1
|
Chatzikalil E, Stergiou IE, Papadakos SP, Konstantinidis I, Theocharis S. The Clinical Relevance of the EPH/Ephrin Signaling Pathway in Pediatric Solid and Hematologic Malignancies. Int J Mol Sci 2024; 25:3834. [PMID: 38612645 PMCID: PMC11011407 DOI: 10.3390/ijms25073834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric neoplasms represent a complex group of malignancies that pose unique challenges in terms of diagnosis, treatment, and understanding of the underlying molecular pathogenetic mechanisms. Erythropoietin-producing hepatocellular receptors (EPHs), the largest family of receptor tyrosine kinases and their membrane-tethered ligands, ephrins, orchestrate short-distance cell-cell signaling and are intricately involved in cell-pattern morphogenesis and various developmental processes. Unraveling the role of the EPH/ephrin signaling pathway in the pathophysiology of pediatric neoplasms and its clinical implications can contribute to deciphering the intricate landscape of these malignancies. The bidirectional nature of the EPH/ephrin axis is underscored by emerging evidence revealing its capacity to drive tumorigenesis, fostering cell-cell communication within the tumor microenvironment. In the context of carcinogenesis, the EPH/ephrin signaling pathway prompts a reevaluation of treatment strategies, particularly in pediatric oncology, where the modest progress in survival rates and enduring treatment toxicity necessitate novel approaches. Molecularly targeted agents have emerged as promising alternatives, prompting a shift in focus. Through a nuanced understanding of the pathway's intricacies, we aim to lay the groundwork for personalized diagnostic and therapeutic strategies, ultimately contributing to improved outcomes for young patients grappling with neoplastic challenges.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Darling TK, Lamb TJ. Emerging Roles for Eph Receptors and Ephrin Ligands in Immunity. Front Immunol 2019; 10:1473. [PMID: 31333644 PMCID: PMC6620610 DOI: 10.3389/fimmu.2019.01473] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and mediate a myriad of essential processes in humans from embryonic development to adult tissue homeostasis through interactions with membrane-bound ephrin ligands. The ubiquitous expression of Eph receptors and ephrin ligands among the cellular players of the immune system underscores the importance of these molecules in orchestrating an optimal immune response. This review provides an overview of the various roles of Eph receptors and ephrin ligands in immune cell development, activation, and migration. We also discuss the role of Eph receptors in disease pathogenesis as well as the implications of Eph receptors as future immunotherapy targets. Given the diverse and critical roles of Eph receptors and ephrin ligands throughout the immune system during both resting and activated states, this review aims to highlight the critical yet underappreciated roles of this family of signaling molecules in the immune system.
Collapse
Affiliation(s)
- Thayer K Darling
- Immunology and Molecular Pathogenesis Program, Emory University Laney Graduate School, Atlanta, GA, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Tracey J Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Zhang W, Wei X, Guo S, Wang J, Liu J, Wang H. Differential expression of EphA5 protein in gastric carcinoma and its clinical significance. Oncol Lett 2019; 17:5147-5153. [PMID: 31186729 DOI: 10.3892/ol.2019.10167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to evaluate ephrin type-A receptor 5 (EphA5) expression and its clinicopathological significance in gastric cancer. Gastric cancer tissues were analyzed by immunohistochemistry. The association between EphA5 expression and clinicopathological parameters, human epidermal growth factor receptor 2 (HER2) status and Ki-67 proliferation index was statistically analyzed. EphA5 expression was detected in all non-tumor gastric epithelia but was differentially expressed among gastric cancer samples. EphA5 was negatively expressed in 30/110 (27.3%) and positively expressed in 80/110 (72.3%) samples from patients with gastric cancer. EphA5 expression was significantly associated with Lauren classification (P=0.032), lymph node metastasis (P<0.001), HER2 expression (P=0.020) and Ki-67 expression (P=0.005). No significant association was determined between EphA5 expression and age, sex, primary location, depth of invasion and Tumor-Node-Metastasis stage. The present data indicated that EphA5 is differentially expressed in gastric cancer. EphA5 may therefore be a potential therapeutic target and may have clinical utility as a marker for lymph node metastasis in gastric cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Xue Wei
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Shuwei Guo
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jing Liu
- Department of Pathology, Taixing People's Hospital, Taixing, Jiangsu 225400, P.R. China
| | - Hai Wang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
4
|
Wang X, Xu H, Wu Z, Chen X, Wang J. Decreased expression of EphA5 is associated with Fuhrman nuclear grade and pathological tumour stage in ccRCC. Int J Exp Pathol 2017; 98:34-39. [PMID: 28421649 DOI: 10.1111/iep.12219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of renal cell carcinoma is increasing all over the world. The molecular mechanisms for tumorigenesis, progression and prognosis are still unknown. The erythropoietin-producing hepatoma amplified sequence (Eph) receptors have been reported to be expressed aberrantly in many types of human cancers and in particular EphA5 may play a role in certain human cancers. In this study, a set of clear cell renal cell carcinoma (ccRCC) tissues were subjected to immunohistochemistry. The relationship between EphA5 protein expression and clinicopathological parameters was statistically analysed. Our data show that EphA5 protein was negatively (0) or weakly (1+) expressed in 48 of 78 (61.5%), moderately (2+) expressed in 15 of 78 (19.2%) and strongly (3+) expressed in 15 of 78 (19.2%) tumour samples of ccRCC. Decreased expression of EphA5 was detected more often in females than in males (P = 0.017, rs = -0.267). Expression of EphA5 was related negatively to Fuhrman grade (P = 0.013, rs = -0.279) and pathological tumour stage pT (P = 0.003, rs = -0.334). No relation between the expression of EphA5 and age of patients was found (P = 0.107, rs = 0.184). Fuhrman grade and pT stage are the most important factors used in prognosis of ccRCC. Hence this study may provide a new and useful prognostic marker in the clinical practice of ccRCC.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Zhijun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
5
|
DNA Methylation of the EphA5 Promoter Is Associated with Rat Congenital Hypothyroidism. J Mol Neurosci 2015; 57:203-10. [PMID: 26109526 DOI: 10.1007/s12031-015-0603-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) are essential for normal development of the mammalian central nervous system through regulation of TH-responsive genes. EphA5, an important TH-responsive gene encoding the tyrosine kinase receptor EphA5, regulates synaptogenesis initiation and synaptic remodeling during brain development. Abnormal EphA5 expression is involved in the development of congenital hypothyroidism (CH). To show the regulatory mechanism of EphA5 expression in CH rats, we analyzed the correlation between methylation of the EphA5 promoter and its expression in the hypothyroid hippocampus and hippocampal neurons. Demethylation treatment using 5'-azadeoxycytidine upregulated EphA5 expression and rescued the effects of hypermethylation, suggesting a novel regulatory mechanism of EphA5 expression in CH rats. Our results suggest a potentially new approach for the development of drugs to restore neurocognitive impairments associated with CH.
Collapse
|
6
|
Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia 2011; 59:1567-78. [DOI: 10.1002/glia.21226] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|
7
|
Cooper MA, Crockett DP, Nowakowski RS, Gale NW, Zhou R. Distribution of EphA5 receptor protein in the developing and adult mouse nervous system. J Comp Neurol 2009; 514:310-28. [PMID: 19326470 PMCID: PMC2724768 DOI: 10.1002/cne.22030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The EphA5 receptor tyrosine kinase plays key roles in axon guidance during development. However, the presence of EphA5 protein in the nervous system has not been fully characterized. To examine EphA5 localization better, mutant mice, in which the EphA5 cytoplasmic domain was replaced with beta-galactosidase, were analyzed for both temporal and regional changes in the distribution of EphA5 protein in the developing and adult nervous system. During embryonic development, high levels of EphA5 protein were found in the retina, olfactory bulb, cerebral neocortex, hippocampus, pretectum, tectum, cranial nerve nuclei, and spinal cord. Variations in intensity were observed as development proceeded. Staining of pretectal nuclei, tectal nuclei, and other areas of the mesencephalon became more diffuse after maturity, whereas the cerebral neocortex gained more robust intensity. In the adult, receptor protein continued to be detected in many areas including the olfactory nuclei, neocortex, piriform cortex, induseum griseum, hippocampus, thalamus, amygdala, hypothalamus, and septum. In addition, EphA5 protein was found in the claustrum, stria terminalis, barrel cortex, and striatal patches, and along discrete axon tracts within the corpus callosum of the adult. We conclude that EphA5 function is not limited to the developing mouse brain and may play a role in synaptic plasticity in the adult.
Collapse
Affiliation(s)
- Margaret A. Cooper
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - David P. Crockett
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| | - Richard S. Nowakowski
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| | | | - Renping Zhou
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, 08854
| |
Collapse
|
8
|
Hefti F, Armanini MP, Beck KD, Caras IW, Chen KS, Godowski PJ, Goodman LJ, Hammonds RG, Mark MR, Moran P, Nishimura MC, Phillips HS, Shih A, Valverde J, Winslow JW. Development of neurotrophic factor therapy for Alzheimer's disease. CIBA FOUNDATION SYMPOSIUM 2007; 196:54-63; discussion 63-9. [PMID: 8991782 DOI: 10.1002/9780470514863.ch5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Hefti
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Toda S, Matsuoka H, Kajii Y, Nishikawa T. Altered EphA5 mRNA expression in rat brain with a single methamphetamine treatment. Neurosci Lett 2007; 424:116-21. [PMID: 17714871 DOI: 10.1016/j.neulet.2007.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/08/2007] [Accepted: 07/23/2007] [Indexed: 11/25/2022]
Abstract
Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24h, significantly increased (by 30%) in the amygdala at 9 and 24h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.
Collapse
Affiliation(s)
- Yohtaro Numachi
- Musashi Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Martínez A, Otal R, Sieber BA, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 2006; 135:451-61. [PMID: 16112477 DOI: 10.1016/j.neuroscience.2005.06.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/26/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
Ephrins are guidance cues that modulate axonal growth and the subsequent axonal topographic maps in many regions of the CNS. Here we studied the functional roles of ephrin-A/EphA interactions in the layer-specific pattern of axonal projections in the hippocampus by disrupting the ephrin-A signaling by over-expression of a soluble EphA receptor. Tracing experiments in EphA5-Fc over-expressing mice revealed that reduction of ephrin-A/EphA interactions did not affect the proper distribution of the main hippocampal afferents, i.e. entorhinal and commissural projections. However, further ultrastructural analyses showed a reduction in the density of synaptic terminals in the entorhinal and commissural termination layers in these mice. In addition, using anti-calbindin antibodies, we analyzed the dentate mossy fiber projections following disruption of ephrin-A/EphA interactions throughout developing hippocampus. While the main mossy fiber bundle appeared normal, the infrapyramidal bundle formed longer projections that established ectopic contacts in these transgenic mice. Later, the expected specific pruning of the infrapyramidal bundle was not observed at adult stages. Ultrastructural analyses confirmed a higher number of mossy fiber terminals in the infrapyramidal bundle in adult EphA5-Fc transgenic mice and showed that these terminals were larger and established a greater number of contacts than in controls. Our results demonstrate that ephrin-A/EphA interactions regulate the synaptogenesis of hippocampal afferents and the proper development and refinement of granule cell projections.
Collapse
Affiliation(s)
- A Martínez
- Department of Cell Biology and Barcelona Science Park (IRBB), University of Barcelona, Barcelona 08028, Spain.
| | | | | | | | | |
Collapse
|
11
|
Martínez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. ACTA ACUST UNITED AC 2005; 49:211-26. [PMID: 16111551 DOI: 10.1016/j.brainresrev.2005.02.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 02/01/2005] [Accepted: 02/04/2005] [Indexed: 12/20/2022]
Abstract
Ephrins and their Eph receptors are membrane-anchored proteins that have key roles in the development of the Central Nervous System. The main characteristics of ephrin/Eph interactions are that their effect is mediated by cell-to-cell contacts and that they can propagate bidirectional signals downstream of the ligand-receptor complex. These characteristics make ephrins and Eph receptors critical cues in the regulation of migrating cells or axons, and in the establishment of tissue patterns and topographic maps in distinct regions of the developing brain. In addition, ephrins and Eph receptors regulate synapse formation and plasticity. These roles would be promoted by complementary gradual expression of receptors and ligands in the neurons involved. Although, historically, ephrins and Eph receptors have been considered as repulsion signals through barriers or gradients, new evidence indicates that they may be both inhibitory and permissive/active cues depending on expression levels. The expression of distinct ligands and receptors in the developing and mature hippocampus suggests that these proteins are involved in distinct processes during the development and maturation of the hippocampal region. In fact, recent studies have shown that ephrin/Eph signaling participates in the formation of the layer-specific patterns of hippocampal afferents, in synaptogenesis and in plasticity. Therefore, ephrin/Eph interactions should be considered a crucial system in the development and maturation of the brain regions, including the hippocampus.
Collapse
Affiliation(s)
- Albert Martínez
- Neuronal Development and Regeneration Group (S1-A1), Department of Cell Biology, University of Barcelona/Barcelona Science Park, Josep Samitier 1-5, Barcelona E-08028, Spain.
| | | |
Collapse
|
12
|
Xu B, Li S, Brown A, Gerlai R, Fahnestock M, Racine RJ. EphA/ephrin-A interactions regulate epileptogenesis and activity-dependent axonal sprouting in adult rats. Mol Cell Neurosci 2004; 24:984-99. [PMID: 14697663 DOI: 10.1016/j.mcn.2003.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Eph family of tyrosine kinase receptors and their ligands, ephrins, are distributed in gradients and serve as molecular guidance cues for axonal patterning during neuronal development. Most of these molecules are also expressed in mature brain. Thus, we examine here the potential roles of such molecules in plasticity and activity-dependent mossy fiber sprouting of adult CNS. We show that the ligand ephrin-A3 and the receptor EphA5 are expressed in complementary gradients in the adult rat mossy fiber system. Using the kindling model, we demonstrate that exogenous immunoadhesins that affect the interaction of endogenous EphA receptors and ephrin-A ligands modulate the development of kindling, one type of long-term plasticity, in mature rat brain. These immunoadhesins, combined with epileptogenic stimulations, alter both the extent and the pattern of collateral axonal sprouting in the mossy fiber pathway. Our results suggest that EphA receptors and ephrin-A ligands modify neuronal plasticity and may serve as spatial cues that modulate the development and pattern of activation-dependent axonal growth in adult CNS.
Collapse
Affiliation(s)
- B Xu
- Department of Psychology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
13
|
Mann F, Peuckert C, Dehner F, Zhou R, Bolz J. Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections. Development 2002; 129:3945-55. [PMID: 12135931 DOI: 10.1242/dev.129.16.3945] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of connections between thalamic afferents and their cortical target cells occurs in a highly precise manner. Thalamic axons enter the cortex through deep cortical layers, then stop their growth in layer 4 and elaborate terminal arbors specifically within this layer. The mechanisms that underlie target layer recognition for thalamocortical projections are not known. We compared the growth pattern of thalamic explants cultured on membrane substrates purified from cortical layer 4, the main recipient layer for thalamic axons, and cortical layer 5, a non-target layer. Thalamic axons exhibited a reduced growth rate and an increased branching density on their appropriate target membranes compared with non-target substrate. When confronted with alternating stripes of both membrane substrates, thalamic axons grew preferentially on their target membrane stripes. Enzymatic treatment of cortical membranes revealed that growth, branching and guidance of thalamic axons are independently regulated by attractive and repulsive cues differentially expressed in distinct cortical layers. These results indicate that multiple membrane-associated molecules collectively contribute to the laminar targeting of thalamic afferents. Furthermore, we found that interfering with the function of Eph tyrosine kinase receptors and their ligands, ephrins, abolished the preferential branching of thalamic axons on their target membranes, and that recombinant ephrin-A5 ligand elicited a branch-promoting activity on thalamic axons. We conclude that interactions between Eph receptors and ephrins mediate branch formation of thalamic axons and thereby may play a role in the establishment of layer-specific thalamocortical connections.
Collapse
Affiliation(s)
- Fanny Mann
- Institut National de la Santé et de la Recherche Médicale Unité 371, 18 avenue du Doyen Lépine, 69500 Bron, France
| | | | | | | | | |
Collapse
|
14
|
Yue Y, Chen ZY, Gale NW, Blair-Flynn J, Hu TJ, Yue X, Cooper M, Crockett DP, Yancopoulos GD, Tessarollo L, Zhou R. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci U S A 2002; 99:10777-82. [PMID: 12124402 PMCID: PMC125042 DOI: 10.1073/pnas.162354599] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections.
Collapse
Affiliation(s)
- Yong Yue
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yoshimura K, Kametani F, Shimoda Y, Fujimaki K, Sakurai Y, Kitamura K, Asou H, Nomura M. Antigens of monoclonal antibody NB3C4 are novel markers for oligodendrocytes. Neuroreport 2001; 12:417-21. [PMID: 11209960 DOI: 10.1097/00001756-200102120-00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We produced NB3C4, a novel monoclonal antibody specific for oligodendrocytes, using human neuroblastoma IMR-32 cells. NB3C4 specifically recognized oligodendrocytes in the CNS, although it bound to neuroblastoma IMR-32 cells and oligodendrocytes in vitro. Double immunofluorescence staining of rat brain using NB3C4 and anti-GST-pi, anti-glial fibrillary acidic protein (GFAP), or anti-neurofilament 200 (NF) antibody revealed that anti-GST-pi antibody identified an oligodendrocyte marker recognizing NB3C4-positive cells, while both anti-GFAP and anti-NF antibody did not. Western blotting of rat brain homogenates showed that NB3C4 bound three proteins of 22-28 kDa, while the anti-GST-pi recognized a 27 kDa protein. Therefore, antigens recognized by NB3C4 could be novel markers for oligodendrocytes.
Collapse
Affiliation(s)
- K Yoshimura
- Department of Physiology, Saitama Medical School, Iruma-gun, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Pathfinding by developing axons towards their proper targets is an essential step in establishing appropriate neuronal connections. Recent work involving cell culture assays and molecular biology strategies, including knockout animals, strongly indicates that a complex network of guidance signals regulates the formation of hippocampal connections during development. Outgrowing axons are routed towards the hippocampal formation by specific expression of long-range cues, which include secreted class 3 semaphorins, netrin 1 and Slit proteins. Local membrane- or substrate-anchored molecules, such as ligands of the ephrin A subclass, provide layer-specific positional information. Understanding the molecular mechanisms that underlie axonal guidance during hippocampal development might be of importance in making therapeutic use of sprouting fibers, which are produced following the loss of afferents in CNS lesion.
Collapse
Affiliation(s)
- T Skutella
- Neuroscience Research Center and Institute for Anatomy, Department of Cell and Neurobiology Humboldt University Hospital (Charité), Schumannstr. 20/21, 10117 Berlin, Germany
| | | |
Collapse
|
17
|
Pimenta AF, Strick PL, Levitt P. Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010212)430:3<369::aid-cne1037>3.0.co;2-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Gao PP, Sun CH, Zhou XF, DiCicco-Bloom E, Zhou R. Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J Neurosci Res 2000; 60:427-36. [PMID: 10797545 DOI: 10.1002/(sici)1097-4547(20000515)60:4<427::aid-jnr1>3.0.co;2-d] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Eph family of tyrosine kinase receptors and ligands play key roles in cell segregation and axon targeting in the developing nervous system. Interactions between the ligands and receptors cause repulsion or degeneration of receptor-positive axons from several brain regions including the retina, hippocampus, thalamus, and midbrain dopaminergic system. We extend these previous observations by showing that three A-ephrins also negatively regulate the growth of neurites from striatal and olfactory neurons. In addition to negative effects, however, we also report a trophic activity of the A-ephrins: Ephrin-A2 and A5 promote survival and neurite outgrowth of sympathetic neurons. These observations provide support to the notion that ephrins may function as either negative or positive signals in the developing nervous system.
Collapse
Affiliation(s)
- P P Gao
- Department of Chemical Biology, Laboratory for Cancer Research, College of Pharmacy, Rutgers University, NJ, USA
| | | | | | | | | |
Collapse
|
19
|
Matsunaga T, Greene MI, Davis JG. Distinct expression patterns of eph receptors and ephrins relate to the structural organization of the adult rat peripheral vestibular system. Eur J Neurosci 2000; 12:1599-616. [PMID: 10792438 DOI: 10.1046/j.1460-9568.2000.00051.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eph receptors and their ligands, termed ephrins, have been implicated in axon guidance, neuron-target interactions, regional compartmentalization, and synaptic functions in nervous systems. These activities of the Eph family molecules prompted us to investigate whether these molecules play roles in the maintenance, regeneration and plasticity in the mature peripheral vestibular system. Using reverse transcription-polymerase chain reaction (RT-PCR), Western blot and immunocytochemical analyses, we identified distinct and reciprocal expression patterns of full-length isoforms of EphA5, EphA6, EphA7, EphB1, ephrin-A2 and ephrin-B1 that correlated with structural features of the peripheral vestibular system in adult rats. All of the Eph receptors and ephrins examined were localized in the cell bodies of vestibular ganglion neurons in vivo and in vitro, and were readily detected in their outgrowing neurites in vitro. In the utricle, these molecules were localized in distinct cellular and subcellular compartments corresponding to discrete features of utricular afferent innervation, e.g. defasciculation, branching and synapse formation. Taken together, these results identify the Eph receptors and ephrins as candidate molecular substrates for defining some aspects of the structural organization of the adult peripheral vestibular system.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 252 John Morgan Building, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
20
|
Wilkinson DG. Eph receptors and ephrins: regulators of guidance and assembly. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:177-244. [PMID: 10730216 DOI: 10.1016/s0074-7696(00)96005-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have started to elucidate the developmental functions and biochemistry of Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins. Interactions between these molecules are promiscuous, but they largely fall into two groups: EphA receptors bind to GPI-anchored ephrin-A ligands, while EphB receptors bind to ephrin-B proteins that have a transmembrane and cytoplasmic domain. Remarkably, ephrin-B proteins transduce signals, such that bidirectional signaling can occur upon interaction with Eph receptor. In many tissues, specific Eph receptors and ephrins have complementary domains, whereas other family members may overlap in their expression. An important role of Eph receptors and ephrins is to mediate cell-contact-dependent repulsion. Complementary and overlapping gradients of expression underlie establishment of a topographic map of neuronal projections in the retinotectal system. Eph receptors and ephrins also act at boundaries to channel neuronal growth cones along specific pathways, restrict the migration of neural crest cells, and via bidirectional signaling prevent intermingling between hindbrain segments. Intriguingly, Eph receptors and ephrins can also trigger an adhesive response of endothelial cells and are required for the remodeling of blood vessels. Biochemical studies suggest that the extent of multimerization of Eph receptors modulates the cellular response and that the actin cytoskeleton is one major target of the intracellular pathways activated by Eph receptors. Eph receptors and ephrins have thus emerged as key regulators of the repulsion and adhesion of cells that underlie the establishment, maintenance, and remodeling of patterns of cellular organization.
Collapse
Affiliation(s)
- D G Wilkinson
- Division of Developmental Neurobiology, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
21
|
|
22
|
Selective inhibition of spinal cord neurite outgrowth and cell survival by the Eph family ligand ephrin-A5. J Neurosci 1999. [PMID: 10559410 DOI: 10.1523/jneurosci.19-22-10026.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been shown to play critical roles in cell migration, tissue morphogenesis, and axonal guidance in many different systems. However, their function in the spinal cord has not been examined carefully. We showed in this study that several Eph receptors, including EphA3, Eph A4, and Eph A5, are expressed in the ventral spinal cord in partially overlapping patterns, with EphA5 exhibiting the most widespread transcription in the entire ventral spinal cord during early development. Complementary to the receptor expression, a ligand of these receptors, ephrin-A5, is transcribed in the dorsal half of the spinal cord. Consistent with the spatial location of receptor expression, the ligand selectively inhibits neurite outgrowth and induces cell death of the ventral, but not the dorsal, spinal cord neurons. These observations suggest that interactions between the Eph family receptors and ligands exerts negative influences on ventral spinal cord neurons and thus may play important roles in regulating morphogenesis and axon guidance in the spinal cord.
Collapse
|
23
|
Abstract
Neurons of layers II and III of the entorhinal cortex constitute the major afferent connection of the hippocampus. The molecular mechanisms that target the entorhinal axons to specific layers in the hippocampus are not known. EphA5, a member of the Eph receptor family, which has been shown to play critical roles in axon guidance, is expressed in the entorhinal cortex, the origin of the perforant pathway. In addition, ligands that interact with EphA5 are expressed in distinct hippocampal regions during development of the entorhino-hippocampal projection. Of these ligands, ephrin-A3 mRNA is localized both in the granular cell layer of the dentate gyrus and in the pyramidal cell layer of the cornu ammonis, whereas ephrin-A5 mRNA is only expressed in the pyramidal cell layer of the cornu ammonis. In the dentate gyrus, the ligand protein is not present in the termination zone of the entorhinal efferents (the outer molecular layer of the dentate gyrus) but is concentrated in the inner molecular layer into which entorhinal efferents do not grow. We used outgrowth and stripe assays to test the effects of ephrin-A3 and ephrin-A5 on the outgrowth behavior of entorhinal axons. This functional analysis revealed that entorhinal neurites were repelled by ephrin-A3 but not by ephrin-A5. These observations suggest that ephrin-A3 plays an important role in the layer-specific termination of the perforant pathway and that this ligand may interact with the EphA5 receptor to restrict entorhinal axon terminals in the outer molecular layer of the dentate gyrus.
Collapse
|
24
|
Olivieri G, Miescher GC. Immunohistochemical localization of EphA5 in the adult human central nervous system. J Histochem Cytochem 1999; 47:855-61. [PMID: 10375373 DOI: 10.1177/002215549904700702] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To better understand the functional role of EphA5 in the adult human central nervous system (CNS), we performed an immunohistochemical mapping study. EphA5, like other members of the Elk/Eph family of receptor tyrosine kinases, was widely distributed in CNS neurons. However, the distribution of the neuronal staining was not uniform. The abundance of stained neurons appeared to increase from the forebrain to the hindbrain and spinal cord. Glial and endothelial tissue was unstained. These findings are consistent with the existence of receptor and ligand gradients in different brain regions. The localization of EphA5 to motor and sensory neurons is consistent with a role of EphA5 in neural plasticity, cell-cell recognition, and topographical orientation of neuronal systems.
Collapse
Affiliation(s)
- G Olivieri
- Laboratory for Molecular Gerontology, Psychiatric University Hospital, Basel, Switzerland
| | | |
Collapse
|
25
|
Abstract
Membrane-associated signals expressed in restricted domains of the developing cerebral cortex may mediate axon target recognition during the establishment of thalamocortical projections, which form in a highly precise manner during development. To test this hypothesis, we first analyzed the outgrowth of thalamic explants from limbic and nonlimbic nuclei on membrane substrates prepared from limbic cortex and neocortex. The results show that different thalamic fiber populations are able to discriminate between membrane substrates prepared from target and nontarget cortical regions. A candidate molecule that could mediate selective choice in the thalamocortical system is the limbic system-associated membrane protein (LAMP), which is an early marker of cortical and subcortical limbic regions (Pimenta et al.,1995) that can promote outgrowth of limbic axons. Limbic thalamic and cortical axons showed preferences for recombinant LAMP (rLAMP) in a stripe assay. Incubation of cortical membranes with an antibody against LAMP prevented the ability of limbic thalamic fibers to distinguish between membranes from limbic cortex and neocortex. Strikingly, nonlimbic thalamic fibers also responded to LAMP, but in contrast to limbic thalamic fibers, rLAMP inhibited branch formation and acted as a repulsive axonal guidance signal for nonlimbic thalamic axons. The present studies indicate that LAMP fulfills a role as a selective guidance cue in the developing thalamocortical system.
Collapse
|
26
|
Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisén J, Lu Q, Barbacid M, Flanagan JG. Topographic guidance labels in a sensory projection to the forebrain. Neuron 1998; 21:1303-13. [PMID: 9883724 DOI: 10.1016/s0896-6273(00)80650-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Visual connections to the mammalian forebrain are known to be patterned by neural activity, but it remains unknown whether the map topography of such higher sensory projections depends on axon guidance labels. Here, we show complementary expression and binding for the receptor EphA5 in mouse retina and its ligands ephrin-A2 and ephrin-A5 in multiple retinal targets, including the major forebrain target, the dorsal lateral geniculate nucleus (dLGN). These ligands can act in vitro as topographically specific repellents for mammalian retinal axons and are necessary for normal dLGN mapping in vivo. The results suggest a general and economic modular mechanism for brain mapping whereby a projecting field is mapped onto multiple targets by repeated use of the same labels. They also indicate the nature of a coordinate system for the mapping of sensory connections to the forebrain.
Collapse
Affiliation(s)
- D A Feldheim
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J Neurosci 1998. [PMID: 9614241 DOI: 10.1523/jneurosci.18-12-04663.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural basis of cortical columns are radially oriented axon collaterals that form precise connections between distinct cortical layers. During development, these connections are highly specified from the initial outgrowth of collateral branches. Our previous work provided evidence for positional cues confined to individual layers that induce and/or prevent the formation of axon collaterals in specific populations of cortical neurons. Here we demonstrated with in situ hybridization techniques that mRNA of the Eph receptor tyrosine kinase EphA5 and one of its ligands, ephrin-A5, are present in distinct cortical layers, at a time when intrinsic connections are being formed in the cortex. Axonal guidance assays indicate that ephrin-A5 is a repellent signal for a populations of axons that in vivo avoid the cortical layer expressing ephrin-A5. In contrast to its established role as a repulsive axonal guidance signal, ephrin-A5 specifically mediates sprouting of those cortical axons that target the ephrin-A5-expressing layer in vivo. These results identify a novel function of ephrin-A5 on axonal arbor formation. The laminar distribution and the dual action on specific populations of axons suggest that ephrin-A5 plays a role in the assembly of local cortical circuits.
Collapse
|
28
|
Gao PP, Yue Y, Zhang JH, Cerretti DP, Levitt P, Zhou R. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc Natl Acad Sci U S A 1998; 95:5329-34. [PMID: 9560275 PMCID: PMC20260 DOI: 10.1073/pnas.95.9.5329] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/1997] [Accepted: 02/26/1998] [Indexed: 02/07/2023] Open
Abstract
The cerebral cortex is parcellated into different functional domains that receive distinct inputs from other cortical and subcortical regions. The molecular mechanisms underlying the specificity of connections of cortical afferents remain unclear. We report here that the Eph family tyrosine kinase receptor EphA5 and the ligand ephrin-A5 may play a key role in the exclusion of the limbic thalamic afferents from the sensorimotor cortex by mediating repulsive interactions. In situ hybridization shows that the EphA5 transcript is expressed at high levels in both cortical and subcortical limbic regions, including the frontal cortex, the subiculum, and the medial thalamic nuclei. In contrast, ephrin-A5 is transcribed abundantly in the sensorimotor cortex. Consistent with the complementary expression, the ligand inhibited dramatically the growth of neurites from neurons isolated from the medial thalamus but was permissive for the growth of neurites from lateral thalamic neurons, which is primarily nonlimbic. Similarly, the growth of neurites from Eph-A5-expressing neurons isolated from the subiculum was inhibited by ephrin-A5. Our studies suggest that the Eph family ligand ephrin-A5 serves as a general inhibitor of axonal growth from limbic neurons, which may serve to prevent innervation of inappropriate primary sensorimotor regions, thus contributing to the generation of specificity of thalamic cortical afferents.
Collapse
Affiliation(s)
- P P Gao
- Department of Chemical Biology, Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The Eph receptors are the largest known family of receptor tyrosine kinases. Initially all of them were identified as orphan receptors without known ligands, and their specific functions were not well understood. During the past few years, a corresponding family of ligands has been identified, called the ephrins, and specific functions have now been identified in neural development. The ephrins and Eph receptors are implicated as positional labels that may guide the development of neural topographic maps. They have also been implicated in pathway selection by axons, the guidance of cell migration, and the establishment of regional pattern in the nervous system. The ligands are anchored to cell surfaces, and most of the functions so far identified can be interpreted as precise guidance of cell or axon movement. This large family of ligands and receptors may make a major contribution to the accurate spatial patterning of connections and cell position in the nervous system.
Collapse
Affiliation(s)
- J G Flanagan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
30
|
Abstract
The Eph family is the largest of all known tyrosine kinase receptor-ligand systems. They are expressed in distinct, but overlapping, spatial and temporal patterns during embryonic development and postnatal life, and function in a variety of morphogenic events. The best known function is their role in the guidance of migration of axons and cells in the nervous system through repulsive interactions. They may also play a role in angiogenesis, tissue patterning, and tumor formation.
Collapse
Affiliation(s)
- R Zhou
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08855, USA
| |
Collapse
|
31
|
Martone ME, Holash JA, Bayardo A, Pasquale EB, Ellisman MH. Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 1997; 771:238-50. [PMID: 9401744 DOI: 10.1016/s0006-8993(97)00792-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EphA4 is a receptor tyrosine kinase of the Eph family previously designated Cek8 in chicken, Tyro1 in rat, and Sek1 in mouse, which is preferentially expressed in the embryonic and adult nervous system. We have mapped the distribution of EphA4 in the adult rat brain and spinal cord using a polyclonal antibody raised against a synthetic carboxy-terminal peptide. Immunoblotting experiments revealed that EphA4 is widely distributed in various regions of the adult rat brain. At the light microscopic level, intense immunoreactivity was apparent in the cerebral cortex, hippocampus, matrix compartment of the neostriatum, cholinergic neurons in the basal forebrain, cerebellar Purkinje cells, and substantia gelatinosa of the spinal cord. Among white matter tracts, EphA4 expression was detected in the corpus callosum, fornix, and posterior portion of the anterior commissure, but not in the lateral olfactory tract, mammillothalamic tract, or optic chiasm. Interestingly, expression in the optic chiasm is high at postnatal day 6, but decreases with the maturation of this structure. While in some regions of the neuropil neuronal cell bodies were prominently labeled, in others EphA4 immunoreactivity was detected in a punctate pattern. This punctuate staining did not coincide with synaptophysin localization. At the electron microscopic level, EphA4 immunoreactivity was observed in dendrites in the gray matter, particularly associated with dendritic spines, and in myelinated axons, but not their myelin sheaths in the white matter. The widespread distribution and diverse subcellular compartmentalization of EphA4 suggest that this receptor is important for the maintenance of multiple structures in the adult nervous system.
Collapse
Affiliation(s)
- M E Martone
- National Center for Microscopy and Imaging Research at San Diego, Department of Neurosciences, University of California, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
32
|
Zhang JH, Pimenta AF, Levitt P, Zhou R. Dynamic expression suggests multiple roles of the eph family receptor brain-specific kinase (Bsk) during mouse neurogenesis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:202-14. [PMID: 9221918 DOI: 10.1016/s0169-328x(97)00051-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The eph family ligands and receptors have been implicated in mediating topographic neuron-target interactions. We recently isolated Bsk, a new member of the eph family receptors, and showed that it is expressed primarily in the brain. To investigate the role of Bsk in the development of the nervous system, we examined the temporal and spatial patterns of Bsk expression using in situ hybridization. We report here that Bsk expression exhibits dynamic changes during embryogenesis. In early embryos, Bsk is widely transcribed in the nervous system, including the forebrain, midbrain, hindbrain and spinal cord. Bsk expression in the midbrain, hindbrain and spinal cord, however, gradually decreases while in the forebrain increases over time. By embryonic day 18, the most intense Bsk expression was found in the limbic system. High levels of the expression in the limbic system persisted throughout post-natal development and remained stable in the adult up to 24 month. The topography of Bsk expression is in the form of gradients in several regions of the brain, including the lateral septum, spinal cord, as well as the hippocampus. Selective expression was also observed in Purkinje cells. Our findings on the topography of Bsk expression provide support to potential roles of Bsk in topographic projection. Our analyses further suggest that there may be other novel functions of Bsk in early neurogenesis in addition to potential roles in topographic mapping.
Collapse
Affiliation(s)
- J H Zhang
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
33
|
Abstract
In a search for novel tyrosine kinases involved in vertebrate development, we have isolated cDNAs corresponding to three distinct members of the Eph-family of receptor tyrosine kinases. Whole mount RNA in situ hybridization analysis showed all three genes were most abundantly expressed in the developing nervous system. zek1 (zebrafish Eph-like kinase1) encodes a 981 amino acid polypeptide closely related to the murine Sek1 and Bsk receptors. Cos-1 cells transfected with zek1 produce a 141 kilodalton tyrosine phosphorylated protein which is recognized by antibodies raised against two predicted Zek1 peptides. These antibodies also recognized a protein of the same apparent molecular weight in lysates from zebrafish embryos and adults. Widespread expression of zek1 in the developing brain and neural tube suggested a generalized function of the Zek1 receptor in neuronal cell ontogeny.
Collapse
Affiliation(s)
- D E Bovenkamp
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
34
|
Miescher GC, Taylor V, Olivieri G, Mindermann T, Schröck E, Steck AJ. Extensive splice variation and localization of the EHK-1 receptor tyrosine kinase in adult human brain and glial tumors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 46:17-24. [PMID: 9191074 DOI: 10.1016/s0169-328x(96)00268-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
EHK-1 is a neuronal ELK-related receptor tyrosine kinase which interacts with multiple, membrane-anchored ligands. Recent experiments have suggested a role for some of these ligands in the formation of neuronal pathways. Here, we report the isolation of human EHK-1 cDNAs and the localization of the human EHK-1 gene to chromosome 4q12. Six EHK-1 mRNA splice variants encoding cell-surface receptors with catalytic domains were identified in adult human brain where a 120-kDa EHK-1 protein predominates. Immunohistochemistry for EHK-1 reveals a dendritic staining pattern in cortical neurons and cerebellar Purkinje cells and a marked accumulation of EHK-1 in the somas of pyramidal neurons within the cortex and hippocampus. Interestingly, we have identified lineage aberrant expression of EHK-1 in a number of human gliomas. In addition to functions during development, EHK-1 may be involved in the maintenance of the adult nervous system and contribute to glioma development.
Collapse
Affiliation(s)
- G C Miescher
- Department of Clinical Neurology, University Hospitals, Basle, Switzerland.
| | | | | | | | | | | |
Collapse
|
35
|
Meima L, Kljavin IJ, Moran P, Shih A, Winslow JW, Caras IW. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur J Neurosci 1997; 9:177-88. [PMID: 9042581 DOI: 10.1111/j.1460-9568.1997.tb01365.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous experiments identified AL-1 as a glycosylphosphatidylinositol (GPI)-linked ligand for the Eph-related receptor, REK7, and showed that a REK7-IgG fusion protein blocks axon bundling in co-cultures of cortical neurons on astrocytes, suggesting a role for REK7 and AL-1 in axon fasciculation. Subsequent identification of RAGS, the chick homologue of AL-1, as a repellent axon guidance molecule in the developing chick visual system led to speculation that AL-1, expressed on astrocytes, provides a repellent stimulus for cortical axons, inducing them to bundle as an avoidance mechanism. Using a growth cone collapse assay to test this hypothesis, we show that a soluble AL-1-IgG fusion protein is a potent collapsing factor for embryonic rat cortical neurons. The response is strongly correlated with REK7 expression, implicating REK7 as a receptor mediating AL-1-induced collapse. Morphological collapse is preceded by an AL-1-IgG-induced reorganization of the actin cytoskeleton that resembles the effects of cytochalasin D. This suggests a pathway whereby REK7 activation by AL-1 leads to perturbation of the actin cytoskeleton, possibly by an effect on actin polymerization, followed by growth cone collapse. We further show that AL-1-IgG causes collapse of rat hippocampal neurons and rat retinal ganglion cells. These data suggest a role for REK7 and AL-1 in the patterning of axonal connections in the developing cortex, hippocampus and visual system.
Collapse
Affiliation(s)
- L Meima
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | |
Collapse
|
36
|
Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J Neurosci 1996. [PMID: 8929427 DOI: 10.1523/jneurosci.16-22-07182.1996] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuron-target interaction is a key feature in the establishment of neuronal networks. However, the underlying mechanism remains unclear. We have shown that at the time of target innervation, Bsk, an eph family receptor, is expressed at high levels in several brain regions including the hippocampus, olfactory bulb, and retina. To study whether the ligands are expressed in the target tissues, we investigated the expression of Bsk ligands using a ligand-affinity probe, Bsk-AP, which consisted of the extracellular domain of Bsk fused in frame with a human placental alkaline phosphatase. These analyses showed that the ligands were expressed at high levels in the developing septum, hypothalamus, olfactory neural epithelium, and tectum. In situ hybridization studies revealed that at least three different factors were responsible for the Bsk-AP binding. In the septum, Elf-1, Lerk3 (Eff-2), and AL-1/Lerk7 were transcribed. In the hypothalamus, AL-1/Lerk7 was the ligand detected by Bsk-AP. In the olfactory system, high levels of Lerk3 were detected in the sensory neurons. Both Elf-1 and AL-1/Lerk7 were present in the tectum. These ligand-positive areas are known to be anatomically connected to Bsk-expressing regions. These observations strongly suggest that Bsk and the ligands participate in neuron-target interactions in multiple systems and provide support for their involvement in topographic projection.
Collapse
|
37
|
Pimenta AF, Reinoso BS, Levitt P. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): II. Fetal rat brain. J Comp Neurol 1996; 375:289-302. [PMID: 8915831 DOI: 10.1002/(sici)1096-9861(19961111)375:2<289::aid-cne8>3.0.co;2-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The limbic system-associated membrane protein (LAMP) is a 64-68 kDa neuronal surface glycoprotein expressed in cortical and subcortical regions of the limbic system of the adult and developing rat central nervous system (CNS). LAMP is a member of the immunoglobulin superfamily of cell adhesion molecules with three Ig domains and is highly conserved between rat and human. In this study, the temporal and spatial pattern of lamp gene expression during fetal rat development was analyzed by using Northern blot analysis and in situ hybridization. In Northern blot analysis, two lamp mRNA transcripts, 1.6 kb and 8.0 kb, identical in size to those present in the adult rat nervous system, were detected in developing neural tissue. In situ hybridization analysis showed close correlation, though not identity, between the expression of lamp mRNAs and the distribution of LAMP in limbic regions of the developing rat CNS, indicative of a more complex regulation of gene expression than was previously thought to be the case. The expression of lamp mRNAs is first detected on about embryonic day (E) 13. The hybridization signal is not seen in the proliferative ventricular zone at any level of the neuraxis, indicating that lamp is expressed in postmitotic neurons. In the cerebral cortex, lamp mRNAs are expressed in limbic cortical regions, such as the perirhinal cortex, prefrontal cortex, and cingulate cortex. In the hippocampus, the hybridization signal is observed in Ammon's horn by E18. The neostriatum, amygdaloid complex, and most hypothalamic areas express lamp mRNAs from early stages (E13-E14) in a pattern consistent with the onset of neurogenesis. The emerging patterns of lamp expression at the outset are similar to those seen in adult hypothalamus and dorsal thalamus. Although the hybridization signal is observed in some nonlimbic areas, including midbrain and hindbrain structures, intense labeling is evident in more classic limbic regions. The high levels of expression of lamp in limbic regions, beginning in early developmental stages, combined with the results of previous functional in vitro and in vivo studies, support a role for LAMP as a recognition molecule involved in the formation of limbic connections.
Collapse
Affiliation(s)
- A F Pimenta
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
38
|
Reinoso BS, Pimenta AF, Levitt P. Expression of the mRNAs encoding the limbic system-associated membrane protein (LAMP): I. Adult rat brain. J Comp Neurol 1996; 375:274-88. [PMID: 8915830 DOI: 10.1002/(sici)1096-9861(19961111)375:2<274::aid-cne7>3.0.co;2-#] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The search for molecular markers common to neural structures that are functionally related has become an attractive strategy for neurobiologists interested in identifying mechanisms involved in the formation of patterned connections. One such molecule is the limbic system-associated membrane protein (LAMP), a 64-68 kDa glycoprotein that is expressed in the soma and dendrites of subpopulations of adult neurons in the brain that are functionally associated with classic limbic structures. Such patterned molecular specificity is established prenatally; LAMP is detected during development on the surface of neurons, axonal membranes and pathfinding growth cones. This molecule has now been cloned (lamp) and has been shown to be highly conserved in rat and human. It is a new immunoglobulin superfamily member that has three Ig domains and a glycosyl-phosphatidylinositol (GPI) anchor to the cell membrane. In this study, the distribution of the lamp transcript in the adult rat brain was determined by using in situ hybridization. Generally, the distribution of lamp corresponds well with that of the LAMP protein. Within the cerebral cortex, the transcript is more abundant in areas that are associated with learning/memory and viscerosensory tasks. It is less abundant in somatic sensory and motor areas. The lamp transcript is also ubiquitous in the basal forebrain, amygdala, and preopticohypothalamic areas. In short, the lamp transcript is expressed heavily in areas of the forebrain and diencephalon that have been classically considered limbic and sparsely or moderately in nonlimbic midbrain and hindbrain regions. Correlative analysis of the connectivity patterns of the regions that express greater amounts of the transcript is consistent with a stronger limbic-associated function relative to the regions expressing less lamp. These quantitative differences may be significant in determining the function of LAMP in the adult brain.
Collapse
Affiliation(s)
- B S Reinoso
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey/Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
39
|
Soans C, Holash JA, Pavlova Y, Pasquale EB. Developmental expression and distinctive tyrosine phosphorylation of the Eph-related receptor tyrosine kinase Cek9. J Cell Biol 1996; 135:781-95. [PMID: 8909550 PMCID: PMC2121056 DOI: 10.1083/jcb.135.3.781] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cek9 is a receptor tyrosine kinase of the Eph subfamily for which only a partial cDNA sequence was known (Sajjadi, F.G., and E.B. Pasquale. 1993. Oncogene. 8:1807-1813). We have obtained the entire cDNA sequence and identified a variant form of Cek9 that lacks a signal peptide. We subsequently examined the spatio-temporal expression and tyrosine phosphorylation of Cek9 in the chicken embryo by using specific antibodies. At embryonic day 2, Cek9 immunoreactivity is concentrated in the eye, the brain, the posterior region of the neural tube, and the most recently formed somites. Later in development, Cek9 expression is widespread but particularly prominent in neural tissues. In the developing visual system, Cek9 is highly concentrated in areas containing retinal ganglion cell axons, suggesting a role in regulating their outgrowth to the optic tectum. Unlike other Eph-related receptors, Cek9 is substantially phosphorylated on tyrosine in many tissues at various developmental stages. Since autophosphorylation of receptor protein-tyrosine kinases typically correlates with increased enzymatic activity, this suggests that Cek9 plays an active role in embryonic signal transduction pathways.
Collapse
Affiliation(s)
- C Soans
- Burnham Institute (formerly La Jolla Cancer Research Foundation), La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
40
|
Gao PP, Zhang JH, Yokoyama M, Racey B, Dreyfus CF, Black IB, Zhou R. Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc Natl Acad Sci U S A 1996; 93:11161-6. [PMID: 8855326 PMCID: PMC38301 DOI: 10.1073/pnas.93.20.11161] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The hippocampus and septum play central roles in one of the most important spheres of brain function: learning and memory. Although their topographic connections have been known for two decades and topography may be critical for cognitive functions, the basis for hippocamposeptal topographic projection is unknown. We now report for the first time that Elf-1, a membrane-bound eph family ligand, is a candidate molecular tag for the genesis of the hippocamposeptal topographic projection. Elf-1 is expressed in an increasing gradient from dorsal to ventral septum. Furthermore, Elf-1 selectively allows growth of neurites from topographically appropriate lateral hippocampal neurons, while inhibiting neurite outgrowth by medial hippocampal neurons. Complementary to the expression of Elf-1, an eph family receptor, Bsk, is expressed in the hippocampus in a lateral to medial gradient, consistent with a function as a receptor for Elf-1. Further, Elf-1 specifically bound Bsk, eliciting tyrosine kinase activity. We conclude that the Elf-1/Bsk ligand-receptor pair exhibits traits of a chemoaffinity system for the organization of hippocamposeptal topographic projections.
Collapse
Affiliation(s)
- P P Gao
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08855, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 1996; 17:9-19. [PMID: 8755474 DOI: 10.1016/s0896-6273(00)80276-7] [Citation(s) in RCA: 672] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report that the many Eph-related receptor tyrosine kinases, and their numerous membrane-bound ligands, can each be grouped into only two major specificity subclasses. Receptors in a given subclass bind most members of a corresponding ligand subclass. The physiological relevance of these groupings is suggested by viewing the collective distributions of all members of a subclass. These composite distributions, in contrast with less informative patterns seen with individual members of the family, reveal that the developing embryo is subdivided into domains defined by reciprocal and apparently mutually exclusive expression of a receptor subclass and its corresponding ligands. Receptors seem to encounter their ligands only at the interface between these domains. This reciprocal compartmentalization implicates the Eph family in the formation of spatial boundaries that may help to organize the developing body plan.
Collapse
Affiliation(s)
- Nicholas W Gale
- Regeneron Pharmaceuticals, Incorporated, Tarrytown, New York, 10591-6707, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fukuyama R, Rapoport SI. Isolation of a monoclonal antibody reactive to brain microsome-associated antigen, lap-1, and its preferential localization in limbic system of rat brain. Brain Res 1996; 719:194-7. [PMID: 8782880 DOI: 10.1016/0006-8993(95)01344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution and subcellular localization of AH9 antigen, recognized by a monoclonal antibody AH9, were examined in rat brain. Highest expression was observed in the lamina lucidum of the dentate gyrus of the rat hippocampus. Synaptic subfields of other limbic areas also expressed AH9 antigen at a substantial level. The molecular size of the AH9 antigen is 15 kDa and it was found in the microsomal fraction of brain but not of heart or kidney. These results indicate that AH9 antigen is a novel synaptosomal protein that is relatively specific to the limbic system, at least in the rat brain. We designated AH9 antigen as a limbic system associated protein-1, lap-1.
Collapse
Affiliation(s)
- R Fukuyama
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Lackmann M, Bucci T, Mann RJ, Kravets LA, Viney E, Smith F, Moritz RL, Carter W, Simpson RJ, Nicola NA, Mackwell K, Nice EC, Wilks AF, Boyd AW. Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach. Proc Natl Acad Sci U S A 1996; 93:2523-7. [PMID: 8637907 PMCID: PMC39830 DOI: 10.1073/pnas.93.6.2523] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Advances in screening technologies allowing the identification of growth factor receptors solely by virtue of DNA or protein sequence comparison call for novel methods to isolate corresponding ligand growth factors. The EPH-like receptor tyrosine kinase (RTK) HEK (human EPH-like kinase) was identified previously as a membrane antigen on the LK63 human pre-B-cell line and overexpression in leukemic specimens and cell lines suggested a role in oncogenesis. We developed a biosensor-based approach using the immobilized HEK receptor exodomain to detect and monitor purification of the HEK ligand. A protein purification protocol, which included HEK affinity chromatography, achieved a 1.8 X 10(6)-fold purification of an approximately 23-kDa protein from human placental conditioned medium. Analysis of specific sHEK (soluble extracellular domain of HEK) ligand interactions in the first and final purification steps suggested a ligand concentration of 40 pM in the source material and a Kd of 2-3 nM. Since the purified ligand was N-terminally blocked, we generated tryptic peptides and N-terminal amino acid sequence analysis of 7 tryptic fragments of the S-pyridylethylated protein unequivocally matched the sequence for AL-1, a recently reported ligand for the related EPH-like RTK REK7 (Winslow, J.W., Moran, P., Valverde, J., Shih, A., Yuan, J.Q., Wong, S.C., Tsai, S.P., Goddard, A., Henzel, W.J., Hefti, F., Beck, K.D., & Caras, I.W. (1995) Neuron 14, 973-981). Our findings demonstrate the application of biosensor technology in ligand purification and show that AL-1, as has been found for other ligands of the EPH-like RTK family, binds more than one receptor.
Collapse
Affiliation(s)
- M Lackmann
- Cooperative Research Centre for Cellular Growth Factors, Growth Regulation Laboratory, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lickliter JD, Smith FM, Olsson JE, Mackwell KL, Boyd AW. Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc Natl Acad Sci U S A 1996; 93:145-50. [PMID: 8552593 PMCID: PMC40195 DOI: 10.1073/pnas.93.1.145] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Eph and its homologues form the largest subfamily of receptor tyrosine kinases. Normal expression patterns of this subfamily indicate roles in differentiation and development, whereas their overexpression has been linked to oncogenesis. This study investigated the potential role of Eph-related molecules during very early embryonic development by examining their expression in embryonic stem (ES) cells and embryoid bodies differentiated from ES cells in vitro. By use of a strategy based on reverse transcriptase-mediated PCR, nine clones containing Eph-subfamily sequence were isolated from ES cells. Of these, eight were almost identical to one of four previously identified molecules (Sek, Nuk, Eck, and Mek4). However, one clone contained sequence from a novel Eph-subfamily member, which was termed embryonic stem-cell kinase or Esk. Northern analysis showed expression of Esk in ES cells, embryoid bodies, day 12 mouse embryos, and some tissues of the adult animal. Levels of expression were similar in ES cells and embryoid bodies. By comparison, Mek4 showed no significant transcription in the ES cell cultures by Northern analysis, whereas Eck displayed stronger signals in ES cells than in the embryoid bodies. These results suggest that Eph-subfamily molecules may play roles during the earliest phases of embryogenesis. Furthermore, the relative importance of different members of this subfamily appears to change as development proceeds.
Collapse
Affiliation(s)
- J D Lickliter
- Lions Cancer Research Laboratory, Walter and Eliza Hall Institute of Medical Research, P.O. Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | |
Collapse
|
45
|
Cerretti DP, Vanden Bos T, Nelson N, Kozlosky CJ, Reddy P, Maraskovsky E, Park LS, Lyman SD, Copeland NG, Gilbert DJ. Isolation of LERK-5: a ligand of the eph-related receptor tyrosine kinases. Mol Immunol 1995; 32:1197-205. [PMID: 8559144 DOI: 10.1016/0161-5890(95)00108-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hek and elk are members of the eph-related family of receptor tyrosine kinases. Recently we isolated four cDNAs encoding membrane-bound ligands to hek and elk [Beckman et al. (1994) EMBO J. 13, 3757-3762; Kozlosky et al. (1995) Oncogene 10, 299-306]. Because of the promiscuous nature of their binding, we have termed these proteins ligands of the eph-related kinases or LERKs. A search of GenBank revealed an expressed sequence tag (EST) with homology to the LERKs. Using this EST as a probe, we have isolated human and murine cDNAs that encode a protein which we call LERK-5. The human and murine cDNAs encode proteins of 333 and 336 amino acids, respectively, with a 97% amino acid identity; LERK-5 has an amino acid identity of 27-59% with the other reported LERKs. LERK-5 is a ligand for both elk and hek and induces receptor phosphorylation. It is expressed in adult lung and kidney and the fetal tissues heart, lung, kidney, and brain. In addition, Southern blot analysis of DNA from interspecific backcross mice indicated that LERK-5 (Eplg5) maps to the proximal region of mouse chromosome 8.
Collapse
|
46
|
Carpenter MK, Shilling H, VandenBos T, Beckmann MP, Cerretti DP, Kott JN, Westrum LE, Davison BL, Fletcher FA. Ligands for EPH-related tyrosine kinase receptors are developmentally regulated in the CNS. J Neurosci Res 1995; 42:199-206. [PMID: 8568920 DOI: 10.1002/jnr.490420207] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elk is a member of the eph family of receptor-like tyrosine kinases. Although its function is unknown, elk is postulated to play a role in nervous system development. Using Northern analysis, we examined the developmental regulation of RNAs encoding elk, and several ligands for the eph family of RTKs, the LERKs. Expression of elk, LERK-1, and LERK-2 RNAs is high in all regions examined in the embryonic and postnatal rat brain and decreases to low levels with age. One exception is the adult olfactory bulb which continues to express a moderate level of LERK-2. In contrast, moderate LERK-4 expression was limited to the developing hippocampus and cerebral cortex. These data indicate that elk and some of the LERKs may play a role in nervous system development, maintenance, and/or regeneration.
Collapse
Affiliation(s)
- M K Carpenter
- Immunex Research and Development Corporation, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bergemann AD, Cheng HJ, Brambilla R, Klein R, Flanagan JG. ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol 1995; 15:4921-9. [PMID: 7651410 PMCID: PMC230738 DOI: 10.1128/mcb.15.9.4921] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Eph receptors are the largest known family of receptor tyrosine kinases and are notable for distinctive expression patterns in the nervous system and in early vertebrate development. However, all were identified as orphan receptors, and only recently have there been descriptions of a corresponding family of ligands. We describe here a new member of the Eph ligand family, designated ELF-2 (Eph ligand family 2). The cDNA sequence for mouse ELF-2 indicates that it is a transmembrane ligand. It shows closest homology to the other known transmembrane ligand in the family, ELK-L/LERK-2/Cek5-L, with 57% identity in the extracellular domain. There is also striking homology in the cytoplasmic domain, including complete identity of the last 33 amino acids, suggesting intracellular interactions. On cell surfaces, and in a cell-free system, ELF-2 binds to three closely related Eph family receptors, Elk, Cek10 (apparent ortholog of Sek-4 and HEK2), and Cek5 (apparent ortholog of Nuk/Sek-3), all with dissociation constants of approximately 1 nM. In situ hybridization of mouse embryos shows ELF-2 RNA expression in a segmental pattern in the hindbrain region and the segmenting mesoderm. Comparable patterns have been described for Eph family receptors, including Sek-4 and Nuk/Sek-3, suggesting roles for ELF-2 in patterning these regions of the embryo.
Collapse
Affiliation(s)
- A D Bergemann
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Ellis J, Liu Q, Breitman M, Jenkins NA, Gilbert DJ, Copeland NG, Tempest HV, Warren S, Muir E, Schilling H. Embryo brain kinase: a novel gene of the eph/elk receptor tyrosine kinase family. Mech Dev 1995; 52:319-41. [PMID: 8541219 DOI: 10.1016/0925-4773(95)00411-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new gene belonging to the Eph/Eck/Elk receptor tyrosine kinase family has been cloned from mouse brain. The gene maps to mouse chromosome 4. In the adult brain it is expressed exclusively and abundantly in the hippocampus. We propose to name it Ebk (embryo brain kinase), as in situ hybridisation shows expression in many parts of the developing mouse brain. The most abundant expression is in the subcommissural organ, and the earliest expression is in the forebrain neural folds, in rhombomeres 2-6, and in somites and heart. Other regions positive at various stages include the cochlear duct, trigeminal ganglion, lung, first branchial arch, and tooth primordia. Also positive are areas of mesenchyme underlying various epithelia during morphogenesis, especially in the mouth and nose, as well as in the eyelids and toes. We compare these patterns with the available data on the 12 other known members of this gene family. Most of them, like Ebk, are expressed in brain (especially adult hippocampus and embryonic rhombomeres) and in organs rich in epithelia (especially lung), although the spatial and temporal patterns differ. We suggest that combinatorial patterns of these receptors act as labels for the regional identity of neurons and epithelia, and could mediate fine control of neurite pathfinding and epithelial morphogenesis.
Collapse
Affiliation(s)
- J Ellis
- Department of Physiology, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Winslow JW, Moran P, Valverde J, Shih A, Yuan JQ, Wong SC, Tsai SP, Goddard A, Henzel WJ, Hefti F. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 1995; 14:973-81. [PMID: 7748564 DOI: 10.1016/0896-6273(95)90335-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
REK7 is an Eph-related tyrosine kinase receptor expressed exclusively in the nervous system, predominantly in hippocampus and cortex. A soluble REK7-IgG fusion protein, produced to analyze the biological role of REK7, prevents axon bundling in cocultures of cortical neurons with astrocytes, a model of late stage nervous system development and differentiation. Using REK7-IgG as an affinity reagent, we purified and cloned a novel REK7 ligand called AL-1, a GPI-linked protein homologous to other members of an emerging ligand family. Membrane attachment of AL-1 appears necessary for receptor activation, since REK7 on cortical neurons is efficiently activated by transfected cells expressing GPI-linked AL-1, but not by soluble AL-1. Consistent with this, soluble AL-1 blocks axon bundling. Our findings, together with the observation that both molecules are expressed in the brain, suggest a role in the formation of neuronal pathways, a crucial feature of nervous system development and regeneration.
Collapse
Affiliation(s)
- J W Winslow
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schulz NT, Paulhiac CI, Lee L, Zhou R. Isolation and expression analysis of tyro3, a murine growth factor receptor tyrosine kinase preferentially expressed in adult brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 28:273-80. [PMID: 7723626 DOI: 10.1016/0169-328x(94)00216-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth factors and their receptors function in the nervous system to induce proliferation and differentiation of neuronal precursor cells and to support survival of mature neurons. We have isolated a murine growth factor receptor tyrosine kinase using an anti-phosphotyrosine antibody screening procedure and studied the pattern of expression. The deduced amino acid sequence of the kinase has all the characteristics of a growth factor receptor and consists of a putative extracellular domain, a transmembrane domain, and a tyrosine kinase domain. Sequence comparison with known receptor tyrosine kinases indicated that the murine kinase is a mouse homolog of tyro3. tyro3 belongs to the Axl/Ufo growth factor receptor family. In the putative extracellular domain, there are two Ig-like domains and two fibronectin type III repeats which are conserved in other members of the Axl/Ufo family receptors. Northern blot hybridization analysis showed that tyro3 is expressed at high levels in the brain of adult mice, although considerable expression was also observed in the testis. In situ hybridization analysis revealed that high levels of tyro3 are expressed in the cerebral cortex, the lateral septum, the hippocampus, the olfactory bulb, and in the cerebellum. The highest levels of tyro3 expression in the brain are associated with neurons. The preferential expression of tyro3 in specific regions of the adult mouse brain suggests that tyro3 may function as a novel neurotrophic factor receptor.
Collapse
Affiliation(s)
- N T Schulz
- Laboratory for Cancer Research, College of Pharmacy, Rutgers University, Piscataway, NJ 08855-0789, USA
| | | | | | | |
Collapse
|