1
|
Yeh WC, Tu YC, Chien TC, Hsu PL, Lee CW, Wu SY, Pan BS, Yu HH, Su BC. Vismodegib Potentiates Marine Antimicrobial Peptide Tilapia Piscidin 4-Induced Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10282-8. [PMID: 38743208 DOI: 10.1007/s12602-024-10282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a common cancer with several accepted treatments, such as chemotherapy, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, and immune checkpoint inhibitors. Nevertheless, NSCLC cells often become insensitive to these treatments, and therapeutic resistance is a major reason NSCLC still has a high mortality rate. The induction of therapeutic resistance in NSCLC often involves hedgehog, and suppression of hedgehog can increase NSCLC cell sensitivity to several conventional therapies. In our previous work, we demonstrated that the marine antimicrobial peptide tilapia piscidin 4 (TP4) exhibits potent anti-NSCLC activity in both EGFR-WT and EGFR-mutant NSCLC cells. Here, we sought to further explore whether hedgehog might influence the sensitivity of NSCLC cells to TP4. Our results showed that hedgehog was activated by TP4 in both WT and EGFR-mutant NSCLC cells and that pharmacological inhibition of hedgehog by vismodegib, a Food and Drug Administration-approved hedgehog inhibitor, potentiated TP4-induced cytotoxicity. Mechanistically, vismodegib acted by enhancing TP4-mediated increases in mitochondrial membrane potential and intracellular reactive oxygen species (ROS). MitoTempo, a specific mitochondrial ROS scavenger, abolished vismodegib/TP4 cytotoxicity. The combination of vismodegib with TP4 also reduced the levels of the antioxidant proteins catalase and superoxide dismutase, and it diminished the levels of chemoresistance-related proteins, Bcl-2 and p21. Thus, we conclude that hedgehog regulates the cytotoxic sensitivity of NSCLC cells to TP4 by protecting against mitochondrial dysfunction and suppressing oxidative stress. These findings suggest that combined treatment of vismodegib and TP4 may be a promising therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Wei-Chen Yeh
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Chieh Tu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Cheng Chien
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27157, USA
| | - Bo-Syong Pan
- Department of Pathology, Duke University School of Medicine, Durham, NC27710, USA
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Pileggi CA, Parmar G, Elkhatib H, Stewart CM, Alecu I, Côté M, Bennett SA, Sandhu JK, Cuperlovic-Culf M, Harper ME. The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100112. [PMID: 38020812 PMCID: PMC10663135 DOI: 10.1016/j.crneur.2023.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Hussein Elkhatib
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Current Address: Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K. Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
3
|
Campbell IC, Fletcher L, Grant PA, Abdulla EM. Validation of In Vitro Tests in Neurotoxicology. Altern Lab Anim 2020. [DOI: 10.1177/026119299602400307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The major challenges in neurotoxicity testing relate to the complexity of the nervous system, the diversity of cell types involved, and the level of integration in the mammalian nervous system. In addition, compounds which have selective pharmacological effects as receptor agonists/antagonists (for example, strychnine) may be neurotoxic at non-cytotoxic concentrations. Tests should answer the following questions: a) when is an effect toxic?, b) when is a substance to be considered toxic? and c) is the long-term risk assessment valid? The two major strategies used in the development of in vitro neurotoxicity tests are: mechanistic, in which an attempt is made to elucidate the biochemical processes involved in neurotoxicity, and disease based, which could ultimately be the most useful strategy but which is currently constrained by lack of knowledge of the aetiology of most neurological illnesses. Potential in vitro test systems which are being developed include: a) simple tests which measure the activity of an enzyme (for example, acetylcholine esterase); b) studies involving single cell type culture (for example, neuroblastomas or dorsal root ganglion cells); c) complex primary co-culture systems (for example, reaggregate culture; 1, 2); and d) combinations of these, including tiered testing and battery testing (3). Unfortunately, the more complex a system is, the more extensive is the characterisation needed, and, arguably, such systems will never fully mimic the intact central nervous system/peripheral nervous system (CNS/PNS). To demonstrate some of the problems inherent in neurotoxicity test development, the use of a system which involves the inhibition of outgrowth is described. The ideas are developed to include the shift toward proliferation and/or apoptosis of non-terminally differentiated neurons. The most realistic objective for the optimised, integrated and validated in vitro reductionist approach for neurotoxicological assessment is for the screening of new compounds in parallel with: a) the in vivo holistic approach (for example, to obtain pharmacokinetics and absorption/receptor-binding data); and b) quantitative structure activity relationships (QSARs). This is necessarily a selective review, and more details of methodologies and strategies are presented in other publications (3, 4).
Collapse
Affiliation(s)
- Iain C. Campbell
- Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Lynda Fletcher
- Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Paul A.A. Grant
- Institute of Psychiatry, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
4
|
Wang L, Mai Z, Zhao M, Wang B, Yu S, Wang X, Chen T. Aspirin induces oncosis in tumor cells. Apoptosis 2019; 24:758-772. [PMID: 31243598 DOI: 10.1007/s10495-019-01555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Jazvinšćak Jembrek M, Vlainić J, Čadež V, Šegota S. Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale. PLoS One 2018; 13:e0200119. [PMID: 30303965 PMCID: PMC6179194 DOI: 10.1371/journal.pone.0200119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Psychology, Croatian Catholic University, Zagreb, Croatia
- * E-mail: (MJJ); (SS)
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vida Čadež
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- * E-mail: (MJJ); (SS)
| |
Collapse
|
6
|
Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW. Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod 2018; 97:426-437. [PMID: 29025092 DOI: 10.1093/biolre/iox097] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Hyperthermia or heat stress (HS) occurs when heat dissipation mechanisms are overwhelmed by external and internal heat production. Hyperthermia negatively affects reproduction and potentially compromises oocyte integrity and reduces developmental competence of ensuing embryos. Autophagy is the process by which cells recycle energy through the reutilization of cellular components and is activated by a variety of stressors. Study objectives were to characterize autophagy-related proteins in the ovary following cyclical HS during the follicular phase. Twelve gilts were synchronized and subjected to cyclical HS (n = 6) or thermal neutral (n = 6) conditions for 5 days during the follicular phase. Ovarian protein abundance of Beclin 1 and microtubule associated protein light chain 3 beta II were each elevated as a result of HS (P = 0.001 and 0.003, respectively). The abundance of the autophagy related (ATG)12-ATG5 complex was decreased as a result of HS (P = 0.002). Regulation of autophagy and apoptosis occurs in tight coordination, and B-cell lymphoma (BCL)2 and BCL2L1 are involved in regulating both processes. BCL2L1 protein abundance, as detected via immunofluorescence, was increased in both the oocyte (∼1.6-fold; P < 0.01) and granulosa cells of primary follicles (∼1.4-fold P < 0.05) of HS ovaries. These results suggest that ovarian autophagy induction occurs in response to HS during the follicular phase, and that HS increases anti-apoptotic signaling in oocytes and early follicles. These data contribute to the biological understanding of how HS acts as an environmental stress to affect follicular development and negatively impact reproduction.
Collapse
Affiliation(s)
- Benjamin J Hale
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Candice L Hager
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
7
|
Kabashima A, Hirsova P, Bronk SF, Hernandez MC, Truty MJ, Ilyas SI, Kaufmann SH, Gores GJ. Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma. J Hepatol 2018; 68:1228-1238. [PMID: 29408314 PMCID: PMC5960421 DOI: 10.1016/j.jhep.2018.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Myeloid cell leukemia 1 (MCL1), a prosurvival member of the BCL2 protein family, has a pivotal role in human cholangiocarcinoma (CCA) cell survival. We previously reported that fibroblast growth factor receptor (FGFR) signalling mediates MCL1-dependent survival of CCA cells in vitro and in vivo. However, the mode and mechanisms of cell death in this model were not delineated. METHODS Human CCA cell lines were treated with the pan-FGFR inhibitor LY2874455 and the mode of cell death examined by several complementary assays. Mitochondrial oxidative metabolism was examined using a XF24 extracellular flux analyser. The efficiency of FGFR inhibition in patient-derived xenografts (PDX) was also assessed. RESULTS CCA cells expressed two species of MCL1, a full-length form localised to the outer mitochondrial membrane, and an N terminus-truncated species compartmentalised within the mitochondrial matrix. The pan-FGFR inhibitor LY2874455 induced non-apoptotic cell death in the CCA cell lines associated with cellular depletion of both MCL1 species. The cell death was accompanied by failure of mitochondrial oxidative metabolism and was most consistent with necrosis. Enforced expression of N terminus-truncated MCL1 targeted to the mitochondrial matrix, but not full-length MCL1 targeted to the outer mitochondrial membrane, rescued cell death and mitochondrial function. LY2874455 treatment of PDX-bearing mice was associated with tumour cell loss of MCL1 and cell necrosis. CONCLUSIONS FGFR inhibition induces loss of matrix MCL1, resulting in cell necrosis. These observations support a heretofore unidentified, alternative MCL1 survival function, namely prevention of cell necrosis, and have implications for treatment of human CCA. LAY SUMMARY Herein, we report that therapeutic inhibition of a cell receptor expressed by bile duct cancer cells resulted in the loss of a critical survival protein termed MCL1. Cellular depletion of MCL1 resulted in the death of the cancer cells by a process characterised by cell rupture. Cell death by this process can stimulate the immune system and has implications for combination therapy using receptor inhibition with immunotherapy.
Collapse
Affiliation(s)
- Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Autophagy and the invisible line between life and death. Eur J Cell Biol 2016; 95:598-610. [PMID: 28340912 DOI: 10.1016/j.ejcb.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.
Collapse
|
9
|
Jalsrai A, Numakawa T, Kunugi H, Dieterich D, Becker A. The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: In vitro and in vivo studies. Neuroscience 2016; 322:452-63. [DOI: 10.1016/j.neuroscience.2016.02.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
|
10
|
Chen H, Tian Y. MiR-15a-5p regulates viability and matrix degradation of human osteoarthritis chondrocytes via targeting VEGFA. Biosci Trends 2016; 10:482-488. [DOI: 10.5582/bst.2016.01187] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongwei Chen
- Department of Orthopedics, Yiwu Central Hospital Affiliated to Wenzhou Medical University
| | - Yun Tian
- Department of Orthopedic Trauma, Peking University Third Hospital
| |
Collapse
|
11
|
Hou TT, Yang XY, Xia P, Pan S, Liu J, Qi ZP. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism. Neural Regen Res 2015; 10:644-50. [PMID: 26170828 PMCID: PMC4424760 DOI: 10.4103/1673-5374.155441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 01/27/2023] Open
Abstract
Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.
Collapse
Affiliation(s)
- Ting-Ting Hou
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao-Yu Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng Xia
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Su Pan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, First Clinical Medical College of Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Ping Qi
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
MiR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem 2015; 406:21-30. [PMID: 25910896 DOI: 10.1007/s11010-015-2420-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
Apoptosis of cartilage endplate (CEP) chondrocytes is associated with the pathogenesis of intervertebral disk degeneration (IDD). Recent studies have shown that miR-34a is crucially involved in chondrocyte apoptosis during osteoarthritic cartilage. Here, we investigated the involvement of miR-34a in CEP chondrocyte apoptosis in IDD. In human degenerated CEP chondrocytes, miRNA (miR)-34a was markedly elevated in association with increased apoptosis. Bioinformatics target prediction identified Bcl-2 as a putative target of miR-34a. Furthermore, miR-34a inhibited Bcl-2 expression by directly targeting their 3'-untranslated regions, and this inhibition was abolished by mutation of the miR-34a binding sites. In vitro, knockdown of miR-34a in human endplate chondrocytes resulted in overexpression of Bcl-2, whereas upregulation of miR-34a led to repression of Bcl-2. Fas-mediated apoptosis was decreased when antagonizing miR-34a with locked nucleotide analog-miR-34a in human endplate chondrocytes. Taken together, our results demonstrate that upregulated miR-34a potentiates Fas-mediated endplate chondrocyte apoptosis, which is associated with IDD.
Collapse
|
13
|
Central nervous system toxicity after acute oral formaldehyde exposure in rabbits. Hum Exp Toxicol 2014; 33:1141-9. [DOI: 10.1177/0960327113514098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Formaldehyde (FA) is one of the most widely used chemical compounds in industrial field. It is described as toxic, particularly to the nervous system, the urogenital system, and the respiratory tracts. In this study, we determined the effects of acute oral exposure to FA in rabbit brain tissue. A total of 16 rabbits were selected and divided into 2 groups: formaldehyde group (group F) and control group (group C). FA was administered to group F at a rate of 40 mg/kg/day via a nasogastric tube for 5 days. Saline was similarly administered to the eight controls. All the animals were euthanized after 5 days of exposure, and brain tissue samples were collected in 10% neutral formalin and embedded in paraffin. To investigate the effects of FA on the apoptotic process, we examined active caspase-3, Bax, and Bcl-2 immunohistochemical expression and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate –biotin nick-end labeling (TUNEL) reactivity in the rabbit brains. In addition, glial fibrillary acidic protein (GFAP) was biochemically assessed in brain tissue samples for neurotoxicity. We found that FA treatment caused a significant decrease in Bcl-2 expression and an increase in active caspase-3 and Bax expressions as well as an increase in the number of TUNEL-positive apoptotic cells. The GFAP level was found to be significantly higher in group F. In conclusion, acute oral exposure to FA caused DNA damage, apoptosis, and neuronal injury in the rabbit brains.
Collapse
|
14
|
Bell MT, Puskas F, Bennett DT, Herson PS, Quillinan N, Fullerton DA, Reece TB. Dexmedetomidine, an α-2a adrenergic agonist, promotes ischemic tolerance in a murine model of spinal cord ischemia-reperfusion. J Thorac Cardiovasc Surg 2014; 147:500-6. [DOI: 10.1016/j.jtcvs.2013.07.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
|
15
|
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3448-3459. [PMID: 23770045 DOI: 10.1016/j.bbamcr.2013.06.001] [Citation(s) in RCA: 987] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are the two major modes of cell death, the molecular mechanisms of which have been extensively studied. Although initially thought to constitute mutually exclusive cellular states, recent findings reveal cellular contexts that require a balanced interplay between these two modes of cellular demise. Several death initiator and effector molecules, signaling pathways and subcellular sites have been identified as key mediators in both processes, either by constituting common modules or alternatively by functioning as a switch allowing cells to decide which route to take, depending on the specific situation. Importantly, autophagy, which is a predominantly cytoprotective process, has been linked to both types of cell death, serving either a pro-survival or pro-death function. Here we review the recent literature that highlights the intricate interplay between apoptosis, necrosis and autophagy, focusing on the relevance and impact of this crosstalk in normal development and in pathology. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece.
| |
Collapse
|
16
|
Dutta C, Day T, Kopp N, van Bodegom D, Davids MS, Ryan J, Bird L, Kommajosyula N, Weigert O, Yoda A, Fung H, Brown JR, Shapiro GI, Letai A, Weinstock DM. BCL2 suppresses PARP1 function and nonapoptotic cell death. Cancer Res 2012; 72:4193-203. [PMID: 22689920 PMCID: PMC4075432 DOI: 10.1158/0008-5472.can-11-4204] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BCL2 suppresses apoptosis by binding the BH3 domain of proapoptotic factors and thereby regulating outer mitochondrial membrane permeabilization. Many tumor types, including B-cell lymphomas and chronic lymphocytic leukemia, are dependent on BCL2 for survival but become resistant to apoptosis after treatment. Here, we identified a direct interaction between the antiapoptotic protein BCL2 and the enzyme PARP1, which suppresses PARP1 enzymatic activity and inhibits PARP1-dependent DNA repair in diffuse large B-cell lymphoma cells. The BH3 mimetic ABT-737 displaced PARP1 from BCL2 in a dose-dependent manner, reestablishing PARP1 activity and DNA repair and promoting nonapoptotic cell death. This form of cell death was unaffected by resistance to single-agent ABT-737 that results from upregulation of antiapoptotic BCL2 family members. On the basis of the ability of BCL2 to suppress PARP1 function, we hypothesized that ectopic BCL2 expression would kill PARP inhibitor-sensitive cells. Strikingly, BCL2 expression reduced the survival of PARP inhibitor-sensitive breast cancer and lung cancer cells by 90% to 100%, and these effects were reversed by ABT-737. Taken together, our findings show that a novel interaction between BCL2 and PARP1 blocks PARP1 enzymatic activity and suppresses PARP1-dependent repair. Targeted disruption of the BCL2-PARP1 interaction therefore may represent a potential therapeutic approach for BCL2-expressing tumors resistant to apoptosis.
Collapse
MESH Headings
- Animals
- Biphenyl Compounds/pharmacology
- Cell Death/drug effects
- Cell Death/physiology
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Methylnitronitrosoguanidine/pharmacology
- Mice
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Poly (ADP-Ribose) Polymerase-1
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/metabolism
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Chaitali Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tovah Day
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nadja Kopp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Diederik van Bodegom
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Liat Bird
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naveen Kommajosyula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oliver Weigert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hua Fung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Zagorodna O, Martin SM, Rutkowski DT, Kuwana T, Spitz DR, Knudson CM. 2-deoxyglucose-induced toxicity is regulated by Bcl-2 family members and is enhanced by antagonizing Bcl-2 in lymphoma cell lines. Oncogene 2011; 31:2738-49. [PMID: 21986940 PMCID: PMC3257357 DOI: 10.1038/onc.2011.454] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Targeting altered cancer cell metabolism with the glycolysis inhibitor, 2-deoxyglucose (2DG), is a viable therapeutic strategy, but the effects of 2DG on lymphoma cells and the mechanism of action are unknown. Five T-cell lymphoma lines and two B-cell lymphoma lines were shown to be highly sensitive to 2DG. Examination of the cell death pathway demonstrated pro-apoptotic protein Bax 'activation' and caspase cleavage in 2DG-treated cells. However, Q-VD-OPh, a potent inhibitor of caspase activity provided minimal protection from death. In contrast, overexpressing the anti-apoptotic protein Bcl-2 dramatically enhanced the survival of 2DG-treated cells that was negated by a Bcl-2 antagonist. BH3-only members, Bim and Bmf, were upregulated by 2DG, and shRNAs targeting Bim protected from 2DG toxicity demonstrating that Bim is a critical mediator of 2DG toxicity. 2DG also induced GADD153/CHOP expression, a marker of endoplasmic reticulum (ER) stress and a known activator of Bim. Mannose, a reagent known to alleviate ER stress, transiently protected from 2DG-induced cell death. Examination of the effects of 2DG on energy metabolism showed a drop in ATP levels by 30 min that was not affected by either Bcl-2 or mannose. These results demonstrate that ER stress appears to be rate limiting in 2DG-induced cell death in lymphoma cells, and this cell killing is regulated by the Bcl-2 family of proteins. Bcl-2 inhibition combined with 2DG may be an effective therapeutic strategy for lymphoma.
Collapse
Affiliation(s)
- O Zagorodna
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
18
|
2-Decenoic acid ethyl ester, a derivative of unsaturated medium-chain fatty acids, facilitates functional recovery of locomotor activity after spinal cord injury. Neuroscience 2010; 171:1377-85. [DOI: 10.1016/j.neuroscience.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/02/2010] [Indexed: 01/09/2023]
|
19
|
Junnarkar SP, Tapuria N, Mani A, Dijk S, Fuller B, Seifalian AM, Davidson BR. Attenuation of warm ischemia-reperfusion injury in the liver by bucillamine through decreased neutrophil activation and Bax/Bcl-2 modulation. J Gastroenterol Hepatol 2010; 25:1891-9. [PMID: 21092002 DOI: 10.1111/j.1440-1746.2010.06312.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIM Liver transplantation and resection surgery involve a period of ischemia and reperfusion to the liver, which initiates an inflammatory cascade resulting in liver and remote organ injury. Bucillamine is a low molecular weight thiol antioxidant that is capable of rapidly entering cells. We hypothesized that bucillamine acts by replenishing glutathione levels, thus reducing neutrophil activation, modulating Bax/Bcl-2 expression, and subsequently, attenuating the effects of warm ischemia-reperfusion injury (IRI) in the liver. METHODS The effect of bucillamine was studied in a rat model of liver IRI with 45 min of partial (70%) liver ischemia and 3 h of reperfusion. Liver injury was assessed by measuring serum transaminases (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and liver histology. Oxidative stress was quantified by measuring F(2) isoprostane and glutathione levels. Leukocyte adhesion was assessed by intravital microscopy, and inflammatory cytokine response was assessed by measuring serum cytokine-induced neutrophil chemoattractant-1 (CINC-1) levels. Bax and Bcl-2 expression was measured by reverse transcription-polymerase chain reaction. RESULTS The model produced significant liver injury with elevated transaminases and an acute inflammatory response. Bucillamine reduced the liver injury, as indicated by reduced AST (932 ± 200.8 vs 2072.5 ± 511.79, P < 0.05). Bucillamine reduced Bax expression, serum CINC-1 levels, and neutrophil adhesion, and upregulated Bcl-2. However, bucillamine did not affect tissue glutathione levels nor the levels of oxidative stress, as measured by plasma and hepatic F(2) isoprostane levels. CONCLUSIONS Bucillamine reduces warm ischemia-reperfusion in the liver by inhibiting neutrophil activation and modulating Bax/Bcl-2 expression.
Collapse
Affiliation(s)
- Sameer P Junnarkar
- Department of Surgery, Royal Free Hospital and University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Engel T, Hatazaki S, Tanaka K, Prehn JHM, Henshall DC. Deletion of Puma protects hippocampal neurons in a model of severe status epilepticus. Neuroscience 2010; 168:443-50. [PMID: 20362645 DOI: 10.1016/j.neuroscience.2010.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 02/04/2023]
Abstract
Prolonged seizures (status epilepticus) can activate apoptosis-associated signaling pathways. The extent to which such pathways contribute to cell death might depend on the insult intensity, whereby the programmed or apoptotic cell death component is reduced when seizures are more severe or protracted. We recently showed that mice lacking the pro-apoptotic Bcl-2 homology domain 3-only protein Puma (Bbc3) were potently protected against damage caused by status epilepticus. In the present study we examined whether Puma deficiency was protective when the seizure episode was more severe. Intra-amygdala microinjection of 1 microg kainic acid (KA) into C57BL/6 mice triggered status epilepticus that lasted about twice as long as with 0.3 microg KA prior to lorazepam termination. Hippocampal damage was also significantly greater in the higher-dose group. Over 80% of degenerating neurons after seizures were positive for DNA fragmentation assessed by terminal deoxynucleotidyl dUTP nick end labeling (TUNEL). Microscopic analysis of neuronal nuclear morphology in TUNEL-positive cells revealed the proportion displaying large rounded clumps of condensed chromatin was approximately 50% lower in the high-dose versus low-dose KA group. Nevertheless, compared to heterozygous and wild-type mice subject to status epilepticus by high-dose KA, neuronal death was reduced by approximately 50% in the hippocampus of Puma-deficient mice. These data suggest aspects of the apoptotic component of seizure-induced neuronal death are insult duration- or severity-dependent. Moreover, they provide further genetic evidence that seizure-induced neuronal death is preventable by targeting so-called apoptosis-associated signaling pathways and Puma loss likely disrupts caspase-independent or non-apoptotic seizure-induced neuronal death.
Collapse
Affiliation(s)
- T Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
21
|
The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol 2010; 2010:546163. [PMID: 20300548 PMCID: PMC2838366 DOI: 10.1155/2010/546163] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/15/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023] Open
Abstract
Ca(2+) is an important second messenger participating in many cellular activities; when physicochemical insults deregulate its delicate homeostasis, it acts as an intrinsic stressor, producing/increasing cell damage. Damage elicits both repair and death responses; intriguingly, in those responses Ca(2+) also participates as second messenger. This delineates a dual role for Ca(2+) in cell stress, making difficult to separate the different and multiple mechanisms required for Ca(2+)-mediated control of cell survival and apoptosis. Here we attempt to disentangle the two scenarios, examining on the one side, the events implicated in deregulated Ca(2+) toxicity and the mechanisms through which this elicits reparative or death pathways; on the other, reviewing the role of Ca(2+) as a messenger in the transduction of these same signaling events.
Collapse
|
22
|
Lamb HM, Hardwick M. Noncanonical functions of BCL-2 proteins in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 687:115-29. [PMID: 20919641 DOI: 10.1007/978-1-4419-6706-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BCL-2 family proteins form heterodimers or homo-oligomers to inhibit or induce apoptotic cell death, respectively. They often relocalize from the cytoplasm to mitochondria to carry out these functions. The traditional model is that in healthy cells, anti-death family members hold pro-death BCL-2 family members in check. Upon receiving a death stimulus, another set of proteins (BH3-only proteins) inactivate the protective BCL-2 proteins, forcing them to release their pro-death partners that are subsequently triggered to oligomerize and porate the mitochondrial outer membrane leading to cell death. In support of this traditional view, there is a preponderance of supporting evidence derived from the study of events that occur following treatment of cells with a death stimulus. Knockout and mutant mice also exhibit many developmental and treatment-induced phenotypes consistent with this model of antagonism between BCL-2 family proteins. Emphasis is logically placed on those phenotypes that support the model. However, this working model of BCL-2 family interactions has become so engrained that alternative, potentially valid interpretations are sometimes dismissed. Therefore, it is useful to consider the evidence that seems contrary to accepted models. In particular, the analysis of BCL-2 family functions in the nervous system has revealed unexpected outcomes that can serve to further stimulate critical probing of the yet unknown biochemical functions of BCL-2 proteins.
Collapse
Affiliation(s)
- Heather M Lamb
- Bloomberg School of Public Health, Johns Hopkins University, Department of Molec Microb and Immunol, 615 N Wolfe St., Baltimore, Maryland 21205, USA
| | | |
Collapse
|
23
|
Danielsson O, Nilsson C, Lindvall B, Ernerudh J. Expression of apoptosis related proteins in normal and diseased muscle: a possible role for Bcl-2 in protection of striated muscle. Neuromuscul Disord 2009; 19:412-7. [PMID: 19477129 DOI: 10.1016/j.nmd.2009.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/16/2009] [Accepted: 03/23/2009] [Indexed: 11/18/2022]
Abstract
The unique absence of major histocompatibility complex class I antigen (MHC-I) expression in normal muscle is one possible mechanism protecting striated muscle. In order to define their possible involvement in protection of normal muscle, we investigated the expression of molecules involved in muscle fibre death and survival mechanisms (Bcl-2, Fas, Fas-ligand and TRAIL), focusing on disorders with possible involvement of cytotoxic T cells. We studied muscle biopsies from 20 healthy volunteers, from 10 patients affected by polymyositis and 10 by Duchenne muscular dystrophy. By using immunohistochemistry, Western blot and real-time PCR we detected a constitutional expression of Bcl-2 in healthy muscle, whereas the expression was weaker in disease processes. Fas-L and TRAIL were not detected in muscle fibres, and Fas only in muscle affected by disease. Our findings indicate that the major apoptotic protein Bcl-2 might have a hitherto unrecognized role in the protection of normal muscle.
Collapse
Affiliation(s)
- Olof Danielsson
- Neuromuscular Unit, Division of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | | | | | | |
Collapse
|
24
|
Castro-Caldas M, Neves Carvalho A, Peixeiro I, Rodrigues E, Lechner MC, Gama MJ. GSTpi expression in MPTP-induced dopaminergic neurodegeneration of C57BL/6 mouse midbrain and striatum. J Mol Neurosci 2008; 38:114-27. [PMID: 18792812 DOI: 10.1007/s12031-008-9141-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
Abstract
MPTP-induced dopaminergic neurotoxicity involves major biochemical processes such as oxidative stress and impaired energy metabolism, leading to a significant reduction in the number of nigrostriatal dopaminergic neurons. Glutathione S-transferase pi (GSTpi) is a phase II detoxifying enzyme that provides protection of cells from injury by toxic chemicals and products of oxidative stress. In humans, polymorphisms of GSTP1 affect substrate selectivity and stability increasing the susceptibility to parkinsonism-inducing effects of environmental toxins. Given the ability of MPTP to increase the levels of reactive oxygen species and the link between altered redox potential and the expression and activity of GSTpi, we investigated the effect of MPTP on GSTpi cellular concentration in an in vivo model of Parkinson's disease. The present study demonstrates that GSTpi is actively expressed in both substantia nigra pars compacta and striatum of C57BL/6 mice brain, mostly in oligodendrocytes and astrocytes. After systemic administration of MPTP, GSTpi expression is significantly increased in glial cells in the vicinity of dopaminergic neurons cell bodies and fibers. The results suggest that GSTpi expression may be part of the mechanism underlying the ability of glial cells to elicit protection against the mechanisms involved in MPTP-induced neuronal death.
Collapse
Affiliation(s)
- Margarida Castro-Caldas
- Research Institute for Medicines and Pharmaceutical Sciences-iMED.UL, University of Lisbon, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Fabene PF, Merigo F, Galiè M, Benati D, Bernardi P, Farace P, Nicolato E, Marzola P, Sbarbati A. Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS One 2007; 2:e1105. [PMID: 17971868 PMCID: PMC2040510 DOI: 10.1371/journal.pone.0001105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/09/2007] [Indexed: 12/26/2022] Open
Abstract
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology.
Collapse
Affiliation(s)
- Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Morphological and Biomedical Sciences, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vantieghem A, Xu Y, Declercq W, Vandenabeele P, Denecker G, Vandenheede JR, Merlevede W, De Witte PA, Agostinis P. Different Pathways Mediate Cytochrome c Release After Photodynamic Therapy with Hypericin. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740133dpmccr2.0.co2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA. Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 2007; 27:4844-62. [PMID: 17470554 PMCID: PMC1951482 DOI: 10.1128/mcb.02141-06] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alkylating DNA damage induces a necrotic type of programmed cell death through the poly(ADP-ribose) polymerases (PARP) and apoptosis-inducing factor (AIF). Following PARP activation, AIF is released from mitochondria and translocates to the nucleus, where it causes chromatin condensation and DNA fragmentation. By employing a large panel of gene knockout cells, we identified and describe here two essential molecular links between PARP and AIF: calpains and Bax. Alkylating DNA damage initiated a p53-independent form of death involving PARP-1 but not PARP-2. Once activated, PARP-1 mediated mitochondrial AIF release and necrosis through a mechanism requiring calpains but not cathepsins or caspases. Importantly, single ablation of the proapoptotic Bcl-2 family member Bax, but not Bak, prevented both AIF release and alkylating DNA damage-induced death. Thus, Bax is indispensable for this type of necrosis. Our data also revealed that Bcl-2 regulates N-methyl-N'-nitro-N'-nitrosoguanidine-induced necrosis. Finally, we established the molecular ordering of PARP-1, calpains, Bax, and AIF activation, and we showed that AIF downregulation confers resistance to alkylating DNA damage-induced necrosis. Our data shed new light on the mechanisms regulating AIF-dependent necrosis and support the notion that, like apoptosis, necrosis could be a highly regulated cell death program.
Collapse
Affiliation(s)
- Rana S Moubarak
- Apoptose et Système Immunitaire, CNRS-URA 1961, Institut Pasteur, 25 Rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND AND PURPOSE Programmed cell death (pcd) plays a critical role in the development of the nervous system, as well as in its response to insult. Both anti-pcd and pro-pcd modulators play prominent roles in development and disease, including ischemic cerebrovascular disease. The purpose of this article is therefore to review the basics of programmed cell death. METHODS There have been over 100 000 scientific and clinical publications on the topic of programmed cell death and its most well known form, apoptosis. The principles emerging from these studies are reviewed here. RESULTS Programmed cell death is a form of cell death in which the cell plays an active role in its own demise. Apoptosis is the most well-defined form of pcd, but recent studies have begun to characterize an alternative program, autophagic cell death. In addition, there appear to be programmatic cell deaths that do not fit the criteria for either apoptosis or autophagic cell death, arguing that additional programs may also be available to cells. CONCLUSIONS Constructing a mechanistic taxonomy of all forms of pcd--based on inhibitors, activators, and identified biochemical pathways involved in each form of pcd--should offer new insight into cell deaths associated with cerebrovascular disease and other diseases, and ultimately offer new therapeutic approaches.
Collapse
|
29
|
Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Mechanisms of expression of apoptotic protease activating factor-1 (Apaf-1) in nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. Neurosci Lett 2007; 415:253-8. [PMID: 17275190 PMCID: PMC1892182 DOI: 10.1016/j.neulet.2007.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/27/2022]
Abstract
Apoptotic protease activating factor-1 (Apaf-1) is a critical regulator of apoptosis and a crucial part of the apoptosome that is assembled in response to several cellular stresses like hypoxia. We have previously shown that hypoxia results in increased influx of nuclear Ca(2+) and increased expression of nuclear apoptotic proteins. The present study investigates that Apaf-1 is expressed during hypoxia in the cerebral cortex of newborn piglets and that administration of clonidine prevents the hypoxia induced increase expression of Apaf-1. Studies were conducted in 19 newborn piglets, 6 normoxic (Nx), 7 hypoxic (Hx FiO(2) of 0.05-0.07 for 1h) and 6 clonidine-treated hypoxic (Hx-Clo) piglets. Tissue hypoxia was confirmed biochemically by determining the levels of high energy phosphates ATP and phosphocreatine (PCr). Neuronal nuclei, mitochondrial membranes and cytosolic fractions were isolated and separated by 12% SDS-PAGE and probed with specific antibodies to Apaf-1. The expression of Apaf-1 in neuronal nuclei was 48.86+/-5.27 in Nx, 108.43+/-6.37 in Hx and 78.53+/-7.00 in Hx-Clo. The Apaf-1 expression of in mitochondrial fraction was 72.73+/-11.76 in Nx, 132.27+/-16.15 in Hx and 85.17+/-5.64 in Hx-Clo. Similarly, the expression of Apaf-1 in cytosolic fraction was 86.79+/-6.97 in Nx, 193.95+/-15.41 in Hx and 111.07+/-7.91 in Hx-Clo. In summary, the results show that hypoxia results in increased expression of Apaf-1 proteins in neuronal nuclear, mitochondrial and cytosolic fractions. Administration of a high affinity Ca(2+)-ATPase, prevented the hypoxia induced increased expression of Apaf-1 protein, suggesting that the hypoxia-induced increased expression of Apaf-1 proteins is nuclear Ca(2+)-influx mediated. We conclude that cerebral hypoxia-induced increase in Apaf-1 protein will lead to increased activation of procaspase-9 to caspase-9 in the cytosolic compartment leading to a cascade of hypoxic neuronal death.
Collapse
Affiliation(s)
- Qazi M Ashraf
- Department of Pediatrics, Division of Neonatology, Drexel University College of Medicine and St. Christopher's Hospital for Children, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
30
|
Surendran S, Kim SH, Jee BK, Ahn SH, Gopinathan P, Han CW. Anti-apoptotic Bcl-2 gene transfection of human articular chondrocytes protects against nitric oxide-induced apoptosis. ACTA ACUST UNITED AC 2006; 88:1660-5. [PMID: 17159184 DOI: 10.1302/0301-620x.88b12.17717] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene in vitro using a retrovirus vector. Samples of articular cartilage were obtained from 11 patients with a mean age of 69 years (61 to 75) who were undergoing total knee replacement for osteoarthritis. The Bcl-2-gene-transfected chondrocytes were compared with non-transfected and lac-Z-gene-transfected chondrocytes, both of which were used as controls. All three groups of cultured chondrocytes were incubated with nitric oxide (NO) for ten days. Using the Trypan Blue exclusion assay, an enzyme-linked immunosorbent assay and flow cytometric analysis, we found that the number of apoptotic chondrocytes was significantly higher in the non-transfected and lac-Z-transfected groups than in the Bcl-2-transfected group (p < 0.05). The Bcl-2-transfected chondrocytes were protected from NO-induced impairment of proteoglycan synthesis. We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.
Collapse
Affiliation(s)
- S Surendran
- Department of Orthopaedic Surgery, St Mary's Hospital, Daejeon College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Shang L, Liu J, Zhu Q, Zhao L, Feng Y, Wang X, Cao W, Xin H. Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity. Brain Res 2006; 1102:163-74. [PMID: 16806111 DOI: 10.1016/j.brainres.2006.05.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/30/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Gypenosides (GPs) were tested for their ability to protect primary cultures of immature cortical cells against oxidative glutamate toxicity. In immature neural cells, glutamate cytotoxicity is known to be mediated by the inhibition of cystine uptake, leading to depletion of intracellular glutathione (GSH). The depletion of GSH impairs cellular antioxidant defenses resulting in oxidative stress and cell death. We found that pretreatment with GPs (100-400 microg/ml) significantly protected cells from glutamate-induced cell death. It was therefore of interest to investigate whether GPs protect cortical cells against glutamate-induced oxidative injury through preventing GSH depletion. Results show that GPs significantly up-regulated mRNAs encoding gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione reductase (GR) and enhanced their activities for GSH synthesis as well as recycle. Furthermore, GPs lowered the consumption of GSH through decreased accumulation of intracellular peroxides, leading to an increase in the intracellular GSH content. GPs were also found to prevent lipid peroxidation and reduce the influx of Ca(2+) which routinely follows glutamate oxidative challenge. GPs treatment significantly blocked glutamate-induced decrease in levels of Bcl-2 and increase in Bax, leading to a decrease in glutamate-induced apoptosis. Thus, we conclude that GPs protect cortical cells by multiple antioxidative actions via enhancing intracellular GSH, suppressing glutamate-induced cytosolic Ca(2+) elevation and blocking glutamate-induced apoptosis. The novel role of GPs implies their remarkable preventative and therapeutic potential in treatment of neurological diseases involving glutamate and oxidative stress.
Collapse
Affiliation(s)
- Linshan Shang
- Institute of Medical Genetics, School of Medicine, Shandong University, Jinan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ande SR, Kommoju PR, Draxl S, Murkovic M, Macheroux P, Ghisla S, Ferrando-May E. Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom. Apoptosis 2006; 11:1439-51. [PMID: 16770529 DOI: 10.1007/s10495-006-7959-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
L-amino acid oxidase (LAAO) from the Malayan pit viper induces both necrosis and apoptosis in Jurkat cells. Cell death by necrosis is attributed to H2O2 produced by oxidation of alpha-amino acids. In the presence of catalase that effectively scavenges H2O2, a switch to apoptosis is observed. The major factors contributing to apoptosis are proposed to be: (i) generation of toxic intermediates from fetal calf serum (ii) binding and internalization of LAAO. The latter process appears to be mediated by the glycan moiety of the enzyme as desialylation reduces cytotoxicity. D-amino acid oxidase (DAAO), which catalyzes the same reaction as LAAO but lacks glycosylation, triggers necrosis as a consequence of H2O2 production but not apoptosis in the presence of catalase. Thus induction of cell death by LAAO appears to involve both the generation of H2O2 and the molecular interaction of the glycan moiety of the enzyme with structures at the cell surface.
Collapse
Affiliation(s)
- Sudharsana Rao Ande
- Biochemistry Research Group, University of Konstanz, D-78464 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofé-Ochoa X, Totzke F, Schächtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L. 7-Bromoindirubin-3'-oxime induces caspase-independent cell death. Oncogene 2006; 25:6304-18. [PMID: 16702956 DOI: 10.1038/sj.onc.1209648] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Indirubin, an isomer of indigo, is a reported inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3 (GSK-3) as well as an agonist of the aryl hydrocarbon receptor (AhR). Indirubin is the active ingredient of a traditional Chinese medicinal recipe used against chronic myelocytic leukemia. Numerous indirubin analogs have been synthesized to optimize this promising kinase inhibitor scaffold. We report here on the cellular effects of 7-bromoindirubin-3'-oxime (7BIO). In contrast to its 5-bromo- and 6-bromo- isomers, and to indirubin-3'-oxime, 7BIO has only a marginal inhibitory activity towards CDKs and GSK-3. Unexpectedly, 7BIO triggers a rapid cell death process distinct from apoptosis. 7-Bromoindirubin-3'-oxime induces the appearance of large pycnotic nuclei, without classical features of apoptosis such as chromatin condensation and nuclear fragmentation. 7-Bromoindirubin-3'-oxime-induced cell death is not accompanied by cytochrome c release neither by any measurable effector caspase activation. Furthermore, the death process is not altered either by the presence of Q-VD-OPh, a broad-spectrum caspase inhibitor, or the overexpression of Bcl-2 and Bcl-XL proteins. Neither AhR nor p53 is required during 7BIO-induced cell death. Thus, in contrast to previously described indirubins, 7BIO triggers the activation of non-apoptotic cell death, possibly through necroptosis or autophagy. Although their molecular targets remain to be identified, 7-substituted indirubins may constitute a new class of potential antitumor compounds that would retain their activity in cells refractory to apoptosis.
Collapse
Affiliation(s)
- J Ribas
- CNRS, Cell Cycle Group and UPS2682, Station Biologique, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yung CW, Barbari TA, Bentley WE. Counteracting apoptosis and necrosis with hypoxia responsive expression of Bcl-2Delta. Metab Eng 2006; 8:483-90. [PMID: 16793304 DOI: 10.1016/j.ymben.2006.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/25/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
In the encapsulated environment of biohybrid artificial organs, cells often encounter a deficiency in oxygen, which lead to apoptosis, necrosis, and lost of productivity. Two vectors with constitutive CMV promoters were constructed to examine the ability of Bcl-2Delta to help C2C12 mouse myoblasts maintain exogenous protein production under hypoxia. Two additional vectors with hypoxia-inducible promoters (5HRE) that switched on Bcl-2Delta expression based on low oxygen levels (0.0%, 0.5%, 1.0%, 2.0%, 5.0%, or 21.0%) were tested for protein productivity and protection against hypoxic stresses. A yellow fluorescent protein was used as a model protein in all vector constructs. C2C12 cells with Bcl-2Delta consistently produced more protein regardless of the oxygen level or promoter used. Cells utilizing the 5HRE rather than the CMV promoter showed an increased level of protein production as the oxygen was decreased. Among the cells with 5HRE promoters, the presence of Bcl-2Delta also increased viability and decreased apoptosis.
Collapse
Affiliation(s)
- Chong Wing Yung
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113E Chemical and Nuclear Engineering Building, College Park, 20742, USA
| | | | | |
Collapse
|
35
|
Burek M, Maddika S, Burek CJ, Daniel PT, Schulze-Osthoff K, Los M. Apoptin-induced cell death is modulated by Bcl-2 family members and is Apaf-1 dependent. Oncogene 2006; 25:2213-22. [PMID: 16288204 PMCID: PMC2954965 DOI: 10.1038/sj.onc.1209258] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Apoptin, a chicken anemia virus-derived protein, selectively induces apoptosis in transformed but not in normal cells, thus making it a promising candidate as a novel anticancer therapeutic. The mechanism of apoptin-induced apoptosis is largely unknown. Here, we report that contrary to previous assumptions, Bcl-2 and Bcl-xL inhibit apoptin-induced cell death in several tumor cell lines. In contrast, deficiency of Bax conferred resistance, whereas Bax expression sensitized cells to apoptin-induced death. Cell death induction by apoptin was associated with cytochrome c release from mitochondria as well as with caspase-3 and -7 activation. Benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a broad spectrum caspase inhibitor, was highly protective against apoptin-induced cell death. Apoptosis induced by apoptin required Apaf-1, as immortalized Apaf-1-deficient fibroblasts as well as tumor cells devoid of Apaf-1 were strongly protected. Thus, our data indicate that apoptin-induced apoptosis is not only Bcl-2- and caspase dependent, but also engages an Apaf-1 apoptosome-mediated mitochondrial death pathway.
Collapse
Affiliation(s)
- M Burek
- Department of Immunology and Cell Biology, University of Münster, Münster, Germany
| | - S Maddika
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Canada
| | - CJ Burek
- Department of Immunology and Cell Biology, University of Münster, Münster, Germany
| | - PT Daniel
- Department of Hematology, Oncology and Tumor Immunology, Charité, Berlin, Germany
| | - K Schulze-Osthoff
- Institute of Molecular Medicine, University of Düsseldorf, Düsseldorf, Germany
| | - M Los
- Manitoba Institute of Cell Biology, CancerCare Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
36
|
Chiarugi A. "Simple but not simpler": toward a unified picture of energy requirements in cell death. FASEB J 2006; 19:1783-8. [PMID: 16260648 DOI: 10.1096/fj.05-4200rev] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In 1996, Wang and his group empirically disclosed a key role of (deoxy)-ATP in functioning of the apoptotic machinery. After almost a decade, and despite the emerged intricacy of the death pathways, ATP is still considered a key determinant of apoptosis with no apparent active roles in necrosis. Yet recent findings indicate that apoptosis proceeds even without energy and that necrosis can be regulated by ATP-dependent processes. This review strictly focuses on current knowledge on the role of energy in execution of different death programs. A thorough understanding of energy requirements in cell death can help to overcome obsolete dogmas in cell biology, paving the way to a more integrated, albeit not simpler, view of the molecular mechanisms contributing to cell dismantling.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Pharmacology, University of Florence, Florence, Italy.
| |
Collapse
|
37
|
Abstract
Death of hepatocytes and other hepatic cell types is a characteristic feature of liver diseases as diverse as cholestasis, viral hepatitis, ischemia/reperfusion, liver preservation for transplantation and drug/toxicant-induced injury. Cell death typically follows one of two patterns: oncotic necrosis and apoptosis. Necrosis is typically the consequence of acute metabolic perturbation with ATP depletion as occurs in ischemia/reperfusion and acute drug-induced hepatotoxicity. Apoptosis, in contrast, represents the execution of an ATP-dependent death program often initiated by death ligand/death receptor interactions, such as Fas ligand with Fas, which leads to a caspase activation cascade. A common event leading to both apoptosis and necrosis is mitochondrial permeabilization and dysfunction, although the mechanistic basis of mitochondrial injury may vary in different settings. Prevention of these modes of cell death is an important target of therapy, but controversies still exist regarding which mode of cell death predominates in various forms of liver disease and injury. Resolution of these controversies may come with the recognition that apoptosis and necrosis frequently represent alternate outcomes of the same cellular pathways to cell death, especially for cell death mediated by mitochondrial permeabilization. An understanding of processes leading to liver cell death will be important for development of effective interventions to prevent hepatocellular death leading to liver failure and to promote cancer and stellate cell death in malignancy and fibrotic disease.
Collapse
Affiliation(s)
- Harmeet Malhi
- Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
38
|
Soane L, Fiskum G. TAT-mediated endocytotic delivery of the loop deletion Bcl-2 protein protects neurons against cell death. J Neurochem 2005; 95:230-43. [PMID: 16181427 DOI: 10.1111/j.1471-4159.2005.03359.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein delivery mediated by protein transduction domains (PTD) such as the HIV-1 TAT-PTD has emerged as a promising approach for neuroprotection. The objective of this study was to generate and evaluate the neuroprotective potential of TAT fusion proteins using constructs based on Bcl-2 anti-death family proteins. A TAT-Bcl-2 construct with the loop domain deleted (TAT-Bcl-2Deltaloop) was tested for its ability to transduce neuronal cells and to promote survival. The potential mechanism of TAT-mediated protein internalization in neural cells was also investigated. The purified TAT-Bcl-2Deltaloop binds to neural cell and rat brain mitochondria, and transduces cultured neural cell lines and primary cortical neurons when used at nm concentrations. Effective internalization of TAT-Bcl-2Deltaloop occurs at 37 degrees C but not at 4 degrees C, consistent with an endocytotic process. Both cell association and internalization require interaction of TAT-Bcl-2Deltaloop with cell surface heparan sulfate proteoglycans. TAT-mediated protein delivery in neuronal cells occurs through a lipid raft-dependent endocytotic process, inhibited by the cholesterol-sequestering agent nystatin. Transducible loop deleted Bcl-2 increases the survival of cortical neurons following trophic factor withdrawal and also rescues neural cell lines from staurosporine-induced death. These results support the concept of using protein transduction of Bcl-2 constructs for neuroprotection.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
39
|
Soane L, Fiskum G. Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J Bioenerg Biomembr 2005; 37:179-90. [PMID: 16167175 PMCID: PMC2570496 DOI: 10.1007/s10863-005-6590-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bcl-2 and other closely related members of the Bcl-2 family of proteins inhibit the death of neurons and many other cells in response to a wide variety of pathogenic stimuli. Bcl-2 inhibition of apoptosis is mediated by its binding to pro-apoptotic proteins, e.g., Bax and tBid, inhibition of their oligomerization, and thus inhibition of mitochondrial outer membrane pore formation, through which other pro-apoptotic proteins, e.g., cytochrome c, are released to the cytosol. Bcl-2 also exhibits an indirect antioxidant activity caused by a sub-toxic elevation of mitochondrial production of reactive oxygen species and a compensatory increase in expression of antioxidant gene products. While classic approaches to cytoprotection based on Bcl-2 family gene delivery have significant limitations, cellular protein transduction represents a new and exciting approach utilizing peptides and proteins as drugs with intracellular targets. The mechanism by which proteins with transduction domains are taken up by cells and delivered to their targets is controversial but usually involves endocytosis. The effectiveness of transduced proteins may therefore be limited by their release from endosomes into the cytosol.
Collapse
Affiliation(s)
- Lucian Soane
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Gary Fiskum
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
40
|
Mandavilli BS, Boldogh I, Van Houten B. 3-nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. ACTA ACUST UNITED AC 2005; 133:215-23. [PMID: 15710238 DOI: 10.1016/j.molbrainres.2004.10.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2004] [Indexed: 11/16/2022]
Abstract
3-nitropropionic acid (3-NPA), a complex II inhibitor of the electron transport chain, causes Huntington disease-like symptoms after administration into animals. However, primary mechanisms of cell death are not clearly understood. This study tested the hypothesis that 3-NPA leads to the generation of reactive oxygen species (ROS), mitochondrial DNA damage, and loss of mitochondrial function. Amplex red and horseradish peroxidase were used to accurately measure the amount of H2O2, and showed that PC12 cells treated with 3-NPA (4 mM) lead to the production of hydrogen peroxide (1 nmol/10(6) cells/h). This amount of 3-NPA also leads to a rapid decline of ATP levels. There was time- and dose-dependent mitochondrial DNA damage following 3-NPA treatment. Overexpression of the proto-oncogene bcl-2 protects cells from apoptosis induced by various stimuli. Overexpression of Bcl-2 leads to almost threefold higher levels of ATP and also decreased the 3-NPA-mediated induction of hydrogen peroxide by over 50%. Bcl-2-overexpressing PC12 cells were also protected from mitochondrial DNA damage. These data show that ROS production followed by mitochondrial DNA damage is the primary event in 3-NPA toxicity, and Bcl-2 protects PC12 cells from 3-NPA toxicity by preventing mitochondrial DNA damage.
Collapse
Affiliation(s)
- Bhaskar S Mandavilli
- Laboratory of Molecular Genetics, National Institute of Environmental and Health Sciences, National Institutes of Health, 111 Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
41
|
Kowaltowski AJ, Fenton RG, Fiskum G. Bcl-2 family proteins regulate mitochondrial reactive oxygen production and protect against oxidative stress. Free Radic Biol Med 2004; 37:1845-53. [PMID: 15528043 DOI: 10.1016/j.freeradbiomed.2004.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 08/10/2004] [Accepted: 09/02/2004] [Indexed: 11/24/2022]
Abstract
Bcl-2 family proteins protect against a variety of forms of cell death, including acute oxidative stress. Previous studies have shown that overexpression of the antiapoptotic protein Bcl-2 increases cellular redox capacity. Here we report that cell lines transfected with Bcl-2 paradoxically exhibit increased rates of mitochondrial H(2)O(2) generation. Using isolated mitochondria, we determined that increased H(2)O(2) release results from the oxidation of reduced nicotinamide adenine dinucleotide-linked substrates. Antiapoptotic Bcl-2 family proteins Bcl-xL and Mcl-1 also increase mitochondrial H(2)O(2) release when overexpressed. Chronic exposure of cells to low levels of the mitochondrial uncoupler carbonyl cyanide 4-(triflouromethoxy)phenylhydrazone reduced the rate of H(2)O(2) production by Bcl-xL overexpressing cells, resulting in a decreased ability to remove exogenous H(2)O(2) and enhanced cell death under conditions of acute oxidative stress. Our results indicate that chronic and mild elevations in H(2)O(2) release from Bcl-2, Bcl-xL, and Mcl-1 overexpressing mitochondria lead to enhanced cellular antioxidant defense and protection against death caused by acute oxidative stress.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
42
|
Cárdenas-Aguayo MDC, Santa-Olalla J, Baizabal JM, Salgado LM, Covarrubias L. Growth factor deprivation induces an alternative non-apoptotic death mechanism that is inhibited by Bcl2 in cells derived from neural precursor cells. ACTA ACUST UNITED AC 2004; 12:735-48. [PMID: 14977482 DOI: 10.1089/15258160360732759] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although apoptosis has been considered the typical mechanism for physiological cell death, presently alternative mechanisms need to be considered. We previously showed that fibroblast growth factor-2 (FGF2) could act as a survival factor for neural precursor cells. To study the death mechanism activated by the absence of this growth factor, we followed the changes in cell morphology and determined cell viability by staining with several dyes after FGF2 removal from mesencephalic neural-progenitor-cell cultures. The changes observed did not correspond to those associated with apoptosis. After 48 h in the absence of FGF2, cells began to develop vacuoles in their cytoplasm, a phenotype that became very obvious 3-5 days later. Double-membrane vacuoles containing cell debris were observed. Vacuolated cells did not stain with either ethidium bromide or trypan Blue, and did not show chromatin condensations. Nonetheless, during the course of culture, vacuolated cells formed aggregates with highly condensed chromatin and detached from the plate. Neural progenitor cells grown in the presence of FGF2 did not display any of those characteristics. The vacuolated phenotype could be reversed by the addition of FGF2. Typical autophagy inhibitors such as 3-MA and LY294002 inhibited vacuole development, whereas a broad-spectrum caspase inhibitor did not. Interestingly, Bcl-2 overexpression retarded vacuole development. In conclusion, we identified a death autophagy-like mechanism activated by the lack of a specific survival factor that can be inhibited by Bcl2. We propose that anti-apoptotic Bcl2 family members are key molecules controlling death activation independently of the cell degeneration mechanism used.
Collapse
Affiliation(s)
- María del Carmen Cárdenas-Aguayo
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, México
| | | | | | | | | |
Collapse
|
43
|
Hu XL, Olsson T, Johansson IM, Brännström T, Wester P. Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats. Eur J Neurosci 2004; 20:1177-88. [PMID: 15341589 DOI: 10.1111/j.1460-9568.2004.03554.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anti-apoptotic proteins Bcl-w and Bcl-2 and the pro-apoptotic protein Bax may mediate cell death or survival via regulation of the mitochondria including second mitochondria-derived activator of caspase (Smac)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) release. This study aimed to explore alterations in Bcl-w, Bcl-2, and Bax and the relationship between these proteins and Smac/DIABLO by means of in situ hybridization, immunohistochemical (IHC) staining, and Western blots after low- and high-intensity photothrombotic ring stroke. At 4 h after low-intensity irradiation, we found widespread bcl-w overexpression on both the mRNA and protein levels in the bilateral cortex except the ring lesion region and in subcortical regions. A prolonged elevation of Bcl-2 with relatively unchanged Bax in the mitochondrial fraction was demonstrated from 4 to 72 h. These upregulated anti-apoptotic proteins combined with little Smac/DIABLO release might be associated with increased cell survival and thereby remarkable morphological recovery after low-intensity irradiation. After high-intensity irradiation, we observed decreased bcl-w and bcl-2 mRNA with increased Bcl-2 protein in the cytosolic fraction, whereas the Bax protein remained in scattered ischaemic cells in the ring lesion and the region at risk that corresponded with release of Smac/DIABLO from mitochondria to the cytosol at 1-24 h. These changes might be related to the massive cell death observed after high-intensity irradiation. Taken together, the balance and the location of anti-apoptotic proteins vs. pro-apoptotic proteins could be associated with the translocation of Smac/DIABLO from the mitochondria to the cytosol and therefore closely related to cell death or survival after focal cerebral ischaemia.
Collapse
Affiliation(s)
- Xiao-Lei Hu
- Department of Public Health and Clinical Medicine, Medicine, Umeå Stroke Centre, Umeå University Hospital, S-901 87, Sweden
| | | | | | | | | |
Collapse
|
44
|
Limke TL, Heidemann SR, Atchison WD. Disruption of Intraneuronal Divalent Cation Regulation by Methylmercury: Are Specific Targets Involved in Altered Neuronal Development and Cytotoxicity in Methylmercury Poisoning? Neurotoxicology 2004; 25:741-60. [PMID: 15288506 DOI: 10.1016/j.neuro.2003.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 12/15/2003] [Indexed: 10/26/2022]
Abstract
Methylmercury is an environmental contaminant which causes relatively specific degeneration of the granular layer of the cerebellum, despite its ability to bind thiol groups in proteins of all cell types. The mechanisms underlying the specific targeting of cells during MeHg poisoning may depend on specific receptors and other targets related to divalent cation homeostasis, particularly intracellular calcium (Ca(2+)(i) signaling. MeHg disrupts Ca(2+)(i) homeostasis in a number of neuronal models, including cerebellar granule cells in primary culture, and contributes to MeHg-induced cell death, impaired synaptic function and disruption of neuronal development. Interestingly, the disruption of [Ca(2+)](i) regulation occurs through specific pathways which affect Ca(2+) regulation by organelles, particularly mitochondria and the smooth endoplasmic reticulum (SER). Cholinergic pathways which affect [Ca(2+)](i) signaling also appear to be critical targets, particularly muscarinic acetylcholine (ACh) receptors which are linked to Ca(2+) release through inositol-1,4,5-triphosphate (IP(3)) receptors. [Ca(2+)](i) dysregulation may also underlie observed alterations in cerebellar neuron development through interaction with specific target(s) in the developing axon. In this review, we examine the hypothesis that MeHg affects specific targets to cause disruption of neuronal development and cell death.
Collapse
Affiliation(s)
- Tobi L Limke
- Department of Pharmacology and Toxicology, Institute for Environmental Toxicology, Michigan State University, B-331 Life Sciences Building, East Lansing, MI 48824-1317, USA
| | | | | |
Collapse
|
45
|
Kelly S, Zhao H, Hua Sun G, Cheng D, Qiao Y, Luo J, Martin K, Steinberg GK, Harrison SD, Yenari MA. Glycogen synthase kinase 3beta inhibitor Chir025 reduces neuronal death resulting from oxygen-glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol 2004; 188:378-86. [PMID: 15246837 DOI: 10.1016/j.expneurol.2004.04.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/22/2004] [Accepted: 04/02/2004] [Indexed: 11/19/2022]
Abstract
The serine/threonine kinase, glycogen synthase kinase 3beta (GSK3beta), is abundant in CNS and is neuron specific. GSK3beta plays a pivotal role in the regulation of numerous cellular functions. GSK3beta phosphorylates and thereby regulates many metabolic, signaling, and structural proteins which can influence cell survival. Increased GSK3beta correlates with increased cell death, whereas reduced GSK3beta expression correlates with increased cell survival. We report that the GSK3beta inhibitor Chir025 is neuroprotective in vitro and in vivo. First, Chir025 reduced cultured hippocampal neuron death following glutamate exposure by 15-20% versus vehicle-treated controls. Second, Chir025 significantly reduced cultured cortical neuron death following oxygen-glucose deprivation (OGD) by approximately 50%. Third, Chir025 reduced infarct size following focal cerebral ischemia by nearly 20%. There were no significant differences in the number of TUNEL-positive neurons or in caspase-3 and -9 activities between Chir025- and vehicle-treated rats, although Chir025 elevated cytosolic Bcl-2 expression. These data show that Chir025-mediated inhibition of GSK3beta is neuroprotective and that the mechanism is probably not anti-apoptotic.
Collapse
Affiliation(s)
- Stephen Kelly
- Department of Neurosurgery, Stanford University, CA 94305-5487, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schoemaker MH, Moshage H. Defying death: the hepatocyte's survival kit. Clin Sci (Lond) 2004; 107:13-25. [PMID: 15104533 DOI: 10.1042/cs20040090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 04/23/2004] [Indexed: 01/18/2023]
Abstract
Acute liver injury can develop as a consequence of viral hepatitis, drug- or toxin-induced toxicity or rejection after liver transplantation, whereas chronic liver injury can be due to long-term exposure to alcohol, chemicals, chronic viral hepatitis, metabolic or cholestatic disorders. During liver injury, liver cells are exposed to increased levels of cytokines, bile acids and oxidative stress. This results in death of hepatocytes. In contrast, stellate cells become active and are resistant against cell death. Eventually, acute and chronic liver injury is followed by loss of liver function for which no effective therapies are available. Hepatocytes are well equipped with protective mechanisms to prevent cell death. As long as these protective mechanisms can be activated, the balance will be in favour of cell survival. However, the balance between cell survival and cell death is delicate and can be easily tipped towards cell death during liver injury. Therefore understanding the cellular mechanisms controlling death of liver cells is of clinical and scientific importance and can lead to the identification of novel intervention targets. This review describes some of the mechanisms that determine the balance between cell death and cell survival during liver diseases. The strict regulation of apoptotic cell death allows therapeutic intervention strategies. In this light, receptor-mediated apoptosis and mitochondria-mediated cell death are discussed and strategies are provided to selectively interfere with these processes.
Collapse
Affiliation(s)
- Marieke H Schoemaker
- Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | | |
Collapse
|
47
|
Hirt UA, Leist M. Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 2004; 10:1156-64. [PMID: 14502239 DOI: 10.1038/sj.cdd.4401286] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In pathological situations, different modes of cell death are observed, and information on the role and uptake of nonapoptotic corpses is scarce. Here, we modeled two distinct forms of death in human Jurkat T cells treated with staurosporine: classical apoptosis under normal culture conditions and programmed death with necrotic morphology under ATP-depleting conditions (necPCD). When offered to phagocytes, both types of cell corpses (but not heat-killed unscheduled necrotic cells) reduced the release of the proinflammatory cytokine TNF from the macrophages. The necPCD cells were efficiently engulfed by macrophages and microglia, and from mixtures of necPCD and apoptotic cells macrophages preferentially engulfed the necrotic cells. Using a newly developed assay, we demonstrated that phosphatidylserine is translocated to the surface of such necrotic cells. We demonstrate that this can occur independently of calcium signals, and that surface phosphatidylserine is essential for the uptake of necrotic cells by both human macrophages and murine microglia.
Collapse
Affiliation(s)
- U A Hirt
- Faculty of Biology, University of Konstanz, X911, D-78457 Konstanz, Germany
| | | |
Collapse
|
48
|
Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab 2004; 24:681-92. [PMID: 15181376 DOI: 10.1097/01.wcb.0000127161.89708.a5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptosis plays a critical role in many neurologic diseases, including stroke. Cytochrome c release and activation of various caspases are known to occur after focal and global ischemia. However, recent reports indicate that caspase-independent pathways may also be involved in ischemic damage. Apoptosis-inducing factor (AIF) is a novel flavoprotein that helps mediate caspase-independent apoptotic cell death. AIF translocates from mitochondria to nuclei where it induces caspase-independent DNA fragmentation. Bcl-2, a mitochondrial membrane protein, protects against apoptotic and necrotic death induced by different insults, including cerebral ischemia. In the present study, Western blots confirmed that AIF was normally confined to mitochondria but translocated to nuclei or cytosol 8, 24, and 48 hours after onset of ischemia. Overall, AIF protein levels also increased after stroke. Confocal microscopy further demonstrated that nuclear AIF translocation occurred in the peri-infarct region but not in the ischemic core where only some cytosolic AIF release was observed. Our data also suggest that AIF translocated into nuclei after cytochrome c was released into the cytosol. Bcl-2 transfection in the peri-infarct region blocked nuclear AIF translocation and improved cortical neuron survival.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Many cells die with apoptotic morphology and with documented activation of an effector caspase, but there are also many exceptions. Cells frequently display activation of other proteases, including granzymes, lysosomal cathepsins, matrix metalloproteinases, and proteasomal proteases, and others display morphologies that are not fully consistent with classical apoptosis. In some experimental situations, evidence of caspase-dependent death is indirect, demonstrating that the cell can activate caspases rather than that it does. In other situations, such as involution of mammary or prostate tissue, many cells display autophagic or other morphology different from apoptosis, and there is considerable evidence for the activation of a lysosomal system. Prior to total collapse and necrosis, cells that are in trouble can activate numerous physiological pathways toward self-destruction. Intrinsic or extrinsic routes to effector caspase activation are frequently the most rapid and efficient. If neither of these routes is immediately available, owing to mutation, genetic manipulation, inhibitor, or the biology of the cell, other routes may be followed, leading to variant forms of cell death that may display one or more characteristics of apoptosis. Experimental and therapeutic procedures must account for this possibility.
Collapse
Affiliation(s)
- Richard A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA.
| | | |
Collapse
|
50
|
Abstract
Programmed cell death is a major component of both normal development and disease. The roles of cell death during either embryogenesis or pathogenesis, the signals that modulate this event, and the mechanisms of cell demise are the major subjects that drive research in this field. Increasing evidence obtained both in vitro and in vivo supports the hypothesis that a variety of cell death programs may be triggered in distinct circumstances. Contrary to the view that caspase-mediated apoptosis represents the standard programmed cell death, recent studies indicate that an apoptotic morphology can be produced independent of caspases, that autophagic execution pathways of cell death may be engaged without either the involvement of caspases or morphological signs of apoptosis, and that even the necrotic morphology of cell death may be consistently produced in some cases, including certain plants. Alternative cell death programs may imply novel therapeutic targets, with important consequences for attempts to treat diseases associated with disregulated programmed cell death.
Collapse
|