1
|
Perrenoud Q, Leclerc C, Geoffroy H, Vitalis T, Richetin K, Rampon C, Gallopin T. Molecular and electrophysiological features of GABAergic neurons in the dentate gyrus reveal limited homology with cortical interneurons. PLoS One 2022; 17:e0270981. [PMID: 35802727 PMCID: PMC9269967 DOI: 10.1371/journal.pone.0270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
GABAergic interneurons tend to diversify into similar classes across telencephalic regions. However, it remains unclear whether the electrophysiological and molecular properties commonly used to define these classes are discriminant in the hilus of the dentate gyrus. Here, using patch-clamp combined with single cell RT-PCR, we compare the relevance of commonly used electrophysiological and molecular features for the clustering of GABAergic interneurons sampled from the mouse hilus and primary sensory cortex. While unsupervised clustering groups cortical interneurons into well-established classes, it fails to provide a convincing partition of hilar interneurons. Statistical analysis based on resampling indicates that hilar and cortical GABAergic interneurons share limited homology. While our results do not invalidate the use of classical molecular marker in the hilus, they indicate that classes of hilar interneurons defined by the expression of molecular markers do not exhibit strongly discriminating electrophysiological properties.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Clémence Leclerc
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Tania Vitalis
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Kevin Richetin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
2
|
Stone TW. Relationships and Interactions between Ionotropic Glutamate Receptors and Nicotinic Receptors in the CNS. Neuroscience 2021; 468:321-365. [PMID: 34111447 DOI: 10.1016/j.neuroscience.2021.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Although ionotropic glutamate receptors and nicotinic receptors for acetylcholine (ACh) have usually been studied separately, they are often co-localized and functionally inter-dependent. The objective of this review is to survey the evidence for interactions between the two receptor families and the mechanisms underlying them. These include the mutual regulation of subunit expression, which change the NMDA:AMPA response balance, and the existence of multi-functional receptor complexes which make it difficult to distinguish between individual receptor sites, especially in vivo. This is followed by analysis of the functional relationships between the receptors from work on transmitter release, cellular electrophysiology and aspects of behavior where these can contribute to understanding receptor interactions. It is clear that nicotinic receptors (nAChRs) on axonal terminals directly regulate the release of glutamate and other neurotransmitters, α7-nAChRs generally promoting release. Hence, α7-nAChR responses will be prevented not only by a nicotinic antagonist, but also by compounds blocking the indirectly activated glutamate receptors. This accounts for the apparent anticholinergic activity of some glutamate antagonists, including the endogenous antagonist kynurenic acid. The activation of presynaptic nAChRs is by the ambient levels of ACh released from pre-terminal synapses, varicosities and glial cells, acting as a 'volume neurotransmitter' on synaptic and extrasynaptic sites. In addition, ACh and glutamate are released as CNS co-transmitters, including 'cholinergic' synapses onto spinal Renshaw cells. It is concluded that ACh should be viewed primarily as a modulator of glutamatergic neurotransmission by regulating the release of glutamate presynaptically, and the location, subunit composition, subtype balance and sensitivity of glutamate receptors, and not primarily as a classical fast neurotransmitter. These conclusions and caveats should aid clarification of the sites of action of glutamate and nicotinic receptor ligands in the search for new centrally-acting drugs.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; Institute of Neuroscience, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Li ZH, Zhang CK, Qiao Y, Ge SN, Zhang T, Li JL. Coexpression of VGLUT1 and VGLUT2 in precerebellar neurons in the lateral reticular nucleus of the rat. Brain Res Bull 2020; 162:94-106. [PMID: 32562720 DOI: 10.1016/j.brainresbull.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/19/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Vesicular glutamate transporter (VGLUT) 1 and VGLUT2 have been reported to distribute complementally in most brain regions and have been assumed to define distinct functional elements. Previous studies have shown the expression of VGLUT1 mRNA and VGLUT2 mRNA in the lateral reticular nucleus (LRN), a key precerebellar nucleus sending mossy fibers to the cerebellum. In the present study, we firstly examined the coexpression of VGLUT1 and VGLUT2 mRNA in the LRN of the rat by dual-fluorescence in situ hybridization. About 81.89 % of glutamatergic LRN neurons coexpressed VGLUT1 and VGLUT2 mRNA, and the others expressed either VGLUT1 or VGLUT2 mRNA. We then injected the retrograde tracer Fluogold (FG) into the vermal cortex of cerebellum, and observed that 95.01 % and 86.80 % of FG-labeled LRN neurons expressed VGLUT1 or VGLUT2 mRNA respectively. We further injected the anterograde tracer biotinylated dextran amine (BDA) into the LRN, and found about 82.6 % of BDA labeled axon terminals in the granular layer of cerebellar cortex showed both VGLUT1- and VGLUT2-immunoreactivities. Afterwards, we observed under electron microscopy that anterogradely labeled axon terminals showing immunoreactivity for VGLUT1 or VGLUT2 made asymmetric synapses with dendritic profiles of cerebellar neurons. Finally, we selectively down-regulated the expression of VGLUT1 mRNA or VGLUT2 mRNA by using viral vector mediated siRNA transfection and detected that the fine movements of the forelimb of rats were disturbed. These results indicated that LRN neurons coexpressing VGLUT1 and VGLUT2 project to the cerebellar cortex and these neurons might be critical in mediating the forelimb movements.
Collapse
Affiliation(s)
- Zhi-Hong Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No.1 of Xinyi Road, Baqiao District, Xi'an, 710038, China
| | - Chun-Kui Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Yu Qiao
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Shun-Nan Ge
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No.1 of Xinyi Road, Baqiao District, Xi'an, 710038, China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, The Fourth Military Medical University, No.169 of West Changle Road, Xincheng District, Xi'an, 710032, China; Department of Anatomy, School of Medicine, Northwest University, No.229 of North Taibai Road, Beilin District, Xi'an, 710069, China.
| |
Collapse
|
4
|
McKinney HM, Sherer LM, Williams JL, Certel SJ, Stowers RS. Characterization of Drosophila octopamine receptor neuronal expression using MiMIC-converted Gal4 lines. J Comp Neurol 2020; 528:2174-2194. [PMID: 32060912 DOI: 10.1002/cne.24883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 01/08/2023]
Abstract
Octopamine, the invertebrate analog of norepinephrine, is known to modulate a large variety of behaviors in Drosophila including feeding initiation, locomotion, aggression, and courtship, among many others. Significantly less is known about the identity of the neurons that receive octopamine input and how they mediate octopamine-regulated behaviors. Here, we characterize adult neuronal expression of MiMIC-converted Trojan-Gal4 lines for each of the five Drosophila octopamine receptors. Broad neuronal expression was observed for all five octopamine receptors, yet distinct differences among them were also apparent. Use of immunostaining for the octopamine neurotransmitter synthesis enzyme Tdc2, along with a novel genome-edited conditional Tdc2-LexA driver, revealed all five octopamine receptors express in Tdc2/octopamine neurons to varying degrees. This suggests autoreception may be an important circuit mechanism by which octopamine modulates behavior.
Collapse
Affiliation(s)
- Hannah M McKinney
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| | - Lewis M Sherer
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana
| | - Jessica L Williams
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana.,Department of Plant Sciences, Montana State University, Bozeman, Montana
| | - Sarah J Certel
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana.,Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
5
|
Gupta A, Gargiulo AT, Curtis GR, Badve PS, Pandey S, Barson JR. Pituitary Adenylate Cyclase-Activating Polypeptide-27 (PACAP-27) in the Thalamic Paraventricular Nucleus Is Stimulated by Ethanol Drinking. Alcohol Clin Exp Res 2018; 42:1650-1660. [PMID: 29969146 DOI: 10.1111/acer.13826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The paraventricular nucleus of the thalamus (PVT) is a limbic brain structure that affects ethanol (EtOH) drinking, but the neurochemicals transcribed in this nucleus that may participate in this behavior have yet to be fully characterized. The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is known to be transcribed in other limbic areas and to be involved in many of the same behaviors as the PVT itself, possibly including EtOH drinking. It exists in 2 isoforms, PACAP-38 and PACAP-27, with the former expressed at higher levels in most brain regions. The purpose of this study was to characterize PACAP in the PVT and to assess its response to EtOH drinking. METHODS First, EtOH-naïve, Sprague Dawley rats were examined using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry, to characterize PACAP mRNA and peptide throughout the rostrocaudal axis of the PVT. Next, EtOH-naïve, vGLUT2-GFP transgenic mice were examined using immunohistochemistry, to identify the neurochemical phenotype of the PACAPergic cells in the PVT. Finally, Long Evans rats were trained to drink 20% EtOH under the intermittent-access paradigm and then examined with PCR and immunohistochemistry, to determine the effects of EtOH on endogenous PACAP in the PVT. RESULTS Gene expression of PACAP was detected across the entire PVT, denser in the posterior than the anterior portion of this nucleus. The protein isoform, PACAP-27, was present in a high percentage of cell bodies in the PVT, again particularly in the posterior portion, while PACAP-38 was instead dense in fibers. All PACAP-27+ cells colabeled with glutamate, which itself was identified in the majority of PVT cells. EtOH drinking led to an increase in PACAP gene expression and in levels of PACAP-27 in individual cells of the PVT. CONCLUSIONS This study characterizes the PVT neuropeptide, PACAP, and its understudied protein isoform, PACAP-27, and demonstrates that it is involved in pharmacologically relevant EtOH drinking. This indicates that PACAP-27 should be further investigated for its possible role in EtOH drinking.
Collapse
Affiliation(s)
- Anuranita Gupta
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrew T Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Preeti S Badve
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Surya Pandey
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Sarkar S, Atoji Y. Distribution of vesicular glutamate transporters in the brain of the turtle (Pseudemys scripta elegans). J Comp Neurol 2018; 526:1690-1702. [PMID: 29603220 DOI: 10.1002/cne.24439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Luquin E, Huerta I, Aymerich MS, Mengual E. Stereological Estimates of Glutamatergic, GABAergic, and Cholinergic Neurons in the Pedunculopontine and Laterodorsal Tegmental Nuclei in the Rat. Front Neuroanat 2018; 12:34. [PMID: 29867374 PMCID: PMC5958217 DOI: 10.3389/fnana.2018.00034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
The pedunculopontine tegmental nucleus (PPN) and laterodorsal tegmental nucleus (LDT) are functionally associated brainstem structures implicated in behavioral state control and sensorimotor integration. The PPN is also involved in gait and posture, while the LDT plays a role in reward. Both nuclei comprise characteristic cholinergic neurons intermingled with glutamatergic and GABAergic cells whose absolute numbers in the rat have been only partly established. Here we sought to determine the complete phenotypical profile of each nucleus to investigate potential differences between them. Counts were obtained using stereological methods after the simultaneous visualization of cholinergic and either glutamatergic or GABAergic cells. The two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67, were separately analyzed. Dual in situ hybridization revealed coexpression of GAD65 and GAD67 mRNAs in ∼90% of GAD-positive cells in both nuclei; thus, the estimated mean numbers of (1) cholinergic, (2) glutamatergic, and (3) GABAergic cells in PPN and LDT, respectively, were (1) 3,360 and 3,650; (2) 5,910 and 5,190; and (3) 4,439 and 7,599. These data reveal significant differences between PPN and LDT in their relative phenotypical composition, which may underlie some of the functional differences observed between them. The estimation of glutamatergic cells was significantly higher in the caudal PPN, supporting the reported functional rostrocaudal segregation in this nucleus. Finally, a small subset of cholinergic neurons (8% in PPN and 5% in LDT) also expressed the glutamatergic marker Vglut2, providing anatomical evidence for a potential corelease of transmitters at specific target areas.
Collapse
Affiliation(s)
- Esther Luquin
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ibone Huerta
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - María S Aymerich
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona, Spain
| | - Elisa Mengual
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
8
|
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016; 10:63. [PMID: 27065827 PMCID: PMC4813092 DOI: 10.3389/fnbeh.2016.00063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Bryan Scot Barker
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Ali D Güler
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Michael M Scott
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
9
|
Münster-Wandowski A, Zander JF, Richter K, Ahnert-Hilger G. Co-existence of Functionally Different Vesicular Neurotransmitter Transporters. Front Synaptic Neurosci 2016; 8:4. [PMID: 26909036 PMCID: PMC4754932 DOI: 10.3389/fnsyn.2016.00004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 01/25/2023] Open
Abstract
The vesicular transmitter transporters VGLUT, VGAT, VMAT2 and VAChT, define phenotype and physiological properties of neuronal subtypes. VGLUTs concentrate the excitatory amino acid glutamate, VGAT the inhibitory amino acid GABA, VMAT2 monoamines, and VAChT acetylcholine (ACh) into synaptic vesicle (SV). Following membrane depolarization SV release their content into the synaptic cleft. A strict segregation of vesicular transporters is mandatory for the precise functioning of synaptic communication and of neuronal circuits. In the last years, evidence accumulates that subsets of neurons express more than one of these transporters leading to synaptic co-release of different and functionally opposing transmitters and modulation of synaptic plasticity. Synaptic co-existence of transporters may change during pathological scenarios in order to ameliorate misbalances in neuronal activity. In addition, evidence increases that transporters also co-exist on the same vesicle providing another layer of regulation. Generally, vesicular transmitter loading relies on an electrochemical gradient ΔμH+ driven by the proton ATPase rendering the lumen of the vesicle with respect to the cytosol positive (Δψ) and acidic (ΔpH). While the activity of VGLUT mainly depends on the Δψ component, VMAT, VGAT and VAChT work best at a high ΔpH. Thus, a vesicular synergy of transporters depending on the combination may increase or decrease the filling of SV with the principal transmitter. We provide an overview on synaptic co-existence of vesicular transmitter transporters including changes in the excitatory/inhibitory balance under pathological conditions. Additionally, we discuss functional aspects of vesicular synergy of transmitter transporters.
Collapse
Affiliation(s)
| | | | - Karin Richter
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
10
|
Pundir AS, Singh UA, Ahuja N, Makhija S, Dikshit PC, Radotra B, Kumar P, Shankar SK, Mahadevan A, Roy TS, Iyengar S. Growth and refinement of excitatory synapses in the human auditory cortex. Brain Struct Funct 2015; 221:3641-74. [PMID: 26438332 DOI: 10.1007/s00429-015-1124-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2015] [Indexed: 02/03/2023]
Abstract
We had earlier demonstrated a neurofilament-rich plexus of axons in the presumptive human auditory cortex during fetal development which became adult-like during infancy. To elucidate the origin of these axons, we studied the expression of the vesicular glutamate transporters (VGLUT) 1 and 2 in the human auditory cortex at different stages of development. While VGLUT-1 expression predominates in intrinsic and cortico-cortical synapses, VGLUT-2 expression predominates in thalamocortical synapses. Levels of VGLUT-2 mRNA were higher in the auditory cortex before birth compared to postnatal development. In contrast, levels of VGLUT-1 mRNA were low before birth and increased during postnatal development to peak during childhood and then began to decrease in adolescence. Both VGLUT-1 and VGLUT-2 proteins were present in the human auditory cortex as early as 15GW. Further, immunohistochemistry revealed that the supra- and infragranular layers were more immunoreactive for VGLUT-1 compared to that in Layer IV at 34GW and this pattern was maintained until adulthood. As for VGLUT-1 mRNA, VGLUT-1 synapses increased in density between prenatal development and childhood in the human auditory cortex after which they appeared to undergo attrition or pruning. The adult pattern of VGLUT-2 immunoreactivity (a dense band of VGLUT-2-positive terminals in Layer IV) also began to appear in the presumptive Heschl's gyrus at 34GW. The density of VGLUT-2-positive puncta in Layer IV increased between prenatal development and adolescence, followed by a decrease in adulthood, suggesting that thalamic axons which innervate the human auditory cortex undergo pruning comparatively late in development.
Collapse
Affiliation(s)
- Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Utkarsha A Singh
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Nikhil Ahuja
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - Sonal Makhija
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India
| | - P C Dikshit
- Department of Forensic Medicine, Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Bishan Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India
| | - Praveen Kumar
- Department of Obstetrics and Gynecology, Base Hospital, Delhi Cantonment, Delhi, 110010, India
| | - S K Shankar
- Department of Neuropathology, National Institute of Mental Health and Allied Sciences, Hosur Road, Bangalore, 560029, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Allied Sciences, Hosur Road, Bangalore, 560029, India
| | - T S Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110002, India
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre (Deemed University), NH-8, Manesar, Gurgaon, Haryana, 122051, India.
| |
Collapse
|
11
|
Evanson NK, Herman JP. Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses. ACTA ACUST UNITED AC 2015; 21:253-260. [PMID: 26472933 DOI: 10.4036/iis.2015.b.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the main neuroendocrine arm of the stress response, activation of which leads to the production of glucocorticoid hormones. Glucocorticoids are steroid hormones that are secreted from the adrenal cortex, and have a variety of effects on the body, including modulation of the immune system, suppression of reproductive hormones maintenance of blood glucose levels, and maintenance of blood pressure. Glutamate plays an important role in coordination of HPA axis output. There is strong evidence that glutamate drives HPA axis stress responses through excitatory signaling via ionotropic glutamate receptor signaling. However, glutamate signaling via kainate receptors and group I metabotropic receptors inhibit HPA drive, probably via presynaptic inhibitory mechanisms. Notably, kainate receptors are also localized in the median eminence, and appear to play an excitatory role in control of CRH release at the nerve terminals. Finally, glutamate innervation of the PVN undergoes neuroplastic changes under conditions of chronic stress, and may be involved in sensitization of HPA axis responses. Altogether, the data suggest that glutamate plays a complex role in excitation of CRH neurons, acting at multiple levels to both drive HPA axis responses and limit over-activation.
Collapse
Affiliation(s)
- Nathan K Evanson
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Pediatric rehabilitation division. 3333 Burnet Ave, MLC 4009, Cincinnati, OH, USA. 45229
| | - James P Herman
- Department of Psychiatry, University of Cincinnati. 2170 E. Galbraith Road, Cincinnati, OH, USA. 45237
| |
Collapse
|
12
|
Abstract
Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.
Collapse
Affiliation(s)
- Vidar Gundersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Jon Storm-Mathisen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Linda Hildegard Bergersen
- SN-Lab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, and CMBN/SERTA/Healthy Brain Ageing Centre, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; and Brain and Muscle Energy Group, Department of Oral Biology and Division of Anatomy, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model. Exp Neurol 2015; 271:215-27. [PMID: 26079645 DOI: 10.1016/j.expneurol.2015.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 11/22/2022]
Abstract
LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes.
Collapse
|
15
|
Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 2014; 5:1131-41. [PMID: 25029033 DOI: 10.1021/cn5000524] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, with over 50 million people worldwide affected. Recent evidence suggests that the transient receptor potential cation channel subfamily V member 1 (TRPV1) may contribute to the onset and progression of some forms of epilepsy. Since the two nonpsychotropic cannabinoids cannabidivarin (CBDV) and cannabidiol (CBD) exert anticonvulsant activity in vivo and produce TRPV1-mediated intracellular calcium elevation in vitro, we evaluated the effects of these two compounds on TRPV1 channel activation and desensitization and in an in vitro model of epileptiform activity. Patch clamp analysis in transfected HEK293 cells demonstrated that CBD and CBDV dose-dependently activate and rapidly desensitize TRPV1, as well as TRP channels of subfamily V type 2 (TRPV2) and subfamily A type 1 (TRPA1). TRPV1 and TRPV2 transcripts were shown to be expressed in rat hippocampal tissue. When tested on epileptiform neuronal spike activity in hippocampal brain slices exposed to a Mg(2+)-free solution using multielectrode arrays (MEAs), CBDV reduced both epileptiform burst amplitude and duration. The prototypical TRPV1 agonist, capsaicin, produced similar, although not identical effects. Capsaicin, but not CBDV, effects on burst amplitude were reversed by IRTX, a selective TRPV1 antagonist. These data suggest that CBDV antiepileptiform effects in the Mg(2+)-free model are not uniquely mediated via activation of TRPV1. However, TRPV1 was strongly phosphorylated (and hence likely sensitized) in Mg(2+)-free solution-treated hippocampal tissue, and both capsaicin and CBDV caused TRPV1 dephosphorylation, consistent with TRPV1 desensitization. We propose that CBDV effects on TRP channels should be studied further in different in vitro and in vivo models of epilepsy.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Endocannabinoid
Research Group, Institute of Biomolecular Chemistry (ICB), National Council of Research (CNR), 80078 Pozzuoli (NA) Italy
| | - Charlotte L. Hill
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Antonio Leo
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Ahlam Alhusaini
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Camille Soubrane
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Enrico Mazzarella
- Endocannabinoid
Research Group, Institute of Biomolecular Chemistry (ICB), National Council of Research (CNR), 80078 Pozzuoli (NA) Italy
| | | | - Benjamin J. Whalley
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid
Research Group, Institute of Biomolecular Chemistry (ICB), National Council of Research (CNR), 80078 Pozzuoli (NA) Italy
| | - Gary J. Stephens
- School
of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AJ, United Kingdom
| |
Collapse
|
16
|
Expression of the System N transporter (SNAT5/SN2) during development indicates its plausible role in glutamatergic neurotransmission. Neurochem Int 2014; 73:166-71. [DOI: 10.1016/j.neuint.2013.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023]
|
17
|
Villar-Cerviño V, Barreiro-Iglesias A, Fernández-López B, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2013; 521:522-57. [PMID: 22791297 DOI: 10.1002/cne.23189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/06/2012] [Indexed: 12/27/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrates, and glutamatergic cells probably represent a majority of neurons in the brain. Physiological studies have demonstrated a wide presence of excitatory (glutamatergic) neurons in lampreys. The present in situ hybridization study with probes for the lamprey vesicular glutamate transporter (VGLUT) provides an anatomical basis for the general distribution and precise localization of glutamatergic neurons in the sea lamprey brainstem. Most glutamatergic neurons were found within the periventricular gray layer throughout the brainstem, with the following regions being of particular interest: the optic tectum, torus semicircularis, isthmus, dorsal and medial nuclei of the octavolateral area, dorsal column nucleus, solitary tract nucleus, motoneurons, and reticular formation. The reticular population revealed a high degree of cellular heterogeneity including small, medium-sized, large, and giant glutamatergic neurons. We also combined glutamate immunohistochemistry with neuronal tract-tracing methods or γ-aminobutyric acid (GABA) immunohistochemistry to better characterize the glutamatergic populations. Injection of Neurobiotin into the spinal cord revealed that retrogradely labeled small and medium-sized cells of some reticulospinal-projecting groups were often glutamate-immunoreactive, mostly in the hindbrain. In contrast, the large and giant glutamatergic reticulospinal perikarya mostly lacked glutamate immunoreactivity. These results indicate that glutamate immunoreactivity did not reveal the entire set of glutamatergic populations. Some spinal-projecting octaval populations lacked both VGLUT and glutamate. As regards GABA and glutamate, their distribution was largely complementary, but colocalization of glutamate and GABA was observed in some small neurons, suggesting that glutamate immunohistochemistry might also detect non-glutamatergic cells or neurons that co-release both GABA and glutamate.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Bañuelos C, LaSarge CL, McQuail JA, Hartman JJ, Gilbert RJ, Ormerod BK, Bizon JL. Age-related changes in rostral basal forebrain cholinergic and GABAergic projection neurons: relationship with spatial impairment. Neurobiol Aging 2013; 34:845-62. [PMID: 22817834 PMCID: PMC3632262 DOI: 10.1016/j.neurobiolaging.2012.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/15/2012] [Accepted: 06/21/2012] [Indexed: 01/31/2023]
Abstract
Both cholinergic and GABAergic projections from the rostral basal forebrain contribute to hippocampal function and mnemonic abilities. While dysfunction of cholinergic neurons has been heavily implicated in age-related memory decline, significantly less is known regarding how age-related changes in codistributed GABAergic projection neurons contribute to a decline in hippocampal-dependent spatial learning. In the current study, confocal stereology was used to quantify cholinergic (choline acetyltransferase [ChAT] immunopositive) neurons, GABAergic projection (glutamic decarboxylase 67 [GAD67] immunopositive) neurons, and total (neuronal nuclei [NeuN] immunopositive) neurons in the rostral basal forebrain of young and aged rats that were first characterized on a spatial learning task. ChAT immunopositive neurons were significantly but modestly reduced in aged rats. Although ChAT immunopositive neuron number was strongly correlated with spatial learning abilities among young rats, the reduction of ChAT immunopositive neurons was not associated with impaired spatial learning in aged rats. In contrast, the number of GAD67 immunopositive neurons was robustly and selectively elevated in aged rats that exhibited impaired spatial learning. Interestingly, the total number of rostral basal forebrain neurons was comparable in young and aged rats, regardless of their cognitive status. These data demonstrate differential effects of age on phenotypically distinct rostral basal forebrain projection neurons, and implicate dysregulated cholinergic and GABAergic septohippocampal circuitry in age-related mnemonic decline.
Collapse
Affiliation(s)
- Cristina Bañuelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Henry AM, Hohmann JG. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord. Mamm Genome 2012; 23:539-49. [DOI: 10.1007/s00335-012-9406-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/21/2012] [Indexed: 01/29/2023]
|
20
|
Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2012; 519:1712-35. [PMID: 21452205 DOI: 10.1002/cne.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the importance of glutamate as a major excitatory neurotransmitter in the brain, the distribution of glutamatergic populations in the brain of most vertebrates is still unknown. Here, we studied for the first time the distribution of glutamatergic neurons in the forebrain of the sea lamprey (Petromyzon marinus), belonging to the most ancient group of vertebrates (agnathans). For this, we used in situ hybridization with probes for a lamprey vesicular glutamate transporter (VGLUT) in larvae and immunofluorescence with antiglutamate antibodies in both larvae and adults. We also compared glutamate and γ-aminobutyric acid (GABA) immunoreactivities in sections using double-immunofluorescence methods. VGLUT-expressing neurons were observed in the olfactory bulb, pallium, septum, subhippocampal lobe, preoptic region, thalamic eminence, prethalamus, thalamus, epithalamus, pretectum, hypothalamus, posterior tubercle, and nucleus of the medial longitudinal fascicle. Comparison of VGLUT signal and glutamate immunoreactivity in larval forebrain revealed a consistent distribution of positive cells, which were numerous in most regions. Glutamate-immunoreactive cell populations were also found in similar regions of the adult forebrain. These include mitral-like cells of the olfactory bulbs and abundant cells in the lateral pallium, septum, and various diencephalic regions, mainly in the prethalamus, thalamus, habenula, pineal complex, and pretectum. Only a small portion of the glutamate-immunoreactive cells showed colocalization with GABA, which was observed mainly in the olfactory bulb, telencephalon, hypothalamus, ventral thalamus, and pretectum. Comparison with glutamatergic cells observed in rodent forebrains suggests that the regional distribution of glutamatergic cells does not differ greatly in lampreys and mammals.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
21
|
Zhao XL, Yan JQ, Yang XJ, Chen K, Li JR, Zhang Y. Fos positive neurons in the brain stem and amygdala mostly express vesicular glutamate transporter 3 after bitter taste stimulation. Brain Res 2012; 1445:20-9. [PMID: 22341428 DOI: 10.1016/j.brainres.2012.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 10/28/2011] [Accepted: 01/07/2012] [Indexed: 10/14/2022]
Abstract
The present study examined the relationship between vesicular glutamate transpoter-3 (VGLUT3) positive cells and the activation of neurons in the brainstem and amygdala by bitter taste, using double-labeling immunohistochemistry. Conscious animals were subjected to intraoral bitter taste stimulation with quinine solution. Following this, neuronal activation was assessed by c-Fos expression and an analysis of c-Fos expression cells, VGLUT3 positive cells and double-labeled cells was made in the nucleus of the solitary tract (NST), the parabrachial nucleus (PBN) and amygdala. Results showed that intraoral bitter taste stimulation led to significant increases in the number of c-Fos-expressing and double-labeled cells in the NST, PBN and amygdala. Results also showed a decrease in the number of c-Fos-positive and double-labeled cells in the amygdala, in comparison with neurons in the brainstem, after bitter taste stimulation. These results suggest that bitter taste activates cells in the NST, PBN and amygdala and these effects are partly mediated by VGLUT3 positive cells. Moreover, double-labeled neurons also exhibited a preferential distribution after quinine stimulation compared to water stimulation.
Collapse
Affiliation(s)
- Xiao-Lin Zhao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi'an Jiaotong University, 76# W. Yanta Road, Xi'an, 710061, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Siegel JA, Park BS, Raber J. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice. J Neurochem 2011; 119:89-99. [PMID: 21824143 DOI: 10.1111/j.1471-4159.2011.07418.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.
Collapse
Affiliation(s)
- Jessica A Siegel
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
23
|
Conte-Perales L, Rico AJ, Barroso-Chinea P, Gómez-Bautista V, Roda E, Luquin N, Sierra S, Lanciego JL. Pallidothalamic-projecting neurons in Macaca fascicularis co-express GABAergic and glutamatergic markers as seen in control, MPTP-treated and dyskinetic monkeys. Brain Struct Funct 2011; 216:371-86. [PMID: 21512896 DOI: 10.1007/s00429-011-0319-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
GABAergic neurons within the internal division of the globus pallidus (GPi) are the main source of basal ganglia output reaching the thalamic ventral nuclei in monkeys. Following dopaminergic denervation, pallidothalamic-projecting neurons are known to be hyperactive, whereas a reduction in GPi activity is typically observed in lesioned animals showing levodopa-induced dyskinesia. Besides the mRNAs coding for GABAergic markers (GAD65 and GAD67), we show that all GPi neurons innervating thalamic targets also express transcripts for the isoforms 1 and 2 of the vesicular glutamate transporter (vGlut1 and vGlut2 mRNA). Indeed, dual immunofluorescent detection of GAD67 and vGlut1/2 confirmed the data gathered from in situ hybridization experiments, therefore demonstrating that the detected mRNAs are translated into the related proteins. Furthermore, the dopaminergic lesion resulted in an up-regulation of expression levels for both GAD65 and GAD67 mRNA within identified pallidothalamic-projecting neurons. This was coupled with a down-regulation of GAD65/67 mRNA expression levels in GPi neurons innervating thalamic targets in monkeys showing levodopa-induced dyskinesia. By contrast, the patterns of gene expression for both vGlut1 and vGlut2 mRNAs remained unchanged across GPi projection neurons in control, MPTP-treated and dyskinetic monkeys. In summary, both GABAergic and glutamatergic markers were co-expressed by GPi efferent neurons in primates. Although the status of the dopaminergic system directly modulates the expression levels of GAD65/67 mRNA, the observed expression of vGlut1/2 mRNA is not regulated by either dopaminergic removal or by continuous stimulation with dopaminergic agonists.
Collapse
Affiliation(s)
- Lorena Conte-Perales
- Neurosciences Division, Center for Applied Medical Research (CIMA & CIBERNED), Pio XII Ave 55, Edificio CIMA, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spatial memory alterations by activation of septal 5HT 1A receptors: no implication of cholinergic septohippocampal neurons. Psychopharmacology (Berl) 2011; 214:437-54. [PMID: 20959966 DOI: 10.1007/s00213-010-2049-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In rats, activation of medial septum (MS) 5-HT(1A) receptors with the 5-HT(1A)/5-HT(7) receptor agonist 8-OH-DPAT disrupts encoding and consolidation, but not retrieval of a spatial memory in the water maze task. These findings might be explained by an action of 8-OH-DPAT on 5-HT(1A) receptors located on cholinergic neurons which the drug could transiently hyperpolarise. If so, selective damage of these neurons should mimic the effects of 8-OH-DPAT, or, at least, synergistically interfere with them. METHODS To test this hypothesis, rats were subjected to intraseptal infusions of 8-OH-DPAT (or phosphate-buffered saline) during acquisition of a water maze task before and/or after 192 IgG-saporin-induced MS cholinergic lesion (vs. sham-operated). RESULTS We confirmed that only pre-acquisition intraseptal 8-OH-DPAT infusions prevented learning and subsequent drug-free retrieval of the platform location in intact rats and found that (1) the cholinergic lesion did not prevent recall of the platform location, and (2) the impairing effects of 8-OH-DPAT were similar in sham-operated and lesioned rats, whether naïve or not, to the task before lesion surgery. CONCLUSIONS An action of 8-OH-DPAT on only MS cholinergic neurons is not sufficient to account for the drug-induced memory impairments. A concomitant 8-OH-DPAT-induced hyperpolarisation of cholinergic and/or GABAergic and/or glutamatergic neurons (intact rats), or of only GABAergic and/or glutamatergic ones after cholinergic lesion, might be necessary to obliterate task acquisition, confirming that, in the MS, (1) the three neuronal populations could cooperate to process hippocampal-dependent information, and (2) non-cholinergic septohippocampal neurons might be more important than cholinergic ones in serotonin-induced modulation of hippocampus-dependent memory processing.
Collapse
|
25
|
Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci 2010; 30:15951-61. [PMID: 21106833 DOI: 10.1523/jneurosci.3663-10.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurons of the medial septum and diagonal band of Broca (MS-DBB) provide an important input to the hippocampus and are critically involved in learning and memory. Although cholinergic and GABAergic MS-DBB neurons are known to modulate hippocampal activity, the role of recently described glutamatergic MS-DBB neurons is unknown. Here, we examined the electrophysiological properties of glutamatergic MS-DBB neurons and tested whether they provide a functional synaptic input to the hippocampus. To visualize the glutamatergic neurons, we used MS-DBB slices from transgenic mice in which the green fluorescent protein is expressed specifically by vesicular glutamate transporter 2-positive neurons and characterized their properties using whole-cell patch-clamp technique. For assessing the function of the glutamatergic projection, we used an in vitro septohippocampal preparation, electrically stimulated the fornix or chemically activated the MS-DBB using NMDA microinfusions and recorded postsynaptic responses in CA3 pyramidal cells. We found that glutamatergic MS-DBB neurons as a population display a highly heterogeneous set of firing patterns including fast-, cluster-, burst-, and slow-firing. Remarkably, a significant proportion exhibited fast-firing properties, prominent I(h), and rhythmic spontaneous firing at theta frequencies similar to those found in GABAergic MS-DBB neurons. Activation of the MS-DBB led to fast, AMPA receptor-mediated glutamatergic responses in CA3 pyramidal cells. These results describe for the first time the electrophysiological signatures of glutamatergic MS-DBB neurons, their rhythmic firing properties, and their capacity to drive hippocampal principal neurons. Our findings suggest that the glutamatergic septohippocampal pathway may play an important role in hippocampal theta oscillations and relevant cognitive functions.
Collapse
|
26
|
Hackett TA, Takahata T, Balaram P. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway. Hear Res 2010; 274:129-41. [PMID: 21111036 DOI: 10.1016/j.heares.2010.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 10/20/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
The vesicular glutamate transporters (VGLUTs) regulate the storage and release of glutamate in the brain. In adult animals, the VGLUT1 and VGLUT2 isoforms are widely expressed and differentially distributed, suggesting that neural circuits exhibit distinct modes of glutamate regulation. Studies in rodents suggest that VGLUT1 and VGLUT2 mRNA expression patterns are partly complementary, with VGLUT1 expressed at higher levels in the cortex and VGLUT2 prominent subcortically, but with overlapping distributions in some nuclei. In primates, VGLUT gene expression has not been previously studied in any part of the brain. The purposes of the present study were to document the regional expression of VGLUT1 and VGLUT2 mRNA in the auditory pathway through A1 in the cortex, and to determine whether their distributions are comparable to rodents. In situ hybridization with antisense riboprobes revealed that VGLUT2 was strongly expressed by neurons in the cerebellum and most major auditory nuclei, including the dorsal and ventral cochlear nuclei, medial and lateral superior olivary nuclei, central nucleus of the inferior colliculus, sagulum, and all divisions of the medial geniculate. VGLUT1 was densely expressed in the hippocampus and ventral cochlear nuclei, and at reduced levels in other auditory nuclei. In the auditory cortex, neurons expressing VGLUT1 were widely distributed in layers II-VI of the core, belt and parabelt regions. VGLUT2 was expressed most strongly by neurons in layers IIIb and IV, weakly by neurons in layers II-IIIa, and at very low levels in layers V-VI. The findings indicate that VGLUT2 is strongly expressed by neurons at all levels of the subcortical auditory pathway, and by neurons in the middle layers of the cortex, whereas VGLUT1 is strongly expressed by most if not all glutamatergic neurons in the auditory cortex and at variable levels among auditory subcortical nuclei. These patterns imply that VGLUT2 is the main vesicular glutamate transporter in subcortical and thalamocortical (TC) circuits, whereas VGLUT1 is dominant in corticocortical (CC) and corticothalamic (CT) systems of projections. The results also suggest that VGLUT mRNA expression patterns in primates are similar to rodents, and establish a baseline for detailed studies of these transporters in selected circuits of the auditory system.
Collapse
Affiliation(s)
- Troy A Hackett
- Dept of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN 37203, USA.
| | | | | |
Collapse
|
27
|
Hu E, Demmou L, Cauli B, Gallopin T, Geoffroy H, Harris-Warrick RM, Paupardin-Tritsch D, Lambolez B, Vincent P, Hepp R. VIP, CRF, and PACAP act at distinct receptors to elicit different cAMP/PKA dynamics in the neocortex. ACTA ACUST UNITED AC 2010; 21:708-18. [PMID: 20699230 DOI: 10.1093/cercor/bhq143] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The functional significance of diverse neuropeptide coexpression and convergence onto common second messenger pathways remains unclear. To address this question, we characterized responses to corticotropin-releasing factor (CRF), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal peptide (VIP) in rat neocortical slices using optical recordings of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) sensors, patch-clamp, and single-cell reverse transcription-polymerase chain reaction. Responses of pyramidal neurons to the 3 neuropeptides markedly differed in time-course and amplitude. Effects of these neuropeptides on the PKA-sensitive slow afterhyperpolarization current were consistent with those observed with cAMP/PKA sensors. CRF-1 receptors, primarily expressed in pyramidal cells, reportedly mediate the neocortical effects of CRF. PACAP and VIP activated distinct PAC1 and VPAC1 receptors, respectively. Indeed, a selective VPAC1 antagonist prevented VIP responses but had a minor effect on PACAP responses, which were mimicked by a specific PAC1 agonist. While PAC1 and VPAC1 were coexpressed in pyramidal cells, PAC1 expression was also frequently detected in interneurons, suggesting that PACAP has widespread effects on the neuronal network. Our results suggest that VIP and CRF, originating from interneurons, and PACAP, expressed mainly by pyramidal cells, finely tune the excitability and gene expression in the neocortical network via distinct cAMP/PKA-mediated effects.
Collapse
Affiliation(s)
- Emilie Hu
- Neurobiologie des Processus Adaptatifs, CNRS UMR7102, Université Pierre et Marie Curie-P6, Paris, F75005-France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bhargava N, Das M, Edwards D, Stancescu M, Kang JF, Hickman JJ. Coexpression of glutamate vesicular transporter (VGLUT1) and choline acetyltransferase (ChAT) proteins in fetal rat hippocampal neurons in culture. In Vitro Cell Dev Biol Anim 2010; 46:685-92. [PMID: 20632124 DOI: 10.1007/s11626-010-9324-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
A very small population of choline acetyltransferase (ChAT) immunoreactive cells is observed in all layers of the adult hippocampus. This is the intrinsic source of the hippocampal cholinergic innervation, in addition to the well-established septo-hippocampal cholinergic projection. This study aimed at quantifying and identifying the origin of this small population of ChAT-immunoreactive cells in the hippocampus at early developmental stages, by culturing the fetal hippocampal neurons in serum-free culture and on a patternable, synthetic silane substrate N-1 [3-(trimethoxysilyl) propyl] diethylenetriamine. Using this method, a large proportion of glutamatergic (glutamate vesicular transporter, VGLUT1-immunoreactive) neurons, a small fraction of GABAergic (GABA-immunoreactive) neurons, and a large proportion of cholinergic (ChAT-immunoreactive) neurons were observed in the culture. Interestingly, most of the glutamatergic neurons that expressed glutamate vesicular transporter (VGLUT1) also co-expressed ChAT proteins. On the contrary, when the cultures were double-stained with GABA and ChAT, colocalization was not observed. Neonatal and adult rat hippocampal neurons were also cultured to verify whether these more mature neurons also co-express VGLUT1 and ChAT proteins in culture. Colocalization of VGLUT1 and ChAT in these relatively more mature neurons was not observed. One possible explanation for this observation is that the neurons have the ability to synthesize multiple neurotransmitters at a very early stage of development and then with time follows a complex, combinatorial strategy of electrochemical coding to determine their final fate.
Collapse
Affiliation(s)
- Neelima Bhargava
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ge SN, Ma YF, Hioki H, Wei YY, Kaneko T, Mizuno N, Gao GD, Li JL. Coexpression of VGLUT1 and VGLUT2 in trigeminothalamic projection neurons in the principal sensory trigeminal nucleus of the rat. J Comp Neurol 2010; 518:3149-68. [DOI: 10.1002/cne.22389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Henderson Z, Lu CB, Janzsó G, Matto N, McKinley CE, Yanagawa Y, Halasy K. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience 2010; 166:952-69. [PMID: 20083165 DOI: 10.1016/j.neuroscience.2010.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 11/30/2022]
Abstract
The medial septum diagonal band complex (MS/DB) projects via cholinergic and GABAergic pathways to the hippocampus and plays a key role in the hippocampal theta rhythm. In the MS/DB we have previously described a population of fast spiking GABAergic neurons that contain parvalbumin and mediate theta frequency activity in vitro. The Kv3.1 potassium channel is a delayed rectifier channel that plays a major role in fast spiking neurons in the CNS, and has previously been localized in the MS/DB. To determine which cell types in the MS/DB express the Kv3.1b ion channel subunit, transgenic mice in which the expression of GABAergic and glutamate markers are associated with the expression of green fluorescent protein (GFP; GAD67-GFP and VGluT2-GFP mice, respectively) were used for immunofluorescence and axonal tract tracing. Electrophysiological studies were also carried out on rat MS/DB slices to examine the role of the Kv3.1 channel in theta frequency oscillations. The results for the MS/DB were as follows: (1) cholinergic cells did not express GFP in either GAD67-GFP or VGluT2-GFP mice, and there was GAD67 immunoreactivity in GFP-positive neurons in GAD67-GFP mice and in a small proportion (6%) of GFP-positive neurons in VGluT2-GFP mice. (2) Kv3.1b immunofluorescence was associated with the somata of GABAergic neurons, especially those that contained parvalbumin, and with a minority of glutamatergic neurons, but not with cholinergic neurons, and with GABAergic axonal terminal-like processes around certain GABAergic neurons. (3) Both Kv3.1b-positive and -negative GABAergic neurons were septo-hippocampal, and there was a minor projection to hippocampus from VGluT2-GFP neurons. (4) Kainate-induced theta oscillations in the MS/DB slice were potentiated rather than inhibited by the Kv3.1 blocker 4-aminopyridine, and this agent on its own produced theta frequency oscillations in MS/DB slices that were reduced by ionotropic glutamate and GABA receptor antagonists and abolished by low extracellular calcium. These studies confirm the presence of heterogeneous populations of septo-hippocampal neurons in the MS/DB, and suggest that presence of Kv3.1 in the GABAergic neurons does not contribute to theta activity through fast spiking properties, but possibly by the regulation of transmitter release from axonal terminals.
Collapse
Affiliation(s)
- Z Henderson
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Jackson J, Bland BH, Antle MC. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 2009; 63:31-41. [PMID: 18925658 DOI: 10.1002/syn.20581] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The brainstem raphe nuclei are typically assigned a role in serotonergic brain function. However, numerous studies have reported that a large proportion of raphe projection cells are nonserotonergic. The identity of these projection cells is unknown. Recent studies have reported that the vesicular glutamate transporter VGLUT3 is found in both serotonergic and nonserotonergic neurons in both the median raphe (MR) and dorsal raphe (DR) nuclei. We injected the retrograde tracer cholera toxin subunit B into either the dorsal hippocampus or the medial septum (MS) and used triple labeled immunofluorescence to determine if nonserotonergic raphe cells projecting to these structures contained VGLUT3. Consistent with previous studies, only about half of retrogradely labeled MR neurons projecting to the hippocampus contained serotonin, whereas a majority of the retrogradely labeled nonserotonergic cells contained VGLUT3. Similar patterns were observed for MR cells projecting to the MS. About half of retrogradely labeled nonserotonergic neurons in the DR contained VGLUT3. Additionally, a large number of retrogradely labeled cells in the caudal linear and interpeduncular nuclei projecting to the MS were found to contain VGLUT3. These data suggest the enigmatic nonserotonergic projection from the MR to forebrain regions may be glutamatergic. In addition, these results demonstrate a dissociation between glutamatergic and serotonergic MR afferent inputs to the MS and hippocampus suggesting divergent and/or complementary roles of these pathways in modulating cellular activity within the septohippocampal network.
Collapse
Affiliation(s)
- Jesse Jackson
- Behavioral Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
32
|
Dal Bo G, Bérubé-Carrière N, Mendez JA, Leo D, Riad M, Descarries L, Lévesque D, Trudeau LE. Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience 2008; 156:59-70. [PMID: 18706980 DOI: 10.1016/j.neuroscience.2008.07.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
There is increasing evidence that a subset of midbrain dopamine (DA) neurons uses glutamate as a co-transmitter and expresses vesicular glutamate transporter (VGLUT) 2, one of the three vesicular glutamate transporters. In the present study, double in situ hybridization was used to examine tyrosine hydroxylase (TH) and VGLUT2 mRNA expression during the embryonic development of these neurons, and postnatally, in normal rats and rats injected with 6-hydroxydopamine (6-OHDA) at P4 to destroy partially DA neurons. At embryonic days 15 and 16, there was a regional overlap in the labeling of TH and VGLUT2 mRNA in the ventral mesencephalon, which was no longer found at late embryonic stages (E18-E21) and postnatally. In normal pups from P5 to P15, only 1-2% of neurons containing TH mRNA in the ventral tegmental area (VTA) and substantia nigra, pars compacta, also displayed VGLUT2 mRNA. In contrast, after the cerebroventricular administration of 6-OHDA at P4, 26% of surviving DA neurons in the VTA of P15 rats expressed VGLUT2. To search for a colocalization of TH and VGLUT2 protein in axon terminals of these neurons, the nucleus accumbens of normal and 6-OHDA-lesioned P15 rats was examined by electron microscopy after dual immunocytochemical labeling. In normal rats, VGLUT2 protein was found in 28% of TH positive axon terminals in the core of nucleus accumbens. In 6-OHDA-lesioned rats, the total number of TH positive terminals was considerably reduced, and yet the proportion also displaying VGLUT2 immunoreactivity was modestly but significantly increased (37%). These results lead to the suggestion that the glutamatergic phenotype of a VTA DA neurons is highly plastic, repressed toward the end of normal embryonic development, and derepressed postnatally following injury. They also support the hypothesis of co-release of glutamate and DA by mesencephalic neurons in vivo, at least in the developing brain.
Collapse
Affiliation(s)
- G Dal Bo
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Developmental and target-dependent regulation of vesicular glutamate transporter expression by dopamine neurons. J Neurosci 2008; 28:6309-18. [PMID: 18562601 DOI: 10.1523/jneurosci.1331-08.2008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mesencephalic dopamine (DA) neurons have been suggested to use glutamate as a cotransmitter. Here, we suggest a mechanism for this form of cotransmission by showing that a subset of DA neurons both in vitro and in vivo expresses vesicular glutamate transporter 2 (VGluT2). Expression of VGluT2 decreases with age. Moreover, when DA neurons are grown in isolation using a microculture system, there is a marked upregulation of VGluT2 expression. We provide evidence that expression of this transporter is normally repressed through a contact-dependent interaction with GABA and other DA neurons, thus providing a partial explanation for the highly restricted expression of VGluT2 in DA neurons in vivo. Our results demonstrate that the neurotransmitter phenotype of DA neurons is both developmentally and dynamically regulated. These findings may have implications for a better understanding of the fast synaptic action of DA neurons as well as basal ganglia circuitry.
Collapse
|
34
|
Liu X, Popescu IR, Denisova JV, Neve RL, Corriveau RA, Belousov AB. Regulation of cholinergic phenotype in developing neurons. J Neurophysiol 2008; 99:2443-55. [PMID: 18322006 PMCID: PMC6896333 DOI: 10.1152/jn.00762.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specification of neurotransmitter phenotype is critical for neural circuit development and is influenced by intrinsic and extrinsic factors. Recent findings in rat hypothalamus in vitro suggest the role of neurotransmitter glutamate in the regulation of cholinergic phenotype. Here we extended our previous studies on the mechanisms of glutamate-dependent regulation of cholinergic phenotypic properties in hypothalamic neurons. Using immunocytochemistry, electrophysiology, and calcium imaging, we demonstrate that hypothalamic expression of choline acetyltransferase (the cholinergic marker) and responsiveness of neurons to acetylcholine (ACh) receptor agonists increase during chronic administration of an N-methyl-D-aspartate receptor (NMDAR) blocker, MK-801, in developing rats in vivo and genetic and pharmacological inactivation of NMDARs in mouse and rat developing neuronal cultures. In hypothalamic cultures, an inactivation of NMDA receptors also induces ACh-dependent synaptic activity, as do inactivations of PKA, ERK/MAPK, CREB, and NF-kappaB, which are known to be regulated by NMDA receptors. Interestingly, the increase in cholinergic properties in developing neurons that is induced by NMDAR blockade is prevented by the blockade of ACh receptors, suggesting that function of ACh receptor is required for the cholinergic up-regulation. Using dual recording of monosynaptic excitatory postsynaptic currents, we further demonstrate that chronic inactivation of ionotropic glutamate receptors induces the cholinergic phenotype in a subset of glutamatergic neurons. The phenotypic switch is partial as ACh and glutamate are coreleased. The results suggest that developing neurons may not only coexpress multiple transmitter phenotypes, but can also change the phenotypes following changes in signaling in neuronal circuits.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, 2146 W. 39th Avenue, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
35
|
Graziano A, Liu XB, Murray KD, Jones EG. Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 2008; 507:1258-76. [DOI: 10.1002/cne.21592] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL. Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 2008; 35:101-7. [PMID: 17826944 DOI: 10.1016/j.jchemneu.2007.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 10/23/2022]
Abstract
The present study is focused on the analysis of the vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) used by thalamic neurons giving rise to the thalamostriatal system. Instead of studying the distribution of VGLUT proteins at the level of thalamostriatal terminals, this report is focused on identifying the expression of the VGLUT mRNAs within the parent cell bodies of thalamic neurons innervating the striatum. For this purpose, we have combined dual in situ hybridization to detect both VGLUT1 and VGLUT2 mRNAs together with retrograde tracing with cholera toxin. Our results show that VGLUT2 is the only vesicular glutamate transporter expressed in thalamostriatal-projecting neurons located in the midline and intralaminar nuclei, whereas all neurons from the ventral thalamic nuclei innervating the striatum express both VGLUTs, at least at the mRNA level. Indeed, the mRNAs encoding for VGLUT1 and VGLUT2 displayed a sharp complementary subcellular distribution within neurons from the ventral thalamic nuclei giving rise to thalamostriatal projections. The differential distribution of VGLUT mRNAs lead us to conclude that the thalamostriatal pathway is a dual system, composed by a preponderant projection arising from the midline and intralaminar nuclei using VGLUT2 as the glutamate transporter, together with another important source of striatal afferents arising from neurons in the ventral thalamic relay nuclei containing both kinds of vesicular glutamate transporters.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Area de Neurociencias, Centro de Investigación Médica Aplicada (CIMA) and Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad de Navarra, Spain
| | | | | | | |
Collapse
|
37
|
Eleore L, Ardehali MR, Vassias I, Vidal PP, de Waele C. Amino acid transporter (VIAAT, VGLUT2) and chloride cotransporter (KCC1, KCC2 and NKCC1) expression in the vestibular nuclei of intact and labyrinthectomized rat. Exp Brain Res 2007; 182:449-58. [PMID: 17598093 DOI: 10.1007/s00221-007-1006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/15/2007] [Indexed: 11/30/2022]
Abstract
We report the first investigation of whether unilateral labyrinthectomy in adult rats affects the expression of two amino acid transporters, vesicular glutamate transporter 2 (VGLUT2) and vesicular inhibitory amino acid transporter (VIAAT) and of chloride cotransporters (KCC1, KCC2 and NKCC1) in the intact and deafferented medial vestibular nuclei (MVN). In situ hybridization with specific radioactive oligonucleotide probes and immunofluorescent methods were used in normal and unilaterally labyrinthectomized rats at various times following the lesion: 5 h, and 1, 3 and 8 days. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei contained VGLUT2, VIAAT and KCC2 mRNA. In contrast, no or a very faint labeling was observed with KCC1 and NKCC1 probes. In unilaterally lesioned rats, there was no asymmetry between the two MVN with any of the oligonucleotide probes at any time after the lesion. Similarly, there were no differences in the intensity of MVN labeling between controls and lesioned animals. Finally, no over-expression of the cotransporter KCC1 and NKCC1 was found in ipsilateral or controlateral MVN in lesioned rats at any time. Immunohistochemical experiments gave similar conclusions. Our findings suggest that the recovery of the resting discharge of the deafferented MVN neurons, and consequently the functional compensation of the deficits, are not dependent on changes in the expression of amino acid transporters (VIAAT, VGLUT2), and chloride cotransporters (KCC1, KCC2 and NKCC1) or on their mRNAs.
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS (CNRS-Paris 5), Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
38
|
André VM, Wu N, Yamazaki I, Nguyen ST, Fisher RS, Vinters HV, Mathern GW, Levine MS, Cepeda C. Cytomegalic interneurons: a new abnormal cell type in severe pediatric cortical dysplasia. J Neuropathol Exp Neurol 2007; 66:491-504. [PMID: 17549009 DOI: 10.1097/01.jnen.0000240473.50661.d8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A defining histopathologic feature of Taylor-type cortical dysplasia (CD) is the presence of cytomegalic neurons and balloon cells. Most cytomegalic neurons appear to be pyramidal-shaped and glutamatergic. The present study demonstrates the presence of cytomegalic GABAergic interneurons in a subset of pediatric patients with severe CD. Cortical tissue samples from children with mild, severe, and non-CD pathologies were examined using morphologic and electrophysiologic techniques. By using in vitro slices, cytomegalic cells with characteristics consistent with interneurons were found in 6 of 10 patients with severe CD. Biocytin labeling demonstrated that cytomegalic interneurons had more dendrites than normal-appearing interneurons. Whole-cell patch clamp recordings showed that cytomegalic interneurons had increased membrane capacitance and time constant compared with normal-appearing interneurons. They also displayed signs of cellular hyperexcitability, evidenced by increased firing rates, decreased action potential inactivation, and the occurrence of spontaneous membrane depolarizations. Single-cell reverse transcription-polymerase chain reaction and immunohistochemistry for GABAergic markers provided further evidence that these cells were probably cytomegalic interneurons. The pathophysiologic significance of GABAergic cytomegalic interneurons in severe CD tissue is unknown, but they could inhibit glutamatergic cytomegalic pyramidal neurons, or contribute to the synchronization of neuronal networks and the propagation of ictal activity in a subset of pediatric patients with severe CD.
Collapse
Affiliation(s)
- Véronique M André
- Mental Retardation Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Omelchenko N, Sesack SR. Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience 2007; 146:1259-74. [PMID: 17391856 PMCID: PMC2533030 DOI: 10.1016/j.neuroscience.2007.02.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/08/2007] [Accepted: 02/11/2007] [Indexed: 11/25/2022]
Abstract
Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporter subtypes 1 and 2 (VGlut1 and VGlut2) to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively, in rats. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over cortical sources of excitation expressing VGlut1 and are more likely to drive the behaviorally-linked bursts in dopamine cells that signal future expectancy or attentional shifting.
Collapse
Affiliation(s)
- Natalia Omelchenko
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
| | - Susan R. Sesack
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
40
|
Barroso-Chinea P, Castle M, Aymerich MS, Pérez-Manso M, Erro E, Tuñon T, Lanciego JL. Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. J Comp Neurol 2007; 501:703-15. [PMID: 17299752 DOI: 10.1002/cne.21265] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for glutamate trafficking and for the subsequent regulated release of this excitatory neurotransmitter at the synapse. Three isoforms of the VGLUT have been identified, now known as VGLUT1, VGLUT2, and VGLUT3. Both VGLUT1 and VGLUT2 have been considered definitive markers of glutamatergic neurons, whereas VGLUT3 is expressed in nonglutamatergic neurons such as cholinergic striatal interneurons. It is widely believed that VGLUT1 and VGLUT2 are expressed in a complementary manner at the cortical and thalamic levels, suggesting that these glutamatergic neurons fulfill different physiological functions. In the present work, we analyzed the pattern of VGLUT1 and VGLUT2 mRNA expression at the thalamic level by using single and dual in situ hybridization. In accordance with current beliefs, we found significant expression of VGLUT2 mRNA in all the thalamic nuclei, while moderate expression of VGLUT1 mRNA was consistently found in both the principal relay and the association thalamic nuclei. Interestingly, individual neurons within these nuclei coexpressed both VGLUT1 and VGLUT2 mRNAs, suggesting that these individual thalamic neurons may have different ways of trafficking glutamate. These results call for a reappraisal of the previously held concept regarding the mutually exclusive distribution of VGLUT transporters in the central nervous system.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Basal Ganglia Neuromorphology Lab, Neuroscience Division, Center for Applied Medical Research, University of Navarra Medical College, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Raab M, Neuhuber WL. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:223-75. [PMID: 17241909 DOI: 10.1016/s0074-7696(07)56007-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glutamate has been identified as the main transmitter of primary afferent neurons. This was established based on biochemical, electrophysiological, and immunohistochemical data from studies on glutamatergic receptors and their agonists/antagonists. The availability of specific antibodies directed against glutamate and, more recently, vesicular glutamate transporters corroborated this and led to significant new discoveries. In particular, peripheral endings of various classes of afferents contain vesicular glutamate transporters, suggesting vesicular storage in and exocytotic release of glutamate from peripheral afferent endings. This suggests that autocrine mechanisms regulate sensory transduction processes. However, glutamate release from peripheral sensory terminals could also enable afferent neurons to influence various cells associated with them. This may be particularly relevant for vagal intraganglionic laminar endings, which could represent glutamatergic sensor-effector components of intramural reflex arcs in the gastrointestinal tract. Thus, morphological analysis of the relationships of putative glutamatergic primary afferents with associated tissues may direct forthcoming studies on their functions.
Collapse
Affiliation(s)
- Marion Raab
- Institut für Anatomie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
42
|
Bland BH, Declerck S, Jackson J, Glasgow S, Oddie S. Septohippocampal properties ofN-methyl-D-aspartate-induced theta-band oscillation and synchrony. Synapse 2007; 61:185-97. [PMID: 17173326 DOI: 10.1002/syn.20357] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microinfusion of N-methyl-D-aspartate (NMDA) into apical dendrites of hippocampal CA1 pyramidal cells of urethane-anesthetized rats resulted in long lasting (20-30 min) induction of hippocampal synchrony at the field and cellular level. Power but not frequency of NMDA-induced theta was significantly greater than tail pinch-induced theta activity. This effect was antagonized by intrahippocampal infusion of AP5, but unaffected by i.v. atropine sulfate. During AP5 blockade tail pinch theta frequency and power were significantly reduced. Microinfusion of NMDA into the medial septum also resulted in long lasting induction of hippocampal theta field activity. Contrary to the results of hippocampal NMDA microinfusions, frequency but not power of NMDA-induced theta was significantly greater than tail pinch- induced theta activity. Microinfusion of AP5 into the medial septum significantly lowered power of tail pinch-induced theta but did not affect frequency. Wheel running behavior of rats induced by low levels of electrical stimulation of the posterior hypothalamic nucleus (PH) was completely abolished by microinfusion of AP5 into the medial septum, accompanied by a significant reduction in theta power and frequency. Wheel running and theta were maintained at control levels with high intensity PH stimulation. We propose that: (1) the glutamatergic septohippocampal projection represents a third pathway capable of generating hippocampal field and cellular synchrony, independent of that generated by the septohippocampal cholinergic and GABAergic projections, and (2) the septohippocampal glutamatergic projection serves to function as an interface between cholinergic and GABAergic modulated sensory processing Type 2 theta and movement related Type 1 theta.
Collapse
Affiliation(s)
- Brian H Bland
- Department of Psychology, Behavioral Neuroscience Research Group, The University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | |
Collapse
|
43
|
Abstract
The dentate gyrus is the first stage of the intrahippocampal, excitatory, trisynaptic loop, and a primary target of the majority of entorhinal afferents that terminate in a laminar fashion on granule cell dendrites and carry sensory information of multiple modalities about the external world. The electric activity of the trisynaptic pathway is controlled mainly by different types of local, GABAergic interneurons, and subcortical and commissural afferents. In this chapter we will outline the origin and postsynaptic targets in the dentate gyrus of chemically identified subcortical inputs. These systems are afferents originating from the medial septum/diagonal band of Broca GABAergic and cholinergic neurons, neurochemically distinct types of neurons located in the supramammillary area, serotonergic fibers from the median raphe, noradrenergic afferents from the pontine nucleus, locus ceruleus, dopamine axons originating in the ventral tegmental area, and the commissural projection system. Because of the physiological implications, these afferents are discussed in the context of the glutamatergic innervation of the dentate gyrus. One common feature of the extrinsic dentate afferent systems is that they originate from a relatively small number of neurons. However, the majority of these afferents are able to exert a powerful control over the electrical activity of the hippocampus. This strong influence is due to the fact that the majority of the extrinsic afferents terminate on a relatively small, but specific, populations of neurons that are able to control large areas of the hippocampal formation.
Collapse
Affiliation(s)
- Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, FMB 312, New Haven, CT 06520, USA.
| | | |
Collapse
|
44
|
GRITTI I, HENNY P, GALLONI F, MAINVILLE L, MARIOTTI M, JONES BE. Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters. Neuroscience 2006; 143:1051-64. [PMID: 17084984 PMCID: PMC1831828 DOI: 10.1016/j.neuroscience.2006.09.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 09/06/2006] [Accepted: 09/10/2006] [Indexed: 11/24/2022]
Abstract
The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and comprise GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as approximately 355,000 and the numbers of ChAT-immuno-positive (+) as approximately 22,000, GAD+ approximately 119,000 and PAG+ approximately 316,000, corresponding to approximately 5%, approximately 35% and approximately 90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also has the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, vesicular glutamate transporter (VGluT) 3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or dendrites.
Collapse
Affiliation(s)
- I. GRITTI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - P. HENNY
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - F. GALLONI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - L. MAINVILLE
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
| | - M. MARIOTTI
- Dipartimento di Scienze Cliniche Luigi Sacco, Università degli Studi di Milano, Via Giovan Battista Grassi 74, Milan, Italy 20157
| | - B. E. JONES
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4
- *Correspondence author: Tel: 514-398-1913; Fax: 514-398-5871 E-mail address:
| |
Collapse
|
45
|
Kirvell SL, Esiri M, Francis PT. Down-regulation of vesicular glutamate transporters precedes cell loss and pathology in Alzheimer's disease. J Neurochem 2006; 98:939-50. [PMID: 16893425 DOI: 10.1111/j.1471-4159.2006.03935.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized pathologically by plaques, tangles, and cell and synapse loss. As glutamate is the principle excitatory neurotransmitter of the CNS, the glutamatergic system may play an important role in AD. An essential step in glutamate neurotransmission is the concentration of glutamate into synaptic vesicles before release from the presynaptic terminal. Recently a group of proteins responsible for uptake has been identified - the vesicular glutamate transporters (VGLUTs). The generation of antibodies has facilitated the study of glutamatergic neurones. Here, we used antibodies to the VGLUTs together with immunohistochemistry and western blotting to investigate the status of glutamatergic neurones in temporal, parietal and occipital cortices of patients with AD; these regions were chosen to represent severely, moderately and mildly affected regions at the end stage of the disease. There was no change in expression of the synaptic markers in relation to total protein in the temporal cortex, but a significant reduction in synaptophysin and VGLUT1 was found in both the parietal and occipital cortices. These changes were found to relate to the number of tangles in the temporal cortex. There were no correlations with either mental test score or behaviour syndromes, with the exception of depression.
Collapse
Affiliation(s)
- Sara L Kirvell
- Wolfson Centre for Age-Related Diseases, Kings College London, London, UK
| | | | | |
Collapse
|
46
|
Sosulina L, Meis S, Seifert G, Steinhäuser C, Pape HC. Classification of projection neurons and interneurons in the rat lateral amygdala based upon cluster analysis. Mol Cell Neurosci 2006; 33:57-67. [PMID: 16861000 DOI: 10.1016/j.mcn.2006.06.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022] Open
Abstract
Neurons in the rat lateral amygdala in situ were classified based upon electrophysiological and molecular parameters, as studied by patch-clamp, single-cell RT-PCR and unsupervised cluster analyses. Projection neurons (class I) were characterized by low firing rates, frequency adaptation and expression of the vesicular glutamate transporter (VGLUT1). Two classes were distinguished based upon electrotonic properties and the presence (IB) or absence (IA) of vasointestinal peptide (VIP). Four classes of glutamate decarboxylase (GAD67) containing interneurons were encountered. Class III reflected "classical" interneurons, generating fast spikes with no frequency adaptation. Class II neurons generated fast spikes with early frequency adaptation and differed from class III by the presence of VIP and the relatively rare presence of neuropeptide Y (NPY) and somatostatin (SOM). Class IV and V were not clearly separated by molecular markers, but by membrane potential values and spike patterns. Morphologically, projection neurons were large, spiny cells, whereas the other neuronal classes displayed smaller somata and spine-sparse dendrites.
Collapse
Affiliation(s)
- Ludmila Sosulina
- Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
47
|
Herzog E, Takamori S, Jahn R, Brose N, Wojcik SM. Synaptic and vesicular co-localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus. J Neurochem 2006; 99:1011-8. [PMID: 16942593 DOI: 10.1111/j.1471-4159.2006.04144.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are essential to glutamatergic synapses and determine the glutamatergic phenotype of neurones. The three known VGLUT isoforms display nearly identical uptake characteristics, but the associated expression domains in the adult rodent brain are largely segregated. Indeed, indirect evidence obtained in young VGLUT1-deficient mice indicated that in cells that co-express VGLUT1 and VGLUT2, the transporters may be targeted to different synaptic vesicles, which may populate different types of synapses formed by the same neurone. Direct evidence for a systematic segregation of VGLUT1 and VGLUT2 to distinct synapses and vesicles is lacking, and the mechanisms that may convey this segregation are not known. We show here that VGLUT1 and VGLUT2 are co-localized in many layers of the young hippocampus. Strikingly, VGLUT2 co-localizes with VGLUT1 in the mossy fibers at early stages. Furthermore, we show that a fraction of VGLUT1 and VGLUT2 is carried by the same vesicles at these stages. Hence, hippocampal neurones co-expressing VGLUT1 and VGLUT2 do not appear to sort them to separate vesicle pools. As the number of transporter molecules per vesicle affects quantal size, the developmental window where VGLUT1 and VGLUT2 are co-expressed may allow for greater plasticity in the control of quantal release.
Collapse
Affiliation(s)
- Etienne Herzog
- Max Planck Institut für Experimentelle Medizin, Abteilung Molekulare Neurobiologie,Göttingen, Germany
| | | | | | | | | |
Collapse
|
48
|
Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol 2006; 498:690-711. [PMID: 16917846 DOI: 10.1002/cne.21081] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basal forebrain (BF) plays a role in behavioral and cortical arousal, attention, learning, and memory. It has been suggested that cholinergic BF neurons co-release glutamate, and some cholinergic BF neurons have been reported to contain vesicular glutamate transporter 3 (VGLUT3). We examined the distribution and projections of BF cholinergic neurons containing VGLUT3, by using dual-label immunofluorescence for choline acetyltransferase (ChAT) and VGLUT3, in situ hybridization, and retrograde tracing. Neurons immunoreactive (+) or containing mRNAs for both ChAT and VGLUT3 were mainly localized to the ventral pallidum and more caudal BF regions; the co-immunoreactive neurons represented 31% of cholinergic neurons in the ventral pallidum and 5-9% more caudally. Examination of cholinergic axon terminals in known target areas of BF projections indicated that the basolateral amygdaloid nucleus contained numerous terminals co-immunoreactive for ChAT and VGLUT3, whereas sampled areas of the olfactory bulb, neocortex, hippocampus, reticular thalamic nucleus, and interpeduncular nucleus were devoid of double-labeled terminals. The basolateral amygdala is innervated by cholinergic BF neurons lacking low-affinity p75 nerve growth factor receptors; many ChAT+VGLUT3+ BF neurons were immunonegative to this receptor. Twenty-five to 79% of ChAT+VGLUT3+ neurons in different BF regions were retrogradely labeled from the basolateral amygdala, up to 52% (ventral pallidum) of the retrogradely labeled ChAT+ neurons were VGLUT3+, and the largest number of amygdala-projecting ChAT+VGluT3+ neurons was found in the ventral pallidum. These findings indicate that BF cholinergic neurons containing VGLUT3 project to the basolateral amygdala and suggest that these neurons might have the capacity to release both acetylcholine and glutamate.
Collapse
Affiliation(s)
- Amanda Nickerson Poulin
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
49
|
Gallopin T, Geoffroy H, Rossier J, Lambolez B. Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. ACTA ACUST UNITED AC 2005; 16:1440-52. [PMID: 16339088 DOI: 10.1093/cercor/bhj081] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to investigate how neuropeptide transmission can modulate the neocortical network, we mapped the expression of neurokinin (NK) B, cholecystokinin (CCK), and corticotropin-releasing factor (CRF) and their receptors to neuronal types using patch-clamp and single-cell reverse transcription-polymerase chain reaction in acute slices of rat neocortex. Classification of neurons by unsupervised clustering based on the analysis of multiple electrophysiological and molecular properties disclosed 3 GABAergic interneuron clusters and 1 pyramidal cell cluster. The 3 neuropeptides were expressed in a cluster of interneurons characteristically expressing vasoactive intestinal peptide. CRF was additionally found in a cluster containing almost exclusively somatostatin-expressing interneurons, whereas CCK was present in all clusters. The respective receptors of these peptides, NK-3, CCK-B, and CRF-1, were essentially expressed in pyramidal cells. At -60 mV, pyramidal cells were weakly depolarized by each of these peptides. When pyramidal neurons were maintained to about 5 mV below spike threshold, depolarization induced by each peptide resulted in a long-lasting action potential discharge. Neuropeptide effects were prevented by selective antagonists of NK-3, CCK-B, and CRF-1 receptors. These results suggest that pyramidal neurons are the primary target of NKB, CCK, and CRF in the neocortex. They further indicate that specific interneuron types coordinate the release of these peptides and can induce a long-lasting increase of the excitability of the neocortical network.
Collapse
Affiliation(s)
- Thierry Gallopin
- Laboratoire de Neurobiologie et Diversité Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7637, Ecole Supérieure de Physique et de Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | |
Collapse
|
50
|
Manseau F, Danik M, Williams S. A functional glutamatergic neurone network in the medial septum and diagonal band area. J Physiol 2005; 566:865-84. [PMID: 15919710 PMCID: PMC1464770 DOI: 10.1113/jphysiol.2005.089664] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The medial septum and diagonal band complex (MS/DB) is important for learning and memory and is known to contain cholinergic and GABAergic neurones. Glutamatergic neurones have also been recently described in this area but their function remains unknown. Here we show that local glutamatergic neurones can be activated using 4-aminopyridine (4-AP) and the GABA(A) receptor antagonist bicuculline in regular MS/DB slices, or mini-MS/DB slices. The spontaneous glutamatergic responses were mediated by AMPA receptors and, to a lesser extend, NMDA receptors, and were characterized by large, sometimes repetitive activity that elicited bursts of action potentials postsynaptically. Similar repetitive AMPA receptor-mediated bursts were generated by glutamatergic neurone activation within the MS/DB in disinhibited organotypic MS/DB slices, suggesting that the glutamatergic responses did not originate from extrinsic glutamatergic synapses. It is interesting that glutamatergic neurones were part of a synchronously active network as large repetitive AMPA receptor-mediated bursts were generated concomitantly with extracellular field potentials in intact half-septum preparations in vitro. Glutamatergic neurones appeared important to MS/DB activation as strong glutamatergic responses were present in electrophysiologically identified putative cholinergic, GABAergic and glutamatergic neurones. In agreement with this, we found immunohistochemical evidence that vesicular glutamate-2 (VGLUT2)-positive puncta were in proximity to choline acetyltransferase (ChAT)-, glutamic acid decarboxylase 67 (GAD67)- and VGLUT2-positive neurones. Finally, MS/DB glutamatergic neurones could be activated under more physiological conditions as a cholinergic agonist was found to elicit rhythmic AMPA receptor-mediated EPSPs at a theta relevant frequency of 6-10 Hz. We propose that glutamatergic neurones within the MS/DB can excite cholinergic and GABAergic neurones, and that they are part of a connected excitatory network, which upon appropriate activation, may contribute to rhythm generation.
Collapse
Affiliation(s)
- F Manseau
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875, Lasalle Boulevard, Montreal, Quebec, Canada H4H 1R3
| | | | | |
Collapse
|