1
|
Ribeiro DE, Glaser T, Oliveira-Giacomelli Á, Ulrich H. Purinergic receptors in neurogenic processes. Brain Res Bull 2018; 151:3-11. [PMID: 30593881 DOI: 10.1016/j.brainresbull.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Neurogenesis is a process of generating functional neurons, which occurs during embryonic and adult stages in mammals. While neurogenesis during development phase is characterized by intensive proliferation activity in all regions of the brain to form the architecture and neural function of the nervous system, adult neurogenesis occurs with less intensity in two brain regions and is involved in the maintenance of neurogenic niches, local repair, memory and cognitive functions in the hippocampus. Taking such differences into account, the understanding of molecular mechanisms involved in cell differentiation in developmental stages and maintenance of the nervous system is an important research target. Although embryonic and adult neurogenesis presents several differences, signaling through purinergic receptors participates in this process throughout life. For instance, while embryonic neurogenesis involves P2X7 receptor down-regulation and calcium waves triggered by P2Y1 receptor stimulation, adult neurogenesis may be enhanced by increased activity of A2A and P2Y1 receptors and impaired by A1, P2Y13 and P2X7 receptor stimulation.
Collapse
Affiliation(s)
- D E Ribeiro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - T Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Á Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-900, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Oliveira Á, Illes P, Ulrich H. Purinergic receptors in embryonic and adult neurogenesis. Neuropharmacology 2015; 104:272-81. [PMID: 26456352 DOI: 10.1016/j.neuropharm.2015.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/14/2023]
Abstract
ATP (adenosine 5'-triphosphate), one of the most ancient neurotransmitters, exerts essential functions in the brain, including neurotransmission and modulation of synaptic activity. Moreover, this nucleotide has been attributed with trophic properties and experimental evidence points to the participation of ATP-activated P2X and P2Y purinergic receptors in embryonic brain development as well as in adult neurogenesis for maintenance of normal brain functions and neuroregeneration upon brain injury. We discuss here the available data on purinergic P2 receptor expression and function during brain development and in the neurogenic zones of the adult brain, as well as the insights based on the use of in vitro stem cell cultures. While several P2 receptor subtypes were shown to be expressed during in vitro and in vivo neurogenesis, specific functions have been proposed for P2Y1, P2Y2 metabotropic as well as P2X2 ionotropic receptors to promote neurogenesis. Further, the P2X7 receptor is suggested to function in the maintenance of pools of neural stem and progenitor cells through induction of proliferation or cell death, depending on the microenvironment. Pathophysiological actions have been proposed for this receptor in worsening damage in brain disease. The P2X7 receptor and possibly additional P2 receptor subtypes have been implicated in pathophysiology of neurological diseases including Parkinson's disease, Alzheimer's disease and epilepsy. New strategies in cell therapy could involve modulation of purinergic signaling, either in the achievement of more effective protocols to obtain viable and homogeneous cell populations or in the process of functional engraftment of transplanted cells into the damaged brain. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ágatha Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil
| | - Peter Illes
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie der Universität Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-900, Av. Prof. Lineu Prestes, 748, Brazil.
| |
Collapse
|
3
|
Liu M, Guo J, Wang J, Zhang L, Pang T, Liao H. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway. Cell Mol Neurobiol 2014; 34:913-23. [PMID: 24838256 DOI: 10.1007/s10571-014-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/15/2022]
Abstract
Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.
Collapse
Affiliation(s)
- Mei Liu
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
LIF-dependent primitive neural stem cells derived from mouse ES cells represent a reversible stage of neural commitment. Stem Cell Res 2013; 11:1091-102. [DOI: 10.1016/j.scr.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023] Open
|
5
|
Hu W, Guan FX, Li Y, Tang YJ, Yang F, Yang B. New methods for inducing the differentiation of amniotic-derived mesenchymal stem cells into motor neuron precursor cells. Tissue Cell 2013; 45:295-305. [DOI: 10.1016/j.tice.2013.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/23/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
|
6
|
Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012; 16:2564-82. [PMID: 22805417 PMCID: PMC4118226 DOI: 10.1111/j.1582-4934.2012.01603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
7
|
Patani R, Lewis PA, Trabzuni D, Puddifoot CA, Wyllie DJA, Walker R, Smith C, Hardingham GE, Weale M, Hardy J, Chandran S, Ryten M. Investigating the utility of human embryonic stem cell-derived neurons to model ageing and neurodegenerative disease using whole-genome gene expression and splicing analysis. J Neurochem 2012; 122:738-51. [PMID: 22681703 PMCID: PMC3504076 DOI: 10.1111/j.1471-4159.2012.07825.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major goal in regenerative medicine is the predictable manipulation of human embryonic stem cells (hESCs) to defined cell fates that faithfully represent their somatic counterparts. Directed differentiation of hESCs into neuronal populations has galvanized much interest into their potential application in modelling neurodegenerative disease. However, neurodegenerative diseases are age-related, and therefore establishing the maturational comparability of hESC-derived neural derivatives is critical to generating accurate in vitro model systems. We address this issue by comparing genome-wide, exon-specific expression analyses of pluripotent hESCs, multipotent neural precursor cells and a terminally differentiated enriched neuronal population to expression data from post-mortem foetal and adult human brain samples. We show that hESC-derived neuronal cultures (using a midbrain differentiation protocol as a prototypic example of lineage restriction), while successful in generating physiologically functional neurons, are closer to foetal than adult human brain in terms of molecular maturation. These findings suggest that developmental stage has a more dominant influence on the cellular transcriptome than regional identity. In addition, we demonstrate that developmentally regulated gene splicing is common, and potentially a more sensitive measure of maturational state than gene expression profiling alone. In summary, this study highlights the value of genomic indices in refining and validating optimal cell populations appropriate for modelling ageing and neurodegeneration.
Collapse
Affiliation(s)
- Rickie Patani
- Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mejía-Toiber J, Castillo CG, Giordano M. Strategies for the Development of Cell Lines for Ex Vivo Gene Therapy in the Central Nervous System. Cell Transplant 2011; 20:983-1001. [DOI: 10.3727/096368910x546599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disorders of the central nervous system (CNS) as a result of trauma or ischemic or neurodegenerative processes still pose a challenge for modern medicine. Due to the complexity of the CNS, and in spite of the advances in the knowledge of its anatomy, pharmacology, and molecular and cellular biology, treatments for these diseases are still limited. The development of cell lines as a source for transplantation into the damaged CNS (cell therapy), and more recently their genetic modification to favor the expression and delivery of molecules with therapeutic potential (ex vivo gene therapy), are some of the techniques used in search of novel restorative strategies. This article reviews the different approaches that have been used and perfected during the last decade to generate cell lines and their use in experimental models of neuronal damage, and evaluates the prospects of applying these methods to treat CNS disorders.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| | - Claudia G. Castillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Magda Giordano
- Laboratorio de Plasticidad Neuronal, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro, Mexico
| |
Collapse
|
9
|
Voronova A, Fischer A, Ryan T, Al Madhoun A, Skerjanc IS. Ascl1/Mash1 is a novel target of Gli2 during Gli2-induced neurogenesis in P19 EC cells. PLoS One 2011; 6:e19174. [PMID: 21559470 PMCID: PMC3084770 DOI: 10.1371/journal.pone.0019174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/29/2011] [Indexed: 12/23/2022] Open
Abstract
The Sonic Hedgehog (Shh) signaling pathway is important for neurogenesis in vivo. Gli transcription factors, effector proteins of the Shh signaling pathway, have neurogenic properties in vivo, which are still poorly understood. To study the molecular basis of neurogenic properties of Gli2, we used a well-established embryonic stem cell model, the P19 embryonal carcinoma (EC) cell line, which can be induced to differentiate into neurons in the presence of retinoic acid (RA). We found that, in the absence of RA, overexpression of Gli2 induced P19 EC cells to differentiate into neurons, but not astrocytes during the first ten days of differentiation. To our knowledge, this is the first indication that the expression of Gli factors can convert EC cells into neurons. Furthermore, Gli2 upregulated expression of the neurogenic basic helix-loop-helix (bHLH) factors, such as NeuroD, Neurog1 and Ascl1/Mash1 in P19 EC cells. Using chromatin immunoprecipitation assays, we showed that Gli2 bound to multiple regulatory regions in the Ascl1 gene, including promoter and enhancer regions during Gli2-induced neurogenesis. In addition, Gli2 activated the Ascl1/Mash1 promoter in vitro. Using the expression of a dominant-negative form of Gli2, fused to the Engrailed repression domain, we observed a reduction in gliogenesis and a significant downregulation of the bHLH factors Ascl1/Mash1, Neurog1 and NeuroD, leading to delayed neurogenesis in P19 EC cells, further supporting the hypothesis that Ascl1/Mash1 is a direct target of Gli2. In summary, Gli2 is sufficient to induce neurogenesis in P19 stem cells at least in part by directly upregulating Ascl1/Mash1. Our results provide mechanistic insight into the neurogenic properties of Gli2 in vitro, and offer novel plausible explanations for its in vivo neurogenic properties.
Collapse
Affiliation(s)
- Anastassia Voronova
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Anna Fischer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Tammy Ryan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ashraf Al Madhoun
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ilona Sylvia Skerjanc
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
10
|
Rooney GE, Nistor GI, Barry FB, Keirstead HS. In vitro differentiation potential of human embryonic versus adult stem cells. Regen Med 2010; 5:365-79. [PMID: 20455648 DOI: 10.2217/rme.10.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is widespread controversy regarding the potential of human neural stem cells and human mesenchymal stem cells (hMSCs) to form cell types outside of their normal developmental lineage. A greater understanding of the differentiation potential and bias of these stem cell types would allow researchers to select the cell type that best suits the research or clinical need at hand. MATERIALS & METHODS We used identical in vitro protocols to quantitatively compare the potential of human embryonic stem cells, human neural stem cells and hMSCs to differentiate into specific ectodermal or mesodermal lineages. RESULTS Our findings demonstrate that human embryonic stem cells and human neural stem cells have the ability to differentiate into high purity neuronal progenitor or oligodendrocyte progenitor cultures. By contrast, hMSCs generated exceedingly limited numbers of neural lineages. Both human embryonic stem cells and hMSCs generated adipocytes and osteocytes when exposed to mesodermal differentiation conditions. CONCLUSION These studies underscore the importance of distinguishing differentiation potential from differentiation bias, an important consideration in the development of cell replacement strategies.
Collapse
Affiliation(s)
- G E Rooney
- Regenerative Medicine Institute, National Centre for Biomedical & Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
11
|
Ghosh D, Yan X, Tian Q. Gene regulatory networks in embryonic stem cells and brain development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:182-91. [PMID: 19530135 DOI: 10.1002/bdrc.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic stem cells (ESCs) are endowed with the ability to generate multiple cell lineages and carry great therapeutic potentials in regenerative medicine. Future application of ESCs in human health and diseases will embark on the delineation of molecular mechanisms that define the biology of ESCs. Here, we discuss how the finite ESC components mediate the intriguing task of brain development and exhibit biomedical potentials to cure diverse neurological disorders.
Collapse
|
12
|
Taupin P. Cryopreservation of early postmitotic neuronal cells in culture. Expert Opin Ther Pat 2009; 19:265-8. [DOI: 10.1517/13543770802688891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol Cell Neurosci 2008; 38:393-403. [DOI: 10.1016/j.mcn.2008.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/23/2008] [Accepted: 03/28/2008] [Indexed: 01/06/2023] Open
|
14
|
Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 2008; 76:454-64. [DOI: 10.1111/j.1432-0436.2007.00256.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Parekkadan B, Berdichevsky Y, Irimia D, Leeder A, Yarmush G, Toner M, Levine JB, Yarmush ML. Cell-cell interaction modulates neuroectodermal specification of embryonic stem cells. Neurosci Lett 2008; 438:190-5. [PMID: 18467031 DOI: 10.1016/j.neulet.2008.03.094] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/26/2008] [Accepted: 03/31/2008] [Indexed: 12/19/2022]
Abstract
The controlled differentiation of embryonic stem (ES) cells is of utmost interest to their clinical, biotechnological, and basic science use. Many investigators have combinatorially assessed the role of specific soluble factors and extracellular matrices in guiding ES cell fate, yet the interaction between neighboring cells in these heterogeneous cultures has been poorly defined due to a lack of conventional tools to specifically uncouple these variables. Herein, we explored the role of cell-cell interactions during neuroectodermal specification of ES cells using a microfabricated cell pair array. We tracked differentiation events in situ, using an ES cell line expressing green fluorescent protein (GFP) under the regulation of the Sox1 gene promoter, an early marker of neuroectodermal germ cell commitment in the adult forebrain. We observed that a previously specified Sox1-GFP+ cell could induce the specification of an undifferentiated ES cell. This induction was modulated by the two cells being in contact and was dependent on the age of previously specified cell prior to coculture. A screen of candidate cell adhesion molecules revealed that the expression of connexin (Cx)-43 correlated with the age-dependent effect of cell contact in cell pair experiments. ES cells deficient in Cx-43 showed aberrant neuroectodermal specification and lineage commitment, highlighting the importance of gap junctional signaling in the development of this germ layer. Moreover, this study demonstrates the integration of microscale culture techniques to explore the biology of ES cells and gain insight into relevant developmental processes otherwise undefined due to bulk culture methods.
Collapse
Affiliation(s)
- Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang SC, Li XJ, Johnson MA, Pankratz MT. Human embryonic stem cells for brain repair? Philos Trans R Soc Lond B Biol Sci 2008; 363:87-99. [PMID: 17322002 PMCID: PMC2605488 DOI: 10.1098/rstb.2006.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.
Collapse
Affiliation(s)
- Su-Chun Zhang
- Department of Anatomy and Neurology, School of Medicine and Public Health, Waisman Centre, WiCell Institute, University of Wisconsin, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
17
|
Joannides A, Chandran S. Human embryonic stem cells: An experimental and therapeutic resource for neurological disease. J Neurol Sci 2008; 265:84-8. [DOI: 10.1016/j.jns.2007.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 12/13/2022]
|
18
|
Sharp J, Keirstead HS. Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr Opin Biotechnol 2008; 18:434-40. [PMID: 18023336 DOI: 10.1016/j.copbio.2007.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/09/2007] [Accepted: 10/09/2007] [Indexed: 12/21/2022]
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine, 2111 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, United States.
| | | |
Collapse
|
19
|
Abstract
ES cell research represents an exploding field of exploration. Initially predicted to provide rapid cures for numerous human diseases, the clinical usefulness of ES cell-derived cells remains untested in humans. However, ES cells have rapidly expanded our knowledge of human development and the molecular details of differentiation. Our ability to generate relatively pure populations of specifically differentiated cells for transplantation has markedly improved. It is hoped that soon researchers will overcome the biologic impediments to successful treatment of human disease with ES cell-derived cells.
Collapse
|
20
|
Coleman B, de Silva MG, Shepherd RK. Concise Review: The Potential of Stem Cells for Auditory Neuron Generation and Replacement. Stem Cells 2007; 25:2685-94. [PMID: 17656641 DOI: 10.1634/stemcells.2007-0393] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sensory hair cells in the mammalian cochlea are sensitive to many insults including loud noise, ototoxic drugs, and ageing. Damage to these hair cells results in deafness and sets in place a number of irreversible changes that eventually result in the progressive degeneration of auditory neurons, the target cells of the cochlear implant. Techniques designed to preserve the density and integrity of auditory neurons in the deafened cochlea are envisaged to provide improved outcomes for cochlear implant recipients. This review examines the potential of embryonic stem cells to generate new neurons for the deafened mammalian cochlea, including the directed differentiation of stem cells toward a sensory neural lineage and the engraftment of exogenous stem cells into the deafened auditory system. Although still in its infancy the aim of this therapy is to restore a critical number of auditory neurons, thereby improving the benefits derived from a cochlear implant.
Collapse
Affiliation(s)
- Bryony Coleman
- Department of Otolaryngology, University of Melbourne, East Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
21
|
McKiernan E, O'Driscoll L, Kasper M, Barron N, O'Sullivan F, Clynes M. Directed Differentiation of Mouse Embryonic Stem Cells into Pancreatic-Like or Neuronal- and Glial-Like Phenotypes. ACTA ACUST UNITED AC 2007; 13:2419-30. [PMID: 17655486 DOI: 10.1089/ten.2006.0373] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The derivation of definitive endoderm and in particular endocrine cell types from undifferentiated embryonic stem (ES) cells remains difficult to achieve. In this study, we investigated the potential to regulate the differentiation of ES cells into endodermal derivatives using extracellular factors previously associated with various aspects of pancreatic development. Feeder-free-cultured mouse ESD3 cells were manipulated to form embryoid bodies (EBs) in the presence of retinoic acid (RA). RA-treated EBs were subsequently exposed to sodium butyrate (SB), betacellulin (BTC) or activin A (AA). A comparative analysis was performed on these models of directed differentiation in parallel with a model of spontaneous differentiation. Lineage differentiation was determined by profiling multilineage marker transcript expression (neuronal, myogenic, exocrine and endocrine pancreas, extraembryonic and apoptotic) and subsequent protein expression within ES-derived cultures. Using a two-stage differentiation protocol developed during this study, we successfully demonstrated the derivation of an intermediate multipotential population (RA_EBs) from undifferentiated ES cells that preferentially gives rise to pancreatic endocrine insulin-expressing cell types in the presence of SB, and neuronal- and glial-like cell types in the presence of AA or BTC.
Collapse
Affiliation(s)
- Eadaoin McKiernan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
22
|
Fernandes AM, Fernandes TG, Diogo MM, da Silva CL, Henrique D, Cabral JMS. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. J Biotechnol 2007; 132:227-36. [PMID: 17644203 DOI: 10.1016/j.jbiotec.2007.05.031] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 05/07/2007] [Accepted: 05/25/2007] [Indexed: 11/15/2022]
Abstract
Embryonic stem (ES) cells have the ability to differentiate in vitro into a wide variety of cell types with potential applications for tissue regeneration. However, a large number of cells are required, thus strengthening the need to develop large-scale systems using chemically defined media for ES cell production and/or controlled differentiation. In the present studies, a stirred culture system (i.e. spinner flask) was used to scale-up mouse ES (mES) cell expansion in serum-containing (DMEM/FBS) or serum-free medium, both supplemented with leukemia inhibitory factor (LIF), using either Cytodex 3 or Cultispher S microcarriers. After 8 days, maximal cell densities achieved were (1.9+/-0.1), (2.6+/-0.7) and 3.5x10(6)cells/mL for Cytodex 3 in DMEM/FBS, Cultispher S in DMEM/FBS and Cultispher S in serum-free cultures, respectively, with fold increases of 38+/-2, 50+/-15 and 70. Both microcarriers were suitable to sustain mES cell expansion, though the macroporous Cultispher S seemed to be advantageous in providing a more protective environment against shear stress forces, which harmful effects are exacerbated in serum-free conditions. Importantly, mES cells expanded under stirred conditions using serum-free medium retained their pluripotency and the ability to commit to the neural lineage.
Collapse
Affiliation(s)
- A M Fernandes
- Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Hwang DW, Kang JH, Jeong JM, Chung JK, Lee MC, Kim S, Lee DS. Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter. Eur J Nucl Med Mol Imaging 2007; 35:135-45. [PMID: 17885755 DOI: 10.1007/s00259-007-0561-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/15/2007] [Indexed: 01/27/2023]
Abstract
PURPOSE We imaged neuronal differentiation in vivo using dual reporters (sodium iodide symporter [NIS] and luciferase) coupled to a neuron-specific enolase (NSE) promoter. METHODS PC12 (NSE positive) and F11 cells were transfected with a bicistronic (NIS and luciferase; pNSE-NF) or a luciferase (pNSE-Fluc) reporter coupled to the NSE promoter. Weak NSE promoter activity was overcome by a two-step transcriptional amplification (TSTA) system (pNSE-TSTA-Fluc). In vivo, NIS and luciferase expression were examined using a (99m)Tc-pertechnetate gamma camera and bioluminescence imaging, respectively. RESULTS pNSE-NF-transfected PC12 cells showed 3-fold higher radioiodine uptakes and >100-fold higher luciferase activity than parental cells. NIS or luciferase activity was not detected in pNSE-NF-transfected HeLa cells. When F11 cells were differentiated into neurons by db-cAMP, NIS and luciferase activities increased 4-fold compared to those without treatment, which was confirmed by Western blot and RT-PCR of NSE. In vivo in pNSE-NF-transfected F11 cells, db-cAMP treatment increased the luciferase activity but not the scintigraphic activity. In vitro, pNSE-TSTA-Fluc produced 130-fold higher luciferase activity than pNSE-Fluc and neuronal differentiation showed 4-fold higher activity from both pNSE-TSTA-Fluc and pNSE-Fluc than before differentiation. In vivo, in pNSE-TSTA-Fluc-transfected F11 cells, luciferase activity increased after neuronal differentiation. In vivo luciferase activity persisted up to 2 days after db-cAMP-induced neuronal differentiation. CONCLUSION NSE promoter-driven dual reporter transgenes revealed the possibility of in vivo imaging of neuronal differentiation, which was further enabled by high amplification using a TSTA system. We propose that this strategy be used to follow the transplanted stem cells during differentiation in live animals.
Collapse
Affiliation(s)
- Do Won Hwang
- Programs in Neuroscience, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury. Exp Neurol 2007; 209:368-77. [PMID: 17950280 DOI: 10.1016/j.expneurol.2007.09.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/29/2007] [Accepted: 09/01/2007] [Indexed: 01/09/2023]
Abstract
This article reviews stem cell-based strategies for spinal cord injury repair, and practical issues concerning their translation to the clinic. Recent progress in the stem cell field includes clinically compliant culture conditions and directed differentiation of both embryonic stem cells and somatic stem cells. We provide a brief overview of the types of stem cells under evaluation, comparing their advantages and disadvantages for use in human clinical trials. We review the practical considerations and risks that must be addressed before human treatments can begin. With a growing understanding of these practical issues, stem cell biology, and spinal cord injury pathophysiology, stem cell-based therapies are moving closer to clinical application.
Collapse
Affiliation(s)
- Margaret Coutts
- Reeve-Irvine Research Center, Stem Cell Research Center, Department of Anatomy and Neurobiology, College of Medicine, University of California Irvine, Irvine, CA, USA
| | | |
Collapse
|
25
|
Améen C, Strehl R, Björquist P, Lindahl A, Hyllner J, Sartipy P. Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 2007; 65:54-80. [PMID: 17689256 DOI: 10.1016/j.critrevonc.2007.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/11/2007] [Accepted: 06/27/2007] [Indexed: 12/28/2022] Open
Abstract
The efficiency and accuracy of the drug development process is severely restricted by the lack of functional human cell systems. However, the successful derivation of pluripotent human embryonic stem (hES) cell lines in the late 1990s is expected to revolutionize biomedical research in many areas. Due to their growth capacity and unique developmental potential to differentiate into almost any cell type of the human body, hES cells have opened novel avenues both in basic and applied research as well as for therapeutic applications. In this review we describe, from an industrial perspective, the basic science that underlies the hES cell technology and discuss the current and future prospects for hES cells in novel and improved stem cell based applications for drug discovery, toxicity testing as well as regenerative medicine.
Collapse
Affiliation(s)
- Caroline Améen
- Cellartis AB, Arvid Wallgrens Backe 20, 413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Pouton CW, Haynes JM. Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 2007; 6:605-16. [PMID: 17667955 DOI: 10.1038/nrd2194] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) will become a source of models for a wide range of adult differentiated cells, providing that reliable protocols for directed differentiation can be established. Stem-cell technology has the potential to revolutionize drug discovery, making models available for primary screens, secondary pharmacology, safety pharmacology, metabolic profiling and toxicity evaluation. Models of differentiated cells that are derived from mouse ESCs are already in use in drug discovery, and are beginning to find uses in high-throughput screens. Before analogous human models can be obtained in adequate numbers, reliable methods for the expansion of human ESC cultures will be needed. For applications in drug discovery, involving either species, protocols for directed differentiation will need to be robust and affordable. Here, we explore current challenges and future opportunities in relation to the use of stem-cell technology in drug discovery, and address the use of both mouse and human models.
Collapse
Affiliation(s)
- Colin W Pouton
- Department of Pharmaceutical Biology, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Melbourne, Australia.
| | | |
Collapse
|
27
|
Baqir S, Smith LC. Inhibitors of histone deacetylases and DNA methyltransferases alter imprinted gene regulation in embryonic stem cells. CLONING AND STEM CELLS 2006; 8:200-13. [PMID: 17009896 DOI: 10.1089/clo.2006.8.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pluripotent embryonic stem cells are able to differentiate into a variety of cell types, thereby making them a valuable source for transplantation medicine. Recent studies have reported the use of pharmacological agents, namely 5-Aza-Cytidine (5AzaC) and Trichostatin A (TSA), to guide embryonic stem (ES) cells to differentiate into specific cellular lineages. However, those drugs are known to be potent inhibitors of DNA methyltransferases and/or histone deacetylases. Since both epigenetic mechanisms are involved in the expression of imprinted genes in fetal and adult somatic tissues, it is essential to investigate further the role of these agents in regulating imprinted gene expression in embryonic cells. Embryonic stem cells were exposed to 5AzaC and TSA and analyzed for transcript abundance of a number of imprinted and non-imprinted marker genes. Most imprinted gene transcripts increased following exposure to 5AzaC or TSA alone and responded in either an additive or synergistic manner when exposed to both drugs together. Interestingly, transcript levels of several imprinted genes remained high and in some cases, increased further after drug removal or even after passaging the cells, indicating a long lasting and retarded effect on gene expression. Together, our results suggest that DNA methylation and histone acetylation play jointly an important epigenetic role in governing imprinted gene expression in embryonic stem cells. Moreover, these results describe the sensitivity and irreversibility of embryonic stem cells to epigenetic modifiers, highlighting potential risks for their use in therapeutic applications.
Collapse
Affiliation(s)
- Senan Baqir
- Centre de Recherche en Reproduction Animale (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | |
Collapse
|
28
|
Chung S, Shin BS, Hedlund E, Pruszak J, Ferree A, Kang UJ, Isacson O, Kim KS. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 2006; 97:1467-80. [PMID: 16696855 PMCID: PMC2610439 DOI: 10.1111/j.1471-4159.2006.03841.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because of their ability to proliferate and to differentiate into diverse cell types, embryonic stem (ES) cells are a potential source of cells for transplantation therapy of various diseases, including Parkinson's disease. A critical issue for this potential therapy is the elimination of undifferentiated cells that, even in low numbers, could result in teratoma formation in the host brain. We hypothesize that an efficient solution would consist of purifying the desired cell types, such as neural precursors, prior to transplantation. To test this hypothesis, we differentiated sox1-green fluorescent protein (GFP) knock-in ES cells in vitro, purified neural precursor cells by fluorescence-activated cell sorting (FACS), and characterized the purified cells in vitro as well as in vivo. Immunocytofluorescence and RT-PCR analyses showed that this genetic purification procedure efficiently removed undifferentiated pluripotent stem cells. Furthermore, when differentiated into mature neurons in vitro, the purified GFP+ cell population generated enriched neuronal populations, whereas the GFP- population generated much fewer neurons. When treated with dopaminergic inducing signals such as sonic hedgehog (SHH) and fibroblast growth factor-8 (FGF8), FACS-purified neural precursor cells responded to these molecules and generated dopaminergic neurons as well as other neural subtypes. When transplanted, the GFP+ cell population generated well contained grafts containing dopaminergic neurons, whereas the GFP- population generated significantly larger grafts (about 20-fold) and frequent tumor-related deaths in the transplanted animals. Taken together, our results demonstrate that genetic purification of neural precursor cells using FACS isolation can effectively remove unwanted proliferating cell types and avoid tumor formation after transplantation.
Collapse
Affiliation(s)
- S. Chung
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Molecular Neurobiology Laboratories, Harvard Medical School, Belmont, MA, USA
| | - B.-S. Shin
- Molecular Neurobiology Laboratories, Harvard Medical School, Belmont, MA, USA
| | - E. Hedlund
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Molecular Neurobiology Laboratories, Harvard Medical School, Belmont, MA, USA
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - J. Pruszak
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - A. Ferree
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Un Jung Kang
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Ole Isacson
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Neuroregeneration Laboratories, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Kwang-Soo Kim
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital, Belmont, MA, USA
- Molecular Neurobiology Laboratories, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
29
|
Yamazoe H, Kobori M, Murakami Y, Yano K, Satoh M, Mizuseki K, Sasai Y, Iwata H. One-step induction of neurons from mouse embryonic stem cells in serum-free media containing vitamin B12 and heparin. Cell Transplant 2006; 15:135-45. [PMID: 16719047 DOI: 10.3727/000000006783982061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a simple method for neural cell fate specification directly from mouse embryonic stem cells (ES cells) in serum-free conditions in the absence of embryoid body formation. Dissociated ES cells were cultured in serum-free media supplemented with vitamin B12 and heparin, but without any expensive cytokines. After 14 days in culture, beta-tubulin type III (TuJ1) and tyrosine hydroxylase (TH)-positive colonies were detected by immunocytochemical examinations. In addition, specific gene analyses by RT-PCR demonstrated expression of an early central nerve system, mature neuron, and midbrain dopaminergic neuron-specific molecules (i.e., nestin, middle molecular mass neurofilament protein, Nurr1, and TH, respectively). Dopamine was also detected in the culture media by reverse-phase HPLC analysis. These facts indicate that addition of vitamin B12/heparin to serum-free culture media induced neurons from ES cells, which included cells that released dopamine. Other supplements, such as putrescine, biotin, and Fe2+, could not induce neurons from ES cells by themselves, but produced synergistic effects with vitamin B12/heparin. The rate of TuJ1+/TH+ colony formation was increased threefold and the amounts of dopamine released increased 1.5-fold by the addition of a mixture of putrescine, biotin, and Fe2+ to vitamin B12/heparin culture media. Our method is a simple tool to differentiate ES cells to dopaminergic neurons for the preparation of dopamine-releasing cells for the cell transplantation therapy of Parkinson's disease. In addition, this method can facilitate the discovery of soluble factors and genes that can aid in the induction of the ES cell to its neural fate.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Department of Reparative Materials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dezawa M, Hoshino M, Ide C. Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons. Expert Opin Biol Ther 2006; 5:427-35. [PMID: 15934822 DOI: 10.1517/14712598.5.4.427] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many neurodegenerative diseases are attributed to the degeneration of neurons with subsequent functional loss. Cell transplantation is a strategy with potential for treating such diseases, and many kinds of cells are considered candidates for transplantation therapy. Bone marrow stromal cells (MSCs) have great potential as therapeutic agents, as they are easy to isolate and expand from patients without serious ethical and technical problems. The authors have found a method for the highly efficient, exclusive and specific induction of functional postmitotic neuronal cells from both rat and human MSCs. Gene transfer of Notch intracellular domain (NICD) followed by the administration of certain trophic factors induced mature neurons expressing neuronal markers, some of which showed action potentials. Induced neurons were transplanted to animal models of neurodegenerative disorders, including Parkinson's disease and ischaemic brain injury, resulting in the successful integration of transplanted cells and improvement in function of the transplanted animals. This review summarises the respective potentials, benefits and drawbacks of MSC-derived neurons, and discusses the possibility of their clinical application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | |
Collapse
|
31
|
Cazillis M, Rasika S, Mani S, Gressens P, Leliévre V. In vitro induction of neural differentiation of embryonic stem (ES) cells closely mimics molecular mechanisms of embryonic brain development. Pediatr Res 2006; 59:48R-53R. [PMID: 16549548 DOI: 10.1203/01.pdr.0000203566.01600.8c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The capacity of pluripotent embryonic stem cells (ES cells) to proliferate and differentiate makes them promising tools in the field of cell therapy. In spite of the controversy surrounding the numerous ethical questions raised by this technology, it has been shown to have therapeutic potential for heart, lung, liver, bone and connective tissue regeneration. In addition, a very attractive aspect of this technology is its potential for the treatment of cerebral pathology. A number of studies using ES cell transplants report the differentiation of ES cells in the brain or spinal cord of rodents, and the improvement of locomotor and/or cognitive deficits caused by brain injury. This review offers a synthesis of recent advances in the field of both human and rodent stem cell manipulation to select populations of neurons, astrocytes and oligodendrocytes. In parallel, this review emphasizes the striking similarities that exist between genetically programmed embryonic development of the nervous system and the differentiation of ES cells in vitro.
Collapse
|
32
|
Serfozo P, Schlarman MS, Pierret C, Maria BL, Kirk MD. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines. Cancer Cell Int 2006; 6:1. [PMID: 16436212 PMCID: PMC1397869 DOI: 10.1186/1475-2867-6-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 01/25/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). RESULTS Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. CONCLUSION Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.
Collapse
Affiliation(s)
- Peter Serfozo
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Maggie S Schlarman
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Chris Pierret
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Bernard L Maria
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, 135 Rutledge Ave., Charleston, SC 29425
| | - Mark D Kirk
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| |
Collapse
|
33
|
Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366:2019-25. [PMID: 16338451 DOI: 10.1016/s0140-6736(05)67813-0] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human embryonic stem (hES) cells are a promising source for transplantation to replace diseased or damaged tissue, but their differentiated progeny express human leucocyte antigens (HLAs) that will probably cause graft rejection. The creation of a bank of HLA-typed hES cells, from which a best match could be selected, would help reduce the likelihood of graft rejection. We investigated how many hES cell lines would be needed to make matching possible in most cases. METHODS The number of hES cell lines needed to achieve varying degrees of HLA match was estimated by use of, as a surrogate for hES-cell donor embryos, blood group and HLA types on a series of 10,000 consecutive UK cadaveric organ donors. The degree of blood group compatibility and HLA matching for a recipient population consisting of 6577 patients registered on the UK kidney transplant waiting list was determined, assuming all donor hES cell lines could provide a transplant for an unlimited number of recipients. FINDINGS A bank of 150 consecutive donors provided a full match at HLA-A, HLA-B, and HLA-DR for a minority of recipients (<20%); a beneficial match (defined as one HLA-A or one HLA-B mismatch only) or better for 37.9% (range 27.9-47.5); and an HLA-DR match or better for 84.9% (77.5-90.0). Extending the number of donors beyond 150 conferred only a very gradual incremental benefit with respect to HLA matching. A panel of only ten donors homozygous for common HLA types selected from 10,000 donors provided a complete HLA-A, HLA-B and HLA-DR match for 37.7% of recipients, and a beneficial match for 67.4%. INTERPRETATION Approximately 150 consecutive blood group compatible donors, 100 consecutive blood group O donors, or ten highly selected homozygous donors could provide the maximum practical benefit for HLA matching. The findings from these simulations have practical, political, and ethical implications for the establishment of hES-cell banks.
Collapse
Affiliation(s)
- Craig J Taylor
- Tissue Typing Laboratory, Cambridge University Teaching Hospitals, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
34
|
Faulkner J, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 2005; 15:131-42. [PMID: 16412957 DOI: 10.1016/j.trim.2005.09.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 09/09/2005] [Indexed: 11/26/2022]
Abstract
Stem cells are self-renewing, pluripotent cells that can be manipulated in vitro to differentiate into virtually any cell type. Stem cells are highly proliferative and have the potential to expand into very large numbers of a desired cell lineage. As such, they represent an excellent source of cells for cellular replacement strategies in disease states that are typified by a loss of a particular cell population. Recent studies have indicated that spinal cord injury is accompanied by chronic progressive demyelination, and have thus identified oligodendrocytes as a desirable transplant population for remyelination strategies. To address this need, we developed a method to differentiate hESCs into high purity human oligodendrocyte progenitor cells (OPCs). Transplantation into spinal cord injury sites in adult rats resulted in remyelination and functional repair. Here, we summarize these findings and present new data concerning the effects of hESC-derived OPC transplantation on the host environment.
Collapse
Affiliation(s)
- Jill Faulkner
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, University of California at Irvine, 2111 Gillespie Neuroscience Research Facility, Irvine, CA, 92697-4292, USA
| | | |
Collapse
|
35
|
Yanagisawa A, Endo C, Okawa K, Shitara S, Kugoh H, Kakitani M, Oshimura M, Tomizuka K. Generation of Chromosome-Specific Monoclonal Antibodies Using In Vitro-Differentiated Transchromosomic Mouse Embryonic Stem Cells. Stem Cells 2005; 23:1479-88. [PMID: 16081665 DOI: 10.1634/stemcells.2004-0369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (MoAbs) recognizing lineage- and stage-specific human cell-surface antigens are valuable reagents for the characterization and isolation of various specialized cell populations derived from human embryonic stem cells (hESCs). In this report, we examined the use of in vitro differentiated transchromosomic mouse embryonic stem cells (TC-ESCs) as immunogens to obtain MoAbs against human cell-surface antigens. Immunization of a neural-cell population derived from differentiating human chromosome 4 and 11 TC-ESCs resulted in two chromosome-specific MoAbs, h4-neural1 and h11-neural1, respectively. The staining profiles of differentiated TC-ESCs and human embryonic carcinoma cells with these MoAbs were similar to the expression profile of nestin, a well-characterized intracellular marker for neural progenitor cells. We also described the successful purification and identification of the gene for h4-neural1 antigen (CD133, 4p15.32) with immunoaffinity chromatography. This procedure may have significant utility in generating MoAbs useful for understanding the mechanism that regulates the in vitro differentiation of hESCs.
Collapse
Affiliation(s)
- Ayano Yanagisawa
- Pharmaceutical Research Laboratory, Pharmaceutical Division, Kirin Brewery Co., Ltd., Takasaki-shi, Gunma 370-1295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Keirstead HS. Stem cells for the treatment of myelin loss. Trends Neurosci 2005; 28:677-83. [PMID: 16213602 DOI: 10.1016/j.tins.2005.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/25/2005] [Accepted: 09/20/2005] [Indexed: 11/23/2022]
Abstract
Treatment of myelin loss is particularly suited to therapeutic strategies based on cell replacement. Demyelination represents a defined and functionally debilitating deficit, and remyelination can be accomplished by supplying regions of demyelination with myelinogenic cell populations. Clinical interest in stem cells as a source of myelinogenic cells arises from their ability to provide an apparently unlimited cell supply for transplantation, and from recent demonstrations that they can be directed to myelinogenic phenotypes with high purity. Here, I present the emerging perspective that stem-cell-mediated remyelination of the adult CNS is a viable therapeutic strategy, and discuss the challenges to remyelination posed by the environment of acute and chronic injuries.
Collapse
Affiliation(s)
- Hans S Keirstead
- Reeve-Irvine Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-4292, USA.
| |
Collapse
|
37
|
Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T, Ishii H, Tanioka Y, Ohnishi Y, Suemizu H, Sugawara A, Tamaoki N, Izawa K, Nakazaki Y, Hamada H, Suemori H, Asano S, Nakatsuji N, Okano H, Tani K. Establishment of Novel Embryonic Stem Cell Lines Derived from the Common Marmoset (Callithrix jacchus). Stem Cells 2005; 23:1304-13. [PMID: 16109758 DOI: 10.1634/stemcells.2004-0366] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The successful establishment of human embryonic stem cell (hESC) lines has inaugurated a new era in regenerative medicine by facilitating the transplantation of differentiated ESCs to specific organs. However, problems with the safety and efficacy of hESC therapy in vivo remain to be resolved. Preclinical studies using animal model systems, including nonhuman primates, are essential to evaluate the safety and efficacy of hESC therapies. Previously, we demonstrated that common marmosets are suitable laboratory animal models for preclinical studies of hematopoietic stem cell therapies. As this animal model is also applicable to preclinical trials of ESC therapies, we have established novel common marmoset ESC (CMESC) lines. To obtain marmoset embryos, we developed a new embryo collection system, in which blastocysts can be obtained every 3 weeks from each marmoset pair. The inner cell mass was isolated by immunosurgery and plated on a mouse embryonic feeder layer. Some of the CMESC lines were cultured continuously for more than 1 year. These CMESC lines showed alkaline phosphatase activity and expressed stage-specific embryonic antigen (SSEA)-3, SSEA-4, TRA-1-60, and TRA-1-81. On the other hand, SSEA-1 was not detected. Furthermore, our novel CMESCs are pluripotent, as evidenced by in vivo teratoma formation in immunodeficient mice and in vitro differentiation experiments. Our established CMESC lines and the common marmoset provide an excellent experimental model system for understanding differentiation mechanisms, as well as the development of regenerative therapies using hESCs.
Collapse
Affiliation(s)
- Erika Sasaki
- Division of Laboratory Animal Science, Central Institute for Experimental Animals, Kanagawa, and Department of Urology, Urayasu Hospital, Juntendo University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The discovery of mouse embryonic stem (ES) cells >20 years ago represented a major advance in biology and experimental medicine, as it enabled the routine manipulation of the mouse genome. Along with the capacity to induce genetic modifications, ES cells provided the basis for establishing an in vitro model of early mammalian development and represented a putative new source of differentiated cell types for cell replacement therapy. While ES cells have been used extensively for creating mouse mutants for more than a decade, their application as a model for developmental biology has been limited and their use in cell replacement therapy remains a goal for many in the field. Recent advances in our understanding of ES cell differentiation, detailed in this review, have provided new insights essential for establishing ES cell-based developmental models and for the generation of clinically relevant populations for cell therapy.
Collapse
Affiliation(s)
- Gordon Keller
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
39
|
Cazillis M, Lelièvre V, Gressens P. Différenciation neurale des cellules souches embryonnaires. Med Sci (Paris) 2005; 21:484-90. [PMID: 15885197 DOI: 10.1051/medsci/2005215484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pluripotent murine embryonic stem (ES) cells can differentiate into all cell types both in vivo and in vitro. Based on their capability to proliferate and differentiate, these ES cells appear as a very promising tool for cell therapy. The understanding of the molecular mechanisms underlying the neural differentiation of the ES cells is a pre-requisite for selecting adequately the cells and conditions which will be able to correctly repair damaged brain and restore altered cognitive functions. Different methods allow obtaining neural cells from ES cells. Most of the techniques differentiate ES cells by treating embryoid bodies in order to keep an embryonic organization. More recent techniques, based on conditioned media, induce a direct differentiation of ES cells into neural cells, without going through the step of embryonic bodies. Beyond the fact that these techniques allow obtaining large numbers of neural precursors and more differentiated neural cells, these approaches also provide valuable information on the process of differentiation of ES cells into neural cells. Indeed, sequential studies of this process of differentiation have revealed that globally ES cells differentiating into neural cells in vitro recapitulate the molecular events governing the in vivo differentiation of neural cells. Altogether these data suggest that murine ES cells remain a highly valuable tool to obtain large amounts of precursor and differentiated neural cells as well as to get a better understanding of the mechanisms of neural differentiation, prior to a potential move towards the use of human ES cells in therapy.
Collapse
Affiliation(s)
- Michèle Cazillis
- Inserm U.676, Physiopathologie et neuroprotection des atteintes du cerveau en développement, Hôpital Robert-Debré, 48, boulevard Sérurier, 75935 Paris Cedex 19, France.
| | | | | |
Collapse
|
40
|
Yamazoe H, Murakami Y, Mizuseki K, Sasai Y, Iwata H. Collection of neural inducing factors from PA6 cells using heparin solution and their immobilization on plastic culture dishes for the induction of neurons from embryonic stem cells. Biomaterials 2005; 26:5746-54. [PMID: 15878380 DOI: 10.1016/j.biomaterials.2005.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/23/2005] [Indexed: 12/31/2022]
Abstract
Embryonic stem (ES) cells have the ability to replicate themselves and differentiate into various mature cells. Recently, dopaminergic neurons were efficiently induced from ES cells using mouse stromal cells (PA6 cells) as a feeder cell layer. This simple procedure seems to be very efficient to obtain dopamine-releasing cells for future clinical cell transplantation treatment of Parkinson's disease. In this study, we prepared stock solutions containing neural inducing factors (NIFs) by washing PA6 cells with phosphate-buffered saline containing heparin. ES cells grew successfully in culture media supplemented with 33 v/v% NIFs stock solution, and the rate of neural differentiation of ES cell progeny increased with increasing heparin concentration in the culture media. In addition, NIFs-immobilized surfaces were prepared by exposing polyethyleneimine-modified surfaces to NIFs stock solutions. The NIFs-immobilized culture dish effectively supported cell growth as the culture medium supplemented with NIFs stock did, but its induction effect to dopaminergic neurons from ES cells was much smaller than free NIFs. NIFs stock solutions have two different activities. One can stimulate cell growth and the other induces differentiation of ES cells to the neural fate when heparin existed. The former factors were effectively immobilized on the culture dish, but those that induce differentiation may not be. Further optimization is required.
Collapse
Affiliation(s)
- Hironori Yamazoe
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
41
|
Bithell A, Williams BP. Neural stem cells and cell replacement therapy: making the right cells. Clin Sci (Lond) 2004; 108:13-22. [PMID: 15462670 DOI: 10.1042/cs20040276] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few years have seen major advances in the field of NSC (neural stem cell) research with increasing emphasis towards its application in cell-replacement therapy for neurological disorders. However, the clinical application of NSCs will remain largely unfeasible until a comprehensive understanding of the cellular and molecular mechanisms of NSC fate specification is achieved. With this understanding will come an increased possibility to exploit the potential of stem cells in order to manufacture transplantable NSCs able to provide a safe and effective therapy for previously untreatable neurological disorders. Since the pathology of each of these disorders is determined by the loss or damage of a specific neural cell population, it may be necessary to generate a range of NSCs able to replace specific neurons or glia rather than generating a generic NSC population. Currently, a diverse range of strategies is being investigated with this goal in mind. In this review, we focus on the relationship between NSC specification and differentiation and discuss how this information may be used to direct NSCs towards a particular fate.
Collapse
Affiliation(s)
- Angela Bithell
- Institute of Psychiatry, Department of Psychological Medicine, PO Box 52, De Crespigny Park, London SE5 8AF, U.K
| | | |
Collapse
|