1
|
Katayama H, Fujimura A, Huang R, Otani Y, Itano T, Fujiwara T, Kunisada T, Nakata E, Ozaki T. Role of catecholamine synthases in the maintenance of cancer stem-like cells in malignant peripheral nerve sheath tumors. Cancer Sci 2024; 115:871-882. [PMID: 38279513 PMCID: PMC10921001 DOI: 10.1111/cas.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that are derived from Schwann cell lineage around peripheral nerves. As in many other cancer types, cancer stem cells (CSCs) have been identified in MPNSTs, and they are considered the cause of treatment resistance, recurrence, and metastasis. As an element defining the cancer stemness of MPNSTs, we previously reported a molecular mechanism by which exogenous adrenaline activates a core cancer stemness factor, YAP/TAZ, through β2 adrenoceptor (ADRB2). In this study, we found that MPNST cells express catecholamine synthases and that these enzymes are essential for maintaining cancer stemness, such as the ability to self-renew and maintain an undifferentiated state. Through gene knockdown and inhibition of these enzymes, we confirmed that catecholamines are indeed synthesized in MPNST cells. The results confirmed that catecholamine synthase knockdown in MPNST cells reduces the activity of YAP/TAZ. These data suggest that a mechanism of YAP/TAZ activation by de novo synthesized adrenaline, as well as exogenous adrenaline, may exist in the maintenance of cancer stemness of MPNST cells. This mechanism not only helps to understand the pathology of MPNST, but could also contribute to the development of therapeutic strategies for MPNST.
Collapse
Affiliation(s)
- Haruyoshi Katayama
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Atsushi Fujimura
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Neutron Therapy Research CenterOkayama UniversityOkayamaJapan
| | - Rongsheng Huang
- Department of Trauma OrthopedicsThe Second Hospital of Dalian Medical UniversityDalianChina
| | - Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Takuto Itano
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tomohiro Fujiwara
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshiyuki Kunisada
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Eiji Nakata
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
2
|
Jiang W, Hu T, Ye C, Hu M, Yu Q, Sun L, Liang J, Chen Y. Formononetin attenuates high glucose-induced neurotoxicity by negatively regulating oxidative stress and mitochondrial dysfunction in Schwann cells via activation of SIRT3. Food Chem Toxicol 2023; 182:114156. [PMID: 37944786 DOI: 10.1016/j.fct.2023.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
High glucose induces Schwann cells death and neurotoxicity. Formononetin was originally found in Astragalus membranaceus and showed anti-tumor and anti-neuroinflammation properties. The aim of this study is to explore the molecular mechanism underlying the neuroprotective effects of formononetin and identify its direct protein target. The effects of formononetin on oxidative stress and mitochondrial dysfunction in Schwann cells induced by high glucose were investigated. High glucose treatment significantly induced oxidative stress, mitochondrial dysfunction and apoptosis in Schwann cells, while these effects were partially or completely prevented by co-treatment with formononetin. Mechanistically, we found that SIRT3/PGC-1α/SOD2 pathway was activated by formononetin under high glucose conditions as evidenced by western blotting. Knockdown of SIRT3 by siRNA delivery reversed the protective effects of formononetin on high glucose-induced Schwann cells injury and changes in expression profile of SIRT3 downstream target genes. Molecular docking, thermal shift assay and surface plasmon resonance assay revealed a direct binding between formononetin and SIRT3. Taken together, we identified a novel SIRT3 activator formononetin and revealed its beneficial effects on high glucose-induced neurotoxicity, suggesting that targeting SIRT3 in Schwann cells may be a new approach for treatment of peripheral nerve regeneration related diseases such as diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Wen Jiang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China
| | - Ting Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China
| | - Chen Ye
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China
| | - Man Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China
| | - Qingqing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China
| | - Lijuan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China.
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
García-Reyes B, Kuzmanov I, Schneider R, Schneiker B, Efferz P, Kalff JC, Wehner S. Glial cell-derived soluble factors increase the metastatic potential of pancreatic adenocarcinoma cells and induce epithelial-to-mesenchymal transition. J Cancer Res Clin Oncol 2023; 149:14315-14327. [PMID: 37572121 PMCID: PMC10590291 DOI: 10.1007/s00432-023-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive types of cancer, characterized by the spreading of highly metastatic cancer cells, including invasion into surrounding nerves and perineural spaces. Nerves, in turn, can invade the tumor tissue and, through the secretion of neurotrophic factors, chemokines, and cytokines, contribute to PDAC progression. However, the contribution of the nerve-associated glial cells to PDAC progression is not well characterized. METHODS Two murine PDAC cell lines were cultured with the conditioned media (CM) of primary enteric glial cells or IMS32 Schwann cells (SCs). Different properties of PDAC cells, such as invasiveness, migratory capacity, and resistance to gemcitabine, were measured by RT-qPCR, microscopy, and MTT assays. Using a neuronal cell line, the observed effects were confirmed to be specific to the glial lineage. RESULTS Compared to the control medium, PDAC cells in the glial cell-conditioned medium showed increased invasiveness and migratory capacity. These cells showed reduced E-cadherin and increased N-cadherin and Vimentin levels, all markers of epithelial-mesenchymal transition (EMT). Primary enteric glial cell CM inhibited the proliferation of PDAC cells but preserved their viability, upregulated transcription factor Snail, and increased their resistance to gemcitabine. The conditioned medium generated from the IMS32 SCs produced comparable results. CONCLUSION Our data suggest that glial cells can increase the metastatic potential of PDAC cells by increasing their migratory capacity and inducing epithelial-to-mesenchymal transition, a re-programming that many solid tumors use to undergo metastasis. Glial cell-conditioned medium also increased the chemoresistance of PDAC cells. These findings may have implications for future therapeutic strategies, such as targeting glial cell-derived factor signaling in PDAC.
Collapse
Affiliation(s)
- Balbina García-Reyes
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
- Mildred Scheel School of Oncology, Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Ivan Kuzmanov
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Reiner Schneider
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Bianca Schneiker
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Patrik Efferz
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, Medical Faculty, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Katahira Y, Murakami F, Inoue S, Miyakawa S, Sakamoto E, Furusaka Y, Watanabe A, Sekine A, Kuroda M, Hasegawa H, Mizoguchi I, Yoshimoto T. Protective effects of conditioned media of immortalized stem cells from human exfoliated deciduous teeth on pressure ulcer formation. Front Immunol 2023; 13:1010700. [PMID: 36713359 PMCID: PMC9881429 DOI: 10.3389/fimmu.2022.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Pressure ulcers (PUs) are increasing with aging worldwide, but there is no effective causal therapy. Although mesenchymal stem cells (MSCs) promote cutaneous wound healing, the effects of the conditioned medium (CM) of MSCs on cutaneous PU formation induced by ischemia-reperfusion injury have been poorly investigated. To address this issue, herein, we first established an immortalized stem cell line from human exfoliated deciduous teeth (SHED). This cell line was revealed to have superior characteristics in that it grows infinitely and vigorously, and stably and consistently secretes a variety of cytokines. Using the CM obtained from the immortalized SHED cell line, we investigated the therapeutic potential on a cutaneous ischemia-reperfusion mouse model for PU formation using two magnetic plates. This is the first study to show that CM from immortalized SHEDs exerts therapeutic effects on PU formation by promoting angiogenesis and oxidative stress resistance through vascular endothelial growth factor and hepatocyte growth factor. Thus, the CM of MSCs has potent therapeutic effects, whereas these therapies have not been implemented in human medicine. To try to meet the regulatory requirements for manufacturing and quality control as much as possible, it is necessary to produce CM that is consistently safe and effective. The immortalization of stem cells could be one of the breakthroughs to meet the regulatory requirements and consequently open up a novel avenue to create a novel type of cell-free regenerative medicine, although further investigation into the quality control is warranted.
Collapse
Affiliation(s)
- Yasuhiro Katahira
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Fumihiro Murakami
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinya Inoue
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Satomi Miyakawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Eri Sakamoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yuma Furusaka
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Aruma Watanabe
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Ami Sekine
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Hideaki Hasegawa
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Izuru Mizoguchi
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan,*Correspondence: Takayuki Yoshimoto,
| |
Collapse
|
5
|
De Logu F, Nassini R, Hegron A, Landini L, Jensen DD, Latorre R, Ding J, Marini M, Souza Monteiro de Araujo D, Ramírez-Garcia P, Whittaker M, Retamal J, Titiz M, Innocenti A, Davis TP, Veldhuis N, Schmidt BL, Bunnett NW, Geppetti P. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun 2022; 13:646. [PMID: 35115501 PMCID: PMC8813987 DOI: 10.1038/s41467-022-28204-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
- Headache Center, Careggi University Hospital, Florence, 50139, Italy
| | - Alan Hegron
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Dane D Jensen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Rocco Latorre
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
| | - Julia Ding
- Department of Anesthesiology, Columbia University, New York, NY, 10010, USA
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Paulina Ramírez-Garcia
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michael Whittaker
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jeffri Retamal
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Thomas P Davis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas Veldhuis
- Drug Discovery Biology Theme and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Brian L Schmidt
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, 10010, USA.
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA.
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
- Headache Center, Careggi University Hospital, Florence, 50139, Italy.
| |
Collapse
|
6
|
Li Y, Kang S, Halawani D, Wang Y, Junqueira Alves C, Ramakrishnan A, Estill M, Shen L, Li F, He X, Friedel RH, Zou H. Macrophages facilitate peripheral nerve regeneration by organizing regeneration tracks through Plexin-B2. Genes Dev 2022; 36:133-148. [PMID: 35086862 PMCID: PMC8887133 DOI: 10.1101/gad.349063.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
Abstract
In this study, Li et al. investigated the mechanisms underlying the regeneration of peripheral nerves, which is guided by regeneration tracks formed through an interplay of many cell types. They demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerve. The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yuhuan Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sangjo Kang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yiqun Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Fengtao Li
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xijing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.,Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710065, China
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
7
|
Yako H, Niimi N, Kato A, Takaku S, Tatsumi Y, Nishito Y, Kato K, Sango K. Role of pyruvate in maintaining cell viability and energy production under high-glucose conditions. Sci Rep 2021; 11:18910. [PMID: 34556698 PMCID: PMC8460646 DOI: 10.1038/s41598-021-98082-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Pyruvate functions as a key molecule in energy production and as an antioxidant. The efficacy of pyruvate supplementation in diabetic retinopathy and nephropathy has been shown in animal models; however, its significance in the functional maintenance of neurons and Schwann cells under diabetic conditions remains unknown. We observed rapid and extensive cell death under high-glucose (> 10 mM) and pyruvate-starved conditions. Exposure of Schwann cells to these conditions led to a significant decrease in glycolytic flux, mitochondrial respiration and ATP production, accompanied by enhanced collateral glycolysis pathways (e.g., polyol pathway). Cell death could be prevented by supplementation with 2-oxoglutarate (a TCA cycle intermediate), benfotiamine (the vitamin B1 derivative that suppresses the collateral pathways), or the poly (ADP-ribose) polymerase (PARP) inhibitor, rucaparib. Our findings suggest that exogenous pyruvate plays a pivotal role in maintaining glycolysis–TCA cycle flux and ATP production under high-glucose conditions by suppressing PARP activity.
Collapse
Affiliation(s)
- Hideji Yako
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Naoko Niimi
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Yasumasa Nishito
- Basic Technology Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
8
|
Phenotypic and molecular diversities of spinocerebellar ataxia type 2 in Japan. J Neurol 2021; 268:2933-2942. [PMID: 33625581 DOI: 10.1007/s00415-021-10467-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND We intended to clarify the phenotypic and molecular diversities of spinocerebellar ataxia type 2 (SCA2) in Japan. METHODS DNA was extracted from the peripheral blood of 436 patients, including 126 patients with chronic neuropathy, 108 with amyotrophic lateral sclerosis, and 202 with cerebellar ataxia. We then PCR-amplified and sequenced the ATXN2 gene. The biopsied sural nerves of mutation-positive patients were subjected to light-microscopic and electron-microscopic analyses. Transfection analyses were performed using a Schwann cell line, IMS32. RESULTS We found PCR-amplified products potentially corresponding to expanded CAG repeats in four patients. Two patients in the chronic neuropathy group had a full repeat expansion or an intermediate expansion (39 or 32 repeats), without limb ataxia. The sural nerve biopsy findings of the two patients included axonal neuropathy and mixed neuropathy (axonal changes with demyelination). Schwann cells harbored either cytoplasmic or nuclear inclusions on electron microscopic examination. Both patients recently exhibited pyramidal signs. In the third patient in the cerebellar ataxia group, we identified a novel 21-base duplication mutation near 22 CAG repeats (c.432_452dup). The transfection study revealed that the 21-base-duplication mutant Ataxin-2 proteins aggregated in IMS32 and rendered cells susceptible to oxidative stress, similar to a CAG-expanded mutant. The fourth patient, with 41 repeats, had ataxia and spasticity. The two patients with cerebellar ataxia also had peripheral neuropathy. CONCLUSIONS Patients with expanded CAG repeats can exhibit a neuropathy-dominant phenotype not described previously. The novel 21-base-duplication mutant seems to share the aggregation properties of polyglutamine-expanded mutants.
Collapse
|
9
|
Aldose Reductase and the Polyol Pathway in Schwann Cells: Old and New Problems. Int J Mol Sci 2021; 22:ijms22031031. [PMID: 33494154 PMCID: PMC7864348 DOI: 10.3390/ijms22031031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Aldose reductase (AR) is a member of the reduced nicotinamide adenosine dinucleotide phosphate (NADPH)-dependent aldo-keto reductase superfamily. It is also the rate-limiting enzyme of the polyol pathway, catalyzing the conversion of glucose to sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase. AR is highly expressed by Schwann cells in the peripheral nervous system (PNS). The excess glucose flux through AR of the polyol pathway under hyperglycemic conditions has been suggested to play a critical role in the development and progression of diabetic peripheral neuropathy (DPN). Despite the intensive basic and clinical studies over the past four decades, the significance of AR over-activation as the pathogenic mechanism of DPN remains to be elucidated. Moreover, the expected efficacy of some AR inhibitors in patients with DPN has been unsatisfactory, which prompted us to further investigate and review the understanding of the physiological and pathological roles of AR in the PNS. Particularly, the investigation of AR and the polyol pathway using immortalized Schwann cells established from normal and AR-deficient mice could shed light on the causal relationship between the metabolic abnormalities of Schwann cells and discordance of axon-Schwann cell interplay in DPN, and led to the development of better therapeutic strategies against DPN.
Collapse
|
10
|
Xi C, Zhang Y, Yan M, Lv Q, Lu H, Zhou J, Wang Y, Li J. Exogenous neuritin treatment improves survivability and functions of Schwann cells with improved outgrowth of neurons in rat diabetic neuropathy. J Cell Mol Med 2020; 24:10166-10176. [PMID: 32667138 PMCID: PMC7520300 DOI: 10.1111/jcmm.15627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 11/30/2022] Open
Abstract
Pathogenesis and treatment for diabetic neuropathy are still complex. A deficit of neurotrophic factors affecting Schwann cells is a very important cause of diabetic neuropathy. Neuritin is a newly discovered potential neurotrophic factor. In this study, we explored the effect of exogenous neuritin on survivability and functions of diabetic Schwann cells of rats with experimental diabetic neuropathy. Diabetic neuropathy was induced in rats. 12‐week diabetic rats contrasted with non‐diabetic normal rats had decreased levels of serum neuritin and slowed nerve conduction velocities (NCVs). Schwann cells isolated from these diabetic rats and cultured in high glucose showed reduced cell neuritin mRNA and protein and supernatant neuritin protein, increased apoptosis rates, increased caspase‐3 activities and progressively reduced viability. In contrast, exogenous neuritin treatment reduced apoptosis and improved viability, with elevated Bcl‐2 levels (not Bax) and decreased caspase‐3 activities. Co‐cultured with diabetic Schwann cells pre‐treated with exogenous neuritin in high glucose media, and diabetic DRG neurons showed lessened decreased neurite outgrowth and supernatant NGF concentration occurring in co‐culture of diabetic cells. Exogenous neuritin treatment ameliorated survivability and functions of diabetic Schwann cells of rats with diabetic neuropathy. Our study may provide a new mechanism and potential treatment for diabetic neuropathy.
Collapse
Affiliation(s)
- Chunhong Xi
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingduan Zhang
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Yan
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Lv
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan Lu
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Zhou
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yucheng Wang
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianbo Li
- Endocrinology and Metabolism Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Diabetic Neuropathy Study Group of Chinese Diabetes Society, Beijing, China
| |
Collapse
|
11
|
Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Transection is Driven by Cellular Intravitreal Sciatic Nerve Grafts. Cells 2020; 9:cells9061335. [PMID: 32471105 PMCID: PMC7349876 DOI: 10.3390/cells9061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this study, we investigated the neuroprotective and growth stimulatory properties of SN grafts in which Schwann cells had been killed (acellular SN grafts, ASN) or remained intact (cellular SN grafts, CSN). We report that both intravitreal (ivit) implanted and optic nerve anastomosed CSN promote RGC survival and when simultaneously placed in both sites, they exert additive RGC neuroprotection. CSN and ASN were rich in myelin-associated glycoprotein (MAG) and axon growth-inhibitory ligand common to both the central nervous system (CNS) and peripheral nervous system (PNS) myelin. The penetration of the few RGC axons regenerating into an ASN at an optic nerve transection (ONT) site is limited into the proximal perilesion area, but is increased >2-fold after ivit CSN implantation and increased 5-fold into a CSN optic nerve graft after ivit CSN implantation, potentiated by growth disinhibition through the regulated intramembranous proteolysis (RIP) of p75NTR (the signalling trans-membrane moiety of the nogo-66 trimeric receptor that binds MAG and associated suppression of RhoGTP). Mϋller cells/astrocytes become reactive after all treatments and maximally after simultaneous ivit and optic nerve CSN/ASN grafting. We conclude that simultaneous ivit CSN plus optic nerve CSN support promotes significant RGC survival and axon regeneration into CSN optic nerve grafts, despite being rich in axon growth inhibitory molecules. RGC axon regeneration is probably facilitated through RIP of p75NTR, which blinds axons to myelin-derived axon growth-inhibitory ligands present in optic nerve grafts.
Collapse
|
12
|
Li X, Zhou D, Jin Z, Chen H, Wang X, Zhang X, Xu T. A coaxially extruded heterogeneous core- shell fiber with Schwann cells and neural stem cells. Regen Biomater 2019; 7:131-139. [PMID: 32296532 PMCID: PMC7147360 DOI: 10.1093/rb/rbz037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/05/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Cellular therapies play a critical role in the treatment of spinal cord injury (SCI). Compared with cell-seeded conduits, fully cellular grafts have more similarities with autografts, and thus might result in better regeneration effects. In this study, we fabricated Schwann cell (SC)-neural stem cell (NSC) core–shell alginate hydrogel fibers in a coaxial extrusion manner. The rat SC line RSC96 and mouse NSC line NE-4C were used in this experiment. Fully cellular components were achieved in the core portion and the relative spatial positions of these two cells partially mimic the construction of nerve fibers in vivo. SCs were demonstrated to express more genes of neurotrophic factors in alginate shell. Enhanced proliferation and differentiation tendency of NSCs was observed when they were co-cultured with SCs. This model has strong potential for application in SCI repair.
Collapse
Affiliation(s)
- Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhizhong Jin
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang 110122, People's Republic of China
| | - Hongqing Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xuanzhi Wang
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College, Wuhu 241001, People's Republic of China
| | - Xinzhi Zhang
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China.,Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen 518102, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
13
|
Li G, Chen S, Zeng M, Kong Y, Zhao F, Zhang L, Yang Y. Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloids Surf B Biointerfaces 2019; 176:341-351. [PMID: 30654241 DOI: 10.1016/j.colsurfb.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
To penetrate the effect of protein gradient micropattern on peripheral nerve regeneration, the hierarchically aligned gradient collagen micropattern was prepared by micromoulding method and the influence on Schwann cells growth behavior was studied. The morphology, wettability, stability and component variation of the micropatterns were firstly characterized. Then, Schwann cells were cultured and the related mechanism was penetrated. The results showed that the gradient collagen micropattern could be well fabricated. The surface wettability varied with the change of collagen concentration, and the prepared gradient micropattern showed a good stability after PBS immersion for 15 days. The results of Schwann cells culture and morphological index analysis displayed that the prepared gradient collagen micropatten could well regulate the orientation growth of Schwann cells, while a much better cell alignment growth was obtained on the gradient micropattern with higher collagen concentration and wider pattern size. PCR and WB showed that the micropattern structure could effectively up-regulate the key specific genes for axon regeneration and myelination process. Overall, the study provides a systematic and facile method for understanding the effect of various sized micropatterns on cell behavior, which may have a great significance for the development of artificial implants for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Ming Zeng
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Yan Kong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China
| | - Fei Zhao
- School of Biology Science, Nantong University, 226019, Nantong, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, PR China; Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, PR China.
| |
Collapse
|
14
|
Min SH, Kim JH, Kang YM, Lee SH, Oh BM, Han KS, Zhang M, Kim HS, Moon WK, Lee H, Park KS, Jung HS. Transplantation of human mobilized mononuclear cells improved diabetic neuropathy. J Endocrinol 2018; 239:277-287. [PMID: 30400012 DOI: 10.1530/joe-18-0516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 01/16/2023]
Abstract
Rodent stem cells demonstrated regenerative effects in diabetic neuropathy via improvement in nerve perfusion. As a pre-clinical step, we explored if human mobilized mononuclear cells (hMNC) would have the same effects in rats. hMNC were injected into Rt. hind-limb muscles of streptozotocin-induced diabetic nude rats, and the grafts were monitored using with MRI. After 4 weeks, the effects were compared with those in the vehicle-injected Lt. hind limbs. Nerve conduction, muscle perfusion and gene expression of sciatic nerves were assessed. Induction of diabetes decreased nerve function and expression of Mpz and Met in the sciatic nerves, which are related with myelination. hMNC injection significantly improved the amplitude of compound muscle action potentials along with muscle perfusion and sciatic nerve Mpz expression. On MRI, hypointense signals were observed for 4 weeks at the graft site, but their correlation with the presence of hMNC was detectable for only 1 week. To evaluate paracrine effects of hMNC, IMS32 cells were tested with hepatocyte growth factor (HGF), which had been reported as a myelination-related factor from stem cells. We could observe that HGF enhanced Mpz expression in the IMS32 cells. Because hMNC secreted HGF, IMS32 cells were co-cultured with hMNC, and the expression of Mpz increased along with morphologic maturation. The hMNC-induced Mpz expression was abrogated by treatment of anti-HGF. These results suggest that hMNC could improve diabetic neuropathy, possibly through enhancement of myelination as well as perfusion. According to in vitro studies, HGF was involved in the hMNC-induced myelination activity, at least in part.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hee Kim
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Mi Kang
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyou-Sup Han
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Meihua Zhang
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Woo Kyung Moon
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hakmo Lee
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Kyong Soo Park
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Hye Seung Jung
- Division of Endocrinology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| |
Collapse
|
15
|
Kato A, Tatsumi Y, Yako H, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res 2018; 147:26-32. [PMID: 30444976 DOI: 10.1016/j.neures.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Hypoglycemia and fluctuating high or low glucose conditions are under-appreciated sources of oxidative stress contributing to diabetic neuropathy. We investigated the effects of recurrent short-term hypoglycemia and hyperglycemia, on apoptosis and oxidative stress in Schwann cells. Immortalized adult mouse Schwann (IMS32) cells were exposed to five different glucose treatments over 3 days: 1) normal glucose (NG), 2) constant low glucose (LG), 3) constant high glucose (HG), 4) intermittent low glucose (ILG; 1 h three times per day), 5) intermittent high glucose (IHG; 1 h three times per day). Cell viability was decreased by all treatment variants, in comparison to NG. Thiobarbituric acid reactive substance (TBARS) levels were increased by HG, LG, IHG, and ILG. High glucose (HG and IHG) and low glucose (LG and ILG) increased the expression of cleaved caspase-3 and reduced that of Bcl-2. In addition, endoplasmic reticulum (ER) stress-responsive transcription factor C/EBP homologous protein (CHOP) expression was increased under low and high glucose conditions. Cell death and oxidative stress induced by HG, LG, IHG, and ILG were significantly reduced by 4-phenyl butyric acid (4-PBA), an ER stress inhibitor. These findings indicate that recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in Schwann cells.
Collapse
Affiliation(s)
- Ayako Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Yasuaki Tatsumi
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Koichi Kato
- Laboratory of Medicine, Aichi Gakuin University School of Pharmacy, Chikusa-ku, Nagoya, Aichi, 464-8650, Japan.
| |
Collapse
|
16
|
Moriwaki Y, Ohno Y, Ishii T, Takamura Y, Kita Y, Watabe K, Sango K, Tsuji S, Misawa H. SIMPLE binds specifically to PI4P through SIMPLE-like domain and participates in protein trafficking in the trans-Golgi network and/or recycling endosomes. PLoS One 2018; 13:e0199829. [PMID: 29953492 PMCID: PMC6023223 DOI: 10.1371/journal.pone.0199829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/14/2018] [Indexed: 01/12/2023] Open
Abstract
Small integral membrane protein of the lysosome/late endosome (SIMPLE) is a 161-amino acid cellular protein that contains a characteristic C-terminal domain known as the SIMPLE-like domain (SLD), which is well conserved among species. Several studies have demonstrated that SIMPLE localizes to the trans-Golgi network (TGN), early endosomes, lysosomes, multivesicular bodies, aggresomes and the plasma membrane. However, the amino acid regions responsible for its subcellular localization have not yet been identified. The SLD resembles the FYVE domain, which binds phosphatidylinositol (3)-phosphate (PI3P) and determines the subcellular localization of FYVE domain-containing proteins. In the present study, we have found that SIMPLE binds specifically to PI4P through its SLD. SIMPLE co-localized with PI4P and Rab11, a marker for recycling endosomes (REs, organelles enriched in PI4P) in both the IMS32 mouse Schwann cell line and Hela cells. Sucrose density-gradient centrifugation revealed that SIMPLE co-fractionated with syntaxin-6 (a TGN marker) and Rab11. We have also found that SIMPLE knockdown impeded recycling of transferrin and of transferrin receptor. Our overall results indicate that SIMPLE may regulate protein trafficking physiologically by localizing to the TGN and/or REs by binding PI4P.
Collapse
Affiliation(s)
- Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- * E-mail: (YM); (HM)
| | - Yuho Ohno
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Tomohiro Ishii
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuki Takamura
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Yuko Kita
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Shoutaro Tsuji
- Molecular Diagnostics Project, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
- * E-mail: (YM); (HM)
| |
Collapse
|
17
|
Niimi N, Yako H, Takaku S, Kato H, Matsumoto T, Nishito Y, Watabe K, Ogasawara S, Mizukami H, Yagihashi S, Chung SK, Sango K. A spontaneously immortalized Schwann cell line from aldose reductase-deficient mice as a useful tool for studying polyol pathway and aldehyde metabolism. J Neurochem 2018; 144:710-722. [DOI: 10.1111/jnc.14277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Naoko Niimi
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Hideji Yako
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Shizuka Takaku
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Hiroshi Kato
- Sumitomo Dainippon Pharma Co., Ltd.; Osaka Japan
| | | | - Yasumasa Nishito
- Basic Technology Research Center; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kazuhiko Watabe
- Department of Medical Technology; Faculty of Health Sciences; Kyorin University; Tokyo Japan
| | - Saori Ogasawara
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Sookja K. Chung
- School of Biomedical Sciences; Research Center of Heart, Brain, Hormone and Healthy Aging and State Key Laboratory of Pharmaceutical Biotechnology; The University of Hong Kong; Hong Kong SAR China
| | - Kazunori Sango
- Diabetic Neuropathy Project; Department of Sensory and Motor Systems; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| |
Collapse
|
18
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells. Neuropathology 2017; 37:475-481. [PMID: 28707715 DOI: 10.1111/neup.12397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022]
Abstract
Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| |
Collapse
|
19
|
Yeh CW, Wang LW, Wu HC, Hsieh YK, Wang J, Chen MH, Wang TW. Development of biomimetic micro-patterned device incorporated with neurotrophic gradient and supportive Schwann cells for the applications in neural tissue engineering. Biofabrication 2017; 9:015024. [PMID: 28169834 DOI: 10.1088/1758-5090/aa5ef2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In these years, the artificial nerve guidance conduit (NGC) has been developed as an alternative way to repair peripheral nerve injury. Unlike autologous nerve graft, the artificial NGC without proper stimulating factors and guidance cues still cannot obtain satisfactory prognosis for clinical patients. In this study, a biodegradable polymer-based implantable device has been developed and characterized. By incorporating three stimulating factors: (1) micro-patterned surface that can directionally guide the axon as physical cue; (2) neurotrophic gradient membrane that can continually attract axon outgrowth from the proximal to distal stump as chemical cue; (3) Schwann cells (SCs) that can support the growth of neurite and form myelin sheath around axon as biological cue, we expect that this construct can be used as a promising NGC for peripheral nerve regeneration. The results showed that the micro-patterned surface with specific dimension of channels and chambers can be precisely fabricated by laser ablation. Attachment and directional extension of differentiated neural stem cells (NSCs) were observed in micro-channels. The gradient distribution of nerve growth factor 7S on gelatin membrane was successfully achieved. Significant improvement in neurite length and increase in neuronal gene expressions were also noticed in higher concentration region. When co-culturing with SCs, NSCs can differentiate toward neuronal cells with strong expression of mature neuronal markers: βIII tubulin and microtubule-associated protein-2 (Map 2). Meanwhile, myelin basic protein was also observed, suggesting that SCs can provide biological support to neuronal cells in vitro. In the future, this advanced artificial NGC may be used as implantable prosthesis for the treatment of peripheral nerve injury with better functional recovery.
Collapse
Affiliation(s)
- Chia-Wei Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Elmore SA, Chen VS, Hayes-Bouknight S, Hoane JS, Janardhan K, Kooistra LH, Nolte T, Szabo KA, Willson GA, Wolf JC, Malarkey DE. Proceedings of the 2016 National Toxicology Program Satellite Symposium. Toxicol Pathol 2016; 45:11-51. [PMID: 27821709 DOI: 10.1177/0192623316672074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The 2016 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri" was held in San Diego, CA, at the Society of Toxicologic Pathology's (STP) 35th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks, along with select images that were used by the audience for voting and discussion. Some lesions and topics covered during the symposium included malignant glioma and histiocytic sarcoma in the rodent brain; a new statistical method designed for histopathology data evaluation; uterine stromal/glandular polyp in a rat; malignant plasma cell tumor in a mouse brain; Schwann cell proliferative lesions in rat hearts; axillary schwannoma in a cat; necrosis and granulomatous inflammation in a rat brain; adenoma/carcinoma in a rat adrenal gland; hepatocyte maturation defect and liver/spleen hematopoietic defects in an embryonic mouse; distinguishing malignant glioma, malignant mixed glioma, and malignant oligodendroglioma in the rat; comparison of mammary gland whole mounts and histopathology from mice; and discussion of the International Harmonization of Nomenclature and Diagnostic Criteria collaborations.
Collapse
Affiliation(s)
- Susan A Elmore
- 1 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Vivian S Chen
- 2 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | - Jessica S Hoane
- 2 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | | | - Thomas Nolte
- 4 Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - Gabrielle A Willson
- 5 Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Jeffrey C Wolf
- 6 Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | - David E Malarkey
- 1 National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Tsukahara R, Ueda H. Myelin-related gene silencing mediated by LPA1 – Rho/ROCK signaling is correlated to acetylation of NFκB in S16 Schwann cells. J Pharmacol Sci 2016; 132:162-165. [DOI: 10.1016/j.jphs.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 01/25/2023] Open
|
22
|
SncRNA715 Inhibits Schwann Cell Myelin Basic Protein Synthesis. PLoS One 2015; 10:e0136900. [PMID: 26317513 PMCID: PMC4552632 DOI: 10.1371/journal.pone.0136900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023] Open
Abstract
Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.
Collapse
|
23
|
Murakami T, Sango K, Watabe K, Niimi N, Takaku S, Li Z, Yamamura KI, Sunada Y. Schwann cells contribute to neurodegeneration in transthyretin amyloidosis. J Neurochem 2015; 134:66-74. [DOI: 10.1111/jnc.13068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kazunori Sango
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Kazuhiko Watabe
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Naoko Niimi
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Shizuka Takaku
- Department of Sensory and Motor Systems (ALS/Neuropathy Project); Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - Zhenghua Li
- Division of Developmental Genetics; Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Ken-ichi Yamamura
- Division of Developmental Genetics; Institute of Resource Development and Analysis; Kumamoto University; Kumamoto Japan
| | - Yoshihide Sunada
- Department of Neurology; Kawasaki Medical School; Kurashiki Japan
| |
Collapse
|
24
|
Cinci L, Corti F, Di Cesare Mannelli L, Micheli L, Zanardelli M, Ghelardini C. Oxidative, metabolic, and apoptotic responses of Schwann cells to high glucose levels. J Biochem Mol Toxicol 2015; 29:274-9. [PMID: 25683646 DOI: 10.1002/jbt.21695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/10/2022]
Abstract
The specific response of murine Schwann cells IMS32 to acute and chronic hyperglycemia conditions was evaluated. The pathophysiological alterations were studied to deepening the role of Schwann cells in diabetes-related neurotoxicity and to assess a model to screen new protective molecules. IMS32 were incubated with 30 and 56 mM glucose for 48 h and 7 and 14 days, and markers of oxidative stress, apoptosis, and polyol pathway were evaluated. High glucose induced O(2) -production and lipid peroxidation at all time point whereas Caspase 3 activity was induced only after 14 days. Aldose reductase activity and expression were significantly increased after 48 h and 14 days, respectively. Our results describe the response of Schwann cells to high glucose conditions and suggest the use of IMS32 for the screening of protective molecules in diabetes-induced neuropathy.
Collapse
Affiliation(s)
- Lorenzo Cinci
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child health (NEUROFARBA), University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
25
|
Himeno T, Kamiya H, Naruse K, Cheng Z, Ito S, Shibata T, Kondo M, Kato J, Okawa T, Fujiya A, Suzuki H, Kito T, Hamada Y, Oiso Y, Isobe K, Nakamura J. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice. J Diabetes Res 2015; 2015:257230. [PMID: 25977928 PMCID: PMC4419216 DOI: 10.1155/2015/257230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although numerous reports addressing pathological involvements of diabetic polyneuropathy have been conducted, a universally effective treatment of diabetic polyneuropathy has not yet been established. Recently, regenerative medicine studies in diabetic polyneuropathy using somatic stem/progenitor cell have been reported. However, the effectiveness of these cell transplantations was restricted because of their functional and numerical impairment in diabetic objects. Here, we investigated the efficacy of treatment for diabetic polyneuropathy using angioblast-like cells derived from mouse embryonic stem cells. METHODS AND RESULTS Angioblast-like cells were obtained from mouse embryonic stem cells and transplantation of these cells improved several physiological impairments in diabetic polyneuropathy: hypoalgesia, delayed nerve conduction velocities, and reduced blood flow in sciatic nerve and plantar skin. Furthermore, pathologically, the capillary number to muscle fiber ratios were increased in skeletal muscles of transplanted hindlimbs, and intraepidermal nerve fiber densities were ameliorated in transplanted plantar skin. Transplanted cells maintained their viabilities and differentiated to endothelial cells and smooth muscle cells around the injection sites. Moreover, several transplanted cells constructed chimeric blood vessels with recipient cells. CONCLUSIONS These results suggest that transplantation of angioblast like cells induced from embryonic stem cells appears to be a novel therapeutic strategy for diabetic polyneuropathy.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hideki Kamiya
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
- *Hideki Kamiya:
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaki Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hirohiko Suzuki
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsutaro Kito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 21 Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
26
|
Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, Kondo M, Tsunekawa S, Naruse K, Hamada Y, Ozaki N, Cheng Z, Kito T, Suzuki H, Ito S, Oiso Y, Nakamura J, Isobe KI. Transplantation of Neural Crest-Like Cells Derived from Induced Pluripotent Stem Cells Improves Diabetic Polyneuropathy in Mice. Cell Transplant 2013; 22:1767-83. [DOI: 10.3727/096368912x657710] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Impaired vascularity and nerve degeneration are the most important pathophysiological abnormalities of diabetic polyneuropathy (DPN). Therefore, regeneration of both the vascular and nervous systems is required for the treatment of DPN. The neural crest (NC) is a transient embryonic structure in vertebrates that differentiates into a vast range of cells, including peripheral neurons, Schwann cells, and vascular smooth muscle cells. In this study, we investigated the ability of transplantation of NC-like (NCL) cells derived from aged mouse induced pluripotent stem (iPS) cells in the treatment of DPN. iPS cells were induced to differentiate into neural cells by stromal cell-derived inducing activity (SDIA) and subsequently supplemented with bone morphogenetic protein 4 to promote differentiation of NC lineage. After the induction, p75 neurotrophin receptor-positive NCL cells were purified using magnetic-activated cell sorting. Sorted NCL cells differentiated to peripheral neurons, glial cells, and smooth muscle cells by additional SDIA. NCL cells were transplanted into hind limb skeletal muscles of 16-week streptozotocin-diabetic mice. Nerve conduction velocity, current perception threshold, intraepidermal nerve fiber density, sensitivity to thermal stimuli, sciatic nerve blood flow, plantar skin blood flow, and capillary number-to-muscle fiber ratio were evaluated. Four weeks after transplantation, the engrafted cells produced growth factors: nerve growth factor, neurotrophin 3, vascular endothelial growth factor, and basic fibroblast growth factor. It was also confirmed that some engrafted cells differentiated into vascular smooth muscle cells or Schwann cell-like cells at each intrinsic site. The transplantation improved the impaired nerve and vascular functions. These results suggest that transplantation of NCL cells derived from iPS cells could have therapeutic effects on DPN through paracrine actions of growth factors and differentiation into Schwann cell-like cells and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Kamiya
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Seino
- Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | - Atsushi Fujiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | - Masaki Kondo
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | - Nobuaki Ozaki
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Zhao Cheng
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsutaro Kito
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirohiko Suzuki
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
27
|
Kim ES, Isoda F, Kurland I, Mobbs CV. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists. Endocrinology 2013; 154:3054-66. [PMID: 23709088 PMCID: PMC5393331 DOI: 10.1210/en.2013-1097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.
Collapse
Affiliation(s)
- Esther S Kim
- Department of Neuroscience, Icahn School of Medicine at Mt Sinai School, New York, New York 10029, USA
| | | | | | | |
Collapse
|
28
|
Volpato FZ, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 2013; 34:4945-55. [PMID: 23597407 DOI: 10.1016/j.biomaterials.2013.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Regeneration within the mammalian central nervous system (CNS) is limited, and traumatic injury often leads to permanent functional motor and sensory loss. The lack of regeneration following spinal cord injury (SCI) is mainly caused by the presence of glial scarring, cystic cavitation and a hostile environment to axonal growth at the lesion site. The more prominent experimental treatment strategies focus mainly on drug and cell therapies, however recent interest in biomaterial-based strategies are increasing in number and breadth. Outside the spinal cord, approaches that utilize the extracellular matrix (ECM) to promote tissue repair show tremendous potential for various application including vascular, skin, bone, cartilage, liver, lung, heart and peripheral nerve tissue engineering (TE). Experimentally, it is unknown if these approaches can be successfully translated to the CNS, either alone or in combination with synthetic biomaterial scaffolds. In this review we outline the first attempts to apply the potential of ECM-based biomaterials and combining cell-derived ECM with synthetic scaffolds.
Collapse
Affiliation(s)
- Fabio Zomer Volpato
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove 4059, Australia
| | | | | | | | | |
Collapse
|
29
|
Takaku S, Yanagisawa H, Watabe K, Horie H, Kadoya T, Sakumi K, Nakabeppu Y, Poirier F, Sango K. GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem Int 2013; 62:330-9. [DOI: 10.1016/j.neuint.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
|
30
|
Sango K, Watabe K. [Immortalized adult rodent Schwann cells as useful tools for the study of peripheral nerve regeneration]. Rinsho Shinkeigaku 2013; 53:1117-9. [PMID: 24291897 DOI: 10.5692/clinicalneurol.53.1117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have established spontaneously immortalized Schwann cell lines from adult ICR mice [IMS32] and Fischer344 rats [IFRS1]. IMS32 cells display distinct Schwann cell phenotypes such as a spindle-shaped morphology and the expression of glial cell markers (e.g. S100, glial fibrillary acidic protein (GFAP), p75 low-affinity neurotrophin receptor (p75(NTR))) and neurotrophic factors. In addition, conditioned medium obtained from IMS32 cells enhances neurite elongation of PC12 cells and mouse dorsal root ganglion (DRG) neurons. IMS32 cells have been utilized to investigate the action mechanisms of various molecules that accelerate peripheral nerve regeneration (e.g. ciliary neurotrophic factor, sonic hedgehog, galectin-1). Like IMS32 cells, IFRS1 cells retain the characteristic features of mature Schwann cells as described above. Furthermore, IFRS1 cells have been shown to myelinate neurites in coculture with adult rat DRG neurons and PC12 cells. Our current investigation with IFRS1 cells focuses on the molecular mechanisms of myelination-inducible factors, such as soluble neuregulin-1 type III and exendin-4. These Schwann cell lines can be valuable tools for exploring neuron-Schwann cell interactions, pathobiology of axonal degeneration and regeneration in the peripheral nervous system, and novel therapeutic approaches against neurological disorders in patients with relevant diseases.
Collapse
Affiliation(s)
- Kazunori Sango
- Laboratory of Peripheral Nerve Pathophysiology, Tokyo Metropolitan Institute of Medical Science
| | | |
Collapse
|
31
|
Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR, Klein R, Raivich G, Behrens A. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 2012; 198:127-41. [PMID: 22753894 PMCID: PMC3392945 DOI: 10.1083/jcb.201205025] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022] Open
Abstract
The AP-1 transcription factor c-Jun is a master regulator of the axonal response in neurons. c-Jun also functions as a negative regulator of myelination in Schwann cells (SCs) and is strongly reactivated in SCs upon axonal injury. We demonstrate here that, after injury, the absence of c-Jun specifically in SCs caused impaired axonal regeneration and severely increased neuronal cell death. c-Jun deficiency resulted in decreased expression of several neurotrophic factors, and GDNF and Artemin, both of which encode ligands for the Ret receptor tyrosine kinase, were identified as novel direct c-Jun target genes. Genetic inactivation of Ret specifically in neurons resulted in regeneration defects without affecting motoneuron survival and, conversely, administration of recombinant GDNF and Artemin protein substantially ameliorated impaired regeneration caused by c-Jun deficiency. These results reveal an unexpected function for c-Jun in SCs in response to axonal injury, and identify paracrine Ret signaling as an important mediator of c-Jun function in SCs during regeneration.
Collapse
Affiliation(s)
- Xavier Fontana
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Clive Da Costa
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Smriti Patodia
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Laura Thei
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Milan Makwana
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Bradley Spencer-Dene
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Morwena Latouche
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Rhona Mirsky
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Kristjan R. Jessen
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Rüdiger Klein
- Department of Molecular Neurobiology, Max Planck Institute of Neurobiology, 82152 Munich-Martinsried, Germany
| | - Gennadij Raivich
- Perinatal Brain Repair Group, Department of Obstetrics and Gynaecology, University College London, London WC1E 6HX, England, UK
| | - Axel Behrens
- Mammalian Genetics Laboratory and Experimental Pathology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| |
Collapse
|
32
|
Fregoso SP, Hoover DB. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart. Neuroscience 2012; 221:28-36. [PMID: 22766236 DOI: 10.1016/j.neuroscience.2012.06.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/21/2023]
Abstract
Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart.
Collapse
Affiliation(s)
- S P Fregoso
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
33
|
Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 2012; 137:829-39. [DOI: 10.1007/s00418-012-0934-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 12/31/2022]
|
34
|
Dysregulated in vitro hematopoiesis, radiosensitivity, proliferation, and osteoblastogenesis with marrow from SAMP6 mice. Exp Hematol 2012; 40:499-509. [PMID: 22326715 DOI: 10.1016/j.exphem.2012.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/12/2023]
Abstract
The senescence accelerated-prone mouse variant 6 (SAMP6) shows normal growth followed by rapid aging, development of osteopenia, and shortened lifespan, compared with control R1 mice. Because oxidative stress is a fundamental mechanism of tissue aging, we tested whether cellular parameters that are associated with oxidative stress are impaired with marrow from SAMP6 mice. We compared in vitro hematopoiesis, irradiation sensitivity, proliferative potential, and osteoblastogenesis with marrow cells from SAMP6 and R1 mice. Marrow cells from SAMP6 mice showed shortened in vitro hematopoiesis; their stromal cells showed greater radiation sensitivity and decreased proliferation. Consistent with those properties, there was constitutive upregulation of transforming growth factor-β(1), an inhibitor of hematopoiesis, and of cell cycle inhibitory genes, p16(INK4A) and p19(ARF). Paradoxically, there was constitutive expression of osteoblast genes in stromal cells from SAMP6 mice, but in vitro matrix mineralization was impaired. These studies and data included in other reports indicate that impaired proliferation of osteoblast progenitors in SAMP6 marrow may be a major factor contributing to accelerated loss of bone mass. In sum, marrow from SAMP6 mice had diminished capacity for long-term hematopoiesis, increased radiosensitivity, and reduced proliferative capacity.
Collapse
|
35
|
Kim N, Kim SH, Kim YJ, Kim JK, Nam MK, Rhim H, Yoon SK, Choi SZ, Son M, Kim SY, Kuh HJ. Neurotrophic activity of DA-9801, a mixture extract of Dioscorea japonica Thunb. and Dioscorea nipponica Makino, in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:312-319. [PMID: 21651968 DOI: 10.1016/j.jep.2011.05.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscorea japonica Thunb. has been traditionally used to treat polyuria and diabetes in Korea. AIM OF THE STUDY We previously report the effects of Dioscorea japonica Thunb. extract on glucose control, NGF induction, and neuroprotection in a rodent diabetic model. Since the most potent fraction, DA-9801, was identified from a mixture of Dioscorea japonica Thunb. (DJ) and Dioscorea nipponica Makino (DN) following bioactivity-guided fractionation, here, we investigated the potential mechanism of the extract activity against diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS A 1:3 mixture of DJ and DN was extracted with ethanol (DA-9801) and further fractionated into an ethylacetate-soluble fraction (DA-9801E). Effects of these extracts on neurite outgrowth were measured in PC-12 cells and DRG neurons. Effects on cell viability and TrkA phosphorylation were evaluated in PC-12 cells. NGF induction effect was determined in primary Schwann cells as well as IMS32 cells (immortalized Schwann cells). RESULTS No cytotoxicity was observed in PC-12 cells at the concentration below 500 μg/ml of either DA-9801 or DA-9801E. DA-9801 and DA-9801E at 100 μg/ml and 10 μg/ml, respectively, showed a significant effect on neurite outgrowth in PC-12 cells and DRG neurons in the presence of or absence a low concentration of NGF (2 ng/ml). The Trk-A phosphorylation effect of DA9801 was confirmed in PC-12 cells. An NGF induction effect of these extracts was not detected in either IMS-32 cells, or primary Schwann cells. CONCLUSIONS The NGF agonistic activity of DA-9801 and DA-9801E was demonstrated, which may contribute to their neuroprotective effect against DPN. Studies of the detailed mechanism of these extracts as well as identification of the active components are warranted for the development of an anti-DPN drug from DJ and DN.
Collapse
Affiliation(s)
- Namho Kim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, 505 Banpo-4-dong, Seocho-ku, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Himeno T, Kamiya H, Naruse K, Harada N, Ozaki N, Seino Y, Shibata T, Kondo M, Kato J, Okawa T, Fukami A, Hamada Y, Inagaki N, Seino Y, Drucker DJ, Oiso Y, Nakamura J. Beneficial effects of exendin-4 on experimental polyneuropathy in diabetic mice. Diabetes 2011; 60:2397-406. [PMID: 21810596 PMCID: PMC3161330 DOI: 10.2337/db10-1462] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The therapeutic potential of exendin-4, an agonist of the glucagon-like peptide-1 receptor (GLP-1R), on diabetic polyneuropathy (DPN) in streptozotocin (STZ)-induced diabetic mice was investigated. RESEARCH DESIGN AND METHODS The presence of the GLP-1R in lumbar dorsal root ganglion (DRG) was evaluated by immunohistochemical analyses. DRG neurons were dissected from C57BL6/J mice and cultured with or without Schwann cell-conditioned media in the presence or absence of GLP-1 (7-37) or exendin-4. Then neurite outgrowth was determined. In animal-model experiments, mice were made diabetic by STZ administration, and after 12 weeks of diabetes, exendin-4 (10 nmol/kg) was intraperitoneally administered once daily for 4 weeks. Peripheral nerve function was determined by the current perception threshold and motor and sensory nerve conduction velocity (MNCV and SNCV, respectively). Sciatic nerve blood flow (SNBF) and intraepidermal nerve fiber densities (IENFDs) also were evaluated. RESULTS The expression of the GLP-1R in DRG neurons was confirmed. GLP-1 (7-37) and exendin-4 significantly promoted neurite outgrowth of DRG neurons. Both GLP-1R agonists accelerated the impaired neurite outgrowth of DRG neurons cultured with Schwann cell-conditioned media that mimicked the diabetic condition. At the doses used, exendin-4 had no effect on blood glucose or HbA(1c) levels. Hypoalgesia and delayed MNCV and SNCV in diabetic mice were improved by exendin-4 without affecting the reduced SNBF. The decreased IENFDs in sole skins of diabetic mice were ameliorated by exendin-4. CONCLUSIONS Our findings indicate that exendin-4 ameliorates the severity of DPN, which may be achieved by its direct actions on DRG neurons and their axons.
Collapse
Affiliation(s)
- Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Kamiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Chronic Kidney Disease Initiatives, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Corresponding author: Hideki Kamiya,
| | - Keiko Naruse
- Department of Internal Medicine, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Norio Harada
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuaki Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiga Shibata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Kondo
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Kato
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Fukami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Hamada
- Department of Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition, and Endocrinology, Department of Medicine, Kansai Electric Power Hospital, Osaka, Japan
| | - Daniel J. Drucker
- Department of Medicine, Mt. Sinai Hospital, Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jiro Nakamura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
37
|
Pita-Thomas W, Nieto-Sampedro M, Maza RM, Nieto-Diaz M. Factors promoting neurite outgrowth during deer antler regeneration. J Neurosci Res 2011; 88:3034-47. [PMID: 20629188 DOI: 10.1002/jnr.22459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Every year male deers completely regenerate their antlers. During this process, antlers are reinnervated by sensory fibers, growing at the highest rate recorded for any adult mammal. Despite its clinical potential, only a few studies have dealt with this fascinating phenomenon. Among the possible factors underlying fast growth of the antler's innervation, the effects of the antler's endocrine and paracrine factors were evaluated, using an in vitro assay for sensory neurite growth. We found that soluble molecules secreted by the velvet, the modified skin that covers the antler, strongly promote neurite outgrowth. Using specific blocking antibodies, we demonstrated that nerve growth factor is partially responsible for these effects, although other unidentified molecules are also involved. On the contrary, neither endocrine serum factors nor antler substrates promoted neurite outgrowth, although antler substrata from deep velvet layers cause neurite outgrowth orientation. Taken together, our results point to the existence in the deep velvet of an environment that promotes oriented axon growth, in agreement with the distribution of the antler innervation.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | | | | | | |
Collapse
|
38
|
Immortalized adult rodent Schwann cells as in vitro models to study diabetic neuropathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:374943. [PMID: 21747827 PMCID: PMC3124069 DOI: 10.1155/2011/374943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/03/2011] [Accepted: 04/14/2011] [Indexed: 12/22/2022]
Abstract
We have established spontaneously immortalized Schwann cell lines from normal adult mice and rats and murine disease models. One of the normal mouse cell lines, IMS32, possesses some biological properties of mature Schwann cells and high proliferative activities. The IMS32 cells under hyperglycemic and/or hyperlipidemic conditions have been utilized to investigate the pathogenesis of diabetic neuropathy, especially the polyol pathway hyperactivity, glycation, increased oxidative stress, and reduced synthesis of neurotrophic factors. In addition to the mouse cell lines, our current study focuses on the characterization of a normal rat cell line, IFRS1, under normal and high glucose conditions. These Schwann cell lines can be valuable tools for exploring the detailed mechanisms leading to diabetic neuropathy and novel therapeutic approaches against that condition.
Collapse
|
39
|
Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 2011; 229:80-7. [DOI: 10.1016/j.expneurol.2010.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
40
|
Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K. Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 2011; 89:898-908. [DOI: 10.1002/jnr.22605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 01/17/2023]
|
41
|
Palmitate induces apoptosis in Schwann cells via both ceramide-dependent and independent pathways. Neuroscience 2010; 176:188-98. [PMID: 21145948 DOI: 10.1016/j.neuroscience.2010.11.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 12/27/2022]
Abstract
Peripheral neuropathy has been reported to prevail in obese or pre-diabetic individuals, yet its etiology remains unknown. Palmitate, a saturated fatty acid increased in obesity and diabetes, is known to induce apoptosis in multiple types of cells and this effect may be mediated by ceramide, a member of the sphingolipid family. To clarify whether de novo ceramide synthesis from palmitate contributes to apoptosis of Schwann cells, we cultured immortalized mouse Schwann cells (IMS) and rat primary Schwann cells with palmitate, a ceramide analogue C2-ceramide as well as inhibitors of the de novo ceramide synthesis (myriocin and fumonisin B1). Apoptosis of IMS detected by nuclear staining and cell membrane inversion was significantly increased by incubation with palmitate for 48 h in a dose-dependent fashion. This enhanced apoptosis was partially but significantly suppressed by myriocin and fumonisin B1. Western blot analysis and immunostaining revealed that palmitate clearly activated caspase-3 in IMS. Unexpectedly, the ceramide synthesis inhibitors failed to suppress the palmitate-induced caspase-3 activation in spite of complete restoration in ceramide accumulation. The results seemed relevant to the observations that C2-ceramide did not activate caspase-3 while provoking apoptosis with a clear dose-dependency. In agreement, the pro-apoptotic action of C2-ceramide was not attenuated by caspase inhibitors that partially suppressed palmitate-induced apoptosis. These results in IMS were well reproducible in rat primary Schwann cells, indicating that the observed phenomena are not specific to the cell line. Collectively, we have reached a conclusion that palmitate induces apoptosis in Schwann cells via both a ceramide-mediated, caspase-3-independent pathway and ceramide-independent, caspase-3-dependent pathways. Given the fact that palmitate and ceramide are increased in obese or pre-diabetic subjects, these lipids may be implicated in the pathogenesis of peripheral neuropathy observed in these disorders.
Collapse
|
42
|
Klausmeyer A, Conrad R, Faissner A, Wiese S. Influence of glial-derived matrix molecules, especially chondroitin sulfates, on neurite growth and survival of cultured mouse embryonic motoneurons. J Neurosci Res 2010; 89:127-41. [PMID: 21162121 DOI: 10.1002/jnr.22531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/02/2010] [Accepted: 09/08/2010] [Indexed: 12/24/2022]
Abstract
Mechanisms controlling neuronal survival and regeneration play an important role during development, after birth, and under lesion conditions. Isolated embryonic mouse motoneurons have been a useful tool for studying such basic mechanisms. These cultured motoneurons depend on extracellular matrix (ECM) molecules, which are potent mediators of survival and axonal growth and guidance in the CNS and in vitro, exhibiting either attractive or repellent guidance cues. Additionally, ECM proteoglycans and glycoproteins are components of the glial scar acting as a growth barrier for regenerating axons. Compared with CNS axon outgrowth, less is known about the cues that guide motoneurons toward their peripheral targets. Because we are interested in the effects of glial-derived chondroitin sulfate proteoglycans (CSPGs), we have worked out a model system for investigating the influences of glial-derived matrix molecules on motoneuron outgrowth and survival. We used cultured embryonic mouse motoneurons to investigate axon growth effects of matrix molecules produced by the glial-derived cell lines A7, Neu7, and Oli-neu primary astrocytes as well as the immortalized Schwann cell line IMS32. The results indicate that molecules of the ECM, especially chondroitin sulfates, play an important role as axon growth-promoting cues. We could demonstrate a modifying effect of the matrix components on motoneuron survival and caspase3-induced apoptosis.
Collapse
Affiliation(s)
- Alice Klausmeyer
- Department of Cellmorphology and Molecular Neurobiology, Laboratory of Molecular Cellbiology, Faculty of Biology and Biotechnology, Ruhr-University-Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
The importance and essential functions of glial cells in the nervous system are now beginning to be understood and appreciated. Glial cell lines have been instrumental in the elucidation of many of these properties. In this Overview, the origin and properties of most of the existing cell lines for the major glial types: oligodendroglia, astroglia, microglia and Schwann cells, are documented. Particular emphasis is given to the culture conditions for each cell line and the degree to which the line can differentiate in vitro and in vivo. The major molecular markers for each glial cell lines are indicated. Finally, methods by which the glial cell lines have been developed are noted and the future directions of glial cell line research are discussed.
Collapse
|
44
|
The transthyretin gene is expressed in Schwann cells of peripheral nerves. Brain Res 2010; 1348:222-5. [PMID: 20547140 DOI: 10.1016/j.brainres.2010.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022]
Abstract
Transthyretin (TTR) is mainly expressed in the liver and choroid plexus of the brain. The majority of familial amyloidotic polyneuropathy cases are caused by a mutant TTR gene. The origin of the TTR deposited in the peripheral nervous system is unknown. We studied the expression of TTR in the peripheral nerves of normal mice and transgenics bearing the human mutant TTR in a mouse Ttr-null background. Using RT-PCR, Ttr and TTR mRNA was observed in both dorsal root ganglia and sciatic nerves. Ttr mRNA was detected in cultured mouse Schwann cells and the immortalized mouse Schwann cell line, IMS32 cells. Human TTR mRNA and protein were detected in cultured Schwann cells derived from the transgenic mice. We conclude that the TTR gene is expressed in the Schwann cells of peripheral nerves.
Collapse
|
45
|
Ohta K, Kuno S, Inoue S, Ikeda E, Fujinami A, Ohta M. The effect of dopamine agonists: The expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci 2010; 291:12-6. [DOI: 10.1016/j.jns.2010.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 11/25/2022]
|
46
|
Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 2009; 91:994-1005. [DOI: 10.1002/jbm.a.32329] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Neville CM, Huang AY, Shyu JY, Snyder EY, Hadlock TA, Sundback CA. Neural Precursor Cell Lines Promote Neurite Branching. Int J Neurosci 2009; 119:15-39. [DOI: 10.1080/00207450802480218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Synergistic effects of osteonectin and NGF in promoting survival and neurite outgrowth of superior cervical ganglion neurons. Brain Res 2009; 1289:1-13. [PMID: 19596278 DOI: 10.1016/j.brainres.2009.06.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 01/01/2023]
Abstract
Schwann cells (SCs) play a major role in the successful regeneration of peripheral nerves regeneration. Here we examined the effects of osteonectin (ON), a major factor secreted by SCs, on survival and neuritogenesis of mouse superior cervical ganglion (SCG) neurons. SC conditioned medium (SCCM) not only promoted the survival and neuritogenesis of SCG neurons at a level comparable to nerve growth factor (NGF) but also doubled the neurite length of NGF-treated SCG neurons. SCCM neuritogenic effects were not blocked by the tyrosine kinase receptor (Trk) inhibitor K252a demonstrating that these are not due solely to classical neurotrophic factors. Anti-ON neutralizing antibody diminished the SCCM-induced survival and neuritogenesis significantly. In the presence of K252a, the SCCM neuritogenic effects were blocked completely by anti-ON which suggests synergistic effects of ON with Trk-mediated growth factors. ON alone increased the survival and neurite outgrowth of SCG neurons significantly at high density cultures. ON at low concentration acts synergistically with NGF which induced maximum survival and neurite outgrowth (>50% increase). However, ON at high concentration was detrimental to survival (64% decrease) and neurite outgrowth (87% decrease) even in the presence of NGF. The well documented counter-adhesive effect of ON may account for this observation. Nevertheless, the growth promoting effects of ON became more pronounced as the cell density increased which suggests a possible interaction of ON with growth factors secreted by SCG neurons (autocrine or paracrine effects). Taken together, our study indicates that ON plays important roles in nervous system repair through its synergistic effects with growth factors.
Collapse
|
49
|
Akeboshi H, Kasahara Y, Tsuji D, Itoh K, Sakuraba H, Chiba Y, Jigami Y. Production of human beta-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. Glycobiology 2009; 19:1002-9. [PMID: 19506294 DOI: 10.1093/glycob/cwp080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Effective enzyme replacement therapy for lysosomal storage diseases requires a recombinant enzyme with highly phosphorylated N-glycans. Recombinant human beta-hexosaminidase A is a potentially therapeutic enzyme for GM2-gangliosidosis. Recombinant HexA has been produced by using the methylotrophic yeast Ogataea minuta as a host, and the purified enzyme was tested for its replacement effect on cultured fibroblasts derived from GM2-gangliosidosis patients. Although the therapeutic effect was observed, in order to obtain the higher therapeutic effect with a little dose as possible, increased phosphorylation of recombinant beta-hexosaminidase A N-glycans is suggested to be prerequisite. In the budding yeast Saccharomyces cerevisiae, the overexpression of MNN4, which encodes a positive regulator of mannosylphosphate transferase, led to increased mannosylphosphate contents. In the present study, we cloned OmMNN4, a homologous gene to ScMNN4, based on the genomic sequence of O. minuta. We overexpressed the cloned gene under the control of the alcohol oxidase promoter in a beta-hexosaminidase A-producing yeast strain. Structural analysis of pyridylamine-labeled N-glycans by high-performance liquid chromatography revealed that the overexpression of MNN4 caused a 3-fold increase in phosphorylated N-glycans of recombinant beta-hexosaminidase A. The recombinant enzyme prepared from strains overexpressing OmMNN4 was more effectively incorporated into cultured fibroblasts and neural cells, and it more rapidly degraded the accumulated GM2-ganglioside as compared to the control enzyme. These results suggest that beta-hexosaminidase A produced in a strain that overexpresses OmMNN4 will act as an effective enzyme for use in replacement therapy of GM2-gangliosidosis.
Collapse
Affiliation(s)
- Hiromi Akeboshi
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Matsushita Y, Nakajima K, Tohyama Y, Kurihara T, Kohsaka S. Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase C alpha (PKCalpha) and mitogen-activated protein kinases (MAPKS). J Neurosci Res 2008; 86:1959-71. [PMID: 18438912 DOI: 10.1002/jnr.21657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of microglia to produce/secrete glial cell line-derived neurotrophic factor (GDNF) in vitro was examined. Immunoblotting analysis revealed that nonstimulated microglia release limited amounts of GDNF with molecular sizes of 14 and 17 kDa. However, the secreted amounts significantly decreased when the microglia were activated with the endotoxin lipopolysaccharide (LPS). Comparison of the amounts of GDNF in the cells and the conditioned medium between the nonstimulated microglia and LPS-stimulated microglia clarified that the secretion of GDNF, but not its production, is strongly suppressed when the microglia are activated with LPS. The inhibitor experiments suggested that the GDNF secretion is depressed by a signaling cascade associated with protein kinase C alpha (PKCalpha) and/or mitogen-activated protein kinases (MAPKs). As expected from the above results, a PKC activator suppressed the secretion of GDNF in nonstimulated microglia. Taken together, these results demonstrated that microglia have the ability to produce and secrete GDNF in vitro, and that the secretion is suppressed by stimulation with endotoxin, probably due to a signaling mechanism involving PKCalpha and/or MAPKs.
Collapse
Affiliation(s)
- Yuichi Matsushita
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|