1
|
Voulgari-Kokota A, Falcao Salles J, Schoemaker RG. Aggression shapes the gut microbiome; a study in rats. PLoS One 2024; 19:e0312423. [PMID: 39436904 PMCID: PMC11495597 DOI: 10.1371/journal.pone.0312423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The gut-brain axis is regarded as a bidirectional communication system that integrates signals from the gut microbiome into behavioral aspects and vice versa. The aim of the present study was to investigate the gut microbiome-behavior interaction in relation to aggression. For that, male rats from a group-housed colony were individually housed with a female to become territorial. Next, a coping strategy was assigned to them, by evaluating their aggression levels against an intruder, during the Resident-Intruder test (RI). To investigate if their microbiome would change as a consequence of the developed coping strategy, fecal samples were collected before and after the RI test. We found that the relative abundances of Ruminococcaceae UCG-5 and Gram-negative bacterium cTPY-13 in rats sampled before the RI test were negatively correlated with the aggression that was demonstrated during the RI test. After the RI test, several bacterial taxa could be assigned to each coping strategy, with Clostridium sensu stricto 1 being strongly associated with less aggressive rats and higher abundances of Bifidobacterium. Furthermore, the family of Lachnospiraceae was not only associated with more aggressive rats, but functional prediction analysis found it to be the main contributor of betaine reductase; an enzyme catalyzing betaine production that was indicative of aggressive rats. This amino acid derivative, which has been connected with higher energy and testosterone levels, could potentially explain the connection of Lachnospiraceae with demonstrated aggression. Overall, our data revealed that the gut bacterial communities are responsive to the imposed social challenge of building and defending territoriality in co-habitation with a female. At the same time, predisposing microbiome characteristics may have predictive value for the development of a coping strategy.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Regien G. Schoemaker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Nanda S, Lamot B, Guarino N, Usler E, Chugani DC, Dutta A, Chow HM. Atypical gut microbiota composition in a mouse model of developmental stuttering. Sci Rep 2024; 14:23457. [PMID: 39379558 PMCID: PMC11461706 DOI: 10.1038/s41598-024-74766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Developmental stuttering is a complex neurodevelopmental disorder characterized by disfluent speech. It has been associated with mutations in genes involved in lysosomal enzyme trafficking. Mice with mutations in one such gene, Gnptab, exhibit atypical vocalizations analogous to stuttering in humans. This mouse model has enabled the study of various molecular mechanisms related to the disorder. Simultaneously, an increasing number of reports have suggested the role of gut microbiota in altered brain function and development in neurological disorders. In this study, we compared gut microbiota profiles from Gnptab mutant mice to wildtype control mice. Microbiome analysis demonstrated a distinct microbiota profile in Gnptab mutant mice. The most significant alteration was an increased relative abundance of Akkermansia, a genus of mucin degrading bacteria, which has previously been associated with multiple neurological disorders. Moreover, the altered microbiota profile of these mice was predicted to result in differences in abundance of several metabolic pathways, including short chain fatty acid and lipopolysaccharide synthesis. These pathways may play a role in the onset, progression and persistence of developmental stuttering. This is the first study to show a potential link between developmental stuttering and changes in the gut microbiota, laying the groundwork for a new research direction.
Collapse
Affiliation(s)
- Sayan Nanda
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA.
| | - Bryan Lamot
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nicole Guarino
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Evan Usler
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Diane C Chugani
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA
| | - Aditya Dutta
- Departments of Animal and Food Sciences, Biological Sciences, Medical and Molecular Sciences, Microbiology Graduate Program, University of Delaware, Newark, DE, 19716, USA.
| | - Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
4
|
Shen D, Chang L, Su F, Huang S, Xu H, Si Y, Wang F, Xue Y. The gut microbiome modulates the susceptibility to traumatic stress in a sex-dependent manner. J Neurosci Res 2024; 102:e25315. [PMID: 38439584 DOI: 10.1002/jnr.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Post-traumatic stress disorder (PTSD), a psychological condition triggered by exposure to extreme or chronic stressful events, exhibits a sex bias in incidence and clinical manifestations. Emerging research implicates the gut microbiome in the pathogenesis of PTSD and its roles in stress susceptibility. However, it is unclear whether differential gut microbiota contribute to PTSD susceptibility in male and female rats. Here, we utilized the single prolonged stress animal model and employed unsupervised machine learning to classify stressed animals into stress-susceptible subgroups and stress-resilient subgroups. Subsequently, using 16S V3-V4 rDNA sequencing, we investigated the differential gut microbiota alterations between susceptible and resilient individuals in male and female rats. Our findings revealed distinct changes in gut microbiota composition between the sexes at different taxonomic levels. Furthermore, the abundance of Parabacteroides was lower in rats that underwent SPS modeling compared to the control group. In addition, the abundance of Tenericutes in the stress-susceptible subgroup was higher than that in the control group and stress-resilient subgroup, suggesting that Tenericutes may be able to characterize stress susceptibility. What is particularly interesting here is that Cyanobacteria may be particularly associated with anti-anxiety effects in male rats. This study underscores sex-specific variations in gut microbiota composition in response to stress and sex differences should be taken into account when using macrobiotics for neuropsychiatric treatment, highlighting potential targets for PTSD therapeutic interventions.
Collapse
Affiliation(s)
- Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Liang Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Feng Su
- College of Future Technology, Peking University, Beijing, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Hubo Xu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yue Si
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
5
|
Petakh P, Oksenych V, Kamyshna I, Boisak I, Lyubomirskaya K, Kamyshnyi O. Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Front Microbiol 2024; 15:1345684. [PMID: 38476949 PMCID: PMC10927737 DOI: 10.3389/fmicb.2024.1345684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Leptospirosis, a re-emerging zoonotic disease, remains a significant global health concern, especially amid floods and disasters such as the Kakhovka Dam destruction. As is known, the stress that occurs in the conditions of military conflicts among civilian and military personnel significantly affects susceptibility to infectious diseases and possibly even influences their course. This review aims to explore how the gut microbiome and stress mediators (such as catecholamines and corticosteroids) might impact the leptospirosis disease course. The review opens new horizons for research by elucidating the connections between the gut microbiome, stress, and leptospirosis.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Boisak
- Department of Childhood Diseases, Uzhhorod National University, Uzhhorod, Ukraine
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical and Pharmaceuticals University, Zaporizhzhia, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| |
Collapse
|
6
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Blackmer-Raynolds L, Sampson TR. Overview of the Gut Microbiome. Semin Neurol 2023; 43:518-529. [PMID: 37562449 DOI: 10.1055/s-0043-1771463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The human gastrointestinal tract is home to trillions of microorganisms-collectively referred to as the gut microbiome-that maintain a symbiotic relationship with their host. This diverse community of microbes grows and changes as we do, with developmental, lifestyle, and environmental factors all shaping microbiome community structure. Increasing evidence suggests this relationship is bidirectional, with the microbiome also influencing host physiological processes. For example, changes in the gut microbiome have been shown to alter neurodevelopment and have lifelong effects on the brain and behavior. Age-related changes in gut microbiome composition have also been linked to inflammatory changes in the brain, perhaps increasing susceptibility to neurological disease. Indeed, associations between gut dysbiosis and many age-related neurological diseases-including Parkinson's disease, Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis-have been reported. Further, microbiome manipulation in animal models of disease highlights a potential role for the gut microbiome in disease development and progression. Although much remains unknown, these associations open up an exciting new world of therapeutic targets, potentially allowing for improved quality of life for a wide range of patient populations.
Collapse
Affiliation(s)
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Bear T, Roy N, Dalziel J, Butts C, Coad J, Young W, Parkar SG, Hedderley D, Dinnan H, Martell S, Middlemiss-Kraak S, Gopal P. Anxiety-like Behavior in Female Sprague Dawley Rats Associated with Cecal Clostridiales. Microorganisms 2023; 11:1773. [PMID: 37512945 PMCID: PMC10386170 DOI: 10.3390/microorganisms11071773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The relationship between the microbiota profile and exposure to stress is not well understood. Therefore, we used a rat model of unpredictable chronic mild stress (UCMS) to investigate this relationship. Depressive-like behaviors were measured in Female Sprague Dawley rats using the sucrose preference test and the Porsolt swim test. Anxiety-like behaviors were measured with the light-dark box test. Fecal corticosterone, cecal microbiota (composition and organic acids), plasma gut permeability (lipopolysaccharide-binding protein, LBP) and plasma inflammation (12 cytokines) markers were measured. Atypical behaviors were observed in female rats following UCMS, but no depressive-like behaviors were observed. Circulating concentrations of cytokines granulocyte-macrophage colony-stimulating factor and cytokine-induced neutrophil chemoattractant 1 were higher in UCMS-exposed female rats; plasma LBP and cecal organic acid levels remained unchanged. Our results reflect a resilient and adaptive phenotype for female SD rats. The relative abundance of taxa from the Clostridiales order and Desulfovibrionaceae family did, however, correlate both positively and negatively with anxiety-like behaviors and plasma cytokine concentrations, regardless of UCMS exposure, supporting the brain-to-gut influence of mild anxiety with a microbiota profile that may involve inflammatory pathways.
Collapse
Affiliation(s)
- Tracey Bear
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Nicole Roy
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- Department of Human Nutrition, Otago University, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand
| | - Julie Dalziel
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Chrissie Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Wayne Young
- AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Shanthi G Parkar
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Hannah Dinnan
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Sheridan Martell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Susanne Middlemiss-Kraak
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
| | - Pramod Gopal
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
9
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Meyerhoff J, Sowe B, Jett M, Hammamieh R. Potential roles of polyunsaturated fatty acid-enriched diets in modulating social stress-like features. J Nutr Biochem 2023; 116:109309. [PMID: 36871836 DOI: 10.1016/j.jnutbio.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Seid Muhie
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - James Meyerhoff
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Bintu Sowe
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Marti Jett
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Wang Z, Luo C, Zhou EW, Sandhu AF, Yuan X, Williams GE, Cheng J, Sinha B, Akbar M, Bhattacharya P, Zhou S, Song BJ, Wang X. Molecular Toxicology and Pathophysiology of Comorbid Alcohol Use Disorder and Post-Traumatic Stress Disorder Associated with Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108805. [PMID: 37240148 DOI: 10.3390/ijms24108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing comorbidity of alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) associated with traumatic brain injury (TBI) is a serious medical, economic, and social issue. However, the molecular toxicology and pathophysiological mechanisms of comorbid AUD and PTSD are not well understood and the identification of the comorbidity state markers is significantly challenging. This review summarizes the main characteristics of comorbidity between AUD and PTSD (AUD/PTSD) and highlights the significance of a comprehensive understanding of the molecular toxicology and pathophysiological mechanisms of AUD/PTSD, particularly following TBI, with a focus on the role of metabolomics, inflammation, neuroendocrine, signal transduction pathways, and genetic regulation. Instead of a separate disease state, a comprehensive examination of comorbid AUD and PTSD is emphasized by considering additive and synergistic interactions between the two diseases. Finally, we propose several hypotheses of molecular mechanisms for AUD/PTSD and discuss potential future research directions that may provide new insights and translational application opportunities.
Collapse
Affiliation(s)
- Zufeng Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Chengliang Luo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Forensic Medicine, Soochow University, Suzhou 215006, China
| | - Edward W Zhou
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron F Sandhu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Yuan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - George E Williams
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jialu Cheng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Shuanhu Zhou
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Li J, Tong L, Schock BC, Ji LL. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 2023; 60:3963-3978. [PMID: 37004607 DOI: 10.1007/s12035-023-03320-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic-pituitary-adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Jimeng Li
- Department of 2nd Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Lei Tong
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China
| | - Bettina C Schock
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast Faculty of Medicine Health and Life Sciences, Belfast, UK
| | - Li-Li Ji
- Department of Anatomy, College of Basic Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Zhang Y, Zhang J, Wu J, Zhu Q, Chen C, Li Y. Implications of gut microbiota dysbiosis and fecal metabolite changes in psychologically stressed mice. Front Microbiol 2023; 14:1124454. [PMID: 37213506 PMCID: PMC10196128 DOI: 10.3389/fmicb.2023.1124454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Psychological stress can induce affective disorders. Gut microbiota plays a vital role in emotional function regulation; however, the association between gut microbiota and psychological stress is poorly understood. We investigated effects of psychological stress on the gut microbiome and fecal metabolites and assessed the relationship between affective disorder behavior and altered fecal microbiota. Methods A psychological stress model was established in C57BL/6J mice using a communication box. Sucrose preference test, forced swim test, and open field test helped assess anxiety- and depression-like behaviors. Fecal microbiota transplantation (FMT) was conducted using fecal samples from stressed and non-stressed mice. Moreover, 16S rRNA gene sequencing and untargeted metabolomics were performed. Results After stress exposure for 14 days, a significant increase in anxiety- and depression-like behaviors was observed. FMT of "affective disorder microbiota" from psychologically stressed mice increased stress sensitivity relative to FMT of "normal microbiota" from non-stressed mice. 16S rRNA gene sequencing revealed decreased abundance of Bacteroides, Alistipes, and Lactobacillus and increased abundance of Parasutterella and Rikenellaceae_RC9_gut_group in stressed mice; furthermore, stressed mice showed differential metabolite profiles. KEGG pathway analysis indicated that differential metabolites were chiefly involved in the downregulated pathways of α-linolenic acid metabolism, taste transduction, and galactose metabolism. Alistipes and Bacteroides were mainly positively correlated and Parasutterella was mainly negatively correlated with diverse metabolites. Discussion Our findings suggest that gut microbiome dysbiosis contributes to affective disorder development in response to psychological stress.
Collapse
Affiliation(s)
- Yi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jing Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jianmin Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Qinwen Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Changrong Chen
- Department of Stomatology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Changrong Chen,
| | - Yanning Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- Yanning Li,
| |
Collapse
|
13
|
Levert-Levitt E, Shapira G, Sragovich S, Shomron N, Lam JCK, Li VOK, Heimesaat MM, Bereswill S, Yehuda AB, Sagi-Schwartz A, Solomon Z, Gozes I. Oral microbiota signatures in post-traumatic stress disorder (PTSD) veterans. Mol Psychiatry 2022; 27:4590-4598. [PMID: 35864319 DOI: 10.1038/s41380-022-01704-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Post-traumatic stress disorder (PTSD) represents a global public health concern, affecting about 1 in 20 individuals. The symptoms of PTSD include intrusiveness (involuntary nightmares or flashbacks), avoidance of traumatic memories, negative alterations in cognition and mood (such as negative beliefs about oneself or social detachment), increased arousal and reactivity with irritable reckless behavior, concentration problems, and sleep disturbances. PTSD is also highly comorbid with anxiety, depression, and substance abuse. To advance the field from subjective, self-reported psychological measurements to objective molecular biomarkers while considering environmental influences, we examined a unique cohort of Israeli veterans who participated in the 1982 Lebanon war. Non-invasive oral 16S RNA sequencing was correlated with psychological phenotyping. Thus, a microbiota signature (i.e., decreased levels of the bacteria sp_HMT_914, 332 and 871 and Noxia) was correlated with PTSD severity, as exemplified by intrusiveness, arousal, and reactivity, as well as additional psychopathological symptoms, including anxiety, hostility, memory difficulties, and idiopathic pain. In contrast, education duration correlated with significantly increased levels of sp_HMT_871 and decreased levels of Bacteroidetes and Firmicutes, and presented an inverted correlation with adverse psychopathological measures. Air pollution was positively correlated with PTSD symptoms, psychopathological symptoms, and microbiota composition. Arousal and reactivity symptoms were correlated with reductions in transaldolase, an enzyme controlling a major cellular energy pathway, that potentially accelerates aging. In conclusion, the newly discovered bacterial signature, whether an outcome or a consequence of PTSD, could allow for objective soldier deployment and stratification according to decreases in sp_HMT_914, 332, 871, and Noxia levels, coupled with increases in Bacteroidetes levels. These findings also raise the possibility of microbiota pathway-related non-intrusive treatments for PTSD.
Collapse
Affiliation(s)
- Ella Levert-Levitt
- School of Psychological Sciences, Center for the Study of Child Development, University of Haifa, 6035 Rabin Building, Haifa, 3190501, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shlomo Sragovich
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jacqueline C K Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Victor O K Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Markus M Heimesaat
- Institute for Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Bereswill
- Institute for Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ariel Ben Yehuda
- Department of Health and Well-being, Medical Corps, Israel Defense Forces (IDF), Ramat Gan, Israel.,'Shalvata' Mental Health Center, Clalit Health Services, Hod Hasharon, 4534708, Israel
| | - Abraham Sagi-Schwartz
- School of Psychological Sciences, Center for the Study of Child Development, University of Haifa, 6035 Rabin Building, Haifa, 3190501, Israel
| | - Zahava Solomon
- Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
14
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
15
|
Allen JM, Mackos AR, Jaggers RM, Brewster PC, Webb M, Lin CH, Ladaika C, Davies R, White P, Loman BR, Bailey MT. Psychological stress disrupts intestinal epithelial cell function and mucosal integrity through microbe and host-directed processes. Gut Microbes 2022; 14:2035661. [PMID: 35184677 PMCID: PMC8865257 DOI: 10.1080/19490976.2022.2035661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Psychological stress alters the gut microbiota and predisposes individuals to increased risk for enteric infections and chronic bowel conditions. Intestinal epithelial cells (IECs) are responsible for maintaining homeostatic interactions between the gut microbiota and its host. In this study, we hypothesized that disruption to colonic IECs is a key factor underlying stress-induced disturbances to intestinal homeostasis. Conventionally raised (CONV-R) and germ-free (GF) mice were exposed to a social disruption stressor (Str) to ascertain how stress modifies colonic IECs, the mucosal layer, and the gut microbiota. RNA sequencing of IECs isolated from CONV-R mice revealed a robust pro-inflammatory (Saa1, Il18), pro-oxidative (Duox2, Nos2), and antimicrobial (Reg3b/g) transcriptional profile as a result of Str. This response occurred concomitant to mucus layer thinning and signs of microbial translocation. In contrast to their CONV-R counterparts, IECs from GF mice or mice treated with broad spectrum antibiotics exhibited no detectable transcriptional changes in response to Str. Nevertheless, IECs from Str-exposed GF mice exhibited an altered response to ex vivo bacterial challenge (increased dual Oxidase-2 [Duox2] and nitric oxide synthase-2 (Nos2)), indicating that STR primes host IEC pro-oxidative responses. In CONV-R mice stress-induced increases in colonic Duox2 and Nos2 (ROS generating enzymes) strongly paralleled changes to microbiome composition and function, evidencing Str-mediated ROS production as a primary factor mediating gut-microbiota dysbiosis. In conclusion, a mouse model of social stress disrupts colonic epithelial and mucosal integrity, a response dependent on an intact microbiota and host stress signals. Together these preclinical findings may provide new insight into mechanisms of stress-associated bowel pathologies in humans.
Collapse
Affiliation(s)
- Jacob M. Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,CONTACT Jacob M. Allen Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 906 S. Goodwin Ave, Urbana61820, Illinois
| | - Amy R. Mackos
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,College of Nursing, The Ohio State University, Columbus, Ohio
| | - Robert M. Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Patricia C. Brewster
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mikaela Webb
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chia-Hao Lin
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Chris Ladaika
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Ronald Davies
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Peter White
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio
| | - Brett R. Loman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio,Oral and Gi Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,Michael T. Bailey Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| |
Collapse
|
16
|
Shobeiri P, Kalantari A, Teixeira AL, Rezaei N. Shedding light on biological sex differences and microbiota-gut-brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biol Sex Differ 2022; 13:12. [PMID: 35337376 PMCID: PMC8949832 DOI: 10.1186/s13293-022-00422-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Women and men are suggested to have differences in vulnerability to neuropsychiatric disorders, including major depressive disorder (MDD), generalized anxiety disorder (GAD), schizophrenia, eating disorders, including anorexia nervosa, and bulimia nervosa, neurodevelopmental disorders, such as autism spectrum disorder (ASD), and neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease. Genetic factors and sex hormones are apparently the main mediators of these differences. Recent evidence uncovers that reciprocal interactions between sex-related features (e.g., sex hormones and sex differences in the brain) and gut microbiota could play a role in the development of neuropsychiatric disorders via influencing the gut–brain axis. It is increasingly evident that sex–microbiota–brain interactions take part in the occurrence of neurologic and psychiatric disorders. Accordingly, integrating the existing evidence might help to enlighten the fundamental roles of these interactions in the pathogenesis of neuropsychiatric disorders. In addition, an increased understanding of the biological sex differences on the microbiota–brain may lead to advances in the treatment of neuropsychiatric disorders and increase the potential for precision medicine. This review discusses the effects of sex differences on the brain and gut microbiota and the putative underlying mechanisms of action. Additionally, we discuss the consequences of interactions between sex differences and gut microbiota on the emergence of particular neuropsychiatric disorders. The human microbiome is a unique set of organisms affecting health via the gut–brain axis. Neuropsychiatric disorders, eating disorders, neurodevelopmental disorders, and neurodegenerative disorders are regulated by the microbiota–gut–brain axis in a sex-specific manner. Understanding the role of the microbiota–gut–brain axis and its sex differences in various diseases can lead to better therapeutic methods.
Collapse
Affiliation(s)
- Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences (TUMS), Children's Medical Center Hospital, Dr. Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Antônio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Hoke A, Chakraborty N, Gautam A, Hammamieh R, Jett M. Acute and Delayed Effects of Stress Eliciting Post-Traumatic Stress-Like Disorder Differentially Alters Fecal Microbiota Composition in a Male Mouse Model. Front Cell Infect Microbiol 2022; 12:810815. [PMID: 35300376 PMCID: PMC8921487 DOI: 10.3389/fcimb.2022.810815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
The association between the shift in fecal resident microbiome and social conflicts with long-term consequences on psychological plasticity, such as the development of post-traumatic stress disorder (PTSD), is yet to be comprehended. We developed an aggressor-exposed (Agg-E) social stress (SS) mouse model to mimic warzone-like conflicts, where random life-threatening interactions took place between naïve intruder mice and aggressive resident mice. Gradually these Agg-E mice developed distinct characteristics simulating PTSD-like aspects, whereas the control mice not exposed to Agg-E SS demonstrated distinct phenotypes. To further investigate the role of Agg-E SS on the resident microbiome, 16S rRNA gene sequencing was assayed using fecal samples collected at pre-, during, and post-SS time points. A time agonist shift in the fecal microbial composition of Agg-E mice in contrast to its controls suggested a persistent impact of Agg-E SS on resident microbiota. At the taxonomic level, Agg-E SS caused a significant shift in the time-resolved ratios of Firmicutes and Bacteroidetes abundance. Furthermore, Agg-E SS caused diverging shifts in the relative abundances of Verrucomicrobia and Actinobacteria. An in silico estimation of genomic potential identified a potentially perturbed cluster of bioenergetic networks, which became increasingly enriched with time since the termination of Agg-E SS. Supported by a growing number of studies, our results indicated the roles of the microbiome in a wide range of phenotypes that could mimic the comorbidities of PTSD, which would be directly influenced by energy deficiency. Together, the present work suggested the fecal microbiome as a potential tool to manage long-term effects of social conflicts, including the management of PTSD.
Collapse
Affiliation(s)
- Allison Hoke
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- *Correspondence: Nabarun Chakraborty, ; Aarti Gautam,
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- *Correspondence: Nabarun Chakraborty, ; Aarti Gautam,
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Marti Jett
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
18
|
Shoemaker WR, Chen D, Garud NR. Comparative Population Genetics in the Human Gut Microbiome. Genome Biol Evol 2022; 14:evab116. [PMID: 34028530 PMCID: PMC8743038 DOI: 10.1093/gbe/evab116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic variation in the human gut microbiome is responsible for conferring a number of crucial phenotypes like the ability to digest food and metabolize drugs. Yet, our understanding of how this variation arises and is maintained remains relatively poor. Thus, the microbiome remains a largely untapped resource, as the large number of coexisting species in the microbiome presents a unique opportunity to compare and contrast evolutionary processes across species to identify universal trends and deviations. Here we outline features of the human gut microbiome that, while not unique in isolation, as an assemblage make it a system with unparalleled potential for comparative population genomics studies. We consciously take a broad view of comparative population genetics, emphasizing how sampling a large number of species allows researchers to identify universal evolutionary dynamics in addition to new genes, which can then be leveraged to identify exceptional species that deviate from general patterns. To highlight the potential power of comparative population genetics in the microbiome, we reanalyze patterns of purifying selection across ∼40 prevalent species in the human gut microbiome to identify intriguing trends which highlight functional categories in the microbiome that may be under more or less constraint.
Collapse
Affiliation(s)
- William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Daisy Chen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
- Department of Human Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Pizarro N, Kossatz E, González P, Gamero A, Veza E, Fernández C, Gabaldón T, de la Torre R, Robledo P. Sex-Specific Effects of Synbiotic Exposure in Mice on Addictive-Like Behavioral Alterations Induced by Chronic Alcohol Intake Are Associated With Changes in Specific Gut Bacterial Taxa and Brain Tryptophan Metabolism. Front Nutr 2021; 8:750333. [PMID: 34901109 PMCID: PMC8662823 DOI: 10.3389/fnut.2021.750333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol intake has been shown to disrupt gut microbiota homeostasis, but whether microbiota modulation could prevent behavioral alterations associated with chronic alcohol intake remains unknown. We investigated the effects of synbiotic dietary supplementation on the development of alcohol-related addictive behavior in female and male mice and evaluated whether these effects were associated with changes in bacterial species abundance, short-chain fatty acids, tryptophan metabolism, and neurotransmitter levels in the prefrontal cortex and hippocampus. Chronic intermittent exposure to alcohol during 20 days induced escalation of intake in both female and male mice. Following alcohol deprivation, relapse-like behavior was observed in both sexes, but anxiogenic and cognitive deficits were present only in females. Synbiotic treatment reduced escalation and relapse to alcohol intake in females and males. In addition, the anxiogenic-like state and cognitive deficits observed in females following alcohol deprivation were abolished in mice exposed to synbiotic. Alcohol-induced differential alterations in microbial diversity and abundance in both sexes. In females, synbiotic exposure abrogated the alterations provoked by alcohol in Prevotellaceae UCG-001 and Ruminococcaceae UCG-014 abundance. In males, synbiotic exposure restored the changes induced by alcohol in Akkermansia and Muribaculum uncultured bacterium abundance. Following alcohol withdrawal, tryptophan metabolites, noradrenaline, dopamine, and γ-aminobutyric acid concentrations in the prefrontal cortex and the hippocampus were correlated with bacterial abundance and behavioral alterations in a sex-dependent manner. These results suggested that a dietary intervention with a synbiotic to reduce gut dysbiosis during chronic alcohol intake may impact differently the gut-brain-axis in females and males.
Collapse
Affiliation(s)
- Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Elk Kossatz
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Alba Gamero
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Emma Veza
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fernández
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
20
|
Sayers B, Wijeyesekera A, Gibson G. Exploring the potential of prebiotic and polyphenol-based dietary interventions for the alleviation of cognitive and gastrointestinal perturbations associated with military specific stressors. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
21
|
Pascual Cuadrado D, Todorov H, Lerner R, Islami L, Bindila L, Gerber S, Lutz B. Long-term molecular differences between resilient and susceptible mice after a single traumatic exposure. Br J Pharmacol 2021; 179:4161-4180. [PMID: 34599847 DOI: 10.1111/bph.15697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/14/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE PTSD is a heterogeneous disorder induced by trauma, resulting in severe long-term impairments of an individual's mental health. Interestingly, PTSD does not develop in every individual; thus, some individuals are more resilient than others. However, the underlying molecular mechanisms are poorly understood. Here, we aimed at shedding light on these processes. EXPERIMENTAL APPROACH We used a single-trauma PTSD model in mice to induce long-term maladaptive behaviours and profiled the mice four weeks post-trauma into resilient or susceptible individuals. The phenotype's classification was based on their individual responses in different behavioural experiments. We analysed microbiome, circulating endocannabinoids, and long-term changes in brain phospholipid and transcript levels. KEY RESULTS We found a plethora of molecular differences between resilient and susceptible individuals across multiple molecular domains, including lipidome, transcriptome, and gut microbiome. Some of these differences were stable even several weeks after the trauma, indicating the long-term impact of traumatic stimuli on the organism's physiology. Furthermore, the integration of these multi-layered molecular data revealed that resilient and susceptible individuals have very distinct molecular signatures across various physiological systems. CONCLUSIONS AND IMPLICATIONS We showed that trauma induces individual-specific behavioural responses that, in combination with a longitudinal characterization of mice, can be used to identify distinct sub-phenotypes within the trauma-exposed group. These groups differ significantly not only in their behaviour but also in specific molecular aspects across a variety of tissues and brain regions. This approach may reveal new targets and predictive biomarkers for the pharmacological treatment and prognosis of stress-related disorders.
Collapse
Affiliation(s)
- Diego Pascual Cuadrado
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,Leibniz Institute for Resilience Research; Mainz, Germany
| |
Collapse
|
22
|
Specific Changes in the Mammalian Gut Microbiome as a Biomarker for Oxytocin-Induced Behavioral Changes. Microorganisms 2021; 9:microorganisms9091938. [PMID: 34576833 PMCID: PMC8465812 DOI: 10.3390/microorganisms9091938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prolonged exposure to psychiatric pharmacological agents is often associated with marked gastrointestinal phenomena, including changes in food intake, bowel motility, gastric emptying, and transit time. Those changes are reflected in the gut microbiota composition of the patient and can, therefore, be objectively measured. This is in contrast to the standard psychiatric evaluation of patients, which includes symptoms that are subjectively assessed (i.e., mood, anxiety level, perception, thought disorders, etc.). The association between a drug’s effect on the microbiota and psychiatric symptoms may allow for quantifiable surrogate markers of treatment effectiveness. Changes in the levels of specific drug-sensitive bacterial species can, thus, potentially serve as biomarkers for the intake and effectiveness of psychiatric drugs. Here, we show substantial microbiota changes that were associated with oxytocin administration and the decreased anxiety/depression-like behaviors it conferred in a rat model of corticosterone-induced stress. Compared with oxytocin, citalopram produced more minor effects on the rats’ microbiota. Alterations in the gut microbiota may, therefore, reflect the consumption and effectiveness of some psychiatric drugs.
Collapse
|
23
|
Liu Y, Xie C, Zhai Z, Deng ZY, De Jonge HR, Wu X, Ruan Z. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct 2021; 12:1829-1840. [PMID: 33527946 DOI: 10.1039/d0fo02533j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uridine (UR) is a pyrimidine nucleoside that plays an important role in regulating glucose and lipid metabolism. The aim of this study was to investigate the effect of UR on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet (HFD)-fed mice. ICR mice were, respectively, divided into 3 groups for 8 weeks, that is, control (CON, n = 12), high fat diet (HFD, n = 16), and HFD + UR groups (0.4 mg mL-1 in drinking water, n = 16). UR supplementation significantly reduced the body weight and suppressed the accumulation of subcutaneous, epididymal, and mesenteric WAT in HFD-fed mice (P < 0.05). Meanwhile, UR also decreased the lipid droplet accumulation in the liver and liver organoids (P < 0.05). In addition, UR supplementation increased bacterial diversity and Bacteroidetes abundance, and decreased the Firmicutes-to-Bacteroidetes ratio in HFD-fed mice significantly (P < 0.05). UR promoted the growth of butyrate-producing bacteria of Odoribacter, unidentified-Ruminococcaceae, Intestinimonas, Ruminiclostridium, and unidentified-Lachnospiraceae. A close correlation between several specific bacterial phyla or genera and the levels of WAT weight, hepatic TC, or hepatic TG genera was revealed through Spearman's correlation analysis. These results demonstrated that UR supplementation could be beneficial by attenuating HFD-induced obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yilin Liu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Chunyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China and Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Zhenya Zhai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China.
| | - Ze-Yuan Deng
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Hugo R De Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Xin Wu
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China. and Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China. and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zheng Ruan
- School of Food Science and Technology, State Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
24
|
Chakraborty N, Zamarioli A, Gautam A, Campbell R, Mendenhall SK, Childress PJ, Dimitrov G, Sowe B, Tucker A, Zhao L, Hammamieh R, Kacena MA. Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight. Comput Struct Biotechnol J 2021; 19:3507-3520. [PMID: 34194674 PMCID: PMC8220416 DOI: 10.1016/j.csbj.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 01/05/2023] Open
Abstract
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy.
Collapse
Affiliation(s)
| | - Ariane Zamarioli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, SP, Brazil
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Ross Campbell
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Stephen K Mendenhall
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul J. Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
- Geneva Foundation, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Bintu Sowe
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- ORISE, Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Aamir Tucker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liming Zhao
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
25
|
A multispecies probiotic accelerates fear extinction and inhibits relapse in mice: Role of microglia. Neuropharmacology 2021; 193:108613. [PMID: 34022177 DOI: 10.1016/j.neuropharm.2021.108613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022]
Abstract
The relapse of fear memory remains a clinical challenge in treatment of fear-related disorders. Here we tested the effects and underlying mechanisms of probiotics treatment after fear conditioning on fear extinction. We found that fear conditioning induced synapse loss, microglial activation, and synaptic phagocytosis of activated microglial cells in hippocampal dentate gyrus of mice. And probiotics treatment (1 capsule/day/mice) after fear conditioning for 27 days inhibited these changes, promoted fear extinction, and inhibited the recovery of fear memory even 7 days after extinction. 16S rRNA gene sequencing demonstrated that probiotics supplement after fear conditioning partially normalized fear conditioning-induced dysbiosis of gut microbiota. In addition, we also found that repopulation of microglial cells in fear conditioning mice via PLX3397 treatment promoted long-term extinction of fear memory. Probiotics treatment after fear conditioning inhibited microglial activation and had similar therapeutic effects as the microglial cell repopulation induced by PLX3397 treatment. These data showed that (1) probiotics treatment after fear conditioning might promote long-term fear extinction which could be associated with the mitigation of synaptic pruning of activated microglial cells; (2) probiotics may be applicable as therapeutic strategy to inhibit microglial activation and treat fear-related disorders.
Collapse
|
26
|
Effect of the Intake of a Traditional Mexican Beverage Fermented with Lactic Acid Bacteria on Academic Stress in Medical Students. Nutrients 2021; 13:nu13051551. [PMID: 34062976 PMCID: PMC8147924 DOI: 10.3390/nu13051551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Dysbiosis of the gut microbiota has been associated with different illnesses and emotional disorders such as stress. Traditional fermented foods that are rich in probiotics suggest modulation of dysbiosis, which protects against stress-induced disorders. The academic stress was evaluated in medical students using the SISCO Inventory of Academic Stress before and after ingestion of an aguamiel-based beverage fermented with Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus brevis (n = 27) and a control group (n = 18). In addition, microbial phyla in feces were quantified by qPCR. The results showed that the consumption of 100 mL of a beverage fermented with lactic acid bacteria (3 × 108 cfu/mL) for 8 weeks significantly reduced academic stress (p = 0.001), while the control group (placebo intervention) had no significant changes in the perception of academic stress (p = 0.607). Significant change (p = 0.001) was shown in the scores for environmental demands, and physical and psychological factors. Consumption of the fermented beverage significantly increased the phyla Firmicutes and Bacteroidetes but not Gammaproteobacteria. No significant changes were found in the control group, except for a slight increase in the phylum Firmicutes. The intake of this fermented beverage suggest a modulation of gut microbiota and possible reduction in stress-related symptoms in university students, without changing their lifestyle or diet.
Collapse
|
27
|
Eitan S, Madison CA, Kuempel J. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neurosci Biobehav Rev 2021; 127:284-295. [PMID: 33894242 DOI: 10.1016/j.neubiorev.2021.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Opioids are highly efficacious in their ability to relieve pain, but they are liable for abuse, dependence, and addiction. Risk factors to develop opioid use disorders (OUD) include chronic stress, socio-environment, and preexisting major depressive disorders (MDD) and posttraumatic stress disorders (PTSD). Additionally, opioids reduce gut motility, induce loss of gut barrier function, and alter the composition of the trillions of microbes hosted in the gastrointestinal tract, known as the gut microbiota. The microbiota are significant contributors to the reciprocal communication between the central nervous system (CNS) and the gut, termed the gut-brain axis. They have strong influences on their host behaviors, including the ability to cope with stress, sociability, affect, mood, and anxiety. Thus, they are implicated in the etiology of MDD and PTSD. Here we review the latest studies demonstrating that intestinal flora can, directly and indirectly, by affecting sociability levels, responses to stress, and mental state, alter the responses to opioids. It suggests that microbiota can potentially be used to increase the resilience to develop analgesic tolerance and OUD.
Collapse
Affiliation(s)
- Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA.
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms 2021; 9:723. [PMID: 33807290 PMCID: PMC8065970 DOI: 10.3390/microorganisms9040723] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Episodes of depression and anxiety commonly follow the experience of stress, however not everyone who experiences stress develops a mood disorder. Individuals who are able to experience stress without a negative emotional effect are considered stress resilient. Stress-resilience (and its counterpart stress-susceptibility) are influenced by several psychological and biological factors, including the microbiome-gut-brain axis. Emerging research shows that the gut microbiota can influence mood, and that stress is an important variable in this relationship. Stress alters the gut microbiota and plausibly this could contribute to stress-related changes in mood. Most of the reported research has been conducted using animal models and demonstrates a relationship between gut microbiome and mood. The translational evidence from human clinical studies however is rather limited. In this review we examine the microbiome-gut-brain axis research in relation to stress resilience.
Collapse
Affiliation(s)
- Tracey Bear
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| | - Julie Dalziel
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North 4442, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Nicole Roy
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
- Department of Human Nutrition, Otago University, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1145, New Zealand
| | - Christine Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
| | - Pramod Gopal
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand; (C.B.); (P.G.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (J.D.); (N.R.)
| |
Collapse
|
29
|
Volatility as a Concept to Understand the Impact of Stress on the Microbiome. Psychoneuroendocrinology 2021; 124:105047. [PMID: 33307493 DOI: 10.1016/j.psyneuen.2020.105047] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The microbiome-gut-brain-axis is a complex phenomenon spanning several dynamic systems in the body which can be parsed at a molecular, cellular, physiological and ecological level. A growing body of evidence indicates that this axis is particularly sensitive to the effects of stress and that it may be relevant to stress resilience and susceptibility. Although stress-induced changes in the composition of the microbiome have been reported, the degree of compositional change over time, which we define as volatility, has not been the subject of in-depth scrutiny. Using a chronic psychosocial stress paradigm in male mice, we report that the volatility of the microbiome significantly correlated with several readouts of the stress response, including behaviour and corticosterone response. We then validated these findings in a second independent group of stressed mice. Additionally, we assessed the relationship between volatility and stress parameters in a cohort of health volunteers who were undergoing academic exams and report similar observations. Finally, we found inter-species similarities in the microbiome stress response on a functional level. Our research highlights the effects of stress on the dynamic microbiome and underscores the informative value of volatility as a parameter that should be considered in all future analyses of the microbiome.
Collapse
|
30
|
Correlation of gut microbiota and neurotransmitters in a rat model of post-traumatic stress disorder. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Jiang X, Lu N, Zhao H, Yuan H, Xia D, Lei H. The Microbiome-Metabolome Response in the Colon of Piglets Under the Status of Weaning Stress. Front Microbiol 2020; 11:2055. [PMID: 32983040 PMCID: PMC7483555 DOI: 10.3389/fmicb.2020.02055] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Weaning is stressful for piglets involving nutritional, physiological, and psychological challenges, leading to an increase in the secretion of cortisol, changes in gut microbiome and metabolites, whereas the underlying relationships remain unclear. To elucidate this, 14 Meishan female piglets were divided into the weaning group and the suckling group at the age of 21 days paired by litter and body weight. After 48 h of experiment, weaned piglets had lower body weight, but higher salivary cortisol level than that of their suckling litter mates (P < 0.05). The composition of the colonic bacterial community and metabolites were different between the two groups, and the first predominant genus of the suckling and weaned piglets colonic microbiome were Bacteroides and Prevotellaceae-NK3B31 group respectively. The suckling piglets had higher proportions of phylum Bacteroidetes and Lentisphaerae, and genus Bacteroides and Lactobacillus in the colonic microbial community, but lower abundance of genus Prevotellaceae-NK3B31 group than that of the weaned piglets (P < 0.05). Accordingly, there were 15 colonic metabolites differed between the two groups, in which 2 metabolites (phenylacetic acid and phenol) negatively related to the abundant of Lactobacillus genus (P < 0.05), while 9 metabolites (acetic acid, arabitol, benzoic acid, caprylic acid, cholesterol, dihydrocholesterol, galactinol, glucose phenol, phenylacetic acid, and oxamic acid, glycerol, propionic acid) positively associated with the proportion of Prevotellaceae-NK3B31 group genus (P < 0.05). Furthermore, the salivary cortisol level negatively associated with the abundance of phylum Lentisphaerae, but positively associated with the phylum Bacteroidetes and the genus Prevotellaceae-NK3B31 group (P < 0.05) respectively. These results provide us with new insights into the cause of the gut microbiome and stress, and the contributions of gut microbiome in metabolic and physiological regulation in response to weaning stress.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Naisheng Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haichao Zhao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Pharmaceutical Microbiology, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Yuan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dong Xia
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hulong Lei
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
32
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
33
|
Agans RT, Giles GE, Goodson MS, Karl JP, Leyh S, Mumy KL, Racicot K, Soares JW. Evaluation of Probiotics for Warfighter Health and Performance. Front Nutr 2020; 7:70. [PMID: 32582752 PMCID: PMC7296105 DOI: 10.3389/fnut.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
The probiotic industry continues to grow in both usage and the diversity of products available. Scientific evidence supports clinical use of some probiotic strains for certain gastrointestinal indications. Although much less is known about the impact of probiotics in healthy populations, there is increasing consumer and scientific interest in using probiotics to promote physical and psychological health and performance. Military men and women are a unique healthy population that must maintain physical and psychological health in order to ensure mission success. In this narrative review, we examine the evidence regarding probiotics and candidate probiotics for physical and/or cognitive benefits in healthy adults within the context of potential applications for military personnel. The reviewed evidence suggests potential for certain strains to induce biophysiological changes that may offer physical and/or cognitive health and performance benefits in military populations. However, many knowledge gaps exist, effects on health and performance are generally not widespread among the strains examined, and beneficial findings are generally limited to single studies with small sample sizes. Multiple studies with the same strains and using similar endpoints are needed before definitive recommendations for use can be made. We conclude that, at present, there is not compelling scientific evidence to support the use of any particular probiotic(s) to promote physical or psychological performance in healthy military personnel. However, plausibility for physical and psychological health and performance benefits remains, and additional research is warranted. In particular, research in military cohorts would aid in assessing the value of probiotics for supporting physical and psychological health and performance under the unique demands required of these populations.
Collapse
Affiliation(s)
- Richard T Agans
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Grace E Giles
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Michael S Goodson
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States
| | - J Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Samantha Leyh
- Air Force Research Laboratory, 711th Human Performance Wing, Wright Patterson Air Force Base, Dayton, OH, United States.,Oak Ridge Institute for Science and Education, Wright Patterson Air Force Base, Oak Ridge, TN, United States
| | - Karen L Mumy
- Naval Medical Research Unit Dayton, Environmental Health Effects Laboratory, Dayton, OH, United States
| | - Kenneth Racicot
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| | - Jason W Soares
- Soldier Performance Optimization Directorate, U.S. Army Combat Capabilities Development Command - Soldier Center, Natick, MA, United States
| |
Collapse
|
34
|
Bowers SJ, Vargas F, González A, He S, Jiang P, Dorrestein PC, Knight R, Wright KP, Lowry CA, Fleshner M, Vitaterna MH, Turek FW. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. PLoS One 2020; 15:e0229001. [PMID: 32078624 PMCID: PMC7032712 DOI: 10.1371/journal.pone.0229001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
It has been established in recent years that the gut microbiome plays a role in health and disease, potentially via alterations in metabolites that influence host physiology. Although sleep disruption and gut dysbiosis have been associated with many of the same diseases, studies investigating the gut microbiome in the context of sleep disruption have yielded inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene amplicons and untargeted LC-MS/MS mass spectrometry. We found global shifts in both the microbiome and metabolome in the sleep-disrupted group on the second day of recovery sleep, when most sleep parameters had recovered to baseline levels. We observed an increase in the Firmicutes:Bacteroidetes ratio, along with decreases in the genus Lactobacillus, phylum Actinobacteria, and genus Bifidobacterium in sleep-disrupted mice compared to control mice. The latter two taxa remained low at the fourth day post-sleep disruption. We also identified multiple classes of fecal metabolites that were differentially abundant in sleep-disrupted mice, some of which are physiologically relevant and commonly influenced by the microbiome. This included bile acids, and inference of microbial functional gene content suggested reduced levels of the microbial bile salt hydrolase gene in sleep-disrupted mice. Overall, this study adds to the evidence base linking disrupted sleep to the gut microbiome and expands it to the fecal metabolome, identifying sleep disruption-sensitive bacterial taxa and classes of metabolites that may serve as therapeutic targets to improve health after poor sleep.
Collapse
Affiliation(s)
- Samuel J. Bowers
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Fernando Vargas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Antonio González
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Shannon He
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, United States of America
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
- Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America
- Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Martha H. Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Neurobiology, Northwestern University, Evanston, Illinois, United States of America
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
35
|
Kuti D, Winkler Z, Horváth K, Juhász B, Paholcsek M, Stágel A, Gulyás G, Czeglédi L, Ferenczi S, Kovács KJ. Gastrointestinal (non-systemic) antibiotic rifaximin differentially affects chronic stress-induced changes in colon microbiome and gut permeability without effect on behavior. Brain Behav Immun 2020; 84:218-228. [PMID: 31821847 DOI: 10.1016/j.bbi.2019.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is often accompanied by gastrointestinal symptoms, which might be due to stress-induced shift of gut microbiome to pathogenic bacteria. It has been hypothesized that stress alters gut permeability and results in mild endotoxemia which exaggerates HPA activity and contributes to anxiety and depression. To reveal the relationship between microbiome composition, stress-induced gastrointestinal functions and behavior, we treated chronically stressed mice with non-absorbable antibiotic, rifaximin. The "two hits" stress paradigm was used, where newborn mice were separated from their mothers for 3 h daily as early life adversity (maternal separation, MS) and exposed to 4 weeks chronic variable stress (CVS) as adults. 16S rRNA based analysis of gut microbiome revealed increases of Bacteroidetes and Proteobacteria and more specifically, Clostridium species in chronically stressed animals. In mice exposed to MS + CVS, we found extenuation of colonic mucosa, increased bacterial translocation to mesenteric lymph node, elevation of plasma LPS levels and infiltration of F4/80 positive macrophages into the colon lamina propria. Chronically stressed mice displayed behavioral signs of anxiety-like behavior and neophobia. Rifaximin treatment decreased Clostridium concentration, gut permeability and LPS plasma concentration and increased colonic expression of tight junction proteins (TJP1, TJP2) and occludin. However, these beneficial effects of rifaximin in chronically stressed mice was not accompanied by positive changes in behavior. Our results suggest that non-absorbable antibiotic treatment alleviates stress-induced local pathologies, however, does not affect stress-induced behavior.
Collapse
Affiliation(s)
- Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anikó Stágel
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Gulyás
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Department of Animal Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
36
|
Abstract
Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homoeostasis and manifested with symptoms such as anxiety, depression or even headache. These responses are quite frequent in the present competitive world. The aim of this review is to explore the effect of stress on gut microbiota. First, we summarize evidence of where the microbiota composition has changed as a response to a stressful situation, and thereby the effect of the stress response. Likewise, we review different interventions that can modulate microbiota and could modulate the stress according to the underlying mechanisms whereby the gut-brain axis influences stress. Finally, we review both preclinical and clinical studies that provide evidence of the effect of gut modulation on stress. In conclusion, the influence of stress on gut microbiota and gut microbiota on stress modulation is clear for different stressors, but although the preclinical evidence is so extensive, the clinical evidence is more limited. A better understanding of the mechanism underlying stress modulation through the microbiota may open new avenues for the design of therapeutics that could boost the pursued clinical benefits. These new designs should not only focus on stress but also on stress-related disorders such as anxiety and depression, in both healthy individuals and different populations.
Collapse
|
37
|
Karl JP, Barbato RA, Doherty LA, Gautam A, Glaven SM, Kokoska RJ, Leary D, Mickol RL, Perisin MA, Hoisington AJ, Van Opstal EJ, Varaljay V, Kelley-Loughnane N, Mauzy CA, Goodson MS, Soares JW. Meeting report of the third annual Tri-Service Microbiome Consortium symposium. ENVIRONMENTAL MICROBIOME 2020; 15:12. [PMID: 32835172 PMCID: PMC7356122 DOI: 10.1186/s40793-020-00359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/05/2023]
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22-24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Robyn A. Barbato
- United States Army Cold Regions Research and Engineering Laboratory, Hanover, NH USA
| | - Laurel A. Doherty
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC USA
| | - Robert J. Kokoska
- Physical Sciences Directorate, United States Army Research Laboratory – United States Army Research Office, Research Triangle Park, Durham, NC USA
| | - Dagmar Leary
- Center for Biomolecular Science & Engineering, United States Naval Research Laboratory, Washington, DC USA
| | | | - Matthew A. Perisin
- Biotechnology Branch, United States Army Combat Capabilities Development Command-Army Research Laboratory, Adelphi, MD USA
| | - Andrew J. Hoisington
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH USA
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward J. Van Opstal
- Human Systems Directorate, Office of the Underscretary of Defense for Research & Engineering, Washington, DC USA
| | - Vanessa Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Camilla A. Mauzy
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Michael S. Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Jason W. Soares
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| |
Collapse
|
38
|
Bajaj JS, Sharma A, Dudeja PK. Targeting Gut Microbiome Interactions in Service-Related Gastrointestinal and Liver Diseases of Veterans. Gastroenterology 2019; 157:1180-1183.e1. [PMID: 31404532 PMCID: PMC7249241 DOI: 10.1053/j.gastro.2019.07.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.
| | - Arun Sharma
- Office of Research and Development, Veterans Affairs, Washington, DC
| | - Pradeep K Dudeja
- University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
39
|
Bajaj JS, Sikaroodi M, Fagan A, Heuman D, Gilles H, Gavis EA, Fuchs M, Gonzalez-Maeso J, Nizam S, Gillevet PM, Wade JB. Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. Am J Physiol Gastrointest Liver Physiol 2019; 317:G661-G669. [PMID: 31460790 PMCID: PMC6879889 DOI: 10.1152/ajpgi.00194.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/12/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with cirrhosis in veterans, and therapeutic results are suboptimal. An altered gut-liver-brain axis exists in cirrhosis due to hepatic encephalopathy (HE), but the added impact of PTSD is unclear. The aim of this study was to define linkages between gut microbiota and cognition in cirrhosis with/without PTSD. Cirrhotic veterans (with/without prior HE) underwent cognitive testing [PHES, inhibitory control test (ICT), and block design test (BDT)], serum lipopolysaccharide-binding protein (LBP) and stool collection for 16S rRNA microbiota composition, and predicted function analysis (PiCRUST). PTSD was diagnosed using DSM-V criteria. Correlation networks between microbiota and cognition were created. Patients with/without PTSD and with/without HE were compared. Ninety-three combat-exposed male veterans [ (58 yr, MELD 11, 34% HE, 31% combat-PTSD (42 no-HE/PTSD, 19 PTSD-only, 22 HE-only, 10 PTSD+HE)] were included. PTSD patients had similar demographics, alcohol history, MELD, but worse ICT/BDT, and higher antidepressant use and LBP levels. Microbial diversity was lower in PTSD (2.1 ± 0.5 vs. 2.5 ± 0.5, P = 0.03) but unaffected by alcohol/antidepressant use. PTSD (P = 0.02) and MELD (P < 0.001) predicted diversity on regression. PTSD patients showed higher pathobionts (Enterococcus and Escherichia/Shigella) and lower autochthonous genera belonging to Lachnospiraceaeae and Ruminococcaceae regardless of HE. Enterococcus was correlated with poor cognition, while the opposite was true for autochthonous taxa regardless of PTSD/HE. Escherichia/Shigella was only linked with poor cognition in PTSD patients. Gut-brain axis-associated microbiota functionality was altered in PTSD. In male cirrhotic veterans, combat-related PTSD is associated with cognitive impairment, lower microbial diversity, higher pathobionts, and lower autochthonous taxa composition and altered gut-brain axis functionality compared with non-PTSD combat-exposed patients. Cognition was differentially linked to gut microbiota, which could represent a new therapeutic target.NEW & NOTEWORTHY Posttraumatic stress disorder (PTSD) in veterans with cirrhosis was associated with poor cognitive performance. This was associated with lower gut microbial diversity in PTSD with higher pathobionts belonging to Enterococcus and Escherichia/Shigella and lower beneficial taxa belonging to Lachnospiraceaeae and Ruminococcaceae, with functional alterations despite accounting for prior hepatic encephalopathy, psychoactive drug use, or model for end-stage liver disease score. Given the suboptimal response to current therapies for PTSD, targeting the gut microbiota could benefit the altered gut-brain axis in these patients.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | | | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Douglas Heuman
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - HoChong Gilles
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Edith A Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia
- McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Javier Gonzalez-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Shahzor Nizam
- Microbiome Analysis Center, George Mason University, Manassas, Virginia
| | | | - James B Wade
- Department of Psychiatry, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
40
|
Stothart MR, Palme R, Newman AEM. It's what's on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc Biol Sci 2019; 286:20192111. [PMID: 31640519 DOI: 10.1098/rspb.2019.2111] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The microbiome's capacity to shape the host phenotype and its mutability underlie theorization that the microbiome might facilitate host acclimation to rapid environmental change. However, when environmental change occurs, it is unclear whether resultant microbiome restructuring is proximately driven by this changing external environment or by the host's physiological response to this change. We leveraged urbanization to compare the ability of host environment (urban or forest) versus multi-scale biological measures of host hypothalamic-pituitary-adrenal (HPA) axis physiology (neutrophil : lymphocyte ratio, faecal glucocorticoid metabolites, hair cortisol) to explain variation in the eastern grey squirrel (Sciurus carolinensis) faecal microbiome. Urban and forest squirrels differed across all three of the interpretations of HPA axis activity we measured. Direct consideration of these physiological measures better explained greater phylogenetic turnover between squirrels than environment. This pattern was strongly driven by trade-offs between bacteria which specialize on metabolizing digesta versus host-derived nutrient sources. Drawing on ecological theory to explain patterns in intestinal bacterial communities, we conclude that although environmental change can affect the microbiome, it might primarily do so indirectly by altering host physiology. We demonstrate that the inclusion and careful consideration of dynamic, rather than fixed (e.g. sex), dimensions of host physiology are essential for the study of host-microbe symbioses at the micro-evolutionary scale.
Collapse
Affiliation(s)
- Mason R Stothart
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1.,Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada T2N 4Z6
| | - Rupert Palme
- Department of Biomedical Sciences/Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Amy E M Newman
- Department of Integrative Biology, College of Biological Sciences, University of Guelph, Guelph, Canada N1G 2W1
| |
Collapse
|
41
|
Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, Li X. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress 2019; 22:592-602. [PMID: 31124390 DOI: 10.1080/10253890.2019.1617267] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that there are significant changes in the gut microbiota (GM) of humans with depression and animal models of depression and chronic stress. In our present study, we determined whether an alteration in GM is a decisive factor in anxiety-like and depression-like behavior and its impact on brain neurochemistry. An antibiotic cocktail was used to deplete the GM of mice before they were colonized, via fecal microbiota transplantation (FMT), by the GM of control mice or mice that had been exposed to chronic unpredictable mild stress (CUMS donors). The CUMS-donor group of mice and the mice that were colonized by their microbiota (the CUMS-recipient group) both showed higher levels of anxiety- and depression-like behavior compared to the controls. The GM community of the CUMS-donor and CUMS-recipient was distinctively different from the controls, with the CUMS group characterized by a lower relative abundance of Lactobacillus and a higher relative abundance of Akkermansia. Interestingly, FMT affected both behavior and neuroinflammation. Mice given the CUMS microbiota had significant elevations of interferon-γ (IFN-γ) and the tumor necrosis factor-alpha (TNF-α) in the hippocampus, which were accompanied by upregulated indoleamine 2,3-dioxygenase 1 (IDO1) in the hippocampus. These results suggest that GM modulates pro-inflammatory cytokines in the hippocampus through dysfunctional microbiota-gut-brain axis, exacerbating anxiety- and depression-like phenotypes. Key Points Chronic unpredictable mild stress increased anxiety- and depression-like behavior in mice. Mice colonized with gut microbiota (GM) from stressed mice showed similar behaviors. The GM composition of the donor and recipient mice was also comparable. Their relative pattern of two bacteria has been tied to neuroinflammatory activity. The results suggest a link between GM, brain function, and anxiety and depression.
Collapse
Affiliation(s)
- Nannan Li
- a Department of Geriatrics Cardiology, First Hospital of China Medical University , Shenyang , China
| | - Qi Wang
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yan Wang
- c Mental Health Center, China Medical University , Shenyang , China
| | - Anji Sun
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Yiwei Lin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Ye Jin
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| | - Xiaobai Li
- b Department of Psychiatry, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
42
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
43
|
The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms 2019; 7:microorganisms7080271. [PMID: 31430948 PMCID: PMC6722800 DOI: 10.3390/microorganisms7080271] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota maintains a symbiotic relationship with the host and regulates several important functions including host metabolism, immunity, and intestinal barrier function. Intestinal inflammation and inflammatory bowel disease (IBD) are commonly associated with dysbiosis of the gut microbiota. Alterations in the gut microbiota and associated changes in metabolites as well as disruptions in the intestinal barrier are evidence of the relationship between the gut microbiota and intestinal inflammation. Recent studies have found that many factors may alter the gut microbiota, with the effects of diet being commonly-studied. Extrinsic stressors, including environmental stressors, antibiotic exposure, sleep disturbance, physical activity, and psychological stress, may also play important roles in altering the composition of the gut microbiota. Herein, we discuss the roles of the gut microbiota in intestinal inflammation in relation to diet and other extrinsic stressors.
Collapse
|
44
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|
45
|
Singh A, Faber-Hammond JJ, O'Rourke CF, Renn SC. Gut microbial diversity increases with social rank in the African cichlid fish, Astatotilapia burtoni. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG, Doherty LA, Soares JW. Effects of Psychological, Environmental and Physical Stressors on the Gut Microbiota. Front Microbiol 2018; 9:2013. [PMID: 30258412 PMCID: PMC6143810 DOI: 10.3389/fmicb.2018.02013] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Stress, a ubiquitous part of daily human life, has varied biological effects which are increasingly recognized as including modulation of commensal microorganisms residing in the gastrointestinal tract, the gut microbiota. In turn, the gut microbiota influences the host stress response and associated sequelae, thereby implicating the gut microbiota as an important mediator of host health. This narrative review aims to summarize evidence concerning the impact of psychological, environmental, and physical stressors on gut microbiota composition and function. The stressors reviewed include psychological stress, circadian disruption, sleep deprivation, environmental extremes (high altitude, heat, and cold), environmental pathogens, toxicants, pollutants, and noise, physical activity, and diet (nutrient composition and food restriction). Stressors were selected for their direct relevance to military personnel, a population that is commonly exposed to these stressors, often at extremes, and in combination. However, the selected stressors are also common, alone or in combination, in some civilian populations. Evidence from preclinical studies collectively indicates that the reviewed stressors alter the composition, function and metabolic activity of the gut microbiota, but that effects vary across stressors, and can include effects that may be beneficial or detrimental to host health. Translation of these findings to humans is largely lacking at present. This gap precludes concluding with certainty that transient or cumulative exposures to psychological, environmental, and physical stressors have any consistent, meaningful impact on the human gut microbiota. However, provocative preclinical evidence highlights a need for translational research aiming to elucidate the impact of stressors on the human gut microbiota, and how the gut microbiota can be manipulated, for example by using nutrition, to mitigate adverse stress responses.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Adrienne M. Hatch
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Steven M. Arcidiacono
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Sarah C. Pearce
- Combat Feeding Directorate, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Ida G. Pantoja-Feliciano
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Laurel A. Doherty
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| | - Jason W. Soares
- Soldier Performance Optimization, Natick Soldier Research, Development and Engineering Center, Natick, MA, United States
| |
Collapse
|
47
|
The Current and Future State of Department of Defense (DoD) Microbiome Research: a Summary of the Inaugural DoD Tri-Service Microbiome Consortium Informational Meeting. mSystems 2018; 3:mSystems00086-18. [PMID: 30003144 PMCID: PMC6040145 DOI: 10.1128/msystems.00086-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tri-Service Microbiome Consortium (TSMC) was recently established to enhance collaboration, coordination, and communication of microbiome research among Department of Defense (DoD) organizations. The TSMC aims to serve as a forum for sharing information related to DoD microbiome research, policy, and applications, to monitor global advances relevant to human health and performance, to identify priority objectives, and to facilitate Tri-Service (Army, Navy, and Air Force) collaborative research. The Tri-Service Microbiome Consortium (TSMC) was recently established to enhance collaboration, coordination, and communication of microbiome research among Department of Defense (DoD) organizations. The TSMC aims to serve as a forum for sharing information related to DoD microbiome research, policy, and applications, to monitor global advances relevant to human health and performance, to identify priority objectives, and to facilitate Tri-Service (Army, Navy, and Air Force) collaborative research. The inaugural TSMC workshop held on 10 to 11 May 2017 brought together almost 100 attendees from across the DoD and several key DoD partners. The meeting outcomes informed attendees of the scope of current DoD microbiome research efforts and identified knowledge gaps, collaborative/leveraging opportunities, research barriers/challenges, and future directions. This report details meeting presentations and discussions with special emphasis on Tri-Service labs’ current research activities.
Collapse
|