1
|
Marcora MS, Mattera VS, Goñi P, Aybar F, Correale JD, Pasquini JM. Iron deficiency in astrocytes alters cellular status and impacts on oligodendrocyte differentiation. J Neurosci Res 2024; 102:e25334. [PMID: 38656648 DOI: 10.1002/jnr.25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.
Collapse
Affiliation(s)
- María Silvina Marcora
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Vanesa Soledad Mattera
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Pilar Goñi
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Florencia Aybar
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Jorge Daniel Correale
- Departamento de Neurología, Fleni e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Juana Maria Pasquini
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhong Y, Liang B, Meng H, Ye R, Li Z, Du J, Wang B, Zhang B, Huang Y, Lin X, Hu M, Rong W, Wu Q, Yang X, Huang Z. 1,2-Dichloroethane induces cortex demyelination by depressing myelin basic protein via inhibiting aquaporin 4 in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113180. [PMID: 35026584 DOI: 10.1016/j.ecoenv.2022.113180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant, and overexposure to this hazardous material causes brain edema and demyelination in humans. We found that 1,2-DCE inhibits aquaporin 4 (AQP4) and is a primary pathogenic effector of 1,2-DCE-induced brain edema in animals. However, AQP4 down-regulation's link with cortex demyelination after 1,2-DCE exposure remains unclear. Thus, we exposed wild-type (WT) CD-1 mice and AQP4 knockout (AQP4-KO) mice to 0, 100, 350 and 700 mg/m3 1,2-DCE by inhalation for 28 days. We applied label-free proteomics and a cell co-culture system to elucidate the role of AQP4 inhibition in 1,2-DCE-induced demyelination. The results showed that 1,2-DCE down-regulated AQP4 in the WT mouse cortexes. Both 1,2-DCE exposure and AQP4 deletion induced neurotoxicity in mice, including increased brain water content, abnormal pathological vacuolations, and neurobehavioral damage. Tests for interaction of multiple regression analysis highlighted different effects of 1,2-DCE exposure level depending on the genotype, indicating the core role of AQP4 in regulation on 1,2-DCE-caused neurotoxicity. We used label-free quantitative proteomics to detect differentially expressed proteins associated with 1,2-DCE exposure and AQP4 inhibition, and identified down-regulation in myelin basic protein (MBP) and tyrosine-protein kinase Fyn (FYN) in a dose-dependent manner in WT mice but not in AQP4-KO mice. 1,2-DCE and AQP4 deletion separately resulted in demyelination, as detected by Luxol fast blue staining, and manifested as disordered nerve fibers and cavitation in the cortexes. Western blot and immunofluorescence confirmed the decreased AQP4 in the astrocytes and the down-regulated MBP in the oligodendrocytes by 1,2-DCE exposure and AQP4 inhibition, respectively. Finally, the co-culture results of SVG p12 and MO3.13 cells showed that 1,2-DCE-induced AQP4 down-regulation in the astrocytes was responsible for demyelination, by decreasing MBP in the oligodendrocytes. In conclusion, 1,2-DCE induced cortex demyelination by depressing MBP via AQP4 inhibition in the mice.
Collapse
Affiliation(s)
- Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Meng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Du
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Wang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingli Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Lin
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Weifeng Rong
- Department of Hygiene Monitor, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qinghong Wu
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Hughes AN. Glial Cells Promote Myelin Formation and Elimination. Front Cell Dev Biol 2021; 9:661486. [PMID: 34046407 PMCID: PMC8144722 DOI: 10.3389/fcell.2021.661486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.
Collapse
Affiliation(s)
- Alexandria N. Hughes
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, Aurora, CO, United States
| |
Collapse
|
4
|
Cheli VT, Santiago González DA, Zamora NN, Lama TN, Spreuer V, Rasmusson RL, Bett GC, Panagiotakos G, Paez PM. Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome. Glia 2018; 66:2324-2339. [PMID: 30151840 PMCID: PMC6697123 DOI: 10.1002/glia.23468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/13/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
To study the role of L-type voltage-gated Ca++ channels in oligodendrocyte development, we used a mouse model of Timothy syndrome (TS) in which a gain-of-function mutation in the α1 subunit of the L-type Ca++ channel Cav1.2 gives rise to an autism spectrum disorder (ASD). Oligodendrocyte progenitor cells (OPCs) isolated from the cortex of TS mice showed greater L-type Ca++ influx and displayed characteristics suggestive of advanced maturation compared to control OPCs, including a more complex morphology and higher levels of myelin protein expression. Consistent with this, expression of Cav1.2 channels bearing the TS mutation in wild-type OPCs triggered process formation and promoted oligodendrocyte-neuron interaction via the activation of Ca++ /calmodulin-dependent protein kinase II. To ascertain whether accelerated OPC maturation correlated with functional enhancements, we examined myelination in the TS brain at different postnatal time points. The expression of myelin proteins was significantly higher in the corpus callosum, cortex and striatum of TS animals, and immunohistochemical analysis for oligodendrocyte stage-specific markers revealed an increase in the density of myelinating oligodendrocytes in several areas of the TS brain. Along the same line, electron microscopy studies in the corpus callosum of TS animals showed significant increases both in the percentage of myelinated axons and in the thickness of myelin sheaths. In summary, these data indicate that OPC development and oligodendrocyte myelination is enhanced in the brain of TS mice, and suggest that this mouse model of a syndromic ASD is a useful tool to explore the role of L-type Ca++ channels in myelination.
Collapse
Affiliation(s)
- Veronica T. Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Diara A. Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Norma N. Zamora
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Tenzing N. Lama
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Glenna C. Bett
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| | - Georgia Panagiotakos
- Department of Biochemistry and Biophysics and Kavli Institute for Fundamental Neuroscience, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Pablo M. Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
The Divalent Metal Transporter 1 (DMT1) Is Required for Iron Uptake and Normal Development of Oligodendrocyte Progenitor Cells. J Neurosci 2018; 38:9142-9159. [PMID: 30190412 DOI: 10.1523/jneurosci.1447-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/24/2023] Open
Abstract
The divalent metal transporter 1 (DMT1) is a multimetal transporter with a primary role in iron transport. Although DMT1 has been described previously in the CNS, nothing was known about the role of this metal transporter in oligodendrocyte maturation and myelination. To determine whether DMT1 is required for oligodendrocyte progenitor cell (OPC) maturation, we used siRNAs and the Cre-lox system to knock down/knock out DMT1 expression in vitro as well as in vivo Blocking DMT1 synthesis in primary cultures of OPCs reduced oligodendrocyte iron uptake and significantly delayed OPC development. In vivo, a significant hypomyelination was found in DMT1 conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive OPCs. The brain of DMT1 knock-out animals presented a decrease in the expression levels of myelin proteins and a substantial reduction in the percentage of myelinated axons. This reduced postnatal myelination was accompanied by a decrease in the number of myelinating oligodendrocytes and a rise in proliferating OPCs. Furthermore, using the cuprizone model of demyelination, we established that DMT1 deletion in NG2-positive OPCs lead to less efficient remyelination of the adult brain. These results indicate that DMT1 is vital for OPC maturation and for the normal myelination of the mouse brain.SIGNIFICANCE STATEMENT To determine whether divalent metal transporter 1 (DMT1), a multimetal transporter with a primary role in iron transport, is essential for oligodendrocyte development, we created two conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive oligodendrocyte progenitor cells (OPCs). We have established that DMT1 is necessary for normal OPC maturation and is required for an efficient remyelination of the adult brain. Since iron accumulation by OPCs is indispensable for myelination, understanding the iron incorporation mechanism as well as the molecules involved is critical to design new therapeutic approaches to intervene in diseases in which the myelin sheath is damaged or lost.
Collapse
|
6
|
Siemian JN, LaMacchia ZM, Spreuer V, Tian J, Ignatowski TA, Paez PM, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI attenuates hypersensitivity and spinal neuroinflammation in a rat model of neuropathic pain. Biochem Pharmacol 2018; 153:260-268. [PMID: 29366977 DOI: 10.1016/j.bcp.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
Abstract
Chronic pain is a large, unmet public health problem. Recent studies have demonstrated the importance of neuroinflammation in the establishment and maintenance of chronic pain. However, pharmacotherapies that reduce neuroinflammation have not been successfully developed to treat chronic pain thus far. Several preclinical studies have established imidazoline I2 receptor (I2R) agonists as novel candidates for chronic pain therapies, and while some I2R ligands appear to modulate neuroinflammation in certain scenarios, whether they exert anti-neuroinflammatory effects in models of chronic pain is unknown. This study examined the effects of the prototypical I2R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) on hypersensitivity and neuroinflammation induced by chronic constriction injury (CCI), a neuropathic pain model in rats. In CCI rats, twice-daily treatment with 10 mg/kg 2-BFI for seven days consistently increased mechanical and thermal nociception thresholds, reduced GFAP and Iba-1 levels in the dorsal horn of the spinal cord, and reduced levels of TNF-α relative to saline treatment. These results were recapitulated in primary mouse cortical astrocyte cultures. Incubation with 2-BFI attenuated GFAP expression and supernatant TNF-α levels in LPS-stimulated cultures. These results suggest that I2R agonists such as 2-BFI may reduce neuroinflammation which may partially account for their antinociceptive effects.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA; School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Pablo M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Conditional Deletion of the L-Type Calcium Channel Cav1.2 in Oligodendrocyte Progenitor Cells Affects Postnatal Myelination in Mice. J Neurosci 2017; 36:10853-10869. [PMID: 27798140 DOI: 10.1523/jneurosci.1770-16.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/03/2016] [Indexed: 12/12/2022] Open
Abstract
To determine whether L-type voltage-operated Ca2+ channels (L-VOCCs) are required for oligodendrocyte progenitor cell (OPC) development, we generated an inducible conditional knock-out mouse in which the L-VOCC isoform Cav1.2 was postnatally deleted in NG2-positive OPCs. A significant hypomyelination was found in the brains of the Cav1.2 conditional knock-out (Cav1.2KO) mice specifically when the Cav1.2 deletion was induced in OPCs during the first 2 postnatal weeks. A decrease in myelin proteins expression was visible in several brain structures, including the corpus callosum, cortex, and striatum, and the corpus callosum of Cav1.2KO animals showed an important decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons. The reduced myelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, using a triple transgenic mouse in which all of the Cav1.2KO OPCs were tracked by a Cre reporter, we found that Cav1.2KO OPCs produce less mature oligodendrocytes than control cells. Finally, live-cell imaging in early postnatal brain slices revealed that the migration and proliferation of subventricular zone OPCs is decreased in the Cav1.2KO mice. These results indicate that the L-VOCC isoform Cav1.2 modulates oligodendrocyte development and suggest that Ca2+ influx mediated by L-VOCCs in OPCs is necessary for normal myelination. SIGNIFICANCE STATEMENT Overall, it is clear that cells in the oligodendrocyte lineage exhibit remarkable plasticity with regard to the expression of Ca2+ channels and that perturbation of Ca2+ homeostasis likely plays an important role in the pathogenesis underlying demyelinating diseases. To determine whether voltage-gated Ca2+ entry is involved in oligodendrocyte maturation and myelination, we used a conditional knock-out mouse for voltage-operated Ca2+ channels in oligodendrocyte progenitor cells. Our results indicate that voltage-operated Ca2+ channels can modulate oligodendrocyte development in the postnatal brain and suggest that voltage-gated Ca2+ influx in oligodendroglial cells is critical for normal myelination. These findings could lead to novel approaches to intervene in neurodegenerative diseases in which myelin is lost or damaged.
Collapse
|
8
|
Cheli VT, Santiago González DA, Smith J, Spreuer V, Murphy GG, Paez PM. L-type voltage-operated calcium channels contribute to astrocyte activation In vitro. Glia 2016; 64:1396-415. [PMID: 27247164 DOI: 10.1002/glia.23013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/20/2022]
Abstract
We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415.
Collapse
Affiliation(s)
- Veronica T Cheli
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Diara A Santiago González
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Jessica Smith
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Vilma Spreuer
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| | - Geoffrey G Murphy
- Department of Physiology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Pablo M Paez
- Department of Pharmacology and Toxicology, Hunter James Kelly Research Institute, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo. NYS Center of Excellence, 701 Ellicott St., Buffalo, New York
| |
Collapse
|
9
|
Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 2014; 265:69-83. [PMID: 25542980 DOI: 10.1016/j.expneurol.2014.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of voltage-operated Ca(++) channels (VOCCs) is highly regulated in the oligodendroglial lineage and is essential for proper oligodendrocyte progenitor cell (OPC) migration. Here we assessed the role of VOCCs, in particular the L-type, in oligodendrocyte maturation. We used pharmacological treatments to activate or block voltage-gated Ca(++) uptake and siRNAs to specifically knock down the L-type VOCC in primary cultures of mouse OPCs. Activation of VOCCs by plasma membrane depolarization increased OPC morphological differentiation as well as the expression of mature oligodendrocyte markers. On the contrary, inhibition of L-type Ca(++) channels significantly delayed OPC development. OPCs transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents showed reduce Ca(++) influx by ~75% after plasma membrane depolarization, indicating that Cav1.2 is heavily involved in mediating voltage-operated Ca(++) entry in OPCs. Cav1.2 knockdown induced a decrease in the proportion of oligodendrocytes that expressed myelin proteins, and an increase in cells that retained immature oligodendrocyte markers. Moreover, OPC proliferation, but not cell viability, was negatively affected after L-type Ca(++) channel knockdown. Additionally, we have tested the ability of L-type VOCCs to facilitate axon-glial interaction during the first steps of myelin formation using an in vitro co-culture system of OPCs with cortical neurons. Unlike control OPCs, Cav1.2 deficient oligodendrocytes displayed a simple morphology, low levels of myelin proteins expression and appeared to be less capable of establishing contacts with neurites and axons. Together, this set of in vitro experiments characterizes the involvement of L-type VOCCs on OPC maturation as well as the role played by these Ca(++) channels during the early phases of myelination.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
10
|
Espinosa-Jeffrey A, Paez PM, Cheli VT, Spreuer V, Wanner I, de Vellis J. Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair. PLoS One 2013; 8:e76963. [PMID: 24324574 PMCID: PMC3850904 DOI: 10.1371/journal.pone.0076963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/28/2013] [Indexed: 01/11/2023] Open
Abstract
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.
Collapse
Affiliation(s)
- Araceli Espinosa-Jeffrey
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
- * E-mail:
| | - Pablo M. Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Veronica T. Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY at Buffalo, NYS Center of Excellence, Buffalo, New York, United States of America
| | - Ina Wanner
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
| | - Jean de Vellis
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Arun V, Wiley JC, Kaur H, Kaplan DR, Guha A. A novel neurofibromin (NF1) interaction with the leucine-rich pentatricopeptide repeat motif-containing protein links neurofibromatosis type 1 and the French Canadian variant of Leigh's syndrome in a common molecular complex. J Neurosci Res 2013; 91:494-505. [PMID: 23361976 DOI: 10.1002/jnr.23189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/22/2012] [Accepted: 11/25/2012] [Indexed: 01/29/2023]
Abstract
Loss-of-function mutations and deletions in the neurofibromin tumor suppressor gene (NF1) cause neurofibromatosis type 1 (NF-1), the most common inherited syndrome of the nervous system in humans, with a birth incidence of 1:3,000. The most visible features of NF-1 are the neoplastic manifestations caused by the loss of Ras-GTPase-activating protein (Ras-GAP) activity mediated through the GAP-related domain (GRD) of neurofibromin (NF1), the protein encoded by NF1. However, the syndrome is also characterized by cognitive dysfunction and a number of developmental abnormalities. The molecular etiology of many of these nonneoplastic phenotypes remains unknown. Here we show that the tubulin-binding domain (TBD) of NF1 is a binding partner of the leucine-rich pentatricopeptide repeat motif-containing (LRPPRC) protein. These two proteins complex with Kinesin 5B, hnRNP A2, Staufen1, and Myelin Basic Protein (MBP) mRNA, likely in RNA granules. This interaction is of interest in that it links NF-1 with Leigh's syndrome, French Canadian variant (LSFC), an autosomal recessive neurodegenerative disorder that arises from mutations in the LRPPRC gene. Our findings provide clues to how loss or mutation of NF1 and LRPPRC may contribute to the manifestations of NF-1 and LSFC.
Collapse
Affiliation(s)
- Vedant Arun
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci 2012; 32:13100-10. [PMID: 22993427 DOI: 10.1523/jneurosci.2604-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrocytes contribute to many neuronal functions, including synaptogenesis, but their role in the development of synaptic plasticity remains unclear. Presynaptic muting of hippocampal glutamatergic terminals defends against excitotoxicity. Here we studied the role of astrocytes in the development of presynaptic muting at glutamatergic synapses in rat hippocampal neurons. We found that astrocytes were critical for the development of depolarization-dependent and G(i/o)-dependent presynaptic muting. The ability of cAMP analogues to modulate presynaptic function was also impaired by astrocyte deficiency. Although astrocyte deprivation resulted in postsynaptic glutamate receptor deficits, this effect appeared independent of astrocytes' role in presynaptic muting. Muting was restored with chronic, but not acute, treatment with astrocyte-conditioned medium, indicating that a soluble factor is permissive for muting. Astrocyte-derived thrombospondins (TSPs) are likely responsible because TSP1 mimicked the effect of conditioned medium, and gabapentin, a high-affinity antagonist of TSP binding to the α2δ-1 calcium channel subunit, mimicked astrocyte deprivation. We found evidence that protein kinase A activity is abnormal in astrocyte-deprived neurons but restored by TSP1, so protein kinase A dysfunction may provide a mechanism by which muting is disrupted during astrocyte deficiency. In summary our results suggest an important role for astrocyte-derived TSPs, acting through α2δ-1, in maturation of a potentially important form of presynaptic plasticity.
Collapse
|
13
|
Nobuta H, Ghiani CA, Paez PM, Spreuer V, Dong H, Korsak RA, Manukyan A, Li J, Vinters HV, Huang EJ, Rowitch DH, Sofroniew MV, Campagnoni AT, de Vellis J, Waschek JA. STAT3-mediated astrogliosis protects myelin development in neonatal brain injury. Ann Neurol 2012; 72:750-65. [PMID: 22941903 DOI: 10.1002/ana.23670] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/09/2012] [Accepted: 05/25/2012] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Pathological findings in neonatal brain injury associated with preterm birth include focal and/or diffuse white matter injury (WMI). Despite the heterogeneous nature of this condition, reactive astrogliosis and microgliosis are frequently observed. Thus, molecular mechanisms by which glia activation contribute to WMI were investigated. METHODS Postmortem brains of neonatal brain injury were investigated to identify molecular features of reactive astrocytes. The contribution of astrogliosis to WMI was further tested in a mouse model in genetically engineered mice. RESULTS Activated STAT3 signaling in reactive astrocytes was found to be a common feature in postmortem brains of neonatal brain injury. In a mouse model of neonatal WMI, conditional deletion of STAT3 in astrocytes resulted in exacerbated WMI, which was associated with delayed maturation of oligodendrocytes. Mechanistically, the delay occurred in association with overexpression of transforming growth factor (TGF)β-1 in microglia, which in healthy controls decreased with myelin maturation in an age-dependent manner. TGFβ-1 directly and dose-dependently inhibited the maturation of purified oligodendrocyte progenitors, and pharmacological inhibition of TGFβ-1 signaling in vivo reversed the delay in myelin development. Factors secreted from STAT3-deficient astrocytes promoted elevated TGFβ-1 production in cultured microglia compared to wild-type astrocytes. INTERPRETATION These results suggest that myelin development is regulated by a mechanism involving crosstalk between microglia and oligodendrocyte progenitors. Reactive astrocytes may modify this signaling in a STAT3-dependent manner, preventing the pathological expression of TGFβ-1 in microglia and the impairment of oligodendrocyte maturation.
Collapse
Affiliation(s)
- Hiroko Nobuta
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Guardia Clausi M, Paez PM, Campagnoni AT, Pasquini LA, Pasquini JM. Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event. Glia 2012; 60:1540-54. [PMID: 22736466 DOI: 10.1002/glia.22374] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 05/31/2012] [Indexed: 12/22/2022]
Abstract
Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain.
Collapse
Affiliation(s)
- Mariano Guardia Clausi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, and Institute of Chemistry and Biological Physicochemistry (IQUIFIB), School of Pharmacy and Biochemistry, University of Buenos Aires and National Research Council (CONICET), Argentina
| | | | | | | | | |
Collapse
|
15
|
Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J Neurosci 2011; 31:3625-37. [PMID: 21389218 PMCID: PMC3076512 DOI: 10.1523/jneurosci.4424-10.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/22/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022] Open
Abstract
Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, California 90095-7332, USA.
| | | | | | | | | |
Collapse
|
16
|
Smith GST, Paez PM, Spreuer V, Campagnoni CW, Boggs JM, Campagnoni AT, Harauz G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J Neurosci Res 2011; 89:467-80. [PMID: 21312222 DOI: 10.1002/jnr.22570] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022]
Abstract
The myelin basic protein (MBP) family arises from different transcription start sites of the golli (gene of oligodendrocyte lineage) complex, with further variety generated by differential splicing. The "classical" MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath but also have multiple protein interactions. The early developmental golli isoforms have previously been shown to promote process extension and enhance Ca(2+) influx into primary and immortalized oligodendrocyte cell lines. Here, we have performed similar studies with the classical 18.5- and 21.5-kDa isoforms of MBP. In contrast to golli proteins, overexpression of classical MBP isoforms significantly reduces Ca(2+) influx in the oligodendrocyte cell line N19 as well as in primary cultures of oligodendroglial progenitor cells. Pharmacological experiments demonstrate that this effect is mediated by voltage-operated Ca(2+) channels (VOCCs) and not by ligand-gated Ca(2+) channels or Ca(2+) release from intracellular stores. The pseudo-deiminated 18.5-kDa and the full-length 21.5-kDa isoforms do not reduce Ca(2+) influx as much as the unmodified 18.5-kDa isoform. However, more efficient membrane localization (of overexpressed, pseudo-deiminated 18.5-kDa and 21.5-kDa isoforms of classical MBP containing the 21-nt 3'-untranslated region transit signal) further reduces the Ca(2+) response after plasma membrane depolarization, suggesting that binding of classical MBP isoforms to the plasma membrane is important for modulation of Ca(2+) homeostasis. Furthermore, we have found that the mature 18.5-kDa isoform expressed in oligodendrocytes colocalizes with VOCCs, particularly at the leading edge of extending membrane processes. In summary, our findings suggest a key role for classical MBP proteins in regulating voltage-gated Ca(2+) channels at the plasma membrane of oligodendroglial cells and thus also in regulation of multiple developmental stages in this cell lineage.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
17
|
Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci 2010; 30:6422-33. [PMID: 20445068 DOI: 10.1523/jneurosci.5086-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is becoming increasingly clear that voltage-operated Ca(2+) channels (VOCCs) play a fundamental role in the development of oligodendrocyte progenitor cells (OPCs). Because direct phosphorylation by different kinases is one of the most important mechanisms involved in VOCC modulation, the aim of this study was to evaluate the participation of serine-threonine kinases and tyrosine kinases (TKs) on Ca(2+) influx mediated by VOCCs in OPCs. Calcium imaging revealed that OPCs exhibited Ca(2+) influx after plasma membrane depolarization via L-type VOCCs. Furthermore, VOCC-mediated Ca(2+) influx declined with OPC differentiation, indicating that VOCCs are developmentally regulated in OPCs. PKC activation significantly increased VOCC activity in OPCs, whereas PKA activation produced the opposite effect. The results also indicated that OPC morphological changes induced by PKC activation were partially mediated by VOCCs. Our data clearly suggest that TKs exert an activating influence on VOCC function in OPCs. Furthermore, using the PDGF response as a model to probe the role of TK receptors (TKr) on OPC Ca(2+) uptake, we found that TKr activation potentiated Ca(2+) influx after membrane depolarization. Interestingly, this TKr modulation of VOCCs appeared to be essential for the PDGF enhancement of OPC migration rate, because cell motility was completely blocked by TKr antagonists, as well as VOCC inhibitors, in migration assays. The present study strongly demonstrates that PKC and TKrs enhance Ca(2+) influx induced by depolarization in OPCs, whereas PKA has an inhibitory effect. These kinases modulate voltage-operated Ca(2+) uptake in OPCs and participate in the modulation of process extension and migration.
Collapse
|
18
|
Reichard EAP, Ball WS, Bove KE. Alexander Disease: A Case Report and Review of the Literature. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819609169294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Targeted overexpression of a golli-myelin basic protein isoform to oligodendrocytes results in aberrant oligodendrocyte maturation and myelination. ASN Neuro 2009; 1:AN20090029. [PMID: 19715557 PMCID: PMC2785512 DOI: 10.1042/an20090029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.
Collapse
|
20
|
Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J Neurosci 2009; 29:6663-76. [PMID: 19458236 DOI: 10.1523/jneurosci.5806-08.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Migration of oligodendrocyte progenitor cells (OPCs) from proliferative zones to their final location in the brain is an essential step in nervous system development. Golli proteins, products of the myelin basic protein gene, can modulate voltage-gated Ca(2+) uptake in OPCs during process extension and retraction. Given the importance of process extension/retraction on movement, the consequences of golli expression on OPC migration were examined in vivo and in vitro using time-lapse imaging of isolated OPCs and acute brain slice preparations from golli KO and golli J37 overexpressing mice (JOE). The results indicated that golli stimulated migration, and this enhanced motility was associated with increases in the activity of voltage operated Ca(2+) channels (VOCCs). Activation of VOCCs by high K(+) resulted in a significant increase in the migration speed of JOE OPCs versus control cells and golli-mediated modulation of OPC migration disappeared in the presence of VOCC antagonists. During migration, OPCs generated Ca(2+) oscillations that were dependent on voltage-calcium influx and both the amplitude and frequency of these Ca(2+) transients correlated positively with the rate of cell movement under a variety of pharmacological treatments. The Ca(2+) transient amplitude and the rate of cell movement were significantly lower in KO cells and significantly higher in JOE cells suggesting that the presence of golli promotes OPC migration by increasing the size of voltage-mediated Ca(2+) oscillations. These data define a new molecule that regulates Ca(2+) homeostasis in OPCs, and are the first to demonstrate that voltage-gated Ca(2+) channels can regulate an OPC function, such as migration.
Collapse
|
21
|
Regulation of store-operated and voltage-operated Ca2+ channels in the proliferation and death of oligodendrocyte precursor cells by golli proteins. ASN Neuro 2009; 1:AN20090003. [PMID: 19570024 PMCID: PMC2695580 DOI: 10.1042/an20090003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OPCs (oligodendrocyte precursor cells) express golli proteins which, through regulation of Ca2+ influx, appear to be important in OPC process extension/retraction and migration. The aim of the present study was to examine further the role of golli in regulating OPC development. The effects of golli ablation and overexpression were examined in primary cultures of OPCs prepared from golli-KO (knockout) and JOE (golli J37-overexpressing) mice. In OPCs lacking golli, or overexpressing golli, differentiation induced by growth factor withdrawal was impaired. Proliferation analysis in the presence of PDGF (platelet-derived growth factor), revealed that golli enhanced the mitogen-stimulated proliferation of OPCs through activation of SOCCs (store-operated Ca2+ channels). PDGF treatment induced a biphasic increase in OPC intracellular Ca2+, and golli specifically increased Ca2+ influx during the second SOCC-dependent phase that followed the initial release of Ca2+ from intracellular stores. This store-operated Ca2+ uptake appeared to be essential for cell division, since specific SOCC antagonists completely blocked the effects of PDGF and golli on OPC proliferation. Additionally, in OPCs overexpressing golli, increased cell death was observed after mitogen withdrawal. This phenomenon could be prevented by exposure to VOCC (voltage-operated Ca2+ channel) blockers, indicating that the effect of golli on cell death involved increased Ca2+ influx through VOCCs. The results showed a clear effect of golli on OPC development and support a role for golli in modulating multiple Ca2+-regulatory events through VOCCs and SOCCs. Our results also suggest that PDGF engagement of its receptor resulting in OPC proliferation proceeds through activation of SOCCs.
Collapse
|
22
|
Paez PM, Spreuer V, Handley V, Feng JM, Campagnoni C, Campagnoni AT. Increased expression of golli myelin basic proteins enhances calcium influx into oligodendroglial cells. J Neurosci 2007; 27:12690-9. [PMID: 18003849 PMCID: PMC6673339 DOI: 10.1523/jneurosci.2381-07.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 11/21/2022] Open
Abstract
The myelin basic protein (MBP) gene encodes two families of proteins: the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. Previous work suggests that golli proteins may play a role in Ca2+ homeostasis in oligodendrocytes (OLs) and in T-cells. Overexpression of golli in OL cell lines induces elaboration of sheets and processes. Live imaging of these cells revealed a rapid retraction of the processes and sheets after depolarization with high K+. This phenomenon was associated with a significant increase in [Ca2+]int without changes in cell viability. The results indicated that golli produced its effect through Ca2+ influx, rather than Ca2+ release from intracellular stores. Furthermore, a specific [Ca2+]int chelator (BAPTA) or Cd2+, a specific blocker of voltage-operated Ca2+ channels, abolished the ability of golli to promote process extension in a dose-dependent manner. Analysis of the golli protein identified a myristoylation site at the C terminus of the golli domain, which was essential for the action of golli on Ca2+ influx, suggesting that binding of golli to the plasma membrane is important for modulating Ca2+ homeostasis. High-resolution spatiotemporal analysis along N19 processes revealed higher-amplitude local Ca2+ influx in regions with elevated levels of golli. These findings suggest a key role for golli proteins in regulating voltage-gated Ca2+ channels in OLs during process remodeling. Our observations are consistent with the hypothesis that golli proteins, as a part of a protein complex, modulate Ca2+ influx at the plasma membrane and along OL processes.
Collapse
Affiliation(s)
- Pablo M. Paez
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Vilma Spreuer
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Vance Handley
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Ji-Ming Feng
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Celia Campagnoni
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Anthony T. Campagnoni
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| |
Collapse
|
23
|
Jacobs EC, Pribyl TM, Feng JM, Kampf K, Spreur V, Campagnoni C, Colwell CS, Reyes SD, Martin M, Handley V, Hiltner TD, Readhead C, Jacobs RE, Messing A, Fisher RS, Campagnoni AT. Region-specific myelin pathology in mice lacking the golli products of the myelin basic protein gene. J Neurosci 2005; 25:7004-13. [PMID: 16049176 PMCID: PMC6724835 DOI: 10.1523/jneurosci.0288-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 01/07/2023] Open
Abstract
The myelin basic protein (MBP) gene encodes two families of proteins, the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. In this study, targeted ablation of the golli-MBPs, but not the classic MBPs, resulted in a distinct phenotype unlike that of knock-outs (KOs) of the classic MBPs or other myelin proteins. Although the golli KO animals did not display an overt dysmyelinating phenotype, they did exhibit delayed and/or hypomyelination in selected areas of the brain, such as the visual cortex and the optic nerve, as determined by Northern and Western blots and immunohistochemical analysis with myelin protein markers. Hypomyelination in some areas, such as the visual cortex, persisted into adulthood. Ultrastructural analysis of the KOs confirmed both the delay and hypomyelination and revealed abnormalities in myelin structure and in some oligodendrocytes. Abnormal visual-evoked potentials indicated that the hypomyelination in the visual cortex had functional consequences in the golli KO brain. Evidence that the abnormal myelination in these animals was a consequence of intrinsic problems with the oligodendrocyte was indicated by an impaired ability of oligodendrocytes to form myelin sheets in culture and by the presence of abnormal Ca2+ transients in purified cortical oligodendrocytes studied in vitro. The Ca2+ results reported in this study complement previous results implicating golli proteins in modulating intracellular signaling in T-cells. Together, all these findings suggest a role for golli proteins in oligodendrocyte differentiation, migration, and/or myelin elaboration in the brain.
Collapse
Affiliation(s)
- Erin C Jacobs
- Neuropsychiatric Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90024, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van Meeteren ME, Koetsier MA, Dijkstra CD, van Tol EAF. Markers for OLN-93 oligodendroglia differentiation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 156:78-86. [PMID: 15862630 DOI: 10.1016/j.devbrainres.2005.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes are target cells in the pathogenesis of multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system (CNS). During the course of the disease, inflammatory mediators may damage oligodendrocytes and their myelin sheaths. Differentiation of oligodendrocyte progenitors is an important step in the process of remyelination. In the present study, OLN-93 differentiation was studied in co-culture with C6 astrocytes as a natural source of growth and differentiation factors as well as after exposure to insulin-like growth factor-I (IGF-I). Morphological evaluation showed an increased degree of differentiation of OLN-93 cells after IGF-I administration, but not after co-culture with astrocytes. During early differentiation, 2', 3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and zonula occludens-1 (ZO-1) tight junction protein expression were significantly increased. However, neither astrocyte co-culture nor exposure to IGF-I further increased the expression of these markers. Although reverse transcriptase-polymerase chain reaction revealed myelin basic protein (MBP) mRNA expression not to be affected during differentiation, we did find increased MBP protein expression by Western blotting. ZO-1 protein and DM20 mRNA levels were increased during the course of differentiation and after IGF-I administration. The present findings suggest that ZO-1 may be used as a marker for OLN-93 oligodendroglia differentiation.
Collapse
Affiliation(s)
- Marieke E van Meeteren
- Numico Research B.V., Biomedical Research Department, PO Box 7005, 6700 CA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Maggipinto M, Rabiner C, Kidd GJ, Hawkins AJ, Smith R, Barbarese E. Increased expression of the MBP mRNA binding protein HnRNP A2 during oligodendrocyte differentiation. J Neurosci Res 2004; 75:614-23. [PMID: 14991837 DOI: 10.1002/jnr.20014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor that mediates intracellular trafficking of myelin basic protein (MBP) mRNA to the myelin compartment in oligodendrocytes, is most abundant in the nucleus, but shuttles between the nucleus and cytoplasm. In the cytoplasm, it is associated with granules that transport mRNA from the cell body to the processes of oligodendrocytes. We found that the overall level of hnRNP A2 increased in oligodendrocytes as they differentiated into MBP-positive cells, and that this augmentation was reflected primarily in the cytoplasmic pool of hnRNP A2 present in the form of granules. The extranuclear distribution of hnRNP A2 was also observed in brain during the period of myelination in vivo. Methylation and phosphorylation have been implicated previously in the nuclear to cytoplasmic distribution of hnRNPs, so we used drugs that block methylation and phosphorylation of hnRNPs to assess their effect on hnRNP A2 distribution and mRNA trafficking. Cultures treated with adenosine dialdehyde (AdOx), an inhibitor of S-adenosyl-L-homocysteine hydrolase, or with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a drug that inhibits casein kinase 2 (CK2), maintained the preferential nuclear distribution of hnRNP A2. Treatment with either drug affected the transport of RNA trafficking granules that remained confined to the cell body.
Collapse
Affiliation(s)
- M Maggipinto
- Department of Neuroscience, University of Connecticut Health Center, Farmington
| | | | | | | | | | | |
Collapse
|
26
|
Ma ASW, Moran-Jones K, Shan J, Munro TP, Snee MJ, Hoek KS, Smith R. Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein. J Biol Chem 2002; 277:18010-20. [PMID: 11886857 DOI: 10.1074/jbc.m200050200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cis-acting response element, A2RE, which is sufficient for cytoplasmic mRNA trafficking in oligodendrocytes, binds a small group of rat brain proteins. Predominant among these is heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor for cytoplasmic trafficking of RNAs bearing A2RE-like sequences. We have now identified the other A2RE-binding proteins as hnRNP A1/A1(B), hnRNP B1, and four isoforms of hnRNP A3. The rat and human hnRNP A3 cDNAs have been sequenced, revealing the existence of alternatively spliced mRNAs. In Western blotting, 38-, 39-, 41-, and 41.5-kDa components were all recognized by antibodies against a peptide in the glycine-rich region of hnRNP A3, but only the 41- and 41.5-kDa bands bound antibodies to a 15-residue N-terminal peptide encoded by an alternatively spliced part of exon 1. The identities of these four proteins were verified by Edman sequencing and mass spectral analysis of tryptic fragments generated from electrophoretically separated bands. Sequence-specific binding of bacterially expressed hnRNP A3 to A2RE has been demonstrated by biosensor and UV cross-linking electrophoretic mobility shift assays. Mutational analysis and confocal microscopy data support the hypothesis that the hnRNP A3 isoforms have a role in cytoplasmic trafficking of RNA.
Collapse
Affiliation(s)
- Alice S W Ma
- Department of Biochemistry and Molecular Biology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Moscarello MA, Mak B, Nguyen TA, Wood DD, Mastronardi F, Ludwin SK. Paclitaxel (Taxol) attenuates clinical disease in a spontaneously demyelinating transgenic mouse and induces remyelination. Mult Scler 2002; 8:130-8. [PMID: 11990870 DOI: 10.1191/1352458502ms776oa] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Treatment with paclitaxel by four intraperitoneal injections (20 mg/kg) 1 week apart attenuated clinical signs in a spontaneously demyelinating model, if given with onset of clinical signs. If given at 2 months of age (1 month prior to clinical signs), disease was almost completely prevented The astrogliosis, prominent in our model, was reversed by paditaxel as determined by astrocyte counts and quantitation of GFAP. Electron microscopic examination of affected regions at 2.5 months demonstrated that the myelin was generally normal. By 4 months of age, demyelination was common in the superior cerebellar peduncle, maximal at 6 months, but continued to 8 months. In addition to myelin vacuolation and nude axons, the presence of many thin myelin sheaths suggested remyelination or partial demyelination. Although no evidence of oligodendrocyte loss was seen, nuclear changes were observed. To substantiate that remyelination was occurring, we measured MBP (18.5 kDa), MBP-exon II, Golli-MBP, TP8, Golli-MBP-J37, platelet-derived growth factor alpha (PDGFR alpha) and sonic hedgehog (SHH). Of these TP8, PDGFR alpha and SHH were up-regulated in the untreated transgenic. After paditaxel treatment, MBP-Exon II, TP8, PDGFR alpha and SHH were further up-regulated. We concluded that some of the effects of paditaxel were to stimulate proteins involved in early myelinating events possibly via a signal transduction mechanism.
Collapse
Affiliation(s)
- M A Moscarello
- Department of Structural Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Corley SM, Ladiwala U, Besson A, Yong VW. Astrocytes attenuate oligodendrocyte death in vitro through an alpha(6) integrin-laminin-dependent mechanism. Glia 2001; 36:281-94. [PMID: 11746766 DOI: 10.1002/glia.1116] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oligodendrocyte (OL) death occurs in many disorders of the CNS, including multiple sclerosis and brain trauma. Factors reported to induce OL death include deprivation of growth factors, elevation of cytokines, oxidative stress, and glutamate excitotoxicity. Because astrocytes produce a large amount of growth factors and antioxidants and are a major source of glutamate uptake, we tested the hypothesis that astrocytes may have a protective role for OL survival. We report that when OLs from the adult mouse brain were initiated into tissue culture, DNA fragmentation and chromatin condensation resulted, indicative of apoptosis. OL death was significantly reduced in coculture with astrocytes, but not with fibroblasts, which provided a similar monolayer of cells as astrocytes. The protection of OL demise by astrocytes was not reproduced by its conditioned medium and was not accounted for by several neurotrophic factors. In contrast, interference with the alpha(6) integrin subunit, but not the alpha(1), alpha(2), alpha(3), alpha(4), alpha(5), or alpha(v) integrin chains, negated astrocyte protection of OLs. Furthermore, a function-blocking antibody to alpha(6)beta(1) integrin reduced the ability of astrocytes to promote OL survival. The extracellular matrix ligand for alpha(6)beta(1) is laminin, which is expressed by astrocytes. Significantly, neutralizing antibodies to laminin-2 and laminin-5 inhibited the astrocyte mediation of OL survival. These results implicate astrocytes in promoting OL survival through a mechanism involving the interaction of alpha(6)beta(1) integrin on OLs with laminin on astrocytes. Enhancing this interaction may provide for OL survival in neurological injury.
Collapse
Affiliation(s)
- S M Corley
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
29
|
Shan J, Moran-Jones K, Munro TP, Kidd GJ, Winzor DJ, Hoek KS, Smith R. Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2. J Biol Chem 2000; 275:38286-95. [PMID: 11024030 DOI: 10.1074/jbc.m007642200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binds a 21-nucleotide myelin basic protein mRNA response element, the A2RE, and A2RE-like sequences in other localized mRNAs, and is a trans-acting factor in oligodendrocyte cytoplasmic RNA trafficking. Recombinant human hnRNPs A1 and A2 were used in a biosensor to explore interactions with A2RE and the cognate oligodeoxyribonucleotide. Both proteins have a single site that bound oligonucleotides with markedly different sequences but did not bind in the presence of heparin. Both also possess a second, specific site that bound only A2RE and was unaffected by heparin. hnRNP A2 bound A2RE in the latter site with a K(d) near 50 nm, whereas the K(d) for hnRNP A1 was above 10 microm. UV cross-linking assays led to a similar conclusion. Mutant A2RE sequences, that in earlier qualitative studies appeared not to bind hnRNP A2 or support RNA trafficking in oligodendrocytes, had dissociation constants above 5 microm for this protein. The two concatenated RNA recognition motifs (RRMs), but not the individual RRMs, mimicked the binding behavior of hnRNP A2. These data highlight the specificity of the interaction of A2RE with these hnRNPs and suggest that the sequence-specific A2RE-binding site on hnRNP A2 is formed by both RRMs acting in cis.
Collapse
Affiliation(s)
- J Shan
- Biochemistry Department, The University of Queensland, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Kwon OS, Slikker W, Davies DL. Biochemical and morphological effects of fumonisin B(1) on primary cultures of rat cerebrum. Neurotoxicol Teratol 2000; 22:565-72. [PMID: 10974595 DOI: 10.1016/s0892-0362(00)00082-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic dietary consumption of the mycotoxin fumonisin B(1) (FB(1)) is associated with leukoencephalomalacia and neuronal degeneration, but identification of the cellular mechanisms underlying this neurotoxicity is difficult due to concurrent adverse systemic changes. For this reason, the present investigation used an in vitro approach to assess the short-term consequences of direct FB(1) (0. 5-75 microM) exposure on astrocytes and oligodendrocytes in primary cultures of rat cerebrum. Beginning at 5 days in vitro, the cultures were exposed to FB(1) at five concentrations (0.5-75 microM), and the cultures were evaluated at 10 and 15 days in vitro. The levels of the sphingolipid-associated constituents sphingosine and sphinganine were determined with a high-performance liquid chromatography. Relative to untreated cultures, exposure to FB(1) diminished the levels of sphingosine at 15 days in vitro, whereas FB(1)-exposed cultures showed significantly increased sphinganine levels and sphinganine/sphingosine ratios. In addition to these changes in sphingolipid constituents, FB(1)-exposed (0.5-75 microM) cultures exhibited a two-fold increase in the number of process-bearing cells by 15 days in vitro. Also, the activity of 2', 3'-cyclic nucleotide 3'-phosphohydrolase, an enzyme associated with myelin and oligodendrocytes, was increased in FB(1)-treated cultures. This study suggests that short-term exposure to FB(1) may modify the proliferation or differentiation of glial cells.
Collapse
Affiliation(s)
- O S Kwon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
31
|
Jensen MB, Poulsen FR, Finsen B. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus. Int J Dev Neurosci 2000; 18:221-35. [PMID: 10715577 DOI: 10.1016/s0736-5748(99)00091-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The regulation of oligodendrocyte gene expression and myelination in vivo in the normal and injured adult CNS is still poorly understood. We have analyzed the effects of axotomy-induced axonal sprouting and microglial activation, on oligodendrocyte myelin basic protein (MBP) gene expression from 2 to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum radiatum of CA3 and the dentate hilus, which display axonal sprouting but no degenerative changes or microglial activation, and (2) the outer part of the molecular layer of the fascia dentata, and in stratum moleculare of CA3 and stratum lacunosum-moleculare of CA1, areas that display dense anterograde axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS.
Collapse
Affiliation(s)
- M B Jensen
- Department of Anatomy, Institute of Medical Biology, University of Southern Denmark/Odense University, Winslowparken 21, 5000, DK-Odense C, Denmark.
| | | | | |
Collapse
|
32
|
Meyer-Franke A, Shen S, Barres BA. Astrocytes induce oligodendrocyte processes to align with and adhere to axons. Mol Cell Neurosci 1999; 14:385-97. [PMID: 10588392 DOI: 10.1006/mcne.1999.0788] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In order to study the signals that control the onset of myelination, we cocultured highly purified postnatal retinal ganglion cells and optic nerve oligodendrocytes under serum-free conditions that promote their survival for at least a month and found that no myelination occurred. Although the addition of optic nerve astrocytes induced the oligodendrocyte processes to align with, and adhere to, axons, myelination still did not occur. The effect of astrocytes was mimicked by removal of polysialic acid from both cell types using neuroaminidase. These findings provide evidence for a novel role for astrocytes in controlling the onset of myelination by promoting adhesion of oligodendrocyte processes to axons. They also suggest that other, as yet unidentified, cell-cell interactions are necessary to induce the myelination process itself.
Collapse
Affiliation(s)
- A Meyer-Franke
- Stanford University School of Medicine, Department of Neurobiology, California 94305-5125, USA
| | | | | |
Collapse
|
33
|
Uusitalo A, Tenhunen K, Heinonen O, Hiltunen JO, Saarma M, Haltia M, Jalanko A, Peltonen L. Toward understanding the neuronal pathogenesis of aspartylglucosaminuria: expression of aspartylglucosaminidase in brain during development. Mol Genet Metab 1999; 67:294-307. [PMID: 10444340 DOI: 10.1006/mgme.1999.2872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deficiency of a lysosomal enzyme, aspartylglucosaminidase, results in a lysosomal storage disorder, aspartylglucosaminuria, manifesting as progressive mental retardation. To understand tissue pathogenesis and disease progression we analyzed the developmental expression of the enzyme, especially in brain, which is the major source of the pathological symptoms. Highest mRNA levels in brain were detected during embryogenesis, the levels decreased neonatally and started to increase again from Day 7 on. In Western analyses, a defective processing of aspartylglucosaminidase was observed in brain as compared to other tissues, resulting in very low levels of the mature, active form of the enzyme. Interestingly immunohistochemical analyses of mouse brain revealed that aspartylglucosaminidase immunoreactivity closely mimicked the myelin basic protein immunostaining pattern. The only evident neuronal staining was observed in the developing Purkinje cells of the cerebellum from Days 3 to 10, reflecting well the mRNA expression. In human infant brain, the immunostaining was also present in myelinated fibers as well as in the Purkinje cells and, additionally, in the soma and extensions of other neurons. In the adult human brain neurons and oligodendrocytes displayed immunoreactivity whereas myelinated fibers were not stained. Our results of aspartylglucosaminidase immunostaining in myelinated fibers of infant brain might imply the involvement of aspartylglucosaminidase in the early myelination process. This is consistent with previous magnetic resonance imaging findings in the brains of aspartylglucosaminuria patients, revealing delayed myelination in childhood.
Collapse
Affiliation(s)
- A Uusitalo
- National Public Health Institute and Department of Medical Genetics, University of Helsinki, Mannerheimintie 166, Helsinki, FIN-00300, Finland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoek KS, Kidd GJ, Carson JH, Smith R. hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 1998; 37:7021-9. [PMID: 9578590 DOI: 10.1021/bi9800247] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.
Collapse
Affiliation(s)
- K S Hoek
- Department of Biochemistry, University of Queensland, Australia
| | | | | | | |
Collapse
|
35
|
Landry CF, Campagnoni AT. Targeting of mRNAs into Neuronal and Glial Processes: Intracellular and Extracellular Influences. Neuroscientist 1998. [DOI: 10.1177/107385849800400204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurons and macroglia share the common, polarizing, morphological feature of multiple processes extending from a cell body, thereby defining two cellular domains. Frequently, specialized cellular activities occur within these processes, such as the dendrites of neurons and the myelin sheath of oligodendrocytes, which serve to define some of the functions of the cell. As a consequence, molecules involved in carrying out these functions need to be targeted to these domains, and mechanisms must exist for selecting and delivering these molecules to their appropriate locations. One mechanism that is emerging as increasingly important in targeting proteins to distal processes of neural cells is the translocation of the mRNAs encoding those proteins. In this review, we present many examples of such translocated mRNAs in neurons, astrocytes, and oligodendrocytes. There is a growing consensus that four major steps occur in mRNA targeting after transcription and exit of these molecules from the nucleus. These include 1) the assembly of mRNA into an RNA-protein granule, presumably around some translocation signal within the mRNA; 2) transport of the mRNA granule complex to distal sites via the cytoskeleton; 3) anchoring of the granule at the targeting site; and 4) translation of the localized mRNA to generate protein products in situ. It has become increasingly apparent that mRNA translocation is an active process, although many of the components of the translocation apparatus remain to be identified. Recent evidence also indicates that a number of factors can regulate the transport of mRNAs from within and without the cell. These include cell-cell contact, differentiation state, electrical activity, and trophic factors, which seem to exert their influence through signal transduction mechanisms that are only beginning to be defined. NEUROSCIENTIST 4:77-87, 1998
Collapse
Affiliation(s)
- Charles F. Landry
- Mental Retardation Research Center and Brain Research Institute University of California at Los Angeles School of Medicine Los Angeles, California
| | - Anthony T. Campagnoni
- Mental Retardation Research Center and Brain Research Institute University of California at Los Angeles School of Medicine Los Angeles, California
| |
Collapse
|
36
|
|
37
|
Bongarzone ER, Foster LM, Byravan S, Schonmann V, Campagnoni AT. Temperature-dependent regulation of PLP/DM20 and CNP gene expression in two conditionally-immortalized jimpy oligodendrocyte cell lines. Neurochem Res 1997; 22:363-72. [PMID: 9130245 DOI: 10.1023/a:1027339222720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We conditionally immortalized jimpy primary oligodendrocytes (ODCs) with the temperature-sensitive SV40 large T antigen. Two cell lines (clones JP1.1 and JP1.2) were generated that expressed a number of ODC markers. Both jimpy cell lines expressed DM20 mRNAs at the proliferative temperature of 34 degrees C, but not at the "differentiation" temperature of 39 degrees C. Interestingly, at 39 degrees C neither cell line appeared to differentiate further, and neither survived longer than 7 days, in contrast to other ODC cell lines from normal animals that survive many weeks at 39 degrees C. These findings are not consistent with the notion that a PLP/DM20 gene product is the cause of oligodendrocyte cell death in jimpy, since neither jimpy cell line survived at 39 degrees C, and neither line expressed PLP or DM20 proteins. Analysis of the expression of the CNP (2'3' cyclic nucleotide-3'-phosphodiesterase) gene indicated that in both cell lines only one of the two CNP isoforms was expressed at 34 degrees C. Raising the temperature to 39 degrees C caused a greater reduction in the levels of CNP protein than CNP mRNA. Taken together, the DM20 and CNP data suggest that at least some of the decline in myelin/oligodendrocyte components observed in jimpy brains may not be due simply to fewer mature oligodendrocytes, but also to a down regulation of expression of these genes at several levels including transcriptional and post-transcriptional events. Our results provide two cell models for in vitro investigations into the nature of the jimpy mutation at several cellular and molecular levels.
Collapse
Affiliation(s)
- E R Bongarzone
- Mental Retardation Research Center, U.C.L.A. Medical School 90095, USA
| | | | | | | | | |
Collapse
|
38
|
Veyrune JL, Hesketh J, Blanchard JM. 3' untranslated regions of c-myc and c-fos mRNAs: multifunctional elements regulating mRNA translation, degradation and subcellular localization. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1997; 18:35-63. [PMID: 8994260 DOI: 10.1007/978-3-642-60471-3_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J L Veyrune
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR 5535, Montpellier, France
| | | | | |
Collapse
|
39
|
Oh LY, Yong VW. Astrocytes promote process outgrowth by adult human oligodendrocytes in vitro through interaction between bFGF and astrocyte extracellular matrix. Glia 1996; 17:237-53. [PMID: 8840165 DOI: 10.1002/(sici)1098-1136(199607)17:3<237::aid-glia6>3.0.co;2-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell-cell interactions regulate many important functions within the central nervous system. In this report, we demonstrate that process outgrowth by adult human oligodendrocytes (OLs) in vitro, an early event of myelinogenesis in vivo, is promoted by astrocytes. To elucidate the mechanisms by which astrocytes might exert this effect, we tested several growth factors known to be produced by astrocytes and found that only basic fibroblast growth factor (bFGF) could enhance process extension by the OL. In correspondence, the treatment of astrocytes with a neutralizing antibody to bFGF decreased their effects in promoting oligodendroglial process outgrowth. The potency of bFGF, however, was only one-third that of astrocytes, and since bFGF did not synergize with other soluble growth factors, we investigated the potential facilitatory role of the extracellular matrix (ECM) deposited by astrocytes. The astrocyte ECM was found to be a promoter of oligodendroglial process extension, and significantly, bFGF synergized with astrocyte ECM to match the potency of live astrocytes. The astrocyte ECM was found in Western blot analyses to contain fibronectin, vitronectin, and laminin. These purified ECM components, as well as heparan sulfate proteoglycan, did not promote oligodendroglial process extension by themselves, although laminin and fibronectin potentiated the effects of bFGF. We conclude that process outgrowth by OLs is guided by astrocytes; the mechanism of the astrocyte effect appears to be due to the combination of bFGF and an unidentified ECM component.
Collapse
Affiliation(s)
- L Y Oh
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
40
|
Abstract
Myelin basic proteins (MBPs), the major peripheral membrane proteins of central nervous system (CNS) myelin, are encoded by mRNAs that are selectively segregated to the myelinating processes of oligodendrocytes. In order to test whether the intracellular mechanisms responsible for MBP mRNA translocation are oligodendrocyte-specific, or alternatively, are present in other cell types and may therefore be more general, we have studied the localization of the 14 kD MBP mRNA and its encoded polypeptide (MBP14) in transiently transfected HeLa cells (a cervical carcinoma cell line) and in the rat pheochromocytoma cell line PC12. Unlike the situation in oligodendrocytes in situ, where MBP mRNAs are translocated and become "centrifugally" distributed, in both of the non-glial cells MBP mRNA was primarily detected in the perinuclear region. The MBP14 polypeptide was found associated with intracellular membranes, and not exclusively with the plasma membrane. Our results indicate that the inability of HeLa and PC12 cells to correctly target MBP mRNAs to the cell periphery leads to a failure to incorporate MBP polypeptides directly into the plasma membrane. Further, the data lend credence to the concept that MBP mRNA segregation appears to be a specific feature of myelin-forming cells which is required for the precise delivery of the encoded polypeptides to the forming myelin membrane.
Collapse
Affiliation(s)
- G L Boccaccio
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
41
|
Baba H, Fuss B, Urano J, Poullet P, Watson JB, Tamanoi F, Macklin WB. GapIII, a new brain-enriched member of the GTPase-activating protein family. J Neurosci Res 1995; 41:846-58. [PMID: 7500386 DOI: 10.1002/jnr.490410615] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ras GTPase-activating proteins (GAPs) are negative regulators of ras, which controls proliferation and differentiation in many cells. Ras GAPs have been found in a variety of species from yeast to mammals. We describe here a newly identified mammalian GAP, GapIII, which was obtained by differential screening of a rat oligodendrocyte cDNA library. GapIII putatively encodes a 834 amino acid protein with a predicted molecular weight of 96 kDa, which contains a consensus GAP-related domain (GRD). The protein encoded by this cDNA has high homology with Gap1m, which was recently identified as a putative mammalian homolog of Drosophila Gap1. These proteins contain three structural domains, an N-terminal calcium-dependent phospholipid binding domain, GRD, and a C-terminal PH/Btk domain. Because of the sequence homology and the structural similarities of this protein with Gap1m, we hypothesize that GapIII and Gap1m may be members of a mammalian GAP gene family, separate from p120GAP, neurofibromin (NF1), and IQGAP. To confirm the GapIII protein activity, constructs containing different GapIII-GRD domains were transformed into iral mutant yeast to determine their relative ability to replace IRA1 functionally. Constructs that contained essentially the full-length protein (all three domains), the GRD alone, or the GRD plus PH/Btk domain suppressed heat shock sensitivity of ira1, whereas constructs that contained the GRD with part of the PH/Btk domain had only a weak ability to suppress heat shock sensitivity. These results suggest that the GapIII GRD itself is sufficient to down-regulate ras proteins in yeast. Expression of GapIII mRNA (4.2 kb) was examined by Northern analysis and in situ hybridization. This mRNA was expressed at highest levels in the brain, where its expression increased with development. Lower levels of the mRNA were expressed in the spleen and lung. Among neural cells, GapIII mRNA was expressed in neurons and oligodendrocytes, but not in astrocytes. Interestingly, the expression pattern in brain is reminiscent of type 1 NF1 expression reported by Gutmann et al. (Cell Growth Differ in press, 1995). We propose that in addition to p120GAP and neurofibromin, the GapIII/Gap1m family may be important for modulating ras activity in neurons and oligodendrocytes during normal brain development and in particular in the adult brain.
Collapse
Affiliation(s)
- H Baba
- Department of Psychiatry and Biobehavioral Sciences, UCLA Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Schlinger BA, Amur-Umarjee S, Campagnoni AT, Arnold AP. 5 beta-reductase and other androgen-metabolizing enzymes in primary cultures of developing zebra finch telencephalon. J Neuroendocrinol 1995; 7:187-92. [PMID: 7606244 DOI: 10.1111/j.1365-2826.1995.tb00746.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Enzymes in the avian brain irreversibly catalyze the conversion of androgens into either active metabolites (aromatase and 5 alpha-reductase) or inactive metabolites (5 beta-reductase), 5 beta-reductase is thought to influence the formation of active metabolites by reducing the concentration of androgenic substrate available for these reactions. However, because these enzymes have different regional, cellular and subcellular distributions in brain, the traditional method to measure enzyme activity in brain homogenates may be inaccurate because of artificial mixing of enzymes. Recently, we have prepared primary cell cultures from the telencephalons of developing zebra finches. Cell cultures offer the advantage that enzyme activity can be measured in live cells in which the relative distribution of enzymes may more closely reflect that found in vivo. We have previously reported that aromatase is expressed at high levels in these cultures, and that it is active in both neurons and in glia. Here we report on the activities of 5 alpha- and 5 beta-reductase in these cell cultures. Along with aromatase, 5 beta-reductase was expressed at high levels in these mixed cell cultures, including cultures highly enriched in glia. This suggests that 5 beta-reductase is present in non-neuronal cells in brain, possibly co-localized with aromatase. However, despite the presence of 5 beta-reductase, aromatase was detected reliably in vitro even when the concentration of substrate was low. Thus, 5 beta-reductase does not prevent the synthesis of estrogen in the telencephalon of developing zebra finches. By contrast, 5 alpha-reductase activity was very low or absent in these cultures.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B A Schlinger
- Department of Physiological Science, University of California, Los Angeles 90024, USA
| | | | | | | |
Collapse
|
43
|
Bansal R, Pfeiffer SE. Regulation of gene expression in mature oligodendrocytes by the specialized myelin-like membrane environment: antibody perturbation in culture with the monoclonal antibody R-mAb. Glia 1994; 12:173-9. [PMID: 7851986 DOI: 10.1002/glia.440120303] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously shown that the growth of oligodendrocyte progenitors in the presence of a monoclonal antibody (R-mAb) reacting with a cell surface component reversibly blocks their further differentiation at a specific, late progenitor stage of the lineage. This block is characterized by a nearly complete elimination of the onset of terminal differentiation at the level of RNA expression. In the present study, mature oligodendrocytes already expressing markers of terminal differentiation were exposed to R-mAb. This resulted in a retraction of cell processes and the formation of round, swollen cells, and a dose-dependent, antibody-specific partial reduction (30-50%) in the steady state levels of markers of terminal differentiation. Upon removing the perturbing antibody, all markers returned to control levels within 2 days. This inhibition was due to modulations of the levels of the specific mRNAs and proteins, not to cell loss. Total protein and levels of a marker of astrocytic differentiation were not affected by the treatment. Monoclonal antibody O1 did not cause the effects observed with R-mAb. We conclude that the response of terminally differentiating oligodendrocytes to the effects of R-mAb is different from that of oligodendrocyte late progenitors. Whereas the latter appears to operate through perturbation of the onset of gene expression (mRNA transcription and/or stability), the partial down-regulation of previously activated myelinogenic gene expression appears to be due to the loss of a normal, myelin-like, membrane environment needed for the stability of myelin mRNA and protein components.
Collapse
Affiliation(s)
- R Bansal
- Department of Microbiology, University of Connecticut Medical School, Farmington 06030
| | | |
Collapse
|
44
|
Byravan S, Foster LM, Phan T, Verity AN, Campagnoni AT. Murine oligodendroglial cells express nerve growth factor. Proc Natl Acad Sci U S A 1994; 91:8812-6. [PMID: 8090729 PMCID: PMC44696 DOI: 10.1073/pnas.91.19.8812] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The studies reported here present evidence for the expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) by an oligodendroglial cell line and of NGF by oligodendrocytes in mouse primary culture. An immortalized oligodendroglial cell line (N19) expressing markers for immature oligodendrocytes stimulated PC12 cells to elaborate processes. Polymerase chain reaction analysis with degenerate primers indicated that the N19 cells expressed the mRNAs for the neurotrophic factors NGF and BDNF. Northern blot analysis confirmed that the N19 cells expressed the 1.3-kb NGF mRNA and the 1.4- and 4-kb BDNF mRNAs. In situ hybridization histochemistry identified the presence of NGF mRNAs in 9-day primary oligodendroglial cultures. Combined immunocytochemistry and in situ hybridization histochemistry colocalized NGF mRNA within primary cultured cells that immunostained for the oligodendrocyte marker galactocerebroside (GC). Double-immunofluorescence analysis also colocalized NGF protein within GC+ cells and within A2B5+ cells, a marker for oligodendrocyte progenitors. These results show that oligodendroglia and their precursor cells can express the neurotrophic factor NGF. They suggest that cells in the oligodendrocyte lineage may play an active role in neurite extension through fiber tracts in addition to myelination.
Collapse
Affiliation(s)
- S Byravan
- Mental Retardation Research Center, University of California School of Medicine, Los Angeles 90024
| | | | | | | | | |
Collapse
|
45
|
Bhat NR, Zhang P. Inhibitors of N-linked oligosaccharide processing glucosidases interfere with oligodendrocyte differentiation in culture. J Neurosci Res 1994; 39:1-10. [PMID: 7528816 DOI: 10.1002/jnr.490390102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that inhibitors of glycoprotein processing glucosidases interfere with the development of oligodendrocyte properties in primary cultures of embryonic rat brain cells (Bhat, J Neurosci Res 20:158-164, 1988). The present study examines the effect of castanospermine, an inhibitor of the processing glucosidases, on the development and differentiation of isolated oligodendrocyte progenitor cells. Treatment of oligodendrocyte progenitors with castanospermine did not affect the developmental progression of the precursors to become committed oligodendrocytes as revealed by comparable increases in the percentages of cells positive for galactocerebroside (a surface marker for terminally differentiated oligodendrocytes) in control and drug-treated cultures. On the other hand, there was an impairment of the expression of differentiated properties of oligodendrocytes [i.e., sulfolipid synthesis, myelin basic protein (MBP)] and 2'3'-cyclic nucleotide 3'-phosphohydrolase in the drug-treated cultures. Immunocytochemical analysis with anti-MBP antibodies revealed a reduced number of MBP-positive cells in inhibitor-treated cultures. Furthermore, a majority of MBP-positive cells in such cultures displayed immunoreactive MBP in their cell body and not the processes, unlike in control cultures where both cell body and the processes of oligodendrocytes stained intensely for MBP. The strong inhibitory effect of castanospermine on the expression of oligodendrocyte-specific activities was contrasted with a relatively smaller effect of swainsonine, a mannosidase inhibitor on oligodendrocyte differentiation. Both castanospermine and swainsonine, however, effectively blocked the formation of complex-type oligosaccharides, suggesting thereby a lack of correlation between the inhibition of the formation of complex-type oligosaccharides and oligodendrocyte differentiation. It is suggested, therefore, that early trimming reactions involving the removal of glucose residues from the high mannose oligosaccharides in the endoplasmic reticulum may be essential for the cell surface localization and function of glycoproteins critically involved in surface interactions of oligodendrocytes with each other and/or with the substratum.
Collapse
Affiliation(s)
- N R Bhat
- Department of Neurology, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
46
|
Baba H, Fuss B, Watson JB, Zane LT, Macklin WB. Identification of novel mRNAs expressed in oligodendrocytes. Neurochem Res 1994; 19:1091-9. [PMID: 7800118 DOI: 10.1007/bf00968721] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To identify new proteins, which are expressed in oligodendrocytes and which may have a functional role in myelination, a rat oligodendrocyte cDNA library was screened using differential and subtractive screening techniques. Ten clones that have elevated levels of expression in brain were isolated. Two of these clones were characterized further and one clone, pC26.H2, was found to be closely related to mouse stearoyl-CoA desaturase 2 (SCD2), which catalyzes the synthesis of unsaturated fatty acid. From Northern blot and in situ hybridization studies, SCD2 mRNA was expressed primarily in brain with lower levels found in lung and spleen. In brain sections, SCD2 mRNA was found primarily in oligodendrocytes, although mRNA was detected at a low level in neurons, in particular in Purkinje cells in the cerebellum. Northern blot analysis of the other clone, p973.HB, indicated that it was expressed more selectively in brain. In mixed glial cultures oligodendrocytes were the only cells that expressed this mRNA, whereas in brain, neurons expressed this mRNA at a higher level than in oligodendrocytes. This clone is being actively pursued because of its unique expression exclusively in oligodendrocytes and neurons.
Collapse
Affiliation(s)
- H Baba
- Department of Psychiatry and Biobehavioral Sciences, UCLA 90024
| | | | | | | | | |
Collapse
|