1
|
Wang W, Meng X, Cui H, Zhang C, Wang S, Feng N, Zhao Y, Wang T, Yan F, Xia X. Self-assembled ferritin-based nanoparticles elicit a robust broad-spectrum protective immune response against SARS-CoV-2 variants. Int J Biol Macromol 2024; 264:130820. [PMID: 38484812 DOI: 10.1016/j.ijbiomac.2024.130820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants has resulted in global economic losses and posed a threat to human health. The pandemic highlights the urgent need for an efficient, easily producible, and broad-spectrum vaccine. Here, we present a potentially universal strategy for the rapid and general design of vaccines, focusing on the design and testing of omicron BA.5 RBD-conjugated self-assembling ferritin nanoparticles (NPs). The covalent bonding of RBD-Fc to protein A-ferritin was easily accomplished through incubation, resulting in fully multivalent RBD-conjugated NPs that exhibited high structural uniformity, stability, and efficient assembly. The ferritin nanoparticle vaccine synergistically stimulated the innate immune response, Tfh-GCB-plasma cell-mediated activation of humoral immunity and IFN-γ-driven cellular immunity. This nanoparticle vaccine induced a high level of cross-neutralizing responses and protected golden hamsters challenged with multiple mutant strains from infection-induced clinical disease, providing a promising strategy for broad-spectrum vaccine development for SARS-CoV-2 prophylaxis. In conclusion, the nanoparticle conjugation platform holds promise for its potential universality and competitive immunization efficacy and is expected to facilitate the rapid manufacturing and broad application of next-generation vaccines.
Collapse
Affiliation(s)
- Weiqi Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Xianyong Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| |
Collapse
|
2
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
3
|
Surcel M, Constantin C, Munteanu AN, Costea DA, Isvoranu G, Codrici E, Popescu ID, Tănase C, Ibram A, Neagu M. Immune Portrayal of a New Therapy Targeting Microbiota in an Animal Model of Psoriasis. J Pers Med 2023; 13:1556. [PMID: 38003872 PMCID: PMC10672519 DOI: 10.3390/jpm13111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite all the available treatments, psoriasis remains incurable; therefore, finding personalized therapies is a continuous challenge. Psoriasis is linked to a gut microbiota imbalance, highlighting the importance of the gut-skin axis and its inflammatory mediators. Restoring this imbalance can open new perspectives in psoriasis therapy. We investigated the effect of purified IgY raised against pathological human bacteria antibiotic-resistant in induced murine psoriatic dermatitis (PSO). METHODS To evaluate the immune portrayal in an imiquimod experimental model, before and after IgY treatment, xMAP array and flow cytometry were used. RESULTS There were significant changes in IL-1α,β, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17a, IFN-γ, TNF-α, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1β/CCL4, MIG/CXCL9, and KC/CXCL1 serum levels. T (CD3ε+), B (CD19+) and NK (NK1.1+) cells were also quantified. In our model, TNF-α, IL-6, and IL-1β cytokines and CXCL1 chemokine have extremely high circulatory levels in the PSO group. Upon experimental therapy, the cytokine serum values were not different between IgY-treated groups and spontaneously remitted PSO. CONCLUSIONS Using the murine model of psoriatic dermatitis, we show that the orally purified IgY treatment can lead to an improvement in skin lesion healing along with the normalization of cellular and humoral immune parameters.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Adriana Narcisa Munteanu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Diana Antonia Costea
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Gheorghița Isvoranu
- Animal Husbandry, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania;
| | - Elena Codrici
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Ionela Daniela Popescu
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (E.C.); (I.D.P.)
| | - Cristiana Tănase
- Faculty of Medicine, Titu Maiorescu University, Calea Văcăreşti 189, 031593 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, Şos. Centurii 7, 077190 Voluntari, Romania;
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Splaiul Independentei 99-101, 050096 Bucharest, Romania; (M.S.); (A.N.M.); (D.A.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Șos. Ștefan cel Mare 19-21, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Fig latex inhibits the growth of pathogenic bacteria invading human diabetic wounds and accelerates wound closure in diabetic mice. Sci Rep 2022; 12:21852. [PMID: 36528674 PMCID: PMC9759588 DOI: 10.1038/s41598-022-26338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Impaired wound healing is one of the most critical complications associated with diabetes mellitus. Infections and foot ulcers are major causes of morbidity for diabetic patients. The current treatment of diabetic foot ulcers, commonly used antibiotics, is associated with the development of bacterial resistance. Hence, novel and more effective natural therapeutic antibacterial agents are urgently needed and should be developed against the pathogenic bacteria inhabiting diabetic wounds. Therefore, the current study aimed to investigate the impact of fig latex on pathogenic bacteria and its ability to promote the healing process of diabetic wounds. The pathogenic bacteria were isolated from patients with diabetic foot ulcers admitted to Assiut University Hospital. Fig latex was collected from trees in the Assiut region, and its chemical composition was analyzed using GC‒MS. The antibacterial efficacy of fig latex was assessed on the isolated bacteria. An in vivo study to investigate the effect of fig latex on diabetic wound healing was performed using three mouse groups: nondiabetic control mice, diabetic mice and diabetic mice treated with fig latex. The influence of fig latex on the expression levels of β-defensin-1, PECAM-1, CCL2 and ZO-1 and collagen formation was investigated. The GC‒MS analysis demonstrated the presence of triterpenoids, comprising more than 90% of the total latex content. Furthermore, using a streptozotocin-induced diabetic mouse model, topical treatment of diabetic wound tissues with fig latex was shown to accelerate and improve wound closure by increasing the expression levels of β-defensin-1, collagen, and PECAM-1 compared to untreated diabetic wounds. Additionally, fig latex decreased the expression levels of ZO-1 and CCL2.
Collapse
|
5
|
Granata V, Possetti V, Parente R, Bottazzi B, Inforzato A, Sobacchi C. The osteoblast secretome in Staphylococcus aureus osteomyelitis. Front Immunol 2022; 13:1048505. [PMID: 36483565 PMCID: PMC9723341 DOI: 10.3389/fimmu.2022.1048505] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1β) and anti-inflammatory (e.g., TGF-β1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | | | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy,*Correspondence: Cristina Sobacchi,
| |
Collapse
|
6
|
Spreadborough PJ, Strong AL, Mares J, Levi B, Davis TA. Tourniquet use following blast-associated complex lower limb injury and traumatic amputation promotes end organ dysfunction and amplified heterotopic ossification formation. J Orthop Surg Res 2022; 17:422. [PMID: 36123728 PMCID: PMC9484189 DOI: 10.1186/s13018-022-03321-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic heterotopic ossification (tHO) is characterized by ectopic bone formation in extra-skeletal sites leading to impaired wound healing, entrapment of neurovascular structures, pain, and reduced range of motion. HO has become a signature pathology affecting wounded military personnel who have sustained blast-associated traumatic amputations during the recent conflicts in Iraq and Afghanistan and can compound recovery by causing difficulty with prosthesis limb wearing. Tourniquet use to control catastrophic limb hemorrhage prior to surgery has become almost ubiquitous during this time, with the recognition the prolonged use may risk an ischemia reperfusion injury and associated complications. While many factors influence the formation of tHO, the extended use of tourniquets to limit catastrophic hemorrhage during prolonged field care has not been explored. METHODS Utilizing an established pre-clinical model of blast-associated complex lower limb injury and traumatic amputation, we evaluated the effects of tourniquet use on tHO formation. Adult male rats were subjected to blast overpressure exposure, femur fracture, and soft tissue crush injury. Pneumatic tourniquet (250-300 mmHg) applied proximal to the injured limb for 150-min was compared to a control group without tourniquet, before a trans-femoral amputation was performed. Outcome measures were volume to tHO formation at 12 weeks and changes in proteomic and genomic markers of early tHO formation between groups. RESULTS At 12 weeks, volumetric analysis with microCT imaging revealed a 70% increase in total bone formation (p = 0.007) near the site of injury compared to rats with no tourniquet time in the setting of blast-injuries. Rats subjected to tourniquet usage had increased expression of danger-associated molecular patterns (DAMPs) and end organ damage as early as 6 h and as late as 7 days post injury. The expressions of pro-inflammatory cytokines and chemokines and osteochondrogenic genes using quantitative RT-PCR similarly revealed increased expression as early as 6 h post injury, and these genes along with hypoxia associated genes remained elevated for 7 days compared to no tourniquet use. CONCLUSION These findings suggest that tourniquet induced ischemia leads to significant increases in key transcription factors associated with early endochondral bone formation, systemic inflammatory and hypoxia, resulting in increased HO formation.
Collapse
Affiliation(s)
- Philip J. Spreadborough
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Amy L. Strong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI USA
| | - John Mares
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Thomas A. Davis
- Department of Surgery, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814 USA
| |
Collapse
|
7
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Qin S, Xu K, Nie B, Ji F, Zhang H. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity. J Biomed Mater Res A 2019; 106:2531-2539. [PMID: 29603857 DOI: 10.1002/jbm.a.36413] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/26/2022]
Abstract
Titanium (Ti) and its alloys are widely applied as orthopedic implants for hip and knee prosthesis, fixation, and dental implants. However, Ti and its alloys are bioinert and susceptible to bacteria and biofilm formation. Strategies for improving the antibacterial properties of Ti can be divided into two approaches, namely, passive coating and active coating on the Ti surface. Passive coating on Ti mainly kills the bacteria in contact but does not kill plankton or bacteria dwell in the bone tissue around the Ti implant. Active coating mainly involves the release of antibacterial agents to kill the bacteria, but this may result in the development of bacterial resistance. Both strategies include advantages and disadvantages. This article reviews the current and potential future approaches for improving antibacterial activity on Ti. We mainly focus on current approaches for fabricating antibacterial Ti and its limitations and countermeasures, and provide direction for further studies of biofunctionalization of Ti with antibacterial properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2531-2539, 2018.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Kaihang Xu
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Binen Nie
- Department of Bone and Joint Surgery, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Fang Ji
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| | - Hao Zhang
- Department of Orthopedics, Changhai hospital Affiliated to the Navy Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater 2019; 93:135-151. [PMID: 30685475 PMCID: PMC6615977 DOI: 10.1016/j.actbio.2019.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Musculoskeletal disorders are a significant burden on the global economy and public health. Advanced drug delivery plays a key role in the musculoskeletal field and holds the promise of enhancing the repair of degenerated and injured musculoskeletal tissues. Ideally, drug delivery should have the ability to directly deliver therapeutic agents to the diseased/injured sites with a desirable drug level over a period of time. Here, we present a mini-review of the current state-of-the-art research associated with local drug delivery and its use for the treatment of musculoskeletal disorders. First, an overview of drug delivery strategies, with a focus on issues related to musculoskeletal pathology, potential therapeutic strategies, conventional and non-conventional drugs, and various delivery systems, is introduced. Then, we highlight recent advances in the emerging fields of musculoskeletal local drug delivery, involving therapeutic drugs (e.g., genes, small molecule therapeutics, and stem cells), novel delivery vehicles (e.g., 3D printing and tissue engineering techniques), and innovative delivery approaches (e.g., multi-drug delivery and smart stimuli-responsive delivery). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications. STATEMENT OF SIGNIFICANCE: Three important aspects are highlighted in this manuscript: 1) The advanced musculoskeletal drug delivery is introduced from the aspects ranging from musculoskeletal disorders, potential therapeutic solutions, and various drug delivery systems. 2) The recent advances in the emerging fields of musculoskeletal local drug delivery, involving therapeutic drugs (e.g., genes, small molecule therapeutics, and stem cells), novel delivery vehicles (e.g., 3D printing and tissue engineering technique), and innovative delivery approaches (e.g., multi-drug delivery and smart stimuli-responsive delivery), are highlighted. 3) The challenges and perspectives of future research directions in the development of musculoskeletal local drug delivery are presented.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, United States.
| |
Collapse
|
10
|
Zhang S, Xing M, Li B. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering. Int J Mol Sci 2018; 19:E1641. [PMID: 29865178 PMCID: PMC6032323 DOI: 10.3390/ijms19061641] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- The Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA.
| |
Collapse
|
11
|
Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord 2018; 19:67. [PMID: 29499666 PMCID: PMC5833027 DOI: 10.1186/s12891-018-1990-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The utility of nanotechnology in medicine, specifically within the field of orthopedics, is a topic of extensive research. Our review provides a unique comprehensive overview of the current and potential future uses of nanotechnology with respect to orthopedic sub-specialties. Nanotechnology offers an immense assortment of novel applications, most notably the use of nanomaterials as scaffolds to induce a more favorable interaction between orthopedic implants and native bone. Nanotechnology has the capability to revolutionize the diagnostics and treatment of orthopedic surgery, however the long-term health effects of nanomaterials are poorly understood and extensive research is needed regarding clinical safety.
Collapse
Affiliation(s)
- Walter Ryan Smith
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Parke William Hudson
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | - Brent Andrew Ponce
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, 1313 13 St. South, Birmingham, AL 35205 USA
| | | |
Collapse
|
12
|
Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 2018; 36:22-32. [PMID: 28722231 PMCID: PMC5775060 DOI: 10.1002/jor.23656] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
There has been a dramatic increase in the emergence of antibiotic-resistant bacterial strains, which has made antibiotic choices for infection control increasingly limited and more expensive. In the U.S. alone, antibiotic-resistant bacteria cause at least 2 million infections and 23,000 deaths a year resulting in a $55-70 billion per year economic impact. Antibiotics are critical to the success of surgical procedures including orthopedic prosthetic surgeries, and antibiotic resistance is occurring in nearly all bacteria that infect people, including the most common bacteria that cause orthopedic infections, such as Staphylococcus aureus (S. aureus). Most clinical cases of orthopedic surgeries have shown that patients infected with antibiotic-resistant bacteria, such as methicillin-resistant S. aureus (MRSA), are associated with increased morbidity and mortality. This paper reviews the severity of antibiotic resistance at the global scale, the consequences of antibiotic resistance, and the pathways bacteria used to develop antibiotic resistance. It highlights the opportunities and challenges in limiting antibiotic resistance through approaches like the development of novel, non-drug approaches to reduce bacteria functions related to orthopedic implant-associated infections. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:22-32, 2018.
Collapse
Affiliation(s)
- Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA,Mary Babb Randolph Cancer Center, Morgantown, WV 26506, USA,Correspondence to: Bingyun Li, PhD, Department of Orthopaedics, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://medicine.hsc.wvu.edu/ortho-bli/. Thomas J. Webster, PhD, Department of Chemical Engineering, 313 Snell Engineering Center, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA, Tel: 1- 617-373-2989, , URL: http://www.che.neu.edu/people/webster-thomas
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia,Correspondence to: Bingyun Li, PhD, Department of Orthopaedics, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://medicine.hsc.wvu.edu/ortho-bli/. Thomas J. Webster, PhD, Department of Chemical Engineering, 313 Snell Engineering Center, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA, Tel: 1- 617-373-2989, , URL: http://www.che.neu.edu/people/webster-thomas
| |
Collapse
|
13
|
Dyskova T, Gallo J, Kriegova E. The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening. Front Immunol 2017; 8:1026. [PMID: 28883822 PMCID: PMC5573717 DOI: 10.3389/fimmu.2017.01026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/08/2017] [Indexed: 12/27/2022] Open
Abstract
Millions of total joint replacements are performed annually worldwide, and the number is increasing every year. The overall proportion of patients achieving a successful outcome is about 80–90% in a 10–20-years time horizon postoperatively, periprosthetic osteolysis (PPOL) and aseptic loosening (AL) being the most frequent reasons for knee and hip implant failure and reoperations. The chemokine system (chemokine receptors and chemokines) is crucially involved in the inflammatory and osteolytic processes leading to PPOL/AL. Thus, the modulation of the interactions within the chemokine system may influence the extent of PPOL. Indeed, recent studies in murine models reported that (i) blocking the CCR2–CCL2 or CXCR2–CXCL2 axis or (ii) activation of the CXCR4–CXCL12 axis attenuate the osteolysis of artificial joints. Importantly, chemokines, inhibitory mutant chemokines, antagonists of chemokine receptors, or neutralizing antibodies to the chemokine system attached to or incorporated into the implant surface may influence the tissue responses and mitigate PPOL, thus increasing prosthesis longevity. This review summarizes the current state of the art of the knowledge of the chemokine system in human PPOL/AL. Furthermore, the potential for attenuating cell trafficking to the bone–implant interface and influencing tissue responses through modulation of the chemokine system is delineated. Additionally, the prospects of using immunoregenerative biomaterials (including chemokines) for the prevention of failed implants are discussed. Finally, this review highlights the need for a more sophisticated understanding of implant debris-induced changes in the chemokine system to mitigate this response effectively.
Collapse
Affiliation(s)
- Tereza Dyskova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| | - Jiri Gallo
- Faculty of Medicine and Dentistry, Department of Orthopaedics, Palacky University Olomouc, University Hospital Olomouc, Olomouc, Czechia
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
14
|
Svensson S, Trobos M, Omar O, Thomsen P. Site-specific gene expression analysis of implant-near cells in a soft tissue infection model - Application of laser microdissection to study biomaterial-associated infection. J Biomed Mater Res A 2017; 105:2210-2217. [PMID: 28395127 DOI: 10.1002/jbm.a.36088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023]
Abstract
Analysis of the implant-tissue interface is important for an understanding of the cellular response to biomaterials with different surface characteristics. However, inaccessibility to the site has restricted the detailed evaluation of the tissue surrounding the implant. Laser microdissection enables the isolation of specific cells and tissues for subsequent DNA, RNA, or protein analysis. The present experimental study employed laser microdissection to analyze tissue-specific differences in gene expression in cells around infected or control titanium implants 72 h after subcutaneous implantation in a rat model. Three different tissue zones located 0-800 μm away from the implant-tissue interface were analyzed. Implant sites challenged with a dose of 106 CFU Staphylococcus epidermidis demonstrated higher gene expression of selected markers for inflammation (TNF-α, IL-6), cell recruitment (MCP-1, IL-8, IL-8 R), infection (TLR2), and tissue remodeling (MMP-9) compared with control implants. Furthermore, the gene expression analysis of the three extracted tissue zones revealed marked spatial differences, depending on the distance to the implant. Control implants continuously induced higher cell gene expression in the implant-tissue interface compared with cells 200-800 μm away from the implant, whereas the sites inoculated with S. epidermidis resulted in high gene expression further away from the implant as well. In conclusion, this study demonstrates that laser microdissection is an interesting tool, revealing both gene- and site-specific gene expression patterns in the implant-tissue interface. The technique provides an opportunity for detailed molecular dissection of the biological events related to the implant but occurring at different distances from the implant. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2210-2217, 2017.
Collapse
Affiliation(s)
- Sara Svensson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Gothenburg, Sweden
| |
Collapse
|
15
|
Birt MC, Anderson DW, Toby EB, Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop 2017; 14:45-52. [PMID: 27822001 PMCID: PMC5090239 DOI: 10.1016/j.jor.2016.10.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 01/29/2023] Open
Abstract
This review article summarizes the recent advances in pathogenic mechanisms and novel therapeutic strategies for osteomyelitis, covering both periprosthetic joint infections and fracture-associated bone infections. A better understanding of the pathophysiology including the mechanisms for biofilm formation has led to new therapeutic strategies for this devastating disease. Research on novel local delivery materials with appropriate mechanical properties, lower exothermicity, controlled release of antibiotics, and absorbable scaffolding for bone regeneration is progressing rapidly. Emerging strategies for prevention, early diagnosis of low-grade infections, and innovative treatments of osteomyelitis such as biofilm disruptors and immunotherapy are highlighted in this review.
Collapse
Affiliation(s)
| | | | | | - Jinxi Wang
- Department of Orthopedic Surgery, University of Kansas Medical Center,
Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M. Antimicrobial Polymers in the Nano-World. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E48. [PMID: 28336882 PMCID: PMC5333033 DOI: 10.3390/nano7020048] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 02/08/2023]
Abstract
Infections are one of the main concerns of our era due to antibiotic-resistant infections and the increasing costs in the health-care sector. Within this context, antimicrobial polymers present a great alternative to combat these problems since their mechanisms of action differ from those of antibiotics. Therefore, the microorganisms' resistance to these polymeric materials is avoided. Antimicrobial polymers are not only applied in the health-care sector, they are also used in many other areas. This review presents different strategies that combine nanoscience and nanotechnology in the polymer world to combat contaminations from bacteria, fungi or algae. It focuses on the most relevant areas of application of these materials, viz. health, food, agriculture, and textiles.
Collapse
Affiliation(s)
- Marta Álvarez-Paino
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC); C/ Juan de la Cierva 3, Madrid 28006, Spain.
| |
Collapse
|
17
|
Armstead AL, Li B. In vitro inflammatory effects of hard metal (WC-Co) nanoparticle exposure. Int J Nanomedicine 2016; 11:6195-6206. [PMID: 27920526 PMCID: PMC5123731 DOI: 10.2147/ijn.s121141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identifying the toxicity of nanoparticles (NPs) is an important area of research as the number of nanomaterial-based consumer and industrial products continually rises. In addition, the potential inflammatory effects resulting from pulmonary NP exposure are emerging as an important aspect of nanotoxicity. In this study, the toxicity and inflammatory state resulting from tungsten carbide–cobalt (WC–Co) NP exposure in macrophages and a coculture (CC) of lung epithelial cells (BEAS-2B) and macrophages (THP-1) at a 3:1 ratio were examined. It was found that the toxicity of nano-WC–Co was cell dependent; significantly less toxicity was observed in THP-1 cells compared to BEAS-2B cells. It was demonstrated that nano-WC–Co caused reduced toxicity in the CC model compared to lung epithelial cell monoculture, which suggested that macrophages may play a protective role against nano-WC–Co-mediated toxicity in CCs. Nano-WC–Co exposure in macrophages resulted in increased levels of interleukin (IL)-1β and IL-12 secretion and decreased levels of tumor necrosis factor alpha (TNFα). In addition, the polarizing effects of nano-WC–Co exposure toward the M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophage phenotypes were investigated. The results of this study indicated that nano-WC–Co exposure stimulated the M1 phenotype, marked by high expression of CD40 M1 macrophage surface markers.
Collapse
Affiliation(s)
- Andrea L Armstead
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine; School of Pharmacy, West Virginia University; Mary Babb Randolph Cancer Center, Morgantown, WV, USA
| |
Collapse
|
18
|
Zviedre A, Engelis A, Tretjakovs P, Jurka A, Zile I, Petersons A. Role of serum cytokines in acute appendicitis and acute mesenteric lymphadenitis among children. MEDICINA-LITHUANIA 2016; 52:291-297. [PMID: 27793542 DOI: 10.1016/j.medici.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE The diagnostic role of serum cytokines depends on the etiology and pathogenesis of acute appendicitis (AA) and acute mesenteric lymphadenitis (AML). The aim of this study was to evaluate differences in cytokine levels between AA and AML. MATERIALS AND METHODS Data of 7- to 18-year-old children were collected prospectively from October 2010 to October 2013. There were 31 patients with AA (AA group), 26 with AML (AML group), and 17 with elective non-inflammatory surgical disease (control group). Serum levels of IL-10, IL-12(p70), IL-1β, IL-4, IL-6, IL-8, IL-17, MCP-1, EGF, TNF-α and white blood count (WBC) were measured three times consecutively in each group. RESULTS The level of IL-6 and IL-10 was significantly higher in the AA group than the AML group at the first measurement (8pg/mL vs. 3.2pg/mL, P=0.000; 6.1pg/mL vs. 3.2pg/mL, P=0.005, respectively). There was a significant difference observed in time dynamics of concentration of IL-6 and MCP-1 for AA and AML. The area under the curve (AUC) was 0.77 (95% CI 0.64-0.89; P=0.001) for IL-6 with a cut-off value of 4.3pg/mL (67.7% sensitivity and 76.9% specificity) for AA 1h before surgery. The AUC for WBC was 0.72 (95% CI 0.58.4-0.85; P=0.005) with a cut-off value of 10.7×103/μL (sensitivity 71.0% and specificity 46.2%). CONCLUSIONS Serum IL-6 with a cut-off value of 4.3pg/mL and WBC with a cut-off value of 10.7×103/μL assessed together will yield more sensitivity for AA.
Collapse
Affiliation(s)
- Astra Zviedre
- Department of Pediatric Surgery, University Children's Hospital, Riga, Latvia.
| | - Arnis Engelis
- Department of Pediatric Surgery, University Children's Hospital, Riga, Latvia; Department of Pediatric Surgery, Riga Stradiņš University, Riga, Latvia
| | - Peteris Tretjakovs
- Department of Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - Antra Jurka
- Department of Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - Irisa Zile
- Department of Research, Statistics and Health Promotion, Centre for Disease Prevention and Control of Latvia, Riga, Latvia; Department of Public Health and Epidemiology, Riga Stradiņš University, Riga, Latvia
| | - Aigars Petersons
- Department of Pediatric Surgery, University Children's Hospital, Riga, Latvia; Department of Pediatric Surgery, Riga Stradiņš University, Riga, Latvia
| |
Collapse
|
19
|
Lovati AB, Bottagisio M, de Vecchi E, Gallazzi E, Drago L. Animal Models of Implant-Related Low-Grade Infections. A Twenty-Year Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:29-50. [PMID: 27718217 DOI: 10.1007/5584_2016_157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The demand for joint replacement and surgical treatment is continuously increasing, thus representing a clinical burden and a cost for the healthcare system. Among several pathogens involved in implant-related infections, staphylococci account for the two-thirds of clinically isolated bacteria. Despite most of them are highly virulent microorganisms (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa), low virulent bacteria (Staphylococcus epidermidis, Propionibacterium acnes) are responsible for delayed, low-grade infections without specific clinical signs and hardly distinguishable from aseptic prosthetic failure. Therefore, there is a real need to study the pathogenesis of orthopedic infections through in vivo animal models. The present review of the literature provides a 20-year overview of animal models of acute, subclinical or chronic orthopedic infections according to the pathogen virulence and inocula. Through this analysis, a great variety of conditions in terms of bacterial strains and inocula emerged, thus encouraging the development of more reproducible in vivo studies to provide relevant information for a translational approach to humans.
Collapse
Affiliation(s)
- Arianna Barbara Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.
| | - Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.,Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
| | - Elena de Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Enrico Gallazzi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Science for Health, University of Milan, via L. Mangiagalli 31, 20133, Milan, Italy
| |
Collapse
|
20
|
Antimicrobial biomaterials and their potential application in ophthalmology. J Appl Biomater Funct Mater 2015; 13:e346-50. [PMID: 26391868 DOI: 10.5301/jabfm.5000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 11/20/2022] Open
Abstract
Infections associated with the use of intraocular, periocular, or orbital implants are associated with an increase in both morbidity and in the costs of ophthalmological surgery. This is due to an increased number of visits and the need for additional treatments, at a time when some conventional therapies are losing their efficacy, or even hospitalization. To avoid such consequences, the first step should be to prevent the biomaterials that form implants from being colonized by various microorganisms, either intraoperatively or postoperatively. To this end, several lines of research have emerged that aim at equipping implants with antimicrobial properties, some of which are described in this review.
Collapse
|
21
|
Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater 2015; 21:165-77. [PMID: 25805108 DOI: 10.1016/j.actbio.2015.03.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
Large bone defects requiring long-term osteosynthetic stabilization or repeated surgeries show a considerable rate of infection. Mesenchymal stromal cells (MSCs) have been successfully used to enhance bone regeneration, but their powerful immunomodulatory effects may impose an enhanced risk for osteomyelitis development. In order to unravel whether implantation of MSCs aggravates a simultaneous bone infection, a hydrogel-supported osteomyelitis ostectomy model was developed in which rats received a femoral bone defect with rigid plate-fixation. After fibrin-assisted transfer of Staphylococcus aureus (SA), effects of MSC implantation on osteomyelitis development were quantified over 3-4 weeks. All SA-infected animals developed an acute local osteomyelitis with significantly increased blood neutrophil count, abscess formation and bone destruction. MSC-treatment of infected defects aggravated osteomyelitis according to a significantly elevated osteomyelitis score and enhanced distal bone loss with spongy alteration of cortical bone architecture. Increased attraction of macrophages, osteoclasts and regulation of pro- and anti-inflammatory mediators were potential MSC actions. Overall trophic actions of MSCs implanted into non-sterile bone defects may enhance an infection and/or exacerbate osteomyelitis. Studies on antibiotic carrier augmentation or antibiotic treatment are warranted to decide whether MSC implantation is a safe and promising therapy for orthopedic implant-stabilized bone defects at high risk for development of infection.
Collapse
|
22
|
Chen M, Andersen MØ, Dillschneider P, Chang CC, Gao S, Le DQS, Yang C, Hein S, Bünger C, Kjems J. Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants. RSC Adv 2015. [DOI: 10.1039/c5ra23748c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tumors in load bearing bones are a major clinical problem as recurrence is common after surgery. Void filling scaffolds that kill residual cancer cells by releasing chemotherapy and siRNA/chitosan nanoparticles may offer a solution to this problem.
Collapse
|
23
|
Heffernan DS, Fox ED. Advancing technologies for the diagnosis and management of infections. Surg Clin North Am 2014; 94:1163-74. [PMID: 25440117 DOI: 10.1016/j.suc.2014.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infections remain a significant problem among surgical patients. Technological advances, especially in the arena of nano-technology, have markedly improved the ability to detect, prevent and treat surgical infections. No longer limited to culture-based methods of pathogen detection or standard antimicrobial therapies, options for management of surgical infections are rapidly expanding. Such advances are critical in this era of rapidly developing resistant and virulent strains of organisms. Further, our understanding of the host pathogen interaction grows exponentially with the development of computer-based modeling, aiding in expediting research endeavors.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Trauma and Surgical Critical Care, Department of Surgery, Alpert Medical School Brown University, Rhode Island Hospital, 435 APC Building, 593 Eddy Street, Providence, RI 02903, USA.
| | - Elizabeth D Fox
- Department of Surgery, Alpert Medical School Brown University, Rhode Island Hospital, 429 APC Building, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
24
|
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 2014; 14:207. [PMID: 25059520 PMCID: PMC4116603 DOI: 10.1186/s12866-014-0207-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. RESULTS We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1-6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6-8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureus infection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. CONCLUSIONS S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells.
Collapse
Affiliation(s)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown 26506, WV, USA.
| |
Collapse
|
25
|
Reizner W, Hunter J, O’Malley N, Southgate R, Schwarz E, Kates S. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur Cell Mater 2014; 27:196-212. [PMID: 24668594 PMCID: PMC4322679 DOI: 10.22203/ecm.v027a15] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed and Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorised by animal species and are further classified by the setting of the infection. Study methods are summarised and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model's strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - S.L. Kates
- Address for correspondence: Stephen L. Kates, 601 Elmwood Ave, Box 665, Rochester, NY 14642, USA,
| |
Collapse
|
26
|
Daghighi S, Sjollema J, van der Mei HC, Busscher HJ, Rochford ET. Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials 2013; 34:8013-7. [DOI: 10.1016/j.biomaterials.2013.07.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/11/2013] [Indexed: 01/09/2023]
|
27
|
Li H, Hamza T, Tidwell JE, Clovis N, Li B. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater 2013; 2:1277-84. [PMID: 23447088 DOI: 10.1002/adhm.201200465] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Indexed: 11/10/2022]
Abstract
Platelet-rich-plasma (PRP) has attracted great attention and has been increasingly used for a variety of clinical applications including orthopedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, and sports medicine. However, very little is known about the antimicrobial activities of PRP. PRP is found to have antimicrobial properties both in vitro and in vivo. In vitro, the antimicrobial properties of PRP are bacterial-strain-specific and time-specific: PRP significantly (80-100 fold reduction in colony-forming units) inhibits the growth of methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A streptococcus, and Neisseria gonorrhoeae within the first few hours but it has no significant antimicrobial properties against E. coli and Pseudomonas. The antimicrobial properties of PRP also depend on the concentration of thrombin. In vivo, an implant-associated spinal infection rabbit model is established and used to evaluate the antimicrobial and wound-healing properties of PRP. Compared to the infection controls, PRP treatment results in significant reduction in bacterial colonies in bone samples at all time points studied (i.e. 1, 2, and 3 weeks) and significant increase in mineralized tissues (thereby better bone healing) at postoperative weeks 2 and 3. PRP therefore may be a useful adjunct strategy against postoperative implant-associated infections.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Orthopaedics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
28
|
Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013; 34:8533-54. [PMID: 23953781 DOI: 10.1016/j.biomaterials.2013.07.089] [Citation(s) in RCA: 771] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/26/2013] [Indexed: 02/06/2023]
Abstract
Anti-infective biomaterials need to be tailored according to the specific clinical application. All their properties have to be tuned to achieve the best anti-infective performance together with safe biocompatibility and appropriate tissue interactions. Innovative technologies are developing new biomaterials and surfaces endowed with anti-infective properties, relying either on antifouling, or bactericidal, or antibiofilm activities. This review aims at thoroughly surveying the numerous classes of antibacterial biomaterials and the underlying strategies behind them. Bacteria repelling and antiadhesive surfaces, materials with intrinsic antibacterial properties, antibacterial coatings, nanostructured materials, and molecules interfering with bacterial biofilm are considered. Among the new strategies, the use of phages or of antisense peptide nucleic acids are discussed, as well as the possibility to modulate the local immune response by active cytokines. Overall, there is a wealth of technical solutions to contrast the establishment of an implant infection. Many of them exhibit a great potential in preclinical models. The lack of well-structured prospective multicenter clinical trials hinders the achievement of conclusive data on the efficacy and comparative performance of anti-infective biomaterials.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | |
Collapse
|
29
|
Hamza T, Dietz M, Pham D, Clovis N, Danley S, Li B, Li B. Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 2013; 25:341-50; discussion 350. [PMID: 23832687 PMCID: PMC3830899 DOI: 10.22203/ecm.v025a24] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Chronic and recurrent bone infections occur frequently but have not been explained. Staphylococcus aureus (S. aureus) is often found among chronic and recurrent infections and may be responsible for such infections. One possible reason is that S. aureus can internalize and survive within host cells and by doing so, S. aureus can evade both host defense mechanisms and most conventional antibiotic treatments. In this study, we hypothesized that intra-cellular S. aureus could induce infections in vivo. Osteoblasts were infected with S. aureus and, after eliminating extra-cellular S. aureus, inoculated into an open fracture rat model. Bacterial cultures and radiographic observations at post-operative day 21 confirmed local bone infections in animals inoculated with intra-cellular S. aureus within osteoblasts alone. We present direct in vivo evidence that intra-cellular S. aureus could be sufficient to induce bone infection in animals; we found that intra-cellular S. aureus inoculation of as low as 102 colony forming units could induce severe bone infections. Our data may suggest that intra-cellular S. aureus can "hide" in host cells during symptom-free periods and, under certain conditions, they may escape and lead to infection recurrence. Intra-cellular S. aureus therefore could play an important role in the pathogenesis of S. aureus infections, especially those chronic and recurrent infections in which disease episodes may be separated by weeks, months, or even years.
Collapse
Affiliation(s)
- Therwa Hamza
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506,Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Matthew Dietz
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Danh Pham
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Nina Clovis
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Suzanne Danley
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506,Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506,WVNano Initiative, Morgantown, WV 26506,Mary Babb Randolph Cancer Center, Morgantown, WV 26506,Correspondence to: Bingyun Li, PhD, Associate Professor, Director, Nanomedicine Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070,
| | | |
Collapse
|
30
|
Li H, Li B. PRP as a new approach to prevent infection: preparation and in vitro antimicrobial properties of PRP. J Vis Exp 2013. [PMID: 23609458 DOI: 10.3791/50351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Implant-associated infection is becoming more and more challenging to the healthcare industry worldwide due to increasing antibiotic resistance, transmission of antibiotic resistant bacteria between animals and humans, and the high cost of treating infections. In this study, we disclose a new strategy that may be effective in preventing implant-associated infection based on the potential antimicrobial properties of platelet-rich plasma (PRP). Due to its well-studied properties for promoting healing, PRP (a biological product) has been increasingly used for clinical applications including orthopaedic surgeries, periodontal and oral surgeries, maxillofacial surgeries, plastic surgeries, sports medicine, etc. PRP could be an advanced alternative to conventional antibiotic treatments in preventing implant-associated infections. The use of PRP may be advantageous compared to conventional antibiotic treatments since PRP is less likely to induce antibiotic resistance and PRP's antimicrobial and healing-promoting properties may have a synergistic effect on infection prevention. It is well known that pathogens and human cells are racing for implant surfaces, and PRP's properties of promoting healing could improve human cell attachment thereby reducing the odds for infection. In addition, PRP is inherently biocompatible, and safe and free from the risk of transmissible diseases. For our study, we have selected several clinical bacterial strains that are commonly found in orthopaedic infections and examined whether PRP has in vitro antimicrobial properties against these bacteria. We have prepared PRP using a twice centrifugation approach which allows the same platelet concentration to be obtained for all samples. We have achieved consistent antimicrobial findings and found that PRP has strong in vitro antimicrobial properties against bacteria like methicillin-sensitive and methicillin-resistant Staphylococcus aureus, Group A Streptococcus, and Neisseria gonorrhoeae. Therefore, the use of PRP may have the potential to prevent infection and to reduce the need for costly post-operative treatment of implant-associated infections.
Collapse
Affiliation(s)
- Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, USA
| | | |
Collapse
|
31
|
Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34:3174-83. [PMID: 23391496 DOI: 10.1016/j.biomaterials.2013.01.074] [Citation(s) in RCA: 423] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/20/2013] [Indexed: 12/12/2022]
Abstract
Implants are widely used for orthopaedic applications such as fixing fractures, repairing non-unions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
32
|
Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 2012; 57:1283-90. [PMID: 23274662 DOI: 10.1128/aac.01650-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The increasing resistance of bacteria to conventional antibiotics and the challenges posed by intracellular bacteria, which may be responsible for chronic and recurrent infections, have driven the need for advanced antimicrobial drugs for effective elimination of both extra- and intracellular pathogens. The purpose of this study was to determine the killing efficacy of cationic antimicrobial peptide LL-37 compared to conventional antibiotics against extra- and intracellular Staphylococcus aureus. Bacterial killing assays and an infection model of osteoblasts and S. aureus were studied to determine the bacterial killing efficacy of LL-37 and conventional antibiotics against extra- and intracellular S. aureus. We found that LL-37 was effective in killing extracellular S. aureus at nanomolar concentrations, while lactoferricin B was effective at micromolar concentrations and doxycycline and cefazolin at millimolar concentrations. LL-37 was surprisingly more effective in killing the clinical strain than in killing an ATCC strain of S. aureus. Moreover, LL-37 was superior to conventional antibiotics in eliminating intracellular S. aureus. The kinetic studies further revealed that LL-37 was fast in eliminating both extra- and intracellular S. aureus. Therefore, LL-37 was shown to be very potent and prompt in eliminating both extra- and intracellular S. aureus and was more effective in killing extra- and intracellular S. aureus than commonly used conventional antibiotics. LL-37 could potentially be used to treat chronic and recurrent infections due to its effectiveness in eliminating not only extracellular but also intracellular pathogens.
Collapse
|
33
|
Abstract
BACKGROUND Secondary antimicrobial prophylaxis involves the use of ≥ 1 antimicrobial agent just prior to the time when a diagnostic/therapeutic procedure, which may induce infection, is to be performed. In the context of this article, antimicrobial agent(s) are administered to patients with ≥ 1 implanted prosthetic device in order to prevent metastatic seeding of the device(s) during bacteremia induced by a diagnostic/therapeutic procedure. Antimicrobial agents used in this context are only administered periprocedurally. Secondary antimicrobial prophylaxis of endocarditis in recipients of cardiac prosthetic materials (including valves, shunts, conduits, and patches) has been reasonably well established. However, secondary antimicrobial prophylaxis in recipients of other types of prosthetic devices has been the subject of much controversy, with a wide variety of recommendations being made. OBJECTIVES The purpose of this article was to conduct a narrative review of the published literature on the topic of secondary antimicrobial prophylaxis in recipients of noncardiac prosthetic devices and make evidence-based recommendations for each type of device, where possible. METHODS Medline/PubMed and EMBASE databases were searched for English-language articles published from 1950 to the present (January 2012). Search terms included "prophylaxis," "antibiotics," "antimicrobials," "prosthetic devices," "prosthesis-related infections," "bacteremia," the names of the individual types of prosthetic devices, and the names of the individual procedures potentially inducing bacteremia. Articles dealing with any aspect relevant to this topic were eligible for review. The bibliographies of retrieved articles were also carefully scanned to identify any articles not previously identified. RESULTS Based on review of the available literature, secondary antimicrobial prophylaxis is justified in only a few specific circumstances. For recipients of prosthetic vascular grafts/stents, hemodialysis arteriovenous shunts, and ventriculoatrial/ventriculovenous shunts, prophylaxis is warranted during the initial 6 months, initial 6 weeks, and at all times after implantation/revision, respectively, when dental procedures capable of inducing high-level bacteremia are planned. Prosthetic joint recipients should receive prophylaxis in the following 3 circumstances: 1) patient is to undergo dental procedure(s) capable of inducing high-level bacteremia plus either the patient is still within 2 years of device implantation/revision or the patient has ≥ 1 risk factor for hematogenous prosthetic joint infection; 2) patient is to undergo genitourinary tract procedure(s) capable of inducing high-level bacteremia plus the patient has ≥ 1 risk factor for high-risk bacteriuria; and 3) patient is to undergo perforating dermatologic surgery on the oral mucosa or at skin sites at increased risk for surgical site infection plus patient has ≥ 1 risk factor for hematogenous prosthetic joint infection. The data are inadequate to justify secondary antimicrobial prophylaxis for recipients of other types of prosthetic devices. On the basis of 9 surveys of prescriber behavior, it is apparent that there exists, over a wide geographic area, a wide disconnect between clinical practice and the secondary antimicrobial prophylaxis guidelines issued by the professional organizations representing these prescribers. Antimicrobial agent overuse was especially problematic among orthopedic and colorectal surgeons, urologists, and family practitioners. Dentists and maxillofacial surgeons followed guidelines more closely. CONCLUSION Device-, procedure-, and patient characteristic-dependent factors elicited over many years have narrowed down the secondary antimicrobial prophylaxis recommendations for noncardiac prosthetic devices to a small number. Despite this, physician prescribers frequently do not follow prophylaxis guidelines established by their own professional organizations. Risk-benefit and cost-effectiveness studies have found that no prophylaxis is actually superior to universal prophylaxis, likely due to known antimicrobial toxicities, such as anaphylactic/anaphylactoid reactions and Clostridium difficile-associated disease. Much work remains in establishing and extending the scientific basis for secondary antimicrobial prophylaxis and transforming this knowledge into appropriate action by the clinician.
Collapse
Affiliation(s)
- David R Guay
- College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
34
|
Boyce BM, Lindsey BA, Clovis NB, Smith S, Hobbs GR, Hubbard DF, Emery SE, Barnett JB, Li B. Additive effects of exogenous IL-12 supplementation and antibiotic treatment in infection prophylaxis. J Orthop Res 2012; 30:196-202. [PMID: 21815205 PMCID: PMC3699881 DOI: 10.1002/jor.21520] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/13/2011] [Indexed: 02/04/2023]
Abstract
The increasing clinical incidence and host risk of open fracture-associated infections, as well as the reduced effectiveness of conventional antibiotics to treat such infections, have driven the development of new therapies for the prophylaxis of open fracture-associated infections. We investigated percutaneous supplementation of a natural cytokine (i.e., interleukin 12p70 or IL-12) at an open fracture site to reduce open fracture-associated infections. We also determined the efficacy of the combination therapy of IL-12 and conventional antibiotic therapy in the prophylaxis of open fracture-associated infections. An open femur fracture infection model was produced by direct inoculation of a clinical isolate of Staphylococcus aureus after creating a femur fracture using rats. The animals were assigned to one of four groups: no drug administration, percutaneous supplementation of IL-12, intraperitoneal administration of the antibiotic ampicillin, or percutaneous IL-12 in combination with intraperitoneal ampicillin. Animals were euthanized at postoperative days 6, 10, 14, and 21. Percutaneous IL-12 led to a reduction in infection at postoperative days 6 and 10. For the first time, exogenous IL-12 was found to have additive effects in the prevention of infection when combined with conventional treatment (i.e., antibiotic therapy). Combination therapy of ampicillin and IL-12 substantially reduced the infection rate at postoperative day 6 and also decreased the time needed for complete inhibition of infection. Therefore, exogenous IL-12, providing a mechanism of protection independent of antibiotic resistance, complements the routine use of antibiotics.
Collapse
Affiliation(s)
- Brandon M. Boyce
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Brock A. Lindsey
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Nina B. Clovis
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Suzanne Smith
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Gerald R. Hobbs
- Department of Statistics, West Virginia University, Morgantown, WV 26506, USA
| | - David F. Hubbard
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sanford E. Emery
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA,WVNano Initiative, Morgantown, WV 26506, USA,Correspondence to: Bingyun Li, PhD, Director, Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://www.hsc.wvu.edu/som/ortho/nanomedica-group/
| |
Collapse
|
35
|
Li B, McKeague AL. Emerging ideas: Interleukin-12 nanocoatings prevent open fracture-associated infections. Clin Orthop Relat Res 2011; 469:3262-5. [PMID: 21104353 PMCID: PMC3183209 DOI: 10.1007/s11999-010-1690-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 11/10/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Infection is a major clinical complication of orthopaedic implants and prosthetic devices, and patients with traumatic open fractures have a high risk of infection that may exceed 30%. Surgical trauma, burns, and major injuries such as traumatic open fractures induce immunosuppression, decrease resistance to infection, and decrease production of T helper type 1 (Th1) cytokines. QUESTIONS/HYPOTHESES Exogenous interleukin-12 p70 (IL-12p70 or IL-12), a natural cytokine that plays a central role in Th1 response and bridges innate and adaptive immunities, will reduce open fracture-associated infection. METHOD OF STUDY We propose using exogenous IL-12 nanocoating to restore or enhance the body's natural defense system to combat pathogens. Rats will have a femur fractured, inoculated with Staphylococcus aureus or injected with phosphate buffered saline, left open for 1 hour, and then fixed with an intramedullary Kirschner wire with or without IL-12 nanocoating. Animals will be euthanized at postoperative Day 21; samples of blood, soft tissue, bone, and draining lymph nodes will be collected. Infection, bone healing, and local and systemic responses will be determined. SIGNIFICANCE IL-12 nanocoating is a promising prophylactic means to modulate the host immune response to help prevent open fracture-associated infections and to avoid the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196 USA ,WV Nano Initiative, Morgantown, WV USA ,Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV USA
| | - Anne L. McKeague
- Department of Combat Casualty Care, Naval Medical Research Unit San Antonio, Brooks City-Base, TX USA
| |
Collapse
|
36
|
Abstract
Preclinical modeling of human disease with animals has not been standardized for many common pathologic processes. Assorted animal models are being used to investigate the pathogenesis, prevention, and treatment of disease processes. Certainly it is difficult to interpret the current literature because there are diverse and often irrelevant models being implemented. Some models are used for reasons of size or ease rather than the true modeling of a physiological process. Application to granting agencies and design of animal studies is difficult without standardization of the ideal preclinical model for disease states. The current article addresses the preclinical animal modeling of osteoporosis, infection, bone defects, and cartilage injury. This article is a discussion of the current literature, commonly used models, and suggests preferred preclinical models for future research design.
Collapse
|
37
|
Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR. Animal models of external traumatic wound infections. Virulence 2011; 2:296-315. [PMID: 21701256 DOI: 10.4161/viru.2.4.16840] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite advances in traumatic wound care and management, infections remain a leading cause of mortality,morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. RESULTS Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. METHODS This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations,excisional wounds and open fractures. CONCLUSIONS As antibiotic resistance continues to increase,more new antimicrobial approaches are urgently needed.These should be tested using standard protocols for infections in external traumatic wounds in animal models.
Collapse
Affiliation(s)
- Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhao Q, Li H, Li B. Nanoencapsulating living biological cells using electrostatic layer-by-layer self-assembly: platelets as a model. JOURNAL OF MATERIALS RESEARCH 2011; 26:347-351. [PMID: 21359101 PMCID: PMC3045201 DOI: 10.1557/jmr.2010.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the literature, a few biological cells have been used as templates to form microcapsules of a variety of shapes and sizes. In this study, we proved the concept that living cells like platelets can be encapsulated with polyelectrolytes using electrostatic layer-by-layer self-assembly (LBL), and, most importantly, the encapsulation process did not induce activation of the platelets. Glycol-chitosan and poly-L-glutamic acid were electrostatically deposited onto platelets, and the encapsulation was confirmed using confocal laser scanning microscopy and scanning electron microscopy. Transmission electron microscopy observation further confirmed that the encapsulation process was mild and the activation of platelets was negligible. The encapsulation of living biological cells like platelets can serve as a model system in a wide range of biomedical applications including local and sustained drug delivery, immune protection of artificial tissues, and versatile artificial blood.
Collapse
Affiliation(s)
- Qinghe Zhao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Hongshuai Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- WVNano Initiative, Morgantown, WV 26506, USA
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
39
|
Jiang B, DeFusco E, Li B. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners. Biomacromolecules 2010; 11:3630-7. [PMID: 21058719 PMCID: PMC3006044 DOI: 10.1021/bm1010855] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.
Collapse
Affiliation(s)
- Bingbing Jiang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth DeFusco
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
- WVNano Initiative, Morgantown, WV 26506, USA
| |
Collapse
|
40
|
Hamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci 2010; 11:789-806. [PMID: 20479986 PMCID: PMC2869233 DOI: 10.3390/ijms11030789] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/24/2010] [Indexed: 12/30/2022] Open
Abstract
Interleukin 12 (termed IL-12p70 and commonly designated IL-12) is an important immunoregulatory cytokine that is produced mainly by antigen-presenting cells. The expression of IL-12 during infection regulates innate responses and determines the type of adaptive immune responses. IL-12 induces interferon-γ (IFN-γ) production and triggers CD4+ T cells to differentiate into type 1 T helper (Th1) cells. Studies have suggested that IL-12 could play a vital role in treating many diseases, such as viral and bacterial infections and cancers. The unique heterodimeric structure, which IL-12 shares with its family members including IL-23, IL-27, and IL-35, has recently brought more attention to understanding the mechanisms that regulate the functions of IL-12. This article describes the structure and biological activities of IL-12 in both the innate and adaptive arms of the immune system, and discusses the applications of IL-12 in treating and preventing infections.
Collapse
Affiliation(s)
- Therwa Hamza
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; E-Mail:
(T.H.)
- Pharmaceutical and Pharmacological Sciences Graduate Program, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; E-Mail:
(J.B.B.)
| | - Bingyun Li
- Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; E-Mail:
(T.H.)
- Pharmaceutical and Pharmacological Sciences Graduate Program, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
- WVNano Initiative, Morgantown, WV 26506, USA
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +1-304-293-1075; Fax: +1-304-293-7070
| |
Collapse
|