1
|
Sarac Gul Y, Kose O, Altin A, Yemenoglu H, Arslan H, Akyildiz K, Yilmaz A. Melatonin supports nonsurgical periodontal treatment in patients with Type 2 diabetes mellitus and periodontitis: A randomized clinical trial. J Periodontol 2024; 95:832-841. [PMID: 38055628 DOI: 10.1002/jper.23-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Diabetes mellitus (DM)-associated hyperinflammatory host response significantly provokes periodontal tissue destruction. In this context, the support of nonsurgical periodontal therapy in diabetics with host modulation agents is a current field of study. This clinical study aims to investigate the clinical efficacy of melatonin supplementation and discuss its possible biological mechanisms in nonsurgical periodontal treatment in patients with DM and periodontitis through some fundamental markers. METHODS In this randomized controlled and single-blind study, 27 of 55 diabetic patients with periodontitis (stage III/IV and grade C) underwent full-mouth scaling and root planing (fmSRP) alone and 28 patients underwent melatonin administration (6 mg daily, 30 days) in addition to fmSRP (full-mouth scaling and root planing plus melatonin, fmSRP-mel). The potential therapeutic contribution of melatonin was evaluated clinically and biochemically (gingival crevicular fluid RANKL, OPG, MMP-8, and serum IL-1β levels) at 3rd and 6th months. RESULTS Melatonin (tablet, 6 mg daily, 30 days) did not cause any local or systemic side effects. fmSRP alone resulted in significant reduction in serum IL-1β levels, pocket depths, gingival inflammation, and gingival crevicular fluid RANKL and MMP-8 levels (p < 0.05). Moreover, melatonin supplementation resulted in a more significant decrease in bleeding and pocket depth scores at probing, especially at 3 months (p < 0.05). Furthermore, RANKL and MMP-8 levels were significantly lower at 3 months and IL-1β levels at 6 months compared to the control group (p < 0.05). However, OPG levels were not affected significantly by the treatments (p > 0.05). CONCLUSION Melatonin, as a host modulation agent, significantly increases the clinical efficacy of fmSRP. The reduction in periodontal inflammation and pocket depths may be a result of marked suppression of RANKL-associated osteoclastogenesis and extracellular matrix damage by melatonin.
Collapse
Affiliation(s)
- Yagmur Sarac Gul
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Oguz Kose
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ahmet Altin
- School of Dentistry, Department of Periodontology, Istanbul Kent University, Istanbul, Turkey
| | - Hatice Yemenoglu
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hatice Arslan
- School of Dentistry, Department of Periodontology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- School of Vocational Health Care Services, Department of Medical Services and Techniques, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- School of Medicine, Department of Biochemistry, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
2
|
Qiao D, Cheng S, Song S, Zhang W, Chen B, Yan F, Zhang Y. Polarized M2 macrophages induced by glycosylated nano-hydroxyapatites activate bone regeneration in periodontitis therapy. J Clin Periodontol 2024; 51:1054-1065. [PMID: 38736143 DOI: 10.1111/jcpe.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024]
Abstract
AIM To investigate the association between periodontal macrophage polarization states and the alveolar bone levels, and to assess whether glycosylated nano-hydroxyapatites (GHANPs) could improve bone regeneration in periodontitis by inducing macrophage M2 polarization. MATERIALS AND METHODS The change of macrophage polarization state in inflammatory periodontal tissues (with bone loss) was examined using clinical gingival samples. The relationship between macrophage phenotype and bone level in periodontal bone loss and repair was evaluated using a mouse periodontitis model. The effect of GHANPs on macrophage polarization was assessed by the in vitro model of lipopolysaccharide (LPS)-stimulated inflammation. The polarization-related markers were detected by immunofluorescence staining, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. The therapeutic effect of GHANPs on alveolar bone loss was explored in experimental periodontitis by histological staining and micro-CT analysis. RESULTS A lower macrophage M2/M1 ratio was observed in periodontitis-affected human gingival tissues. The results of animal experiments demonstrated a positive correlation between a lower Arg-1/iNOS ratio and accelerated alveolar bone loss; also, the proportion of Arg-1-positive macrophages increased during bone repair and regeneration. The administration of GHANPs partially restored M2 macrophage polarization after LPS stimulation. GHANPs increased alveolar bone repair and regeneration in experimental periodontitis induced by ligation, potentially related to their macrophage M2 transition regulation. CONCLUSIONS The findings of this study indicate that the induction of macrophage M2 polarization can be considered a viable approach for enhancing inflammatory bone repair. Additionally, GHANPs show potential in the clinical treatment of periodontitis.
Collapse
Affiliation(s)
- Dan Qiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
- Qinghai University Affiliated Hospital, Xining, People's Republic of China
| | - Shuyu Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Shiyuan Song
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Wen Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Bin Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Hadler-Olsen E, Petrenya N, Jönsson B, Steingrímsdóttir ÓA, Stubhaug A, Nielsen CS. Periodontitis is associated with decreased experimental pressure pain tolerance: The Tromsø Study 2015-2016. J Clin Periodontol 2024; 51:874-883. [PMID: 38426377 DOI: 10.1111/jcpe.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
AIM To assess the relationship between periodontitis and experimental pain tolerance. MATERIALS AND METHODS Participants from the population-based seventh survey of the Tromsø Study with data on periodontitis were included (n = 3666, 40-84 years old, 51.6% women). Pain tolerance was assessed through (i) pressure pain tolerance (PPT) test with a computerized cuff pressure algometry on the leg, and (ii) cold-pressor tolerance (CPT) test where one hand was placed in circulating 3°C water. Cox proportional hazard regression was used to assess the association between periodontitis and pain tolerance adjusted for age, sex, education, smoking and obesity. RESULTS In the fully adjusted model using the 2012 Centers for Disease Control/American Academy of Periodntology case definitions for surveillance of periodontitis, moderate (hazard ratio [HR] = 1.09; 95% confidence interval [CI]: 1.01, 1.18) and severe (HR = 1.25, 95% CI: 1.11, 1.42) periodontitis were associated with decreased PPT. Using the 2018 classification of periodontitis, having Stage II/III/IV periodontitis was significantly associated with decreased PPT (HR = 1.09; 95% CI: 1.01, 1.18) compared with having no or stage I periodontitis. There were no significant associations between periodontitis and CPT in fully adjusted models. CONCLUSIONS Moderate and severe periodontitis was associated with experimental PPT.
Collapse
Affiliation(s)
- Elin Hadler-Olsen
- The Public Dental Health Competence Center of Northern Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Natalia Petrenya
- The Public Dental Health Competence Center of Northern Norway, Tromsø, Norway
| | - Birgitta Jönsson
- The Public Dental Health Competence Center of Northern Norway, Tromsø, Norway
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ólöf Anna Steingrímsdóttir
- Department of Physical Health and Ageing, Norwegian Institute of Public Health, Oslo, Norway
- Depertment of Research, Oral Health Centre of Expertise in Eastern Norway (OHCE-E), Oslo, Norway
| | - Audun Stubhaug
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christopher Sivert Nielsen
- Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
4
|
Liu W, Song A, Wu Y, Gong P, Zhao J, Zhang L, Liu X, Wang R, Guo H, Yang P. Enhanced immunomodulation and periodontal regeneration efficacy of subgingivally delivered progranulin-loaded hydrogel as an adjunct to non-surgical treatment for Class II furcation involvement in dogs. J Clin Periodontol 2024; 51:774-786. [PMID: 38462847 DOI: 10.1111/jcpe.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Abstract
AIM To evaluate the effect of subgingival delivery of progranulin (PGRN)/gelatin methacryloyl (GelMA) complex as an adjunct to scaling and root planing (SRP) on an experimental periodontitis dog model with Class II furcation involvement (FI). MATERIALS AND METHODS A Class II FI model was established, and the defects were divided into four treatment groups: (a) no treatment (control); (b) SRP; (c) SRP + GelMA; (d) SRP + PGRN/GelMA. Eight weeks after treatment, periodontal parameters were recorded, gingival crevicular fluid and gingival tissue were collected for ELISA and RT-qPCR, respectively, and mandibular tissue blocks were collected for micro computed tomography (micro-CT) scanning and hematoxylin and eosin (H&E) staining. RESULTS The SRP + PGRN/GelMA group showed significant improvement in all periodontal parameters compared with those in the other groups. The expression of markers related to M1 macrophage and Th17 cell significantly decreased, and the expression of markers related to M2 macrophage and Treg cell significantly increased in the SRP + PGRN/GelMA group compared with those in the other groups. The volume, quality and area of new bone and the length of new cementum in the root furcation defects of the PGRN/GelMA group were significantly increased compared to those in the other groups. CONCLUSIONS Subgingival delivery of the PGRN/GelMA complex could be a promising non-surgical adjunctive therapy for anti-inflammation, immunomodulation and periodontal regeneration.
Collapse
Affiliation(s)
- Wenchuan Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Aimei Song
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yixi Wu
- Department of Pediatric Dentistry, Jinan Stomatological Hospital, Jinan, China
| | - Pizhang Gong
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Liguo Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xinyang Liu
- Department of Prosthodontics, School of Stomatology, Binzhou Medical University, Yantai, China
| | - Ruwei Wang
- Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Hongmei Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
5
|
Liu X, Li H. Global trends in research on aging associated with periodontitis from 2002 to 2023: a bibliometric analysis. Front Endocrinol (Lausanne) 2024; 15:1374027. [PMID: 38800469 PMCID: PMC11116588 DOI: 10.3389/fendo.2024.1374027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024] Open
Abstract
Background Aging has been implicated in many chronic inflammatory diseases, including periodontitis. Periodontitis is an inflammatory disease caused by long-term irritation of the periodontal tissues by the plaque biofilm on the surface of the teeth. However, only a few bibliometric analyses have systematically studied this field to date. This work sought to visualize research hot spots and trends in aging associated with periodontitis from 2002 to 2023 through bibliometric approaches. Methods Graphpad prism v8.0.2 was used to analyse and plot annual papers, national publication trends and national publication heat maps. In addition, CtieSpace (6.1.6R (64-bit) Advanced Edition) and VOSviewer (version 1.6.18) were used to analyse these data and visualize the scientific knowledge graph. Results The number of documents related to aging associated with periodontitis has steadily increased over 21 years. With six of the top ten institutions in terms of publications coming from the US, the US is a major driver of research in this area. journal of periodontology is the most published journal in the field. Tonetti MS is the most prolific authors and co-cited authors in the field. Journal of Periodontology and Journal of Clinical Periodontology are the most popular journals in the field with the largest literature. Periodontitis, Alzheimer's disease, and peri-implantitis are current hot topics and trends in the field. Inflammation, biomarkers, oxidative stress cytokines are current research hotspots in this field. Conclusion Our research found that global publications regarding research on aging associated with periodontitis increased dramatically and were expected to continue increasing. Inflammation and aging, and the relationship between periodontitis and systemic diseases, are topics worthy of attention.
Collapse
Affiliation(s)
| | - Hongjiao Li
- Department of Stomatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Pacheco-Yanes J, Reynolds E, Li J, Mariño E. Microbiome-targeted interventions for the control of oral-gut dysbiosis and chronic systemic inflammation. Trends Mol Med 2023; 29:912-925. [PMID: 37730461 DOI: 10.1016/j.molmed.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Recent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap. Here we review the mechanisms involved in the microbiome-host crosstalk, and describe novel precision medicine for the control of systemic inflammation. As microbiome-targeted therapies begin to enter clinical trials, the success of these approaches relies upon understanding these reciprocal microbiome-host interactions, and it may provide new therapeutic avenues to reduce the risk of periodontitis-associated diseases.
Collapse
Affiliation(s)
- Juan Pacheco-Yanes
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; ImmunoBiota Therapeutics Pty Ltd, Melbourne, Australia.
| |
Collapse
|
7
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Nolde M, Alayash Z, Reckelkamm SL, Kocher T, Ehmke B, Holtfreter B, Baurecht H, Georgakis MK, Baumeister SE. Downregulation of interleukin 6 signaling might reduce the risk of periodontitis: a drug target Mendelian randomization study. Front Immunol 2023; 14:1160148. [PMID: 37342352 PMCID: PMC10277556 DOI: 10.3389/fimmu.2023.1160148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
Aim Interleukin 6 (IL-6) is considered to play a role in the dysbiotic host response in the development of periodontitis. While the inhibition of the IL-6 receptor using monoclonal antibodies is a well-established therapy for some diseases, so far, its potential benefit in patients with periodontitis has not been examined. We tested the association of genetically proxied downregulation of IL-6 signaling with periodontitis to explore whether downregulation of IL-6 signaling could represent a viable treatment target for periodontitis. Materials and methods As proxies for IL-6 signaling downregulation, we selected 52 genetic variants in close vicinity of the gene encoding IL-6 receptor that were associated with lower circulating C-reactive protein (CRP) levels in a genome-wide association study (GWAS) of 575 531 participants of European ancestry from the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Associations with periodontitis were tested with inverse-variance weighted Mendelian randomization in a study of 17 353 cases and 28 210 controls of European descent in the Gene-Lifestyle Interactions in Dental Endpoints (GLIDE) consortium. In addition, the effect of CRP reduction independent of the IL-6 pathway was assessed. Results Genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis (odds ratio (OR) = 0.81 per 1-unit decrement in log-CRP levels; 95% confidence interval (CI): [0.66;0.99]; P = 0.0497). Genetically proxied reduction of CRP independent of the IL-6 pathway had a similar effect (OR = 0.81; 95% CI: [0.68; 0.98]; P = 0.0296). Conclusion In conclusion, genetically proxied downregulation of IL-6 signaling was associated with lower odds of periodontitis and CRP might be a causal target for the effect of IL-6 on the risk of periodontitis.
Collapse
Affiliation(s)
- Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Marios K. Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
9
|
Abdalla HB, Alvarez C, Wu YC, Rojas P, Hammock BD, Maddipati KR, Trindade-da-Silva CA, Soares MQS, Clemente-Napimoga JT, Kantarci A, Napimoga MH, Van Dyke TE. Soluble epoxide hydrolase inhibition enhances production of specialized pro-resolving lipid mediator and promotes macrophage plasticity. Br J Pharmacol 2023; 180:1597-1615. [PMID: 36508312 PMCID: PMC10175184 DOI: 10.1111/bph.16009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFA) are lipid mediators that are rapidly inactivated by soluble epoxide hydrolase (sEH). Uncontrolled and chronic inflammatory disorders fail to sufficiently activate endogenous regulatory pathways, including the production of specialized pro-resolving mediators (SPMs). Here, we addressed the relationship between SPMs and the EET/sEH axis and explored the effects of sEH inhibition on resolving macrophage phenotype. EXPERIMENTAL APPROACH Mice were treated with a sEH inhibitor, EETs, or sEH inhibitor + EETs (combination) before ligature placement to induce experimental periodontitis. Using RT-qPCR, gingival samples were used to examine SPM receptors and osteolytic and inflammatory biomarkers. Maxillary alveolar bone loss was quantified by micro-CT and methylene blue staining. SPM levels were analysed by salivary metabolo-lipidomics. Gingival macrophage phenotype plasticity was determined by RT-qPCR and flow cytometry. Effects of sEH inhibition on macrophage polarization and SPM production were assessed with bone marrow-derived macrophages (BMDMs). KEY RESULTS Pharmacological inhibition of sEH suppressed bone resorption and the inflammatory cytokine storm in experimental periodontitis. Lipidomic analysis revealed that sEH inhibition augmented levels of LXA4, RvE1, RvE2, and 4-HDoHE, concomitant with up-regulation of LTB4R1, CMKLR1/ChemR23, and ALX/FPR2 SPM receptors. Notably, there is an impact on gingival macrophage plasticity was affected suggesting an inflammation resolving phenotype with sEH inhibition. In BMDMs, sEH inhibition reduced inflammatory macrophage activation, and resolving macrophages were triggered to produce SPMs. CONCLUSION AND IMPLICATIONS Pharmacological sEH inhibition increased SPM synthesis associated with resolving macrophages, suggesting a potential target to control osteolytic inflammatory disorders.
Collapse
Affiliation(s)
- Henrique B Abdalla
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Carla Alvarez
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Yu-Chiao Wu
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Paola Rojas
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California, USA
| | | | - Carlos Antonio Trindade-da-Silva
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Mariana Q S Soares
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Juliana T Clemente-Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Marcelo H Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisa São Leopoldo Mandic, Campinas, Brazil
| | - Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Döding A, Hüfner M, Nachtsheim F, Iffarth V, Bölter A, Bastian A, Symmank J, Andreas N, Schädel P, Thürmer M, Becker K, Wolf M, Jacobs C, Kamradt T, Koeberle A, Werz O, Sigusch B, Schulze-Späte U. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J Clin Periodontol 2023; 50:380-395. [PMID: 36384158 DOI: 10.1111/jcpe.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIM Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.
Collapse
Affiliation(s)
- Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Franziska Nachtsheim
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Viktoria Iffarth
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Anna Bölter
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Patrick Schädel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kathrin Becker
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Andreas Koeberle
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
11
|
Abdalla HB, Van Dyke TE. The impact of the soluble epoxide hydrolase cascade on periodontal tissues. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2023.1129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with complex pathogenesis. Uncontrolled inflammation is driven by the immune system in response to accumulation of oral biofilm that leads to alveolar bone loss, bleeding, increased periodontal probing depth with loss of attachment of the connective tissues to the tooth, and ultimately, tooth loss. Soluble epoxide hydrolase (sEH) is an enzyme that converts epoxy fatty acids (EpFAs) produced by cytochrome P450 (CYP450) to an inactive diol. It has been shown that EpFAs display important features to counteract an exaggerated inflammatory process. Based upon this observation, inhibitors of sEH have been developed and are being proposed as a strategy to regulate proinflammatory inflammatory lipid mediator production and the chronicity of inflammation. This mini review focuses on the impact of sEH inhibition on periodontal tissues focusing on the mechanisms involved. The interaction between Specialized Pro-Resolving Mediators and sEH inhibition emerges as a significant mechanism of action of sEH inhibitors that was not formerly appreciated and provides new insight into the role SPMs may play in prevention and treatment of periodontitis.
Collapse
|
12
|
Huang RY, Tseng FY, You JJ, Van Dyke TE, Cheng CD, Sung CE, Weng PW, Shieh YS, Cheng WC. Targeting therapeutic agent against C3b/C4b, SB002, on the inflammation-induced bone loss in experimental periodontitis. J Clin Periodontol 2023; 50:657-670. [PMID: 36632003 DOI: 10.1111/jcpe.13772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
AIMS To use experimental periodontitis models in rats to investigate the correlation between local expression of the complement components C3b and C4b in periodontal tissues and disease severity, and to assess the therapeutic effects of targeting C3b/C4b on inflammatory bone loss. MATERIALS AND METHODS The gingival expression of C3, C3b, and C4b in animal experimental periodontitis models were analysed immunohistochemically. The therapeutic effects of the C3b/C4b inhibitor (SB002) on ligation-induced experimental periodontitis was examined using biochemical, histological, and immunohistochemical analyses. RESULTS The gingival expression levels of C3, C3b, and C4b were positively correlated with the severity of periodontitis. Moreover, both single and multiple injections of the C3b/C4b inhibitor had preventive and therapeutic effects on alveolar bone loss in ligation-induced experimental periodontitis with no associated adverse consequences. CONCLUSIONS The association between C3b/C4b and periodontitis may provide a basis for the development of novel therapeutic strategies for periodontitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Yi Tseng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | - Thomas E Van Dyke
- Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA.,Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Orthopaedics, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Shing Shieh
- Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Graduate Institutes of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Baumeister SE, Holtfreter B, Reckelkamm SL, Kocher T, Alayash Z, Ehmke B, Baurecht H, Nolde M. Genotype-driven NPC1L1 and PCSK9 inhibition and reduced risk of periodontitis. J Clin Periodontol 2023; 50:114-120. [PMID: 36054135 DOI: 10.1111/jcpe.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
AIM Epidemiological and pre-clinical studies suggest a chemoprotective role of lipid-lowering agents in periodontitis. We tested the association of genetically proxied inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), Niemann-Pick C1-Like 1 (NPC1L1) and proprotein convertase subtilisin/kexin type 9 (PCSK9) with periodontitis. MATERIALS AND METHODS Genetic variants in HMGCR, NCP1L1 and PCSK9 associated with low-density lipoprotein (LDL) cholesterol in a genome-wide association study (GWAS) meta-analysis (N = 188,578) were used to proxy therapeutic inhibition of HMGCR, NPC1L1 and PCSK9. For these genetic variants, associations with periodontitis were obtained from GWAS of 17,353 cases and 28,210 controls in the GeneLifestyle Interactions in Dental Endpoints consortium. Generalized weighted least squares analysis accounted for linkage disequilibrium of genotypes to derive pooled estimates. RESULTS While genetically proxied HMGCR inhibition equivalent to 1 mmol/L reduction in LDL was not associated with odds of periodontitis (odds ratio [OR] = 0.92 [95% confidence interval [CI]: 0.73; 1.16]; p = .4905; false discovery rate [FDR] = 0.4905), genetically proxied NPC1L1 (OR = 0.53 [95% CI: 0.35; 0.81]; p = .0038; FDR = 0.0077) and PCSK9 (OR = 0.84 [95% CI: 0.74; 0.95]; p = .0051; FDR = 0.0077) inhibition lowered the odds of periodontitis. CONCLUSIONS Genetically proxied inhibition of NCP1L1 and PCSK9 was associated with lower odds of periodontitis.
Collapse
Affiliation(s)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Heyman O, Horev Y, Mizraji G, Haviv Y, Shapira L, Wilensky A. Excessive inflammatory response to infection in experimental peri-implantitis: Resolution by Resolvin D2. J Clin Periodontol 2022; 49:1217-1228. [PMID: 35762068 PMCID: PMC9804794 DOI: 10.1111/jcpe.13631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 01/09/2023]
Abstract
AIM The aetiology and pathogenesis of peri-implantitis are currently under active research. This study aimed to dissect the pathogenesis of murine experimental peri-implantitis and assess Resolvin D2 (RvD2) as a new treatment modality. MATERIALS AND METHODS Four weeks following titanium implant insertion, mice were infected with Porphyromonas gingivalis using single or multiple oral lavages. RvD2 was administrated following infection, and tissues were analysed using flow cytometry, quantitative RT-PCR, taxonomic profiling, and micro-computed tomography. RESULTS Repeated infections with Pg resulted in microbial dysbiosis and a higher influx of innate and adaptive leukocytes to the peri-implant mucosa (PIM) than to gingiva surrounding the teeth. This was accompanied by increased expression levels of IFN-α, IL-1β, and RANKL\OPG ratio. Interestingly, whereas repetitive infections resulted in bone loss around implants and teeth, a single infection induced bone loss only around implants, suggesting a higher susceptibility of the implants to infection. Treatment with RvD2 prevented Pg-driven bone loss and reduced leukocyte infiltration to the PIM. CONCLUSIONS Murine dental implants are associated with dysregulated local immunity and increase susceptibility to pathogen-induced peri-implantitis. However, the disease can be prevented by RvD2 treatment, highlighting the promising therapeutic potential of this treatment modality.
Collapse
Affiliation(s)
- Oded Heyman
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yael Horev
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Gabriel Mizraji
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yaron Haviv
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Lior Shapira
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental MedicineHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
15
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
16
|
Xin X, Xiang X, Xin Y, Li Q, Ma H, Liu X, Hou Y, Yu W. Global trends in research on oxidative stress associated with periodontitis from 1987 to 2022: A bibliometric analysis. Front Immunol 2022; 13:979675. [PMID: 36159848 PMCID: PMC9493086 DOI: 10.3389/fimmu.2022.979675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Oxidative stress has been implicated in many chronic inflammatory diseases, including periodontitis. To date, however, only a few bibliometric analyses have systematically studied this field. This work sought to visualize research hot spots and trends in oxidative stress associated with periodontitis from 1987 to 2022 through bibliometric approaches. Methods The Web of Science Core Collection was searched to retrieve relevant publications. HistCite, VOSviewer, and CiteSpace were used to perform bibliometric analysis visually in terms of annual output, active countries, prolific institutions, authors, core journals, co-cited references, and co-occurrence of keywords. Results A total of 1654 documents were selected for analysis. From 1 January 1987 to 11 June 2022, the number of annual publications related to oxidative stress in periodontitis exhibited an upward trend. The most prolific country was China with 322 documents, but the United States had 11334 citations. Okayama University, University of Birmingham, and Sichuan University were the most active and contributive institutions. The Journal of Periodontology ranked first in terms of numbers of publications and citations. Ekuni was the most prolific author, while Chapple ranked first among co-cited authors. The Role of Reactive Oxygen and Antioxidant Species in Periodontal Tissue Destruction published by Chapple was the most frequently co-cited reference. Keywords co-occurrence showed that oxidative stress was closely related to inflammation, antioxidants, and diabetes. Conclusion Our research found that global publications regarding research on oxidative stress associated with periodontitis increased dramatically and were expected to continue increasing. Inflammation and oxidative stress, and the relationship between periodontitis and systemic diseases, are topics worthy of attention.
Collapse
Affiliation(s)
- Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiong Li
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Haonan Ma
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
17
|
Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol 2022; 12:998313. [PMID: 36118034 PMCID: PMC9480849 DOI: 10.3389/fcimb.2022.998313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontitis, an oral inflammatory disease, originates from periodontal microbiota dysbiosis which is associated with the dysregulation of host immunoinflammatory response. This chronic infection is not only harmful to oral health but is also a risk factor for the onset and progress of various vascular diseases, such as hypertension, atherosclerosis, and coronary arterial disease. Vascular endothelial dysfunction is the initial key pathological feature of vascular diseases. Clarifying the association between periodontitis and vascular endothelial dysfunction is undoubtedly a key breakthrough for understanding the potential relationship between periodontitis and vascular diseases. However, there is currently a lack of an updated review of their relationship. Therefore, we aim to focus on the implications of periodontitis in vascular endothelial dysfunction in this review.
Collapse
Affiliation(s)
- Qian Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xiangying Ouyang, ; Jiang Lin,
| |
Collapse
|
18
|
Sufaru IG, Teslaru S, Pasarin L, Iovan G, Stoleriu S, Solomon SM. Host Response Modulation Therapy in the Diabetes Mellitus—Periodontitis Conjuncture: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14081728. [PMID: 36015357 PMCID: PMC9414216 DOI: 10.3390/pharmaceutics14081728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The inflammatory response of the host in periodontitis is the phenomenon that underlies the onset and evolution of periodontal destructive phenomena. A number of systemic factors, such as diabetes mellitus (DM), can negatively affect the patient with periodontitis, just as the periodontal disease can aggravate the status of the DM patient. Host response modulation therapy involves the use of anti-inflammatory and anti-oxidant products aimed at resolving inflammation, stopping destructive processes, and promoting periodontal healing, all important aspects in patients with high tissue loss rates, such as diabetic patients. This paper reviews the data available in the literature on the relationship between DM and periodontitis, the main substances modulating the inflammatory response (nonsteroidal anti-inflammatory drugs, sub-antimicrobial doses of doxycycline, or omega-3 fatty acids and their products, specialized pro-resolving mediators), as well as their application in diabetic patients.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Silvia Teslaru
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Liliana Pasarin
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
- Correspondence: (S.T.); (L.P.)
| | - Gianina Iovan
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Simona Stoleriu
- Department of Cariology and Restorative Dental Therapy, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy, Universitatii Street 16, 700115 Iasi, Romania
| |
Collapse
|
19
|
Batool F, Gegout PY, Stutz C, White B, Kolodziej A, Benkirane-Jessel N, Petit C, Huck O. Lenabasum Reduces Porphyromonas gingivalis-Driven Inflammation. Inflammation 2022; 45:1752-1764. [PMID: 35274214 DOI: 10.1007/s10753-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the potential anti-inflammatory and anti-resorptive effects of lenabasum in the context of Porphyromonas gingivalis (Pg)-induced inflammation. Lenabasum or ajulemic acid (1',1'-dimethylheptyl-THC-11-oic-acid), a synthetic analog of THC-11-oic acid, has already demonstrated anti-inflammatory properties for the treatment of several inflammatory diseases. In vitro, the cytocompatibility of lenabasum was evaluated in human oral epithelial cells (EC), oral fibroblasts and osteoblasts by metabolic activity assay. The effect of lenabasum (5 µM) treatment of Pg-LPS- and P. gingivalis-infected EC on the pro- and anti-inflammatory markers was studied through RTqPCR. In vivo, lenabasum was injected subcutaneously in a P. gingivalis-induced calvarial abscess mouse model to assess its pro-healing effect. Concentrations of lenabasum up to 5 µM were cytocompatible in all cell types. Treatment of Pg-LPS and Pg-infected EC with lenabasum (5 µM; 6 h) reduced the gene expression of TNF-α, COX-2, NF-κB, and RANKL, whereas it increased the expression of IL-10 and resolvin E1 receptor respectively (p < 0.05). In vivo, the Pg-elicited inflammatory lesions' clinical size was significantly reduced by lenabasum injection (30 µM) vs untreated controls (45%) (p < 0.05). Histomorphometric analysis exhibited improved quantity and quality of bone (with reduced lacunae) and significantly reduced calvarial soft tissue inflammatory score in mice treated with lenabasum (p < 0.05). Tartrate-resistant acid phosphatase activity assay (TRAP) also demonstrated decreased osteoclastic activity in the treatment group compared to that in the controls. Lenabasum showed promising anti-inflammatory and pro-resolutive properties in the management of Pg-elicited inflammation, and thus, its potential as adjuvant periodontal treatment should be further investigated.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
| | - Céline Stutz
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | | | | | - Nadia Benkirane-Jessel
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France.,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France. .,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France. .,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
20
|
Shao F, Panahipour L, Omerbasic A, Tang F, Gruber R. Dalbergiones lower the inflammatory response in oral cells in vitro. Clin Oral Investig 2022; 26:5419-5428. [PMID: 35505200 PMCID: PMC9381493 DOI: 10.1007/s00784-022-04509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Objectives Periodontitis is a global health burden that underlines the demand for anti-inflammatory treatment. Dalbergia melanoxylon being a rich source of flavonoids has been widely used in traditional medicine but the potential anti-inflammatory activity of its dalbergiones remains to be shown. Material and methods We have isolated 3′-hydroxy-4,4′-dimethoxydalbergione, 4-methoxydalbergione, and 4′-hydroxy-4-methoxydalbergione from Dalbergia melanoxylon and tested their potential anti-inflammatory activity. Results All dalbergiones are potent inhibitors of an LPS-induced inflammatory response of RAW 264.7 macrophages. This is specified by IL1β and IL6 production, and the p65 nuclear translocation. Consistently, in primary macrophages, the dalbergiones caused an M1-to-M2 polarization switch indicated by the decreased ration of IL1β and IL6 versus arginase 1 and YM1 expression. To implement oral cells, we have used gingival fibroblasts exposed to IL1β and TNFα. Consistently, all dalbergiones reduced the expression of IL6 and IL8 as well as the nuclear translocation of p65. Conclusion These findings increase the accumulating knowledge on dalbergiones and extend it towards its capacity to lower the inflammatory response of oral cells. Clinical relevance These findings are another piece of evidence that supports the use of herbal medicine to potentially lower inflammatory events related to dentistry.
Collapse
Affiliation(s)
- Feng Shao
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Meiling Road 1688, 330004, Nanchang, China
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Anes Omerbasic
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Meiling Road 1688, 330004, Nanchang, China
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200, Vienna, Austria.
| |
Collapse
|
21
|
Pharmacological Therapies for the Management of Inflammatory Bone Resorption in Periodontal Disease: A Review of Preclinical Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5832009. [PMID: 35547360 PMCID: PMC9085331 DOI: 10.1155/2022/5832009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Periodontitis, a highly prevalent multicausal chronic inflammatory and destructive disease, develops as a result of complex host-parasite interactions. Dysbiotic bacterial biofilm in contact with the gingival tissues initiates a cascade of inflammatory events, mediated and modulated by the host's immune response, which is characterized by increased expression of several inflammatory mediators such as cytokines and chemokines in the connective tissue. If periodontal disease (PD) is left untreated, it results in the destruction of the supporting tissues around the teeth, including periodontal ligament, cementum, and alveolar bone, which lead to a wide range of disabilities and poor quality of life, thus imposing significant burdens. This process depends on the differentiation and activity of osteoclasts, the cells responsible for reabsorbing the bone tissue. Therefore, the inhibition of differentiation or activity of these cells is a promising strategy for controlling bone resorption. Several pharmacological drugs that target osteoclasts and inflammatory cells with immunomodulatory and anti-inflammatory effects, such as bisphosphonates, anti-RANK-L antibody, strontium ranelate, cathepsin inhibitors, curcumin, flavonoids, specialized proresolving mediators, and probiotics, were already described to manage inflammatory bone resorption during experimental PD progression in preclinical studies. Meantime, a growing number of studies have described the beneficial effects of herbal products in inhibiting bone resorption in experimental PD. Therefore, this review summarizes the role of several pharmacological drugs used for PD prevention and treatment and highlights the targeted action of all those drugs with antiresorptive properties. In addition, our review provides a timely and critical appraisal for the scientific rationale use of the antiresorptive and immunomodulatory medications in preclinical studies, which will help to understand the basis for its clinical application.
Collapse
|
22
|
Advances in Experimental Research About Periodontitis: Lessons from the Past, Ideas for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:1-15. [DOI: 10.1007/978-3-030-96881-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Martínez-García M, Hernández-Lemus E. Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol 2021; 12:709438. [PMID: 34776994 PMCID: PMC8578868 DOI: 10.3389/fphys.2021.709438] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a common inflammatory disease of infectious origins that often evolves into a chronic condition. Aside from its importance as a stomatologic ailment, chronic periodontitis has gained relevance since it has been shown that it can develop into a systemic condition characterized by unresolved hyper-inflammation, disruption of the innate and adaptive immune system, dysbiosis of the oral, gut and other location's microbiota and other system-wide alterations that may cause, coexist or aggravate other health issues associated to elevated morbi-mortality. The relationships between the infectious, immune, inflammatory, and systemic features of periodontitis and its many related diseases are far from being fully understood and are indeed still debated. However, to date, a large body of evidence on the different biological, clinical, and policy-enabling sources of information, is available. The aim of the present work is to summarize many of these sources of information and contextualize them under a systemic inflammation framework that may set the basis to an integral vision, useful for basic, clinical, and therapeutic goals.
Collapse
Affiliation(s)
- Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mèxico, Mexico City, Mexico
| |
Collapse
|
24
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
25
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
26
|
Isola G. New Advances On Biomaterials for Regenerative and Reparative Treatment Following Periodontal and Peri-implant Diseases. Open Dent J 2021. [DOI: 10.2174/1874210602115010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Balta MG, Papathanasiou E, Blix IJ, Van Dyke TE. Host Modulation and Treatment of Periodontal Disease. J Dent Res 2021; 100:798-809. [PMID: 33655803 DOI: 10.1177/0022034521995157] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is the sixth-most prevalent disease in the world and the first cause for tooth loss in adults. With focus shifted to the inflammatory/immune response in the pathogenesis of periodontitis, there is a critical need to evaluate host modulatory agents. Synthetic and biological disease-modifying antirheumatic drugs are a cornerstone for the treatment of inflammatory diseases. Recent prospective cohort studies showed that synthetic disease-modifying antirheumatic drugs improved periodontal clinical parameters following nonsurgical periodontal treatment in patients with rheumatoid arthritis. Treatment with recombinant humanized monoclonal antibodies against CD20 (rituximab) and IL-6 receptor (tocilizumab), the latter also in clinical trials for the treatment of COVID-19 pneumonia, resulted in decreased periodontal inflammation and improved periodontal status. Studies on the effect of TNF-α inhibitors in patients with periodontitis yielded inconsistent results. Recent data suggest that probiotics provide anti-inflammatory clinical benefit, as do nutritional supplements, such as n-3 fatty acids, when combined with periodontal therapy. Probiotics reduce the production of proinflammatory cytokines/chemokines by suppressing NF-κB pathways and promote the accumulation of T regulatory cells. Statins, like aspirin, have been shown to exhibit anti-inflammatory and bone-preserving actions by upregulating production of Specialized Proresolving Mediators (SPMs). Currently, there is insufficient scientific support for the topical delivery of statins or bisphosphonates as adjuncts to periodontal therapy. Here, we present a critical review of the most recent host modulatory agents applied in humans and the key immune pathways that they target. Emerging evidence from novel drug candidates, including SPMs and complement inhibitors as previously studied in animal models and currently in human clinical trials, suggests future availability of adjunctive therapeutic strategies for the management of periodontitis.
Collapse
Affiliation(s)
- M G Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - E Papathanasiou
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA.,Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA
| | - I J Blix
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway.,Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - T E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
28
|
Sandhaus S, Swick AG. Specialized proresolving mediators in infection and lung injury. Biofactors 2021; 47:6-18. [PMID: 33249673 PMCID: PMC7744833 DOI: 10.1002/biof.1691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Specialized proresolving mediators (SPMs) are endogenous lipid metabolites of long-chain polyunsaturated fatty acids that are involved in promoting the resolution of inflammation. Many disease conditions characterized by excessive inflammation have impaired or altered SPM biosynthesis, which may lead to chronic, unresolved inflammation. Exogenous administration of SPMs in infectious conditions has been shown to be effective at improving infection clearance and survival in preclinical models. SPMs have also shown tremendous promise in the context of inflammatory lung conditions, such as acute respiratory distress syndrome and chronic obstructive pulmonary disease, mostly in preclinical settings. To date, SPMs have not been studied in the context of the novel Coronavirus, severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), however their preclinical efficacy in combatting infections and improving acute respiratory distress suggest they may be a valuable resource in the fight against Coronavirus disease-19 (COVID-19). Overall, while the research on SPMs is still evolving, they may offer a novel therapeutic option for inflammatory conditions.
Collapse
MESH Headings
- Anti-Inflammatory Agents/therapeutic use
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Docosahexaenoic Acids/therapeutic use
- Herpes Simplex/drug therapy
- Herpes Simplex/metabolism
- Herpes Simplex/pathology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Lipoxins/therapeutic use
- Lung/drug effects
- Lung/metabolism
- Lung/pathology
- Lung Injury/drug therapy
- Lung Injury/metabolism
- Lung Injury/pathology
- Lung Injury/virology
- Periodontitis/drug therapy
- Periodontitis/metabolism
- Periodontitis/pathology
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Disease, Chronic Obstructive/virology
- Respiratory Distress Syndrome/drug therapy
- Respiratory Distress Syndrome/metabolism
- Respiratory Distress Syndrome/pathology
- Respiratory Distress Syndrome/virology
- SARS-CoV-2/pathogenicity
- Sepsis/drug therapy
- Sepsis/metabolism
- Sepsis/pathology
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/pathology
- COVID-19 Drug Treatment
Collapse
|
29
|
Akkermansia muciniphila and Its Pili-Like Protein Amuc_1100 Modulate Macrophage Polarization in Experimental Periodontitis. Infect Immun 2020; 89:IAI.00500-20. [PMID: 33020212 DOI: 10.1128/iai.00500-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.
Collapse
|
30
|
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem 2020; 64:443-462. [PMID: 32885825 PMCID: PMC7682745 DOI: 10.1042/ebc20200018] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Today, persistent and uncontrolled inflammation is appreciated to play a pivotal role in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other diseases of public health concern (e.g. Coronavirus Disease 2019 (COVID-19) and periodontal disease). The ideal response to initial challenge in humans is a self-limited inflammatory response leading to complete resolution. The resolution phase is now widely recognized as a biosynthetically active process, governed by a superfamily of endogenous chemical mediators that stimulate resolution of inflammatory responses, namely specialized proresolving mediators (SPMs). Because resolution is the natural ideal response, the SPMs have gained attention. SPMs are mediators that include ω-6 arachidonic acid-derived lipoxins, ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-derived resolvins, protectins and maresins, cysteinyl-SPMs, as well as n-3 docosapentaenoic acid (DPA)-derived SPMs. These novel immunoresolvents, their biosynthetic pathways and receptors have proven to promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via specific cellular and molecular mechanisms. As of 17 August, 2020, PubMed.gov reported >1170 publications for resolvins, confirming their potent protective actions from many laboratories worldwide. Since this field is rapidly expanding, we provide a short update of advances within 2-3 years from human and preclinical animal studies, together with the structural-functional elucidation of SPMs and identification of novel SPM receptors. These new discoveries indicate that SPMs, their pathways and receptors could provide a basis for new approaches for treating inflammation-associated diseases and for stimulating tissue regeneration via resolution pharmacology and precision nutrition.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| |
Collapse
|