID: 30916810 PMCID: PMC6764922 DOI: 10.1002/jnr.24417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Four major discoveries on the function of the pedunculopontine nucleus (PPN) have significantly advanced our understanding of the role of arousal in neurodegenerative disorders. The first was the finding that stimulation of the PPN-induced controlled locomotion on a treadmill in decerebrate animals, the second was the revelation of electrical coupling in the PPN and other arousal and sleep-wake control regions, the third was the determination of intrinsic gamma band oscillations in PPN neurons, and the last was the discovery of gene transcription resulting from the manifestation of gamma activity in the PPN. These discoveries have led to novel therapies such as PPN deep brain stimulation (DBS) for Parkinson's disease (PD), identified the mechanism of action of the stimulant modafinil, determined the presence of separate mechanisms underlying gamma activity during waking versus REM sleep, and revealed the presence of gene transcription during the manifestation of gamma band oscillations. These discoveries set the stage for additional major advances in the treatment of a number of disorders.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience (CTN), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
4
|
Lima JD, Sobrinho CR, Santos LK, Takakura AC, Moreira TS. M4-muscarinic acetylcholine receptor into the pedunculopontine tegmental nucleus mediates respiratory modulation of conscious rats. Respir Physiol Neurobiol 2019; 269:103254. [PMID: 31325565 DOI: 10.1016/j.resp.2019.103254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) has been shown to have important functions relevant to the regulation of behavioral states and various motor control systems, including breathing control. The PPTg is considered an important nucleus in the mesopontine region with considerably cholinergic input to the ventral respiratory column. In addition, recent studies indicate that cholinergic innervation of the ventral respiratory column may play an important role in modulation of breathing. Here, we investigated the cholinergic stimulation of the PPTg and the changes in breathing output in conscious rats. Male Wistar rats (280-350 g, N = 5-12/group) with unilateral stainless steel cannula implanted into the PPTg were used. Respiratory parameters (tidal volume (VT), respiratory frequency (fR) and ventilation (VE)) were analyzed by whole body plethysmography. In unrestrained awake rats, unilateral injection of the cholinergic muscarinic agonist carbachol (10 mM-100 nL) in the PPTg decreased fR, and increase VT, without changing VE. The changes in fR and VT elicited by carbachol into the PPTg are abolished by previous blockade of the M4 muscarinic cholinergic receptors tropicamide into the PPTg. No significant changes in fR and VT elicited by carbachol were observed after blockade of the M1 and/or M3 muscarinic cholinergic receptors pirenzepine or 4-DAMP into the PPTg. Our data suggest that the changes in fR and VT produced by muscarinic cholinergic stimulation of PPTg is presumably mediated through a Gi-coupled M4 muscarinic receptors.
Collapse
Affiliation(s)
- Janayna D Lima
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Cleyton R Sobrinho
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Leonardo K Santos
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Ana C Takakura
- Dept. of Pharmacology, University of São Paulo, São Paulo, SP, 05508, Brazil
| | - Thiago S Moreira
- Dept. of Physiology and Biophysics, University of São Paulo, São Paulo, SP, 05508, Brazil.
| |
Collapse
|
5
|
Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019; 130:925-940. [PMID: 30981899 PMCID: PMC7365492 DOI: 10.1016/j.clinph.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The pedunculopontine nucleus (PPN) is located in the mesopontine tegmentum and is best delimited by a group of large cholinergic neurons adjacent to the decussation of the superior cerebellar peduncle. This part of the brain, populated by many other neuronal groups, is a crossroads for many important functions. Good evidence relates the PPN to control of reflex reactions, sleep-wake cycles, posture and gait. However, the precise role of the PPN in all these functions has been controversial and there still are uncertainties in the functional anatomy and physiology of the nucleus. It is difficult to grasp the extent of the influence of the PPN, not only because of its varied functions and projections, but also because of the controversies arising from them. One controversy is its relationship to the mesencephalic locomotor region (MLR). In this regard, the PPN has become a new target for deep brain stimulation (DBS) for the treatment of parkinsonian gait disorders, including freezing of gait. This review is intended to indicate what is currently known, shed some light on the controversies that have arisen, and to provide a framework for future research.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - C B Saper
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David B Rye
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - M Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - J Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, the Netherlands
| | - A Lozano
- Division of Neurosurgery, University of Toronto and Krembil Neuroscience Centre, University Health Network, Toronto, Canada
| | - J Valls-Solé
- Neurology Department, Hospital Clínic, University of Barcelona, IDIBAPS (Institut d'Investigació Biomèdica August Pi i Sunyer), Barcelona, Spain
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019; 9:brainsci9030064. [PMID: 30889866 PMCID: PMC6468768 DOI: 10.3390/brainsci9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.
Collapse
|
7
|
Garcia‐Rill E, D'Onofrio S, Mahaffey SC, Bisagno V, Urbano FJ. Bottom-up gamma and bipolar disorder, clinical and neuroepigenetic implications. Bipolar Disord 2019; 21:108-116. [PMID: 30506611 PMCID: PMC6441386 DOI: 10.1111/bdi.12735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.
Collapse
Affiliation(s)
- Edgar Garcia‐Rill
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Stasia D'Onofrio
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Susan C Mahaffey
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Veronica Bisagno
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| | - Francisco J Urbano
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
Urbano FJ, Bisagno V, Garcia-Rill E. Arousal and drug abuse. Behav Brain Res 2017; 333:276-281. [PMID: 28729115 DOI: 10.1016/j.bbr.2017.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/08/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
The reticular activating system (RAS) is not an amorphous region but distinct nuclei with specific membrane properties that dictate their firing during waking and sleep. The locus coeruleus and raphe nucleus fire during waking and slow wave sleep, with the pedunculopontine nucleus (PPN) firing during both waking and REM sleep, the states manifesting arousal-related EEG activity. Two important discoveries in the PPN in the last 10 years are, 1) that some PPN cells are electrically coupled, and 2) every PPN cell manifests high threshold calcium channels that allow them to oscillate at beta/gamma band frequencies. The role of arousal in drug abuse is considered here in terms of the effects of drugs of abuse on these two mechanisms. Drug abuse and the perception of withdrawal/relapse are mediated by neurobiological processes that occur only when we are awake, not when we are asleep. These relationships focus on the potential role of arousal, more specifically of RAS electrical coupling and gamma band activity, in the addictive process as well as the relapse to drug use.
Collapse
Affiliation(s)
| | - Verónica Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Garcia-Rill E. Bottom-up gamma and stages of waking. Med Hypotheses 2017; 104:58-62. [PMID: 28673592 DOI: 10.1016/j.mehy.2017.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022]
Abstract
Gamma activity has been proposed to promote the feed forward or "bottom-up" flow of information from lower to higher regions of the brain during perception. The pedunculopontine nucleus (PPN) modulates waking and REM sleep, and is part of the reticular activating system (RAS). The properties of PPN cells are unique in that all PPN neurons fire maximally at gamma band frequency regardless of electrophysiological or transmitter type, thus proposed as one origin of "bottom-up" gamma. This property is based on the presence of intrinsic membrane oscillations subserved by high threshold, voltage-dependent calcium channels. Moreover, some PPN cells are electrically coupled. Assuming that the population of PPN neurons has the capacity to fire at ∼40Hz coherently, then the population as a whole can be expected to generate a stable gamma band signal. But what if not all the neurons are firing at the peaks of the oscillations? That means that some cells may fire only at the peaks of every second oscillation. Therefore, the population as a whole can be expected to be firing at a net ∼20Hz. If some cells are firing at the peaks of every fourth oscillation, then the PPN as a whole would be firing at ∼10Hz. Firing at rates below 10Hz would imply that the system is seldom firing at the peaks of any oscillation, basically asleep, in slow wave sleep, thus the activation of the RAS is insufficient to promote waking. This hypothesis carries certain implications, one of which is that we awaken in stages as more and more cells are recruited to fire at the peaks of more and more oscillations. For this system, it would imply that, as we awaken, we step from ∼10Hz to ∼20Hz to ∼30Hz to ∼40Hz, that is, in stages and presumably at different levels of awareness. A similar process can be expected to take place as we fall asleep. Awakening can then be considered to be stepwise, not linear. That is, the implication is that the process of waking is a stepwise event, not a gradual increase, suggesting that the brain can spend time at each of these different stages of arousal.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
10
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
11
|
Garcia-Rill E, D’Onofrio S, Mahaffey S. Bottom-up Gamma: the Pedunculopontine Nucleus and Reticular Activating System. TRANSLATIONAL BRAIN RHYTHMICITY 2016; 1:49-53. [PMID: 28691105 PMCID: PMC5497760 DOI: 10.15761/tbr.1000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma rhythms have been proposed to promote the feed forward or "bottom-up" flow of information from lower to higher regions in the brain during perception. On the other hand, beta rhythms have been proposed to represent feed back or "top-down" influence from higher regions to lower. The pedunculopontine nucleus (PPN) has been implicated in sleep-wake control and arousal, and is part of the reticular activating system (RAS). This review describes the properties of the cells in this nucleus. These properties are unique, and perhaps it is the particular characteristics of these cells that allow the PPN to be involved in a host of functions and disorders. The fact that all PPN neurons fire maximally at gamma band frequency regardless of electrophysiological or transmitter type, make this an unusual cell group. In other regions, for example in the cortex, cells with such a property represent only a sub-population. More importantly, the fact that this cell group's functions are related to the capacity to generate coherent activity at a preferred natural frequency, gamma band, speaks volumes about how the PPN functions. We propose that "bottom-up" gamma band influence arises in the RAS and contributes to the build-up of the background of activity necessary for preconscious awareness and gamma activity at cortical levels.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| | - S. D’Onofrio
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| | - S. Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology, University of Arkansas for Medical Sciences., Little Rock, AR
| |
Collapse
|
12
|
Luster BR, Urbano FJ, Garcia-Rill E. Intracellular mechanisms modulating gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2016; 4:4/12/e12787. [PMID: 27354537 PMCID: PMC4923228 DOI: 10.14814/phy2.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/11/2016] [Indexed: 02/04/2023] Open
Abstract
The pedunculopontine nucleus is a part of the reticular activating system, and is active during waking and REM sleep. Previous results showed that all PPN cells tested fired maximally at gamma frequencies when depolarized. This intrinsic membrane property was shown to be mediated by high‐threshold N‐ and P/Q‐type Ca2+ channels. Recent studies show that the PPN contains three independent populations of neurons which can generate gamma band oscillations through only N‐type channels, only P/Q‐type channels, or both N‐ and P/Q‐type channels. This study investigated the intracellular mechanisms modulating gamma band activity in each population of neurons. We performed in vitro patch‐clamp recordings of PPN neurons from Sprague–Dawley rat pups, and applied 1‐sec ramps to induce intrinsic membrane oscillations. Our results show that there are two pathways modulating gamma band activity in PPN neurons. We describe populations of neurons mediating gamma band activity through only N‐type channels and the cAMP/PKA pathway (presumed “REM‐on” neurons), through only P/Q‐type channels and the CaMKII pathway (presumed “Wake‐on” neurons), and a third population which can mediate gamma activity through both N‐type channels and cAMP/PK and P/Q‐type channels and CaMKII (presumed “Wake/REM‐on” neurons). These novel results suggest that PPN gamma oscillations are modulated by two independent pathways related to different Ca2+ channel types.
Collapse
Affiliation(s)
- Brennon R Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
13
|
Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016; 123:655-665. [PMID: 26597124 PMCID: PMC4877293 DOI: 10.1007/s00702-015-1485-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA.
| | - B Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - V Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - F J Urbano
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Garcia-Rill E, D’Onofrio S, Luster B, Mahaffey S, Urbano FJ, Phillips C. The 10 Hz Frequency: A Fulcrum For Transitional Brain States. TRANSLATIONAL BRAIN RHYTHMICITY 2016; 1:7-13. [PMID: 27547831 PMCID: PMC4990355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.
Collapse
Affiliation(s)
- E. Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - S. D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - B. Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - S. Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
| | - F. J. Urbano
- IFIBYNE-CONICET, University of Buenos Aires, Argentina
| | - C. Phillips
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, US
- Department of Physical Therapy, Arkansas State University, Jonesboro, AR, 72401
| |
Collapse
|
15
|
Pedunculopontine Gamma Band Activity and Development. Brain Sci 2015; 5:546-67. [PMID: 26633526 PMCID: PMC4701027 DOI: 10.3390/brainsci5040546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022] Open
Abstract
This review highlights the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus, which is in charge of waking and rapid eye movement (REM) sleep. The identification of different cell groups manifesting P/Q-type Ca(2+) channels that control waking vs. those that manifest N-type channels that control REM sleep provides novel avenues for the differential control of waking vs. REM sleep. Recent discoveries on the development of this system can help explain the developmental decrease in REM sleep and the basic rest-activity cycle.
Collapse
|
16
|
Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015; 9:68. [PMID: 26582977 PMCID: PMC4628121 DOI: 10.3389/fncir.2015.00068] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/15/2015] [Indexed: 02/03/2023] Open
Abstract
Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.
Collapse
Affiliation(s)
- Anne Petzold
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Miguel Valencia
- Neurosciences Area, CIMA, Universidad de Navarra Pamplona, Spain ; IdiSNA, Navarra Institute for Health Research Pamplona, Spain
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine University of Debrecen Debrecen, Hungary
| | - Juan Mena-Segovia
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford Oxford, UK ; Center for Molecular and Behavioral Neuroscience, Rutgers University Newark, NJ, USA
| |
Collapse
|
17
|
Luster B, D'Onofrio S, Urbano F, Garcia-Rill E. High-threshold Ca2+ channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 2015; 3:3/6/e12431. [PMID: 26109189 PMCID: PMC4510632 DOI: 10.14814/phy2.12431] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is part of the Reticular Activating System, and active during waking and REM sleep. Previous results showed that all PPN cells plateau at gamma frequencies and intrinsic membrane oscillations in PPN neurons are mediated by high-threshold N- and P/Q-type Ca2+ channels. The present study was designed to determine whether some PPN cells have only N-, only P/Q-, or both N- and P/Q-type Ca2+ channels. We used patch-clamp recordings in PPN cells in slices from anesthetized rat pups in the presence of synaptic receptor blockers (SB) and Tetrodotoxin (TTX), and applied ramps to induce intrinsic membrane oscillations. We found that all PPN cell types showed gamma oscillations in the presence of SB+TTX when using current ramps. In 50% of cells, the N-type Ca2+ channel blocker ω-Conotoxin-GVIA (ω-CgTx) reduced gamma oscillation amplitude, while subsequent addition of the P/Q-type blocker ω-Agatoxin-IVA (ω-Aga) blocked the remaining oscillations. Another 20% manifested gamma oscillations that were not significantly affected by the addition of ω-CgTx, however, ω-Aga blocked the remaining oscillations. In 30% of cells, ω-Aga had no effect on gamma oscillations, while ω-CgTx blocked them. These novel results confirm the segregation of populations of PPN cells as a function of the calcium channels expressed, that is, the presence of cells in the PPN that manifest gamma band oscillations through only N-type, only P/Q-type, and both N-type and P/Q-type Ca2+ channels.
Collapse
Affiliation(s)
- Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Francisco Urbano
- IFIBYNE-CONICET University of Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
18
|
Garcia-Rill E, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology-Implications for schizophrenia. Sleep Sci 2015; 8:82-91. [PMID: 26483949 PMCID: PMC4608902 DOI: 10.1016/j.slsci.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023] Open
Abstract
Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.
Collapse
Key Words
- CaMKII, calcium/calmodulin-dependent protein kinase
- Calcium channels
- EEG, electroencephalogram
- EPSC, excitatory postsynaptic potential
- GABA, γ aminobutyric acid
- Gamma band activity
- InsP, inositol 1,4,5-triphosphate receptor protein
- KA, kainic acid
- NCS-1, neuronal calcium sensor protein 1
- NMDA, n methyl d aspartic acid
- Neuronal calcium sensor protein
- P50 potential
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- Pf, parafascicular nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SWS, slow wave sleep
- SubCD, subcoeruleus dorsalis
- cAMP, cyclic adenosine monophosphate
- ω-Aga, ω-agatoxin-IVA
- ω-CgTx, ω-conotoxin-GVIA
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stasia D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco J. Urbano
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Garcia-Rill E, Luster B, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology - Implications for insomnia. Sleep Sci 2015; 8:92-9. [PMID: 26483950 PMCID: PMC4608886 DOI: 10.1016/j.slsci.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
We consider insomnia a disorder of waking rather than a disorder of sleep. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of insomnia, mainly representing an overactive waking drive. We determined that high frequency activity during waking and REM sleep is controlled by two different intracellular pathways and channel types in PPN cells. We found three different PPN cell types that have one or both channels and may be active during waking only, REM sleep only, or both. These discoveries point to a specific mechanism and novel therapeutic avenues for insomnia.
Collapse
Key Words
- CaMKII, calcium/calmodulin-dependent protein kinase
- Calcium channels
- EEG, electroencephalogram
- Gamma band activity
- KA, kainic acid
- N-type calcium channel
- NCS-1, neuronal calcium sensor protein 1
- NMDA, n methyl d aspartic acid
- Neuronal calcium sensor protein
- P/Q-type calcium channel
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SWS, slow wave sleep
- cAMP, cyclic adenosine monophosphate
- ω-Aga, ω-agatoxin-IVA
- ω-CgTx, ω-conotoxin-GVIA
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Argentina
| | | |
Collapse
|
20
|
Urbano FJ, D'Onofrio SM, Luster BR, Beck PB, Hyde JR, Bisagno V, Garcia-Rill E. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep. Front Neurol 2014; 5:210. [PMID: 25368599 PMCID: PMC4202729 DOI: 10.3389/fneur.2014.00210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/01/2014] [Indexed: 11/13/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.
Collapse
Affiliation(s)
- Francisco J Urbano
- IFIBYNE & ININFA-CONICET, University of Buenos Aires , Buenos Aires , Argentina
| | - Stasia M D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - Brennon R Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - Paige B Beck
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - James Robert Hyde
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - Veronica Bisagno
- IFIBYNE & ININFA-CONICET, University of Buenos Aires , Buenos Aires , Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| |
Collapse
|
21
|
Cyr M, Parent MJ, Mechawar N, Rosa-Neto P, Soucy JP, Clark SD, Aghourian M, Bedard MA. Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [¹⁸F]fluoroethoxybenzovesamicol. Behav Brain Res 2014; 278:107-14. [PMID: 25257103 DOI: 10.1016/j.bbr.2014.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cholinergic neurons of the pedunculopontine tegmental nucleus (PPTg) are thought to be involved in cognitive functions such as sustained attention, and lesions of these cells have been documented in patients showing fluctuations of attention such as in Parkinson's disease or dementia with Lewy Body. Animal studies have been conducted to support the role of these cells in attention, but the lesions induced in these animals were not specific to the cholinergic PPTg system, and were assessed by post-mortem methods remotely performed from the in vivo behavioral assessments. Moreover, sustained attention have not been directly assessed in these studies, but rather deduced from indirect measurements. In the present study, rats were assessed on the 5-Choice Serial Reaction Time Task (5-CSRTT), and a specific measure of variability in response latency was created. Animals were observed both before and after selective lesion of the PPTg cholinergic neurons. Brain cholinergic denervation was assessed both in vivo and ex vivo, using PET imaging with [(18)F]fluoroethoxybenzovesamicol ([(18)F]FEOBV) and immunocytochemistry respectively. Results showed that the number of correct responses and variability in response latency in the 5-CSRTT were the only behavioral measures affected following the lesions. These measures were found to correlate significantly with the number of PPTg cholinergic cells, as measured with both [(18)F]FEOBV and immunocytochemistry. This suggests the primary role of the PPTg cholinergic cells in sustained attention. It also allows to reliably use the PET imaging with [(18)F]FEOBV for the purpose of assessing the relationship between behavior and cholinergic innervation in living animals.
Collapse
Affiliation(s)
- Marilyn Cyr
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada
| | - Maxime J Parent
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada
| | | | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Canada; Montreal Neurological Institute (MNI), Canada
| | | | | | | | - Marc-Andre Bedard
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada; Montreal Neurological Institute (MNI), Canada.
| |
Collapse
|
22
|
Knapp CM, Ciraulo DA, Datta S. Mechanisms underlying sleep-wake disturbances in alcoholism: focus on the cholinergic pedunculopontine tegmentum. Behav Brain Res 2014; 274:291-301. [PMID: 25151622 DOI: 10.1016/j.bbr.2014.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Sleep-wake (S-W) disturbances are frequently associated with alcohol use disorders (AUD), occurring during periods of active drinking, withdrawal, and abstinence. These S-W disturbances can persist after months or even years of abstinence, suggesting that chronic alcohol consumption may have enduring negative effects on both homeostatic and circadian sleep processes. It is now generally accepted that S-W disturbances in alcohol-dependent individuals are a significant cause of relapse in drinking. Although significant progress has been made in identifying the socio-economic burden and health risks of alcohol addiction, the underlying neurobiological mechanisms that lead to S-W disorders in AUD are poorly understood. Marked progress has been made in understanding the basic neurobiological mechanisms of how different sleep stages are normally regulated. This review article in seeking to explain the neurobiological mechanisms underlying S-W disturbances associated with AUD, describes an evidence-based, easily testable, novel hypothesis that chronic alcohol consumption induces neuroadaptive changes in the cholinergic cell compartment of the pedunculopontine tegmentum (CCC-PPT). These changes include increases in N-methyl-d-aspartate (NMDA) and kainate receptor sensitivity and a decrease in gamma-aminobutyric acid (GABAB)-receptor sensitivity in the CCC-PPT. Together these changes are the primary pathophysiological mechanisms that underlie S-W disturbances in AUD. This review is targeted for both basic neuroscientists in alcohol addiction research and clinicians who are in search of new and more effective therapeutic interventions to treat and/or eliminate sleep disorders associated with AUD.
Collapse
Affiliation(s)
- Clifford M Knapp
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Domenic A Ciraulo
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA
| | - Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, Boston University Psychiatry Associates Clinical Studies Unit, Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Boston, MA 02118, USA.
| |
Collapse
|
23
|
Garcia-Rill E, Kezunovic N, D'Onofrio S, Luster B, Hyde J, Bisagno V, Urbano FJ. Gamma band activity in the RAS-intracellular mechanisms. Exp Brain Res 2014; 232:1509-22. [PMID: 24309750 PMCID: PMC4013218 DOI: 10.1007/s00221-013-3794-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
Gamma band activity participates in sensory perception, problem solving, and memory. This review considers recent evidence showing that cells in the reticular activating system (RAS) exhibit gamma band activity, and describes the intrinsic membrane properties behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus, intralaminar parafascicular nucleus, and pontine SubCoeruleus nucleus dorsalis all fire in the gamma band range when maximally activated, but no higher. The mechanisms involve high-threshold, voltage-dependent P/Q-type calcium channels, or sodium-dependent subthreshold oscillations. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness and provide the essential stream of information for the formulation of many of our actions. We address three necessary next steps resulting from these discoveries: an intracellular mechanism responsible for maintaining gamma band activity based on persistent G-protein activation, separate intracellular pathways that differentiate between gamma band activity during waking versus during REM sleep, and an intracellular mechanism responsible for the dysregulation in gamma band activity in schizophrenia. These findings open several promising research avenues that have not been thoroughly explored. What are the effects of sleep or REM sleep deprivation on these RAS mechanisms? Are these mechanisms involved in memory processing during waking and/or during REM sleep? Does gamma band processing differ during waking versus REM sleep after sleep or REM sleep deprivation?
Collapse
Affiliation(s)
- E Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA,
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Sleep is a complex biological process that involves cyclic changes of brain activity. The smooth transition between wakefulness and sleep and cyclic succession of sleep stages depend on the function of numerous neurotransmitters that reciprocally influence each other. For this reason sleep is a very sensitive biomarker of brain functioning. This article provides an overview of sleep changes in depression, mechanisms involved in sleep regulation and pathophysiology underlying depression, studies on sleep as a biomarker for depression, effects of antidepressants on sleep EEG, and studies in depression with the use of quantitative sleep EEG analysis. Research on sleep in depression has provided several valuable biomarkers that are related to increased risk for depression, show worsening during depressive episode, and are related to treatment outcome and relapse risk during remission phase. Among many sleep parameters, increased REM density and diminished delta sleep ratio deserve special interest. Sleep studies are also an important research tool for antidepressant drug development. However, due to sensitivity of sleep parameters to pharmacological interventions, the patients have to be investigated before the start of pharmacological treatment or after washout from the antidepressant drug, to obtain reliable data on disease-related biological processes from polysomnography.
Collapse
Affiliation(s)
- Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology , Warsaw , Poland
| | | | | |
Collapse
|
25
|
Hyde J, Kezunovic N, Urbano FJ, Garcia-Rill E. Spatiotemporal properties of high-speed calcium oscillations in the pedunculopontine nucleus. J Appl Physiol (1985) 2013; 115:1402-14. [PMID: 23990242 DOI: 10.1152/japplphysiol.00762.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a component of the reticular activating system (RAS), and is involved in the activated states of waking and rapid eye movement (REM) sleep. Gamma oscillations (approximately 30-80 Hz) are evident in all PPN neurons and are mediated by high-threshold voltage-dependent N- and P/Q-type calcium channels. We tested the hypothesis that high-speed calcium imaging would reveal calcium-mediated oscillations in dendritic compartments in synchrony with patch-clamp recorded oscillations during depolarizing current ramps. Patch-clamped 8- to 16-day-old rat PPN neurons (n = 67 out of 121) were filled with Fura 2, Bis Fura, or OGB1/CHR. This study also characterized a novel ratiometric technique using Oregon Green BAPTA-1 (OGB1) with coinjections of a new long-stokes-shift dye, Chromeo 494 (CHR). Fluorescent calcium transients were blocked with the nonspecific calcium channel blocker cadmium, or by the combination of ω-agatoxin-IVA, a specific P/Q-type calcium channel blocker, and ω-conotoxin-GVIA, a specific N-type calcium channel blocker. The calcium transients were evident in different dendrites (suggesting channels are present throughout the dendritic tree) along the sampled length without interruption (suggesting channels are evenly distributed), and appeared to represent a summation of oscillations present in the soma. We confirm that PPN calcium channel-mediated oscillations are due to P/Q- and N-type channels, and reveal that these channels are distributed along the dendrites of PPN cells.
Collapse
Affiliation(s)
- James Hyde
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | |
Collapse
|
26
|
O'Malley MW, Datta S. REM Sleep Regulating Mechanisms in the Cholinergic Cell Compartment of the Brainstem. ACTA ACUST UNITED AC 2013; 8:58-66. [PMID: 25400382 DOI: 10.5958/j.0974-0155.8.2.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rapid eye movement (REM) sleep is a highly evolved yet paradoxical behavioral state (highly activated brain in a paralyzed body) in mammalian species. Since the discovery of REM sleep and its physiological distinction from other sleep states1, a vast number of studies in neurosciences have been dedicated toward understanding the mechanisms and functions of this behavioral state. Collectively, studies have shown that each of the physiological events that characterize the behavioral state of REM sleep is executed by distinct cell groups located in the brainstem. These cell groups are discrete components of a widely distributed network, rather than a single REM sleep center. The final activity within each of these executive cell groups is controlled by the ratio of cholinergic neurotransmission emanating from the pedunculopontine tegmentum (PPT) to aminergic neurotransmission emanating from the locus coeruleus (LC) and raphe nucleus (RN). In this review, we summarize the most recent findings on the cellular and molecular mechanisms in the PPT cholinergic cell compartment that underlie the regulation of REM sleep. This up-to-date review should allow clinicians and researchers to better understand the effects of drugs and neurologic disease on REM sleep.
Collapse
Affiliation(s)
- Matthew W O'Malley
- Laboratory of Sleep and Cognitive Neuroscience, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, Massachusetts 02118 ; Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, Massachusetts 02118
| | - Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, Massachusetts 02118 ; Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, Massachusetts 02118 ; Department of Neurology, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, Massachusetts 02118
| |
Collapse
|
27
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
28
|
Simon C, Hayar A, Garcia-Rill E. Developmental changes in glutamatergic fast synaptic neurotransmission in the dorsal subcoeruleus nucleus. Sleep 2012; 35:407-17. [PMID: 22379247 DOI: 10.5665/sleep.1706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES The dorsal subcoeruleus nucleus (SubCD) is involved in the generation of rapid eye movement sleep (REM), a state distinguished by high-frequency EEG activity, muscle atonia, and ponto-geniculo-occipital (PGO) waves. Activation of the SubCD by injection of the glutamate (GLU) receptor agonist kainic acid (KA) produced a REM sleep-like state with muscle atonia. We tested the hypothesis that developmental changes in the GLU excitability of SubCD neurons could underlie the developmental decrease in REM sleep that occurs in the rat from postnatal days 10-30. DESIGN Sagittal sections containing the SubCD were cut using 9-15 day old rat pups. Whole-cell patch clamp recordings were performed on SubCD neurons and responses were measured following electrical stimulation or bath application of the GLU receptor agonists N-methyl-D-aspartic acid (NMDA) or KA. MEASUREMENTS AND RESULTS Pharmacological or electrical stimulation increased non-cholinergic excitatory postsynaptic currents (EPSCs) in SubCD neurons, which were blocked by GLU receptor antagonists. Although no developmental changes were observed in the relative contribution of AMPA/KA and NMDA receptors to the responses, there was a developmental decrease in the half-width duration of both evoked and miniature EPSCs. Bath application of NMDA or KA revealed a developmental decrease in the direct response of SubCD neurons to these agonists. CONCLUSIONS The SubCD receives glutamatergic input, which may be involved in activation of SubCD neurons during REM sleep. A developmental decrease in the glutamatergic excitability of these neurons could underlie the developmental decrease in REM sleep observed in humans and rodents.
Collapse
Affiliation(s)
- Christen Simon
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
29
|
Datta S. The preconscious mind and gamma band activity in the reticular activating system. Front Neurol 2012; 3:16. [PMID: 22347211 PMCID: PMC3274707 DOI: 10.3389/fneur.2012.00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 11/21/2022] Open
Affiliation(s)
- Subimal Datta
- Department of Psychiatry, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
30
|
Urbano FJ, Kezunovic N, Hyde J, Simon C, Beck P, Garcia-Rill E. Gamma band activity in the reticular activating system. Front Neurol 2012; 3:6. [PMID: 22319508 PMCID: PMC3269033 DOI: 10.3389/fneur.2012.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/06/2012] [Indexed: 12/24/2022] Open
Abstract
This review considers recent evidence showing that cells in three regions of the reticular activating system (RAS) exhibit gamma band activity, and describes the mechanisms behind such manifestation. Specifically, we discuss how cells in the mesopontine pedunculopontine nucleus (PPN), intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD) all fire in the beta/gamma band range when maximally activated, but no higher. The mechanisms behind this ceiling effect have been recently elucidated. We describe recent findings showing that every cell in the PPN have high-threshold, voltage-dependent P/Q-type calcium channels that are essential, while N-type calcium channels are permissive, to gamma band activity. Every cell in the Pf also showed that P/Q-type and N-type calcium channels are responsible for this activity. On the other hand, every SubCD cell exhibited sodium-dependent subthreshold oscillations. A novel mechanism for sleep–wake control based on well-known transmitter interactions, electrical coupling, and gamma band activity is described. The data presented here on inherent gamma band activity demonstrates the global nature of sleep–wake oscillation that is orchestrated by brainstem–thalamic mechanism, and questions the undue importance given to the hypothalamus for regulation of sleep–wakefulness. The discovery of gamma band activity in the RAS follows recent reports of such activity in other subcortical regions like the hippocampus and cerebellum. We hypothesize that, rather than participating in the temporal binding of sensory events as seen in the cortex, gamma band activity manifested in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking and paradoxical sleep. Most of our thoughts and actions are driven by pre-conscious processes. We speculate that continuous sensory input will induce gamma band activity in the RAS that could participate in the processes of pre-conscious awareness, and provide the essential stream of information for the formulation of many of our actions.
Collapse
Affiliation(s)
- Francisco J Urbano
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, University of Buenos Aires Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Datta S, O'Malley MW, Patterson EH. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 2011; 31:17007-16. [PMID: 22114270 PMCID: PMC3229030 DOI: 10.1523/jneurosci.3981-11.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022] Open
Abstract
The pedunculopontine tegmentum nucleus (PPT) is critically involved in the regulation of wakefulness (W) and rapid eye movement (REM) sleep, but our understanding of the mechanisms of this regulation remains incomplete. The present study was designed to determine the role of PPT intracellular calcium/calmodulin kinase (CaMKII) signaling in the regulation of W and sleep. To achieve this aim, three different concentrations (0.5, 1.0, and 2.0 nmol) of the CaMKII activation inhibitor, KN-93, were microinjected bilaterally (100 nl/site) into the PPT of freely moving rats, and the effects on W, slow-wave sleep (SWS), REM sleep, and levels of phosphorylated CaMKII (pCaMKII) expression in the PPT were quantified. These effects, which were concentration-dependent and affected wake-sleep variables for 3 h, resulted in decreased W, due to reductions in the number and duration of W episodes; increased SWS and REM sleep, due to increases in episode duration; and decreased levels of pCaMKII expression in the PPT. Regression analyses revealed that PPT levels of pCaMKII were positively related with the total percentage of time spent in W (R(2) = 0.864; n = 28 rats; p < 0.001) and negatively related with the total percentage of time spent in sleep (R(2) = 0.863; p < 0.001). These data provide the first direct evidence that activation of intracellular CaMKII signaling in the PPT promotes W and suppresses sleep. These findings are relevant for designing a drug that could treat excessive sleepiness by promoting alertness.
Collapse
Affiliation(s)
- Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, and Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
32
|
Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS. J Neural Transm (Vienna) 2011; 118:1397-407. [PMID: 20936418 PMCID: PMC3084344 DOI: 10.1007/s00702-010-0500-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/24/2010] [Indexed: 12/23/2022]
Abstract
One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Department of Neurobiology and Developmental Science, Center For Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
33
|
Watson CJ, Lydic R, Baghdoyan HA. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J Neurochem 2011; 118:571-80. [PMID: 21679185 DOI: 10.1111/j.1471-4159.2011.07350.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration.
Collapse
Affiliation(s)
- Christopher J Watson
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109-5615, USA.
| | | | | |
Collapse
|
34
|
Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice. Neuroscience 2011; 183:134-43. [PMID: 21435382 DOI: 10.1016/j.neuroscience.2011.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/10/2011] [Accepted: 03/12/2011] [Indexed: 11/20/2022]
Abstract
Orexins (hypocretins) are peptide neurotransmitters produced by a small group of neurons located exclusively in the lateral hypothalamus (LH). Orexins modulate arousal, and as a result, have profound effects on feeding behavior and the sleep-wake cycle. Loss of orexin producing neurons leads to a narcoleptic phenotype, characterized by sudden transitions from vigilance to rapid eye movement (REM) sleep (direct transition to REM, DREM) observed in electroencephalogram (EEG) and electromyogram (EMG) recordings. In this study, we demonstrate that mice lacking the basic helix-loop-helix transcription factor O/E3 (also known as ebf2) have a decrease in orexin-producing cells in the LH, in addition to a severely impaired orexinergic innervation of the pons. These changes in the orexinergic circuit of O/E3-null animals induce a narcoleptic phenotype, similar to the one arising in orexin-deficient and orexin-ataxin-3 mice. Taken together, our results suggest that O/E3 plays a central role during the establishment of a functional orexinergic circuit by controlling the expression of essential hypothalamic neurotransmitter and the correct development of the nerve fibers arising from the hypothalamus. This is the first report regarding the narcolepsy-cataplexy syndrome in O/E3-null mice, which adds the importance of transcription factors in the regulation of neural subpopulations that control the sleep-wake cycle.
Collapse
|
35
|
Simon C, Hayar A, Garcia-Rill E. Responses of developing pedunculopontine neurons to glutamate receptor agonists. J Neurophysiol 2011; 105:1918-31. [PMID: 21346216 DOI: 10.1152/jn.00953.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is involved in the generation and maintenance of waking and rapid eye movement (REM) sleep, forming part of the reticular activating system. The PPN receives glutamatergic afferents from other mesopontine nuclei, and glutamatergic input is believed to be involved in the generation of arousal states. We tested the hypothesis that, from postnatal days 9 to 17 in the rat, there are developmental changes in the glutamate receptor subtypes that contribute to the responses of PPN neurons. Whole cell patch-clamp recordings were conducted using brainstem slices from 9- to 17-day-old rats. All cells (types I, II, and III; randomly selected or thalamic-projecting) responded to bath application of the glutamate receptor agonists N-methyl-d-aspartic acid (NMDA) and kainic acid (KA). A developmental decrease in the contribution of the NMDA receptor and developmental increase in the contribution of the KA receptor was observed following electrical stimulation-induced glutamate input. These changes were also observed following bath application in different cell types (randomly selected vs. thalamic-projecting). KA bath application produced an increase in the paired-pulse ratio (PPR) and a decrease in the frequency of miniature excitatory postsynaptic currents (mEPSCs), suggesting that presynaptic KA autoreceptors may decrease the probability of synaptic glutamate input. In contrast, NMDA application produced no changes in the PPR or mEPSCs. Changes in glutamatergic excitability of PPN cell types could underlie the developmental decrease in REM sleep.
Collapse
Affiliation(s)
- Christen Simon
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | | | | |
Collapse
|
36
|
Simon C, Wallace-Huitt T, Thapa P, Skinner RD, Garcia-Rill E. Effects of glutamate receptor agonists on the p13 auditory evoked potential and startle response in the rat. Front Neurol 2011; 2:3. [PMID: 21441978 PMCID: PMC3031992 DOI: 10.3389/fneur.2011.00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/13/2011] [Indexed: 11/13/2022] Open
Abstract
The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx) 50 ms following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM) sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN), a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF), which mediates the auditory startle response (SR). We tested the hypothesis that intracranial microinjection (ICM) of glutamate (GLU) or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of N-methyl-d-aspartic acid or kainate into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation.
Collapse
Affiliation(s)
- Christen Simon
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | | | - Priyenka Thapa
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Robert D. Skinner
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| |
Collapse
|
37
|
Desarnaud F, Macone BW, Datta S. Activation of extracellular signal-regulated kinase signaling in the pedunculopontine tegmental cells is involved in the maintenance of sleep in rats. J Neurochem 2011; 116:577-87. [PMID: 21166678 DOI: 10.1111/j.1471-4159.2010.07146.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Considerable evidence suggests that receptor-mediated excitation and inhibition of brainstem pedunculopontine tegmental (PPT) neurons are critically involved in the regulation of sleep-wake states. However, the molecular mechanisms operating within the PPT-controlling sleep-wake states remain relatively unknown. This study was designed to examine sleep-wake state-associated extracellular-signal-regulated kinase 1 and 2 (ERK1/2) transduction changes in the PPT of freely moving rats. The results of this study demonstrate that the levels of ERK1/2 expression, phosphorylation, and activity in the PPT increased with increased amount of time spent in sleep. The sleep-associated increases in ERK1/2 expression, phosphorylation, and activity were not observed in the cortex, or in the immediately adjacent medial pontine reticular formation. The results of regression analyses revealed significant positive relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in slow-wave sleep, rapid eye movement sleep, and total sleep. Additionally, these regression analyses revealed significant negative relationships between the levels of ERK1/2 expression, phosphorylation, and activity in the PPT and amounts of time spent in wakefulness. Collectively, these results, for the first time, suggest that the increased ERK1/2 signaling in the PPT is associated with maintenance of sleep via suppression of wakefulness.
Collapse
Affiliation(s)
- Frank Desarnaud
- Department of Laboratory of Sleep and Cognitive Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Abstract
The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy.
Collapse
|
39
|
Topchiy I, Waxman J, Radulovacki M, Carley DW. Functional topography of respiratory, cardiovascular and pontine-wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat. Respir Physiol Neurobiol 2010; 173:64-70. [PMID: 20601208 DOI: 10.1016/j.resp.2010.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 11/29/2022]
Abstract
Functionally distinct areas were mapped within the pedunculopontine tegmentum (PPT) of 42 ketamine/xylazine anesthetized rats using local stimulation by glutamate microinjection (10 mM, 5-12 nl). Functional responses were classified as: (1) apnea; (2) tachypnea; (3) hypertension (HTN); (4) sinus tachycardia; (5) genioglossus electromyogram activation or (6) pontine-waves (p-waves) activation.We found that short latency apneas were predominantly elicited by stimulation in the lateral portion of the PPT, in close proximity to cholinergic neurons. Tachypneic responses were elicited from ventral regions of the PPT and HTN predominated in the ventral portion of the antero-medial PPT. We observed sinus tachycardia after stimulation of the most ventral part of the medial PPT at the boundary with nucleus reticularis pontis oralis, whereas p-waves were registered predominantly following stimulation in the dorso-caudal portion of the PPT. Genioglossus EMG activation was evoked from the medial PPT. Our results support the existence of the functionally distinct areas within the PPT affecting respiration, cardiovascular function, EEG and genioglossus EMG.
Collapse
Affiliation(s)
- Irina Topchiy
- Center for Narcolepsy, Sleep and Health Research, M/C 802, University of Illinois at Chicago, 845 South Damen Ave, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
40
|
Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E. Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 2010; 104:463-74. [PMID: 20463196 DOI: 10.1152/jn.00242.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The pedunculopontine nucleus (PPN) is involved in the activated states of waking and paradoxical sleep, forming part of the reticular activating system (RAS). The studies described tested the hypothesis that single unit and/or population responses of PPN neurons are capable of generating gamma band frequency activity. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. Regardless of cell type (I, II, or III) or type of response to the nonselective cholinergic receptor agonist carbachol (excitation, inhibition, biphasic), almost all PPN neurons fired at gamma band frequency, but no higher, when subjected to depolarizing steps (50 +/- 2 Hz, mean +/- SE). Nonaccommodating neurons fired at 18-100 Hz throughout depolarizing steps, while most accommodating neurons exhibited gamma band frequency of action potentials followed by gamma band membrane oscillations. These oscillations were blocked by the sodium channel blocker tetrodotoxin (TTX), suggesting that at least some are mediated by sodium currents. Population responses in the PPN showed that carbachol induced peaks of activation in the theta and gamma range, while glutamatergic receptor agonists induced overall increases in activity at theta and gamma frequencies, although in differing patterns. Gamma band activity appears to be a part of the intrinsic membrane properties of PPN neurons, and the population as a whole generates different patterns of gamma band activity under the influence of specific transmitters. Given sufficient excitation, the PPN may impart gamma band activation on its targets.
Collapse
Affiliation(s)
- Christen Simon
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Ye M, Hayar A, Strotman B, Garcia-Rill E. Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons. J Neurophysiol 2010; 103:2417-32. [PMID: 20181729 PMCID: PMC2867582 DOI: 10.1152/jn.01143.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 02/21/2010] [Indexed: 11/22/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and rapid-eye movement sleep. The PPN projects to the thalamus and receives cholinergic inputs from the laterodorsal tegmental nucleus and contralateral PPN. We employed retrograde labeling and whole cell recordings to determine the modulation of GABAergic, glycinergic, and glutamatergic transmission to PPN thalamic projecting neurons, and their postsynaptic responses to the nonspecific cholinergic agonist carbachol. M2 and M4 muscarinic receptor-modulated inhibitory postsynaptic responses were observed in 73% of PPN output neurons; in 12.9%, M1 and nicotinic receptor-mediated excitation was detected; and muscarinic and nicotinic-modulated fast inhibitory followed by slow excitatory biphasic responses were evident in 6.7% of cells. A significant increase in the frequency of spontaneous excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents during carbachol application was observed in 66.2% and 65.2% of efferent neurons, respectively. This effect was blocked by a M1 antagonist or nonselective muscarinic blocker, indicating that glutamatergic, GABAergic, and/or glycinergic neurons projecting to PPN output neurons are excited through muscarinic receptors. Decreases in the frequency of miniature EPSCs, and amplitude of electrical stimulation-evoked EPSCs, were blocked by a M2 antagonist, suggesting the presence of M2Rs at terminals of presynaptic glutamatergic neurons. Carbachol-induced multiple types of postsynaptic responses, enhancing both inhibitory and excitatory fast transmission to PPN thalamic projecting neurons through muscarinic receptors. These results provide possible implications for the generation of different frequency oscillations in PPN thalamic projecting neurons during distinct sleep-wake states.
Collapse
Affiliation(s)
- Meijun Ye
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
42
|
Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med 2010; 11:431-40. [PMID: 20359944 DOI: 10.1016/j.sleep.2010.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 11/18/2022]
Abstract
Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep.
Collapse
Affiliation(s)
- Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, Departments of Psychiatry, Neurology, and Neuroscience, Boston University School of Medicine, 85 East Newton Street, Suite: M-902, Boston, MA 02118, USA.
| |
Collapse
|
43
|
Boon JA, Milsom WK. The role of the pontine respiratory complex in the response to intermittent hypoxia. Respir Physiol Neurobiol 2010; 171:90-100. [PMID: 20223300 DOI: 10.1016/j.resp.2010.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/19/2022]
Abstract
These experiments were designed to determine the effects of EEG state on the response of rats to intermittent hypoxia and to test the hypotheses that short-term potentiation (STP) and ventilatory long term facilitation (vLTF) are state dependent; and that neurons with NMDA receptors in the dorso-ventral pontine respiratory group (dvPRG) modulate the development of STP and vLTF in rats. Low-doses of urethane anaesthesia (<1.3g/kg) that do not cause significant respiratory depression or reductions in sensitivity to hypoxia result in cycling between EEG states that superficially resemble wake and slow wave sleep in rats and are accompanied by changes in breathing pattern that closely resemble those seen when unanaesthetized rats cycle between wake and SWS. When changes between these states were accounted for, intermittent, poikilocapnic hypoxia did not produce a significant vLTF. However, there was a persistent STP of tidal volume and vLTF did develop after blockade of NMDAr in the region of the PBrKF complex by microinjection of MK-801. Blockade of NMDA-type glutamate receptor-mediated processes in the dorsal pons also caused animals to cycle into State III, but did not alter the response to either continuous or intermittent hypoxia indicating that the response to hypoxia was not state dependent. This shows that neurons in the region of the PRG inhibit STP and vLTF, but no longer do so if PRG NMDA receptor activation is blocked.
Collapse
Affiliation(s)
- Joyce A Boon
- University of British Columbia Okanagan, Unit 2, 3333 University Way, Kelowna, BC, Canada.
| | | |
Collapse
|
44
|
Ballanger B, Lozano AM, Moro E, van Eimeren T, Hamani C, Chen R, Cilia R, Houle S, Poon YY, Lang AE, Strafella AP. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study. Hum Brain Mapp 2010; 30:3901-9. [PMID: 19479730 DOI: 10.1002/hbm.20815] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements.
Collapse
Affiliation(s)
- Benedicte Ballanger
- Toronto Western Research Institute (Division of Brain, Imaging and Behaviour-Systems Neuroscience), UHN, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stack EC, Desarnaud F, Siwek DF, Datta S. A novel role for calcium/calmodulin kinase II within the brainstem pedunculopontine tegmentum for the regulation of wakefulness and rapid eye movement sleep. J Neurochem 2009; 112:271-81. [PMID: 19860859 DOI: 10.1111/j.1471-4159.2009.06452.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considerable evidence suggests that the brainstem pedunculopontine tegmentum (PPT) neurons are critically involved in the regulation of rapid eye movement (REM) sleep and wakefulness (W); however, the molecular mechanisms operating within the PPT to regulate these two behavioral states remain relatively unknown. Here we demonstrate that the levels of calcium/calmodulin kinase II (CaMKII) and phosphorylated CaMKII expression in the PPT decreased and increased with 'low W with high REM sleep' and 'high W/low REM sleep' periods, respectively. These state-specific expression changes were not observed in the cortex, or in the immediately adjacent medial pontine reticular formation. Next, we demonstrate that CaMKII activity in the PPT is negatively and positively correlated with the 'low W with high REM sleep' and 'high W/low REM sleep' periods, respectively. These differences in correlations were not seen in the medial pontine reticular formation CaMKII activity. Finally, we demonstrate that with increased PPT CaMKII activity observed during high W/low REM sleep, there were marked shifts in the expression of genes that are involved in components of various signal transduction pathways. Collectively, these results for the first time suggest that the increased CaMKII activity within PPT neurons is associated with increased W at the expense of REM sleep, and this process is accomplished through the activation of a specific gene expression profile.
Collapse
Affiliation(s)
- Edward C Stack
- Laboratory of Sleep and Cognitive Neurosciences, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
46
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|
47
|
Hughes JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav 2008; 13:25-31. [PMID: 18439878 DOI: 10.1016/j.yebeh.2008.01.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Gamma waves, defined as rhythms from 25 to 100 Hz, are reviewed along with fast (100-400 Hz) and ultrafast (400-800 Hz) activity. Investigations on animals, especially those involving interneurons from the hippocampus, are reviewed. Gamma waves and fast rhythms likely play a role in neural communication, reflecting information from the external world to the brain. These rhythms become evident when the GABA-A system shifts from excitation to inhibition; are seen mainly in the hippocampus, the dentate gyrus, and CA(1)-CA(3) system; and are likely involved in long-term memory and cognitive task performance. These waves are also involved in spreading depression, but especially with epileptiform activity, progressively increasing in frequency from the pre-ictal to the ictal state. After status epilepticus, their presence predicts the development of spontaneous seizures. Gamma waves and fast activity have been studied in all sensory modalities, especially visual systems, providing a mechanism for awareness and processing of visual objects. In humans, gamma waves develop in the young, peak at 4-5 years of age, and are observed especially during alertness and after sensory stimulation. These fast rhythms are seen in the majority of seizures, especially in infantile spasms and during ictal activity in extratemporal and regional onsets, and, if low in amplitude, seem to be a good prognostic sign after seizure surgery. They have been studied in all sensory systems and are associated with selective attention, transient binding of cognitive features, and conscious perception of the external world.
Collapse
Affiliation(s)
- John R Hughes
- Department of Neurology and Rehabilitation, University of Illinois Medical Center in Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
48
|
NMDA receptor-mediated processes in the Parabrachial/Kölliker fuse complex influence respiratory responses directly and indirectly via changes in cortical activation state. Respir Physiol Neurobiol 2008; 162:63-72. [PMID: 18499538 DOI: 10.1016/j.resp.2008.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 03/07/2008] [Accepted: 04/03/2008] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that glutamate, acting via NMDA-type receptors (NMDAr) in the Parabrachial/Kölliker fuse (PBrKF) nucleus of the pons, is involved both directly and indirectly (via changes in cortical activation state) in modulating breathing and ventilatory responses to hypoxia. To this end we examined the effects of MK-801, injected either systemically or directly into the PBrKF, on the breathing patterns of urethane-anaesthetized rats breathing air or an hypoxic gas mixture as electroencephalographic (EEG) activity alternated between State I (awake-like) and State III (NREM sleep-like) EEG patterns. Regardless of EEG state, systemic MK-801 reduced ventilation primarily by reducing tidal volume while microinjection of MK-801 into the PBrKF reduced ventilation by reducing breathing frequency. With both injections, EEG pattern changed from State I to III mimicking the change from wakefulness to NREM sleep that occurs in unanaesthetized rats given MK-801 systemically. Systemic injection of MK-801 delayed and reduced the response to hypoxia while microinjection of MK-801 into the PBrKF did not reduce the HVR but sustained the hypoxic increase in tidal volume well into the post-hypoxic recovery period. Thus, while NMDAr in the PBrKF complex of the pons play a role in modulating sleep/wake-like states as well as changes in breathing pattern associated with changes in cortical activation state, they are neither involved in the hypoxic ventilatory response nor in the change in hypoxic sensitivity associated with the changes in cortical activation state.
Collapse
|
49
|
de Lecea L, Bourgin P. Neuropeptide interactions and REM sleep: a role for Urotensin II? Peptides 2008; 29:845-51. [PMID: 18406008 DOI: 10.1016/j.peptides.2008.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 02/12/2008] [Accepted: 02/15/2008] [Indexed: 02/07/2023]
Abstract
Urotensin II (UII) is a peptide with structural similarity to the somatostatin family with potent vasoconstrictor activity. UII receptor is expressed broadly in the periphery, and most notably in the heart and microvessels. In the brain, the UII receptor can be detected in the spinal cord and in cholinergic nuclei in the brainstem known to be involved in REM sleep regulation. Recent data suggest that, in addition to their vasoactive properties, UII receptor ligands may have excitatory activity on a selective group of neurons that modulate REM sleep. This review focuses on the implications of these findings for the neurobiology of REM sleep regulation and discusses the possible impact of UII and other neuropeptides on the balance of the alternation between sleep states.
Collapse
Affiliation(s)
- Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 701 B Welch Road, Palo Alto, CA 94304, United States.
| | | |
Collapse
|
50
|
Strafella AP, Lozano AM, Ballanger B, Poon YY, Lang AE, Moro E. rCBF changes associated with PPN stimulation in a patient with Parkinson's disease: A PET study. Mov Disord 2008; 23:1051-1054. [DOI: 10.1002/mds.22055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|