1
|
Etemadifar M, Alaei SA, Akaishi T, Salari M, Norouzi M, Samadzadeh S, Paul F. Relapse-Independent disease activity in neuromyelitis optica spectrum disorder: A systematic review. Mult Scler Relat Disord 2024; 90:105843. [PMID: 39217808 DOI: 10.1016/j.msard.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Neuromyelitis Optica Spectrum Disorders (NMOSD) is a neuroinflammatory condition characterized by optic neuritis and transverse myelitis. While the current approach to NMOSD focuses on relapse-associated worsening (RAW), recent evidence indicates Relapse-Independent Disease Activity (RIDA) in patients. METHOD Databases including Embase, PubMed, Scopus, and Web of Sciences were systematically searched up to December 2023. No restrictions were applied. Inclusion criteria focused on studies reporting evidence of RIDA in NMOSD patients. Data extraction involved details such as study title, author, participant characteristics, treatment, evaluation methods, positive findings according to RIDA, and prevalence of findings in NMOSD patients. This study is conducted following the PRISMA guidelines with a registered protocol on PROSPERO (ID = CRD42023492352). RESULT Of 802 studies, 38 were included in the systematic review, covering 1881 NMOSD patients. AQP4-IGg status was positive in 90.6 % of the patients. Ocular findings indicative of RIDA were reported in 23 studies, including thinning of GCIPL, RNFL, GCC, and GCL layers, foveal and macular shape and volume abnormalities, vessel loss, and visual evoked potentials (VEPs) abnormalities. MRI findings supporting the RIDA were reported in 13 studies, including new lesion incidence and brain and spinal cord atrophy. Serum and CSF RIDA-supporting findings were reported in five studies, including elevation in sGFAP and sNFL. Biopsies and autopsies suggested inflammatory processes in relapse-free patients in 2 studies. The predominant manifestation of RIDA in NMOSD was identified in the visual system, suggesting the impaired retinal glial cells like Müller cells during the relapse-free period in NMOSD. INTERPRETATION Our systematic review provides valuable insights into RIDA in NMOSD. Establishing guidelines for the diagnosis and treatment of RIDA is crucial. Further studies are needed to provide robust evidence on RIDA in NMOSD patients.
Collapse
Affiliation(s)
- Masoud Etemadifar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyyed-Ali Alaei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Norouzi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sara Samadzadeh
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Institute of Regional Health Research and, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; The Center for Neurological Research, Department of Neurology Næstved-Slagelse-Ringsted Hospitals, Slagelse, Denmark
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany,; Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; NeuroCure Clinical Research Center, Charite - Universita tsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt-Universitat zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
4
|
Lang Y, Kwapong WR, Kong L, Shi Z, Wang X, Du Q, Wu B, Zhou H. Retinal structural and microvascular changes in myelin oligodendrocyte glycoprotein antibody disease and neuromyelitis optica spectrum disorder: An OCT/OCTA study. Front Immunol 2023; 14:1029124. [PMID: 36793713 PMCID: PMC9923098 DOI: 10.3389/fimmu.2023.1029124] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Purpose To compare the optical coherence tomography (OCT)/OCT angiography (OCTA) measures in patients with neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD). Methods Twenty-one MOG, 21 NMOSD, and 22 controls were enrolled in our study. The retinal structure [retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL)] was imaged and assessed with the OCT; OCTA was used to image the macula microvasculature [superficial vascular plexus (SVP), intermediate capillary plexus (ICP), and deep capillary plexus (DCP)]. Clinical information such as disease duration, visual acuity, and frequency of optic neuritis and disability was recorded for all patients. Results Compared with NMOSD patients, MOGAD patients showed significantly reduced SVP density (P = 0.023). No significant difference (P > 0.05) was seen in the microvasculature and structure when NMOSD-ON was compared with MOG-ON. In NMOSD patients, EDSS, disease duration, reduced visual acuity, and frequency of ON significantly correlated (P < 0.05) with SVP and ICP densities; in MOGAD patients, SVP correlated with EDSS, duration, reduced visual acuity, and frequency of ON (P < 0.05), while DCP density correlated with disease duration, visual acuity, and frequency of ON. Conclusions Distinct structural and microvascular changes were identified in MOGAD patients compared with NMOSD patients suggesting that the pathological mechanisms are different in NMOSD and MOGAD. Retinal imaging via the SS-OCT/OCTA might have the potential to be used as a clinical tool to evaluate the clinical features associated with NMOSD and MOGAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Wu
- *Correspondence: Hongyu Zhou, ; Bo Wu,
| | | |
Collapse
|
5
|
Yang Y, Wang C, Chen R, Wang Y, Tan C, Liu J, Zhang Q, Xiao G. Novel therapeutic modulators of astrocytes for hydrocephalus. Front Mol Neurosci 2022; 15:932955. [PMID: 36226316 PMCID: PMC9549203 DOI: 10.3389/fnmol.2022.932955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrocephalus is mainly characterized by excessive production or impaired absorption of cerebrospinal fluid that causes ventricular dilation and intracranial hypertension. Astrocytes are the key response cells to inflammation in the central nervous system. In hydrocephalus, astrocytes are activated and show dual characteristics depending on the period of development of the disease. They can suppress the disease in the early stage and may aggravate it in the late stage. More evidence suggests that therapeutics targeting astrocytes may be promising for hydrocephalus. In this review, based on previous studies, we summarize different forms of hydrocephalus-induced astrocyte reactivity and the corresponding function of these responses in hydrocephalus. We also discuss the therapeutic effects of astrocyte regulation on hydrocephalus in experimental studies.
Collapse
Affiliation(s)
- Yijian Yang
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chuansen Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinghua Zhang
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Qinghua Zhang,
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gelei Xiao,
| |
Collapse
|
6
|
Yao Y, Li X, Xu Y, Liang X, Yang L, Shi FD, Zhang X, Tian DC, Zhang X. The difference of the retinal structural and microvascular characteristics in patients with MOGAD-ON and AQP4-ON. BMC Neurol 2022; 22:323. [PMID: 36030231 PMCID: PMC9419345 DOI: 10.1186/s12883-022-02848-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibodies against myelin-oligodendrocyte-glycoprotein (MOG-Abs) associated disease (MOGAD) has been recognized as a disease entity. Optic neuritis (ON) is the most common symptom in MOGAD. To demonstrate the differences in retinal microvascular characteristics between patients with MOGAD-ON and aquaporin-4 antibody (AQP4-Ab) positive ON. METHODS In a prospective study, optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) were used to measure retinal and microvascular parameters. RESULTS Twenty-six MOGAD-ON eyes, 40 AQP4-ON eyes, and 60 control eyes were included in the study. The thickness of RNFL and GCC in MOGAD-ON eyes was significantly lower than that of HC (p < 0.001, respectively), but comparable to AQP4-ON eyes. The vessel density in retina capillary plexus (RCP) was reduced significantly in MOGAD-ON than that in AQP4-ON (p < 0.05, respectively). The visual accuracy was positively correlated with vessel density of superficial RCP in MOG-ON (p = 0.001) and positively correlated with the thickness of the inner retina layer in AQP4-ON (p < 0.001). CONCLUSION The retinal neuro-axonal damages between MOGAD-ON and AQP4-ON were comparable. Unlike AQP4-ON eyes, microvascular densities were significantly reduced in MOGAD-ON and were positively correlated with the deterioration of visual acuity in MOGAD-ON. TRIAL REGISTRATION Clinical and Imaging Patterns of Neuroinflammation Diseases in China (CLUE, NCT: 04106830).
Collapse
Affiliation(s)
- Yajun Yao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xindi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaofang Liang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Liu Yang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Fu-Dong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Xuxiang Zhang
- Department of Ophthalmology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
7
|
Mecchia A, Palumbo C, De Luca A, Sbardella D, Boccaccini A, Rossi L, Parravano M, Varano M, Caccuri AM. High glucose induces an early and transient cytoprotective autophagy in retinal Müller cells. Endocrine 2022; 77:221-230. [PMID: 35612691 PMCID: PMC9325829 DOI: 10.1007/s12020-022-03079-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE We investigated the autophagic response of rat Müller rMC-1 cells during a short-term high glucose challenge. METHODS rMC-1 cells were maintained in 5 mM glucose (LG) or exposed to 25 mM glucose (HG). Western blot analysis was used to evaluate the expression levels of markers of autophagy (LC3-II, p62) and glial activation (AQP4), as well as the activation of TRAF2/JNK, ERK and AKT pathways. Autophagic flux assessment was performed using the autophagy inhibitor chloroquine. ROS levels were measured by flow cytometry using dichlorofluorescein diacetate. ERK involvement in autophagy induction was addressed using the ERK inhibitor FR180204. The effect of autophagy inhibition on cell viability was evaluated by SRB assay. RESULTS Activation of autophagy was observed in the first 2-6 h of HG exposure. This early autophagic response was transient, not accompanied by an increase in AQP4 or in the phospho-activation of JNK, a key mediator of cellular response to oxidative stress, and required ERK activity. Cells exposed to HG had a lower viability upon autophagy inhibition by chloroquine, as compared to those maintained in LG. CONCLUSION A short-term HG challenge triggers in rMC-1 cells a process improving the ability to cope with stressful conditions, which involves ERK and an early and transient autophagy activation.
Collapse
Affiliation(s)
- A Mecchia
- IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - C Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A De Luca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - L Rossi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - M Varano
- IRCCS-G.B. Bietti Foundation, Rome, Italy
| | - A M Caccuri
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy.
- The NAST Centre for Nanoscience and Nanotechnology and Innovative Instrumentation, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
8
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
9
|
Netti V, Fernández J, Melamud L, Garcia-Miranda P, Di Giusto G, Ford P, Echevarría M, Capurro C. Aquaporin-4 Removal from the Plasma Membrane of Human Müller Cells by AQP4-IgG from Patients with Neuromyelitis Optica Induces Changes in Cell Volume Homeostasis: the First Step of Retinal Injury? Mol Neurobiol 2021; 58:5178-5193. [PMID: 34263427 DOI: 10.1007/s12035-021-02491-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022]
Abstract
Aquaporin-4 (AQP4) is the target of the specific immunoglobulin G autoantibody (AQP4-IgG) produced in patients with neuromyelitis optica spectrum disorders (NMOSD). Previous studies demonstrated that AQP4-IgG binding to astrocytic AQP4 leads to cell-destructive lesions. However, the early physiopathological events in Müller cells in the retina are poorly understood. Here, we investigated the consequences of AQP4-IgG binding to AQP4 of Müller cells, previous to the inflammatory response, on two of AQP4's key functions, cell volume regulation response (RVD) and cell proliferation, a process closely associated with changes in cell volume. Experiments were performed in a human retinal Müller cell line (MIO-M1) exposed to complement-inactivated sera from healthy volunteers or AQP4-IgG positive NMOSD patients. We evaluated AQP4 expression (immunofluorescence and western blot), water permeability coefficient, RVD, intracellular calcium levels and membrane potential changes during hypotonic shock (fluorescence videomicroscopy) and cell proliferation (cell count and BrdU incorporation). Our results showed that AQP4-IgG binding to AQP4 induces its partial internalization, leading to the decrease of the plasma membrane water permeability, a reduction of swelling-induced increase of intracellular calcium levels and the impairment of RVD in Müller cells. The loss of AQP4 from the plasma membrane induced by AQP4-IgG positive sera delayed Müller cells' proliferation rate. We propose that Müller cell dysfunction after AQP4 removal from the plasma membrane by AQP4-IgG binding could be a non-inflammatory mechanism of retinal injury in vivo, altering cell volume homeostasis and cell proliferation and consequently, contributing to the physiopathology of NMOSD.
Collapse
Affiliation(s)
- Vanina Netti
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Fernández
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Melamud
- Servicio de Neurología, Centro Universitario de Neurología Dr. J.M. Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Garcia-Miranda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Gisela Di Giusto
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Miriam Echevarría
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Seville, Spain
| | - Claudia Capurro
- Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Bernardo Houssay" (IFIBIO-HOUSSAY), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Yu J, Huang Y, Zhou L, ZhangBao J, Zong Y, Quan C, Wang M. Comparison of the retinal vascular network and structure in patients with optic neuritis associated with myelin oligodendrocyte glycoprotein or aquaporin-4 antibodies: an optical coherence tomography angiography study. J Neurol 2021; 268:4874-4881. [PMID: 34086096 DOI: 10.1007/s00415-021-10609-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the retinal vascular network and structure of optic neuritis associated with myelin oligodendrocyte glycoprotein antibodies (MOG-ON) or aquaporin-4 antibodies (AQP4-ON). METHODS Nineteen patients with MOG-ON (29 eyes), 24 patients with AQP4-ON (43 eyes), and 25 healthy participants (50 eyes) were enrolled. The best-corrected visual acuity (BCVA), mean deviation (MD), retinal nerve fiber layer (RNFL) thickness, parafoveal ganglion cell and inner plexiform layer (GCIPL) thickness, and vessel densities in the peripapillary and parafoveal areas were measured. RESULTS The BCVA, RNFL thickness, GCIPL thickness, and vessel densities in the peripapillary and parafoveal areas were significantly decreased in the AQP4-ON and MOG-ON eyes compared with healthy controls (all P < 0.05). There were no significant differences in the MD, RNFL thickness, GCIPL thickness, or vessel densities between the AQP4-ON and MOG-ON eyes (all P > 0.05). However, the BCVA was significantly worse in AQP4-ON eyes than in MOG-ON eyes (P = 0.001). The peripapillary vessel density was significantly correlated with the BCVA and MD in AQP4-ON eyes and with MD in MOG-ON eyes (all P < 0.05). CONCLUSIONS MOG-ON and AQP4-ON are associated with severe visual dysfunction, as well as retinal structural and vascular damage. The extent of visual dysfunction was strongly correlated with the peripapillary vessel density. Although we found no significant difference in the MD between MOG-ON and AQP4-ON, which are characterized by comparable vascular and structural damage within the peripapillary and parafoveal areas, the BCVA was worse in AQP4-ON eyes than in MOG-ON eyes.
Collapse
Affiliation(s)
- Jian Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yongheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.,Department of Ophthalmology, Kiang Wu Hospital, Macau Special Administration Region, People's Republic of China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yuan Zong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Min Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|
11
|
Zhang X, Xiao H, Liu C, Zhao L, Wang J, Li H, Wang R, Zhu Y, Chen C, Wu X, Lin D, Wang J, Liu X, Qiu W, Yu-Wai-Man P, Ting DS, Lin H. Comparison of macular structural and vascular changes in neuromyelitis optica spectrum disorder and primary open angle glaucoma: a cross-sectional study. Br J Ophthalmol 2021; 105:354-360. [PMID: 32430343 PMCID: PMC7907571 DOI: 10.1136/bjophthalmol-2020-315842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023]
Abstract
AIMS To compare macular structure and vasculature between neuromyelitis optica spectrum disorder (NMOSD) and primary open angle glaucoma (POAG) using optical coherence tomography angiography. METHODS NMOSD patients (n=124) with/without a history of optic neuritis (ON) (NMO+ON: 113 eyes; NMO-ON: 95 eyes), glaucomatous patients (n=102) with early/advanced glaucoma (G-E: 74 eyes; G-A: 50 eyes) and healthy controls (n=62; 90 eyes) were imaged. The main outcome measures were macular ganglion cell-inner plexiform layer (GC-IPL) thickness, vessel density (VD) and perfusion density (PD) in the superficial capillary plexus, and diagnostic capabilities of the parameters as calculated by area under the curve (AUC). RESULTS Significant losses in GC-IPL, VD and PD were detected in both patients with NMOSD and POAG. With matched losses in the peripapillary retinal nerve fibre layer, NMOSD group showed significant thinning of GC-IPL in the nasal-superior quadrant, whereas in POAG group, significant thinning was observed in the inferior and temporal-inferior quadrants. GC-IPL thinning was more prominent in the superior, nasal-superior and nasal-inferior quadrants in NMO+ON eyes. In G-A eyes, significant GC-IPL thinning was seen in the temporal-inferior quadrant. The specific structural parameters combining VD and foveal avascular zone (FAZ) indices showed the best diagnostic accuracies. The FAZ area in eyes with NMOSD was significantly smaller than the eyes of healthy controls and POAG. CONCLUSION NMOSD and POAG have specific patterns of macular structural and vascular changes associated with pathophysiology. Our results indicate that FAZ could be a sensitive biomarker of macular changes in NMOSD.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunxin Liu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanqin Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiquan Li
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chuan Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingqi Wang
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Daniel S Ting
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Singapore National Eye Center, Duke-NUS Medical School, Singapore
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Díaz-Lezama N, Wolf A, Koch S, Pfaller AM, Biber J, Guillonneau X, Langmann T, Grosche A. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci 2021; 22:ijms22031174. [PMID: 33503976 PMCID: PMC7865899 DOI: 10.3390/ijms22031174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy—a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.
Collapse
Affiliation(s)
- Nundehui Díaz-Lezama
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Susanne Koch
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Anna M. Pfaller
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Josef Biber
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
| | - Xavier Guillonneau
- Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012 Paris, France;
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931 Cologne, Germany; (A.W.); (T.L.)
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; (N.D.-L.); (S.K.); (A.M.P.); (J.B.)
- Correspondence:
| |
Collapse
|
13
|
Filippatou AG, Vasileiou ES, He Y, Fitzgerald KC, Kalaitzidis G, Lambe J, Mealy MA, Levy M, Liu Y, Prince JL, Mowry EM, Saidha S, Calabresi PA, Sotirchos ES. Evidence of subclinical quantitative retinal layer abnormalities in AQP4-IgG seropositive NMOSD. Mult Scler 2020; 27:1738-1748. [PMID: 33307967 DOI: 10.1177/1352458520977771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prior studies have suggested that subclinical retinal abnormalities may be present in aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive neuromyelitis optica spectrum disorder (NMOSD), in the absence of a clinical history of optic neuritis (ON). OBJECTIVE Our aim was to compare retinal layer thicknesses at the fovea and surrounding macula between AQP4-IgG+ NMOSD eyes without a history of ON (AQP4-nonON) and healthy controls (HC). METHODS In this single-center cross-sectional study, 83 AQP4-nonON and 154 HC eyes were studied with spectral-domain optical coherence tomography (OCT). RESULTS Total foveal thickness did not differ between AQP4-nonON and HC eyes. AQP4-nonON eyes exhibited lower outer nuclear layer (ONL) and inner photoreceptor segment (IS) thickness at the fovea (ONL: -4.01 ± 2.03 μm, p = 0.049; IS: -0.32 ± 0.14 μm, p = 0.029) and surrounding macula (ONL: -1.98 ± 0.95 μm, p = 0.037; IS: -0.16 ± 0.07 μm, p = 0.023), compared to HC. Macular retinal nerve fiber layer (RNFL: -1.34 ± 0.51 μm, p = 0.009) and ganglion cell + inner plexiform layer (GCIPL: -2.44 ± 0.93 μm, p = 0.009) thicknesses were also lower in AQP4-nonON compared to HC eyes. Results were similar in sensitivity analyses restricted to AQP4-IgG+ patients who had never experienced ON in either eye. CONCLUSIONS AQP4-nonON eyes exhibit evidence of subclinical retinal ganglion cell neuronal and axonal loss, as well as structural evidence of photoreceptor layer involvement. These findings support that subclinical anterior visual pathway involvement may occur in AQP4-IgG+ NMOSD.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufan He
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grigorios Kalaitzidis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Lambe
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen A Mealy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/Viela Bio, Gaithersburg, MD, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yihao Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ellen M Mowry
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Filippatou AG, Mukharesh L, Saidha S, Calabresi PA, Sotirchos ES. AQP4-IgG and MOG-IgG Related Optic Neuritis-Prevalence, Optical Coherence Tomography Findings, and Visual Outcomes: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:540156. [PMID: 33132999 PMCID: PMC7578376 DOI: 10.3389/fneur.2020.540156] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Optic neuritis (ON) is a cardinal manifestation of multiple sclerosis (MS), aquaporin-4 (AQP4)-IgG-, and myelin oligodendrocyte glycoprotein (MOG)-IgG-associated disease. However, the prevalence of AQP4-IgG seropositivity and MOG-IgG seropositivity in isolated ON is unclear, and studies comparing visual outcomes and optical coherence tomography (OCT)-derived structural retinal measures between MS-ON, AQP4-ON, and MOG-ON eyes are limited by small sample sizes. Objectives: (1) To assess the prevalence of AQP4-IgG and MOG-IgG seropositivity among patients presenting with isolated ON; (2) to compare visual outcomes and OCT measures between AQP4-ON, MOG-ON, and MS-ON eyes. Methods: In this systematic review and meta-analysis, a total of 65 eligible studies were identified by PubMed search. Statistical analyses were performed with random effects models. Results: In adults with isolated ON, AQP4-IgG seroprevalence was 4% in non-Asian and 27% in Asian populations, whereas MOG-IgG seroprevalence was 8 and 20%, respectively. In children, AQP4-IgG seroprevalence was 0.4% in non-Asian and 15% in Asian populations, whereas MOG-IgG seroprevalence was 47 and 31%, respectively. AQP4-ON eyes had lower peri-papillary retinal nerve fiber layer (pRNFL; -11.7 μm, 95% CI: -15.2 to -8.3 μm) and macular ganglion cell + inner plexiform layer (GCIPL; -9.0 μm, 95% CI: -12.5 to -5.4 μm) thicknesses compared with MS-ON eyes. Similarly, pRNFL (-11.2 μm, 95% CI: -21.5 to -0.9 μm) and GCIPL (-6.1 μm, 95% CI: -10.8 to -1.3 μm) thicknesses were lower in MOG-ON compared to MS-ON eyes, but did not differ between AQP4-ON and MOG-ON eyes (pRNFL: -1.9 μm, 95% CI: -9.1 to 5.4 μm; GCIPL: -2.6 μm, 95% CI: -8.9 to 3.8 μm). Visual outcomes were worse in AQP4-ON compared to both MOG-ON (mean logMAR difference: 0.60, 95% CI: 0.39 to 0.81) and MS-ON eyes (mean logMAR difference: 0.68, 95% CI: 0.40 to 0.96) but were similar in MOG-ON and MS-ON eyes (mean logMAR difference: 0.04, 95% CI: -0.05 to 0.14). Conclusions: AQP4-IgG- and MOG-IgG-associated disease are important diagnostic considerations in adults presenting with isolated ON, especially in Asian populations. Furthermore, MOG-IgG seroprevalence is especially high in pediatric isolated ON, in both non-Asian and Asian populations. Despite a similar severity of GCIPL and pRNFL thinning in AQP4-ON and MOG-ON, AQP4-ON is associated with markedly worse visual outcomes.
Collapse
Affiliation(s)
- Angeliki G Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loulwah Mukharesh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Katoozi S, Rao SB, Skauli N, Froehner SC, Ottersen OP, Adams ME, Amiry-Moghaddam M. Functional specialization of retinal Müller cell endfeet depends on an interplay between two syntrophin isoforms. Mol Brain 2020; 13:40. [PMID: 32178707 PMCID: PMC7074989 DOI: 10.1186/s13041-020-00581-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Abstract
Retinal Müller cells are highly polarized macroglial cells with accumulation of the aquaporin-4 (AQP4) water channel and the inwardly rectifying potassium channel Kir4.1 at specialized endfoot membrane domains abutting microvessels and corpus vitreum. Proper water and potassium homeostasis in retina depends on these membrane specializations. Here we show that targeted deletion of β1-syntrophin leads to a partial loss of AQP4 from perivascular Müller cell endfeet and that a concomitant deletion of both α1- and β1-syntrophin causes a near complete loss of AQP4 from both perivascular and subvitreal endfoot membranes. α1-syntrophin is normally very weakly expressed in Müller cell endfeet but β1-syntrophin knockout mice display an increased amount of α1-syntrophin at these sites. We suggest that upregulation of perivascular α1-syntrophin restricts the effect of β1-syntrophin deletion. The present findings indicate that β1-syntrophin plays an important role in maintaining the functional polarity of Müller cells and that α1-syntrophin can partially substitute for β1-syntrophin in AQP4 anchoring. Functional polarization of Müller cells thus depends on an interplay between two syntrophin isoforms.
Collapse
Affiliation(s)
- Shirin Katoozi
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Shreyas B Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway
| | - Stanley C Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Ole Petter Ottersen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.,Present Address: President's office, Karolinska Institutet, Nobels väg 6, 171 77, Stockholm, Sweden
| | - Marvin E Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195-7290, USA
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Post box 1105, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
16
|
Sotirchos ES, Filippatou A, Fitzgerald KC, Salama S, Pardo S, Wang J, Ogbuokiri E, Cowley NJ, Pellegrini N, Murphy OC, Mealy MA, Prince JL, Levy M, Calabresi PA, Saidha S. Aquaporin-4 IgG seropositivity is associated with worse visual outcomes after optic neuritis than MOG-IgG seropositivity and multiple sclerosis, independent of macular ganglion cell layer thinning. Mult Scler 2019; 26:1360-1371. [PMID: 31364464 DOI: 10.1177/1352458519864928] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Comparative studies of characteristics of optic neuritis (ON) associated with myelin oligodendrocyte glycoprotein-IgG (MOG-ON) and aquaporin-4-IgG (AQP4-ON) seropositivity are limited. OBJECTIVE To compare visual and optical coherence tomography (OCT) measures following AQP4-ON, MOG-ON, and multiple sclerosis associated ON (MS-ON). METHODS In this cross-sectional study, 48 AQP4-ON, 16 MOG-ON, 40 MS-ON, and 31 healthy control participants underwent monocular letter-acuity assessment and spectral-domain OCT. Eyes with a history of ON >3 months prior to evaluation were analyzed. RESULTS AQP4-ON eyes exhibited worse high-contrast letter acuity (HCLA) compared to MOG-ON (-22.3 ± 3.9 letters; p < 0.001) and MS-ON eyes (-21.7 ± 4.0 letters; p < 0.001). Macular ganglion cell + inner plexiform layer (GCIPL) thickness was lower, as compared to MS-ON, in AQP4-ON (-9.1 ± 2.0 µm; p < 0.001) and MOG-ON (-7.6 ± 2.2 µm; p = 0.001) eyes. Lower GCIPL thickness was associated with worse HCLA in AQP4-ON (-16.5 ± 1.5 letters per 10 µm decrease; p < 0.001) and MS-ON eyes (-8.5 ± 2.3 letters per 10 µm decrease; p < 0.001), but not in MOG-ON eyes (-5.2 ± 3.8 letters per 10 µm decrease; p = 0.17), and these relationships differed between the AQP4-ON and other ON groups (p < 0.01 for interaction). CONCLUSION AQP4-IgG seropositivity is associated with worse visual outcomes after ON compared with MOG-ON and MS-ON, even with similar severity of macular GCIPL thinning.
Collapse
Affiliation(s)
- Elias S Sotirchos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angeliki Filippatou
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Salama
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA/Department of Neurology, University of Alexandria, Alexandria, Egypt
| | - Santiago Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangxia Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Esther Ogbuokiri
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norah J Cowley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole Pellegrini
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olwen C Murphy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen A Mealy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Levy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Fu DJ, Xue K, Jolly JK, MacLaren RE. A detailed in vivo analysis of the retinal nerve fibre layer in choroideremia. Acta Ophthalmol 2019; 97:e589-e600. [PMID: 30575280 DOI: 10.1111/aos.13973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/18/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Choroideremia is a currently incurable X-linked recessive retinal degeneration that leads to blindness. Gene therapy approaches to date target the outer retinal layers. However, the choroideremia (CHM) gene is expressed in all retinal layers, and a previous study on a small cohort of choroideremia patients suggested possible thinning of the retinal nerve fibre layer (RNFL). The purpose of the study was to examine the RNFL in detail using advanced imaging techniques in a larger cohort of choroideremia patients. METHODS Spectral domain optical coherence tomography of the peripapillary RNFL acquired with the Heidelberg Spectralis HRA circular scan mode were analysed retrospectively in 41 eyes of 21 choroideremia patients aged 39.6 years (±3.7 SEM). As age-matched controls, 20 eyes from 10 patients with retinitis pigmentosa and 56 eyes from 28 healthy individuals were also assessed. Automated RNFL segmentation was adjusted manually to precisely delineate the RNFL. The data were also compared against an external normative database. RESULTS Mean peripapillary RNFL thickness in choroideremia was 130 ± 3 μm in the right eye (OD) and 133 ± 3 μm in the left eye (OS). This was 24% and 27% thicker than RNFL thickness in the controls (p < 0.001 for both). Patients with retinitis pigmentosa also showed an increase in RNFL thickness, which was no different to the choroideremia cohort (p > 0.05). Compared with manual analysis, the automated function of the inbuilt software was consistently inaccurate in segmenting the RNFL in choroideremia. CONCLUSION The RNFL is significantly thicker in choroideremia compared with age-matched normal controls, which was similar to what was seen in retinitis pigmentosa.
Collapse
Affiliation(s)
- Dun J. Fu
- Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
| | - Kanmin Xue
- Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Jasleen K. Jolly
- Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| | - Robert E. MacLaren
- Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford UK
- Nuffield Laboratory of Ophthalmology Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK
| |
Collapse
|
18
|
Saadane A, Mast N, Trichonas G, Chakraborty D, Hammer S, Busik JV, Grant MB, Pikuleva IA. Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1-Mediated Cholesterol Removal. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:405-425. [PMID: 30448403 DOI: 10.1016/j.ajpath.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrβ was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - George Trichonas
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | | | - Sandra Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
19
|
Neuroimmunological Implications of AQP4 in Astrocytes. Int J Mol Sci 2016; 17:ijms17081306. [PMID: 27517922 PMCID: PMC5000703 DOI: 10.3390/ijms17081306] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
The brain has high-order functions and is composed of several kinds of cells, such as neurons and glial cells. It is becoming clear that many kinds of neurodegenerative diseases are more-or-less influenced by astrocytes, which are a type of glial cell. Aquaporin-4 (AQP4), a membrane-bound protein that regulates water permeability is a member of the aquaporin family of water channel proteins that is expressed in the endfeet of astrocytes in the central nervous system (CNS). Recently, AQP4 has been shown to function, not only as a water channel protein, but also as an adhesion molecule that is involved in cell migration and neuroexcitation, synaptic plasticity, and learning/memory through mechanisms involved in long-term potentiation or long-term depression. The most extensively examined role of AQP4 is its ability to act as a neuroimmunological inducer. Previously, we showed that AQP4 plays an important role in neuroimmunological functions in injured mouse brain in concert with the proinflammatory inducer osteopontin (OPN). The aim of this review is to summarize the functional implication of AQP4, focusing especially on its neuroimmunological roles. This review is a good opportunity to compile recent knowledge and could contribute to the therapeutic treatment of autoimmune diseases through strategies targeting AQP4. Finally, the author would like to hypothesize on AQP4’s role in interaction between reactive astrocytes and reactive microglial cells, which might occur in neurodegenerative diseases. Furthermore, a therapeutic strategy for AQP4-related neurodegenerative diseases is proposed.
Collapse
|
20
|
Zeka B, Hastermann M, Kaufmann N, Schanda K, Pende M, Misu T, Rommer P, Fujihara K, Nakashima I, Dahle C, Leutmezer F, Reindl M, Lassmann H, Bradl M. Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathol Commun 2016; 4:82. [PMID: 27503347 PMCID: PMC4977668 DOI: 10.1186/s40478-016-0355-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Neuromyelitis optica/spectrum disorder (NMO/SD) is a severe, inflammatory disease of the central nervous system (CNS). In the majority of patients, it is associated with the presence of pathogenic serum autoantibodies (the so-called NMO-IgGs) directed against the water channel aquaporin 4 (AQP4), and with the formation of large, astrocyte-destructive lesions in spinal cord and optic nerves. A large number of recent studies using optical coherence tomography (OCT) demonstrated that damage to optic nerves in NMO/SD is also associated with retinal injury, as evidenced by retinal nerve fiber layer (RNFL) thinning and microcystic inner nuclear layer abnormalities. These studies concluded that retinal injury in NMO/SD patients results from secondary neurodegeneration triggered by optic neuritis.However, the eye also contains cells expressing AQP4, i.e., Müller cells and astrocytes in the retina, epithelial cells of the ciliary body, and epithelial cells of the iris, which raised the question whether the eye can also be a primary target in NMO/SD. Here, we addressed this point in experimental NMO/SD (ENMO) induced in Lewis rat by transfer of AQP4268-285-specific T cells and NMO-IgG.We show that these animals show retinitis and subsequent dysfunction/damage of retinal axons and neurons, and that this pathology occurs independently of the action of NMO-IgG. We further show that in the retinae of ENMO animals Müller cell side branches lose AQP4 reactivity, while retinal astrocytes and Müller cell processes in the RNFL/ganglionic cell layers are spared. These changes only occur in the presence of both AQP4268-285-specific T cells and NMO-IgG.Cumulatively, our data show that damage to retinal cells can be a primary event in NMO/SD.
Collapse
|
21
|
Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 2016; 263:1343-8. [PMID: 27142716 DOI: 10.1007/s00415-016-8138-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Foveal thickness may be a more sensitive indicator of primary retinal pathology than retinal nerve fiber layer thickness since the fovea contains no or sparse retinal nerve fiber layer, which coalesces into axons of the optic nerve. To our knowledge, few quantitative in vivo studies have investigated foveal thickness. By using optical coherence tomography, we measured foveal thickness to evaluate intrinsic retinal pathology. Seventy-two neuromyelitis optica spectrum disorder patients (99 eyes with optic neuritis and 45 eyes without optic neuritis) and 34 age-matched controls were included. Foveal thinning was observed both in eyes with non-optic neuritis (185.1 µm, p < 0.001) and optic neuritis (185.0 µm, p < 0.001) relative to controls (205.0 µm). Compared to controls, eyes with non-optic neuritis did not have peripapillary retinal nerve fiber layer thinning, but showed foveal thinning (p < 0.001). In neuromyelitis optica spectrum disorder, foveal thickness correlated with 2.5 % low contrast visual acuity, while retinal nerve fiber layer thickness correlated with high or low contrast visual acuity, extended disability status scale, and disease duration. In this study, we observed foveal thinning irrespective of optic neuritis; thus, we believe that subclinical primary retinal pathology, prior to retinal nerve fiber layer thinning, may exist in neuromyelitis optica spectrum disorder.
Collapse
|
22
|
Jo AO, Ryskamp DA, Phuong TTT, Verkman AS, Yarishkin O, MacAulay N, Križaj D. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia. J Neurosci 2015; 35:13525-37. [PMID: 26424896 PMCID: PMC4588615 DOI: 10.1523/jneurosci.1987-15.2015] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022] Open
Abstract
Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca(2+)]i elevations but only modestly attenuated the amplitude of Ca(2+) signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. Significance statement: We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Daniel A Ryskamp
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, and
| | - Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132,
| |
Collapse
|
23
|
Li XM, Wendu RL, Yao J, Ren Y, Zhao YX, Cao GF, Qin J, Yan B. Abnormal glutamate metabolism in the retina of aquaporin 4 (AQP4) knockout mice upon light damage. Neurol Sci 2013; 35:847-53. [PMID: 24368741 DOI: 10.1007/s10072-013-1610-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/12/2013] [Indexed: 01/29/2023]
Abstract
Glutamate is a major excitatory neurotransmitter in the retina. Glutamate neurotoxicity has been implicated in the pathogenesis of several ocular diseases. Aquaporin 4 (AQP4) is a water-selective membrane transport protein, and its knockout could alter retinal neuron excitability. However, the effect of AQP4 knockout on glutamate metabolism is still unclear in the retina. Here, we reported that the retinas in AQP4 knockout mice showed higher glutamate levels than that in wild-type mice upon light damage. AQP4 knockout could result in accelerated apoptosis of retinal cells, increased reactive gliosis, and attenuated survival of RGCs in response to light damage. Moreover, AQP4 knockout could affect the expression pattern of glutamate metabolism-related proteins such as GLAST and GS. Taken together, this study revealed a novel role of AQP4 in regulating glutamate metabolism. Pharmacological manipulation of AQP4 function may represent as a potent therapeutic target in the treatment of neurological ocular disorders.
Collapse
Affiliation(s)
- Xiu-Miao Li
- Eye Hospital, Nanjing Medical University, 138# Han-Zhong Road, Nanjing, 210029, China,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Popescu BFG, Bunyan RF, Guo Y, Parisi JE, Lennon VA, Lucchinetti CF. Evidence of aquaporin involvement in human central pontine myelinolysis. Acta Neuropathol Commun 2013; 1:40. [PMID: 24252214 PMCID: PMC3893459 DOI: 10.1186/2051-5960-1-40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central pontine myelinolysis (CPM) is a demyelinating disorder of the central basis pontis that is often associated with osmotic stress. The aquaporin water channels (AQPs) have been pathogenically implicated because serum osmolarity changes redistribute water and osmolytes among various central nervous system compartments. RESULTS We characterized the immunoreactivity of aquaporin-1 and aquaporin-4 (AQP1 and AQP4) and associated neuropathology in microscopic transverse sections from archival autopsied pontine tissue from 6 patients with pathologically confirmed CPM. Loss of both AQP1 and AQP4 was evident within demyelinating lesions in four of the six cases, despite the presence of glial fibrillary acidic protein (GFAP)-positive astrocytes. Lesional astrocytes were small, and exhibited fewer and shorter processes than perilesional astrocytes. In two of the six cases, astrocytes within demyelinating lesions exhibited increased AQP1 and AQP4 immunoreactivities, and gemistocytes and mitotic astrocytes were numerous. Blinded review of medical records revealed that all four cases lacking lesional AQP1 and AQP4 immunoreactivities were male, whereas the two cases with enhanced lesional AQP1 and AQP4 immunoreactivities were female. CONCLUSIONS This report is the first to establish astrocytic AQP loss in a subset of human CPM cases and suggests AQP1 and AQP4 may be involved in the pathogenesis of CPM. Further studies are required to determine whether the loss of AQP1 and AQP4 is restricted to male CPM patients, or rather may be a feature associated with specific underlying precipitants of CPM that may be more common among men. Non-rodent experimental models are needed to better clarify the complex and dynamic mechanisms involved in the regulation of AQPs in CPM, in order to determine whether it occurs secondary to the destructive disease process, or represents a compensatory mechanism protecting the astrocyte against apoptosis.
Collapse
|
25
|
Sotirchos ES, Saidha S, Byraiah G, Mealy MA, Ibrahim MA, Sepah YJ, Newsome SD, Ratchford JN, Frohman EM, Balcer LJ, Crainiceanu CM, Nguyen QD, Levy M, Calabresi PA. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80:1406-14. [PMID: 23516321 DOI: 10.1212/wnl.0b013e31828c2f7a] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To assess eyes with neuromyelitis optica (NMO) for morphologic retinal abnormalities utilizing high-definition optical coherence tomography (OCT) imaging. METHODS In this cross-sectional study, 39 patients with NMO spectrum disorders and 39 age- and sex-matched healthy controls underwent spectral-domain OCT and visual function testing. RESULTS Microcystic macular edema (MME) of the inner nuclear layer (INL) was identified in 10 of 39 patients (26%) and was exclusively found in eyes with a history of optic neuritis (ON). MME eyes had lower high- and low-contrast letter-acuity scores (100%: p = 0.002; 2.5%: p = 0.002; 1.25%: p = 0.004), lower peripapillary retinal nerve fiber layer (RNFL) thickness (p = 0.04), lower macular RNFL thickness (p = 0.004), lower ganglion cell layer + inner plexiform layer (GCIP) thickness (p = 0.007), higher INL thickness (p < 0.001), and a greater number of ON episodes (p = 0.008) relative to non-MME eyes with a history of ON. After adjusting for history of multiple ON episodes, these findings remained significant for macular-RNFL thickness (p = 0.03), INL thickness (p < 0.001), and 100% and 2.5% contrast letter-acuity scores (p = 0.008 and p = 0.03, respectively). NMO spectrum eyes without ON history had lower macular RNFL thickness (p = 0.003), GCIP thickness (p = 0.002), outer nuclear layer thickness (p = 0.02), and low-contrast letter-acuity scores (2.5%: p = 0.03; 1.25%: p = 0.002) compared to healthy controls. CONCLUSIONS We have identified a pattern of retinal morphologic abnormalities in NMO that is associated with severe retinal axonal and neuronal loss and corresponding visual disability. MME may contribute to poor visual outcomes following NMO-associated ON or alternatively represent a marker of ON severity. Additionally, our results support that subclinical involvement of the anterior visual pathway may occur in NMO spectrum disorders.
Collapse
Affiliation(s)
- Elias S Sotirchos
- From the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fernández JM, Di Giusto G, Kalstein M, Melamud L, Rivarola V, Ford P, Capurro C. Cell volume regulation in cultured human retinal Müller cells is associated with changes in transmembrane potential. PLoS One 2013; 8:e57268. [PMID: 23451196 PMCID: PMC3581454 DOI: 10.1371/journal.pone.0057268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/18/2013] [Indexed: 01/18/2023] Open
Abstract
Müller cells are mainly involved in controlling extracellular homeostasis in the retina, where intense neural activity alters ion concentrations and osmotic gradients, thus favoring cell swelling. This increase in cell volume is followed by a regulatory volume decrease response (RVD), which is known to be partially mediated by the activation of K+ and anion channels. However, the precise mechanisms underlying osmotic swelling and subsequent cell volume regulation in Müller cells have been evaluated by only a few studies. Although the activation of ion channels during the RVD response may alter transmembrane potential (Vm), no studies have actually addressed this issue in Müller cells. The aim of the present work is to evaluate RVD using a retinal Müller cell line (MIO-M1) under different extracellular ionic conditions, and to study a possible association between RVD and changes in Vm. Cell volume and Vm changes were evaluated using fluorescent probe techniques and a mathematical model. Results show that cell swelling and subsequent RVD were accompanied by Vm depolarization followed by repolarization. This response depended on the composition of extracellular media. Cells exposed to a hypoosmotic solution with reduced ionic strength underwent maximum RVD and had a larger repolarization. Both of these responses were reduced by K+ or Cl− channel blockers. In contrast, cells facing a hypoosmotic solution with the same ionic strength as the isoosmotic solution showed a lower RVD and a smaller repolarization and were not affected by blockers. Together, experimental and simulated data led us to propose that the efficiency of the RVD process in Müller glia depends not only on the activation of ion channels, but is also strongly modulated by concurrent changes in the membrane potential. The relationship between ionic fluxes, changes in ion permeabilities and ion concentrations –all leading to changes in Vm– define the success of RVD.
Collapse
Affiliation(s)
- Juan M. Fernández
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Di Giusto
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Maia Kalstein
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Melamud
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Consultorio de Neuroinmunología, Centro Universitario de Neurología Dr. J.M. Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Rivarola
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paula Ford
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Capurro
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Fernandes DB, Raza AS, Nogueira RGF, Wang D, Callegaro D, Hood DC, Monteiro MLR. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography. Ophthalmology 2012; 120:387-94. [PMID: 23084127 DOI: 10.1016/j.ophtha.2012.07.066] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To evaluate the thickness of the inner retinal layers in the macula using frequency-domain optical coherence tomography (fd-OCT) in patients with demyelinating diseases. DESIGN Cross-sectional study. PARTICIPANTS A total of 301 eyes of 176 subjects were evaluated. Subjects were divided in 5 different groups: controls, neuromyelitis optica (NMO), longitudinally extensive transverse myelitis (LETM), multiple sclerosis with a history of optic neuritis (MS-ON), and multiple sclerosis without a history of optic neuritis (MS non-ON). METHODS The individual layers from macular fd-OCT cube scans were segmented with an automated algorithm and then manually hand-corrected. For each scan, we determined the thickness of the retinal nerve fiber layer (RNFL), the combined retinal ganglion cell and inner plexiform layers (RGCL+), and the inner nuclear layer (INL). MAIN OUTCOME MEASURES Macular RNFL, RGCL+, and INL thickness. RESULTS The RNFL was significantly thinner than in controls for all patient groups (P ≤ 0.01). Macular RGCL+ thickness was significantly thinner than in controls for the NMO, MS-ON, and MS non-ON groups (P<0.001 for the 3 groups). The INL thickness was significantly thicker than in controls for the patients with NMO (P = 0.003) and LETM (P = 0.006) but not for those with MS-ON or MS non-ON. Although the RNFL and RGCL+ were not significantly different between the NMO and MS-ON groups, the patients with NMO had a significantly thicker INL than the patients with MS-ON (P = 0.02). CONCLUSIONS Macular RNFL and RGCL+ demonstrate axonal and neural loss in patients with MS, either with or without ON, and in patients with NMO. In addition, the INL thickening occurs in patients with NMO and patients with LETM, and study of this layer may hold promise for differentiating between NMO and MS.
Collapse
|
28
|
Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. ACTA ACUST UNITED AC 2011; 135:521-33. [PMID: 22006982 DOI: 10.1093/brain/awr264] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Post-mortem ganglion cell dropout has been observed in multiple sclerosis; however, longitudinal in vivo assessment of retinal neuronal layers following acute optic neuritis remains largely unexplored. Peripapillary retinal nerve fibre layer thickness, measured by optical coherence tomography, has been proposed as an outcome measure in studies of neuroprotective agents in multiple sclerosis, yet potential swelling during the acute stages of optic neuritis may confound baseline measurements. The objective of this study was to ascertain whether patients with multiple sclerosis or neuromyelitis optica develop retinal neuronal layer pathology following acute optic neuritis, and to systematically characterize such changes in vivo over time. Spectral domain optical coherence tomography imaging, including automated retinal layer segmentation, was performed serially in 20 participants during the acute phase of optic neuritis, and again 3 and 6 months later. Imaging was performed cross-sectionally in 98 multiple sclerosis participants, 22 neuromyelitis optica participants and 72 healthy controls. Neuronal thinning was observed in the ganglion cell layer of eyes affected by acute optic neuritis 3 and 6 months after onset (P < 0.001). Baseline ganglion cell layer thicknesses did not demonstrate swelling when compared with contralateral unaffected eyes, whereas peripapillary retinal nerve fibre layer oedema was observed in affected eyes (P = 0.008) and subsequently thinned over the course of this study. Ganglion cell layer thickness was lower in both participants with multiple sclerosis and participants with neuromyelitis optica, with and without a history of optic neuritis, when compared with healthy controls (P < 0.001) and correlated with visual function. Of all patient groups investigated, those with neuromyelitis optica and a history of optic neuritis exhibited the greatest reduction in ganglion cell layer thickness. Results from our in vivo longitudinal study demonstrate retinal neuronal layer thinning following acute optic neuritis, corroborating the hypothesis that axonal injury may cause neuronal pathology in multiple sclerosis. Further, these data provide evidence of subclinical disease activity, in both participants with multiple sclerosis and with neuromyelitis optica without a history of optic neuritis, a disease in which subclinical disease activity has not been widely appreciated. No pathology was seen in the inner or outer nuclear layers of eyes with optic neuritis, suggesting that retrograde degeneration after optic neuritis may not extend into the deeper retinal layers. The subsequent thinning of the ganglion cell layer following acute optic neuritis, in the absence of evidence of baseline swelling, suggests the potential utility of quantitative optical coherence tomography retinal layer segmentation to monitor neuroprotective effects of novel agents in therapeutic trials.
Collapse
Affiliation(s)
- Stephanie B Syc
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The blood-brain barrier and microvascular water exchange in Alzheimer's disease. Cardiovasc Psychiatry Neurol 2011; 2011:615829. [PMID: 21687589 PMCID: PMC3114411 DOI: 10.1155/2011/615829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 02/12/2011] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Although traditionally considered a disease of neurofibrillary tangles and amyloid plaques, structural and functional changes in the microvessels may contribute directly to the pathogenesis of the disease. Since vascular dysfunction often precedes cognitive impairment, understanding the role of the blood-brain barrier (BBB) in AD may be key to rational treatment of the disease. We propose that water regulation, a critical function of the BBB, is disturbed in AD and results in abnormal permeability and rates of water exchange across the vessel walls. In this paper, we describe some of the pathological events that may disturb microvascular water exchange in AD and examine the potential of a relatively new imaging technique, dynamic contrast-enhanced MRI, to quantify water exchange on a cellular level and thus serve as a probe of BBB integrity in AD.
Collapse
|