1
|
Pecoraro L, Peterle E, Dalla Benetta E, Piazza M, Chatziparasidis G, Kantar A. Well-Established and Traditional Use of Vegetal Extracts as an Approach to the "Deep Roots" of Cough. CHILDREN (BASEL, SWITZERLAND) 2024; 11:584. [PMID: 38790578 PMCID: PMC11120585 DOI: 10.3390/children11050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cough is a common presenting symptom for patients in a primary care setting and significantly impacts a patient's quality of life. Cough involves a complex reflex arc beginning with the stimulation of sensory nerves that function as cough receptors that stimulate the cough center in the brain. This "cough center" functions to receive these impulses and produce a cough by activating efferent nervous pathways to the diaphragm and laryngeal, thoracic, and abdominal musculature. Drugs that suppress the neural activity of cough are non-specific as those treatments are not directed toward pathogenic causes such as inflammation and oxidative stress. Moreover, they block a reflex called the watchdog of the lung and have a defense mechanism. Acute respiratory infections of the upper and lower airways most commonly cause acute cough. In contrast, the most common causes of chronic cough are upper airway cough syndrome, asthma, and gastroesophageal reflux disease, all associated with an inflammatory reaction at the level of the cough receptors. The use of natural compounds or herbal drugs such as carob syrup, dry blackcurrant extract, dry extract of caraway fruit, dry extract of ginger rhizome, dry extract of marshmallow root, and dry extract of ivy leaves, to name a few, not only have anti-inflammatory and antioxidant activity, but also act as antimicrobials, bronchial muscle relaxants, and increase gastric motility and empty. For these reasons, these natural substances are widely used to control cough at its deep roots (i.e., contrasting its causes and not inhibiting the arch reflex). With this approach, the lung watchdog is not put to sleep, as with peripheral or central inhibition of the cough reflex, and by contrasting the causes, we may control cough that viruses use at self-advantage to increase transmission.
Collapse
Affiliation(s)
- Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | | | | | - Michele Piazza
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37126 Verona, Italy
| | - Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, 38221 Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, 38221 Volos, Greece
| | - Ahmad Kantar
- Pediatric Cough and Asthma Center, Istituti Ospedalieri Bergamaschi, University and Research Hospitals, 24036 Bergamo, Italy
| |
Collapse
|
2
|
Santos Pereira R, Vasconcelos Costa V, Luiz Menezes Gomes G, Rodrigues Valadares Campana P, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F. Anti-Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCL-81 and Human Neuroblastoma SH-SY5Y Cells. Chem Biodivers 2022; 19:e202100842. [PMID: 35285139 DOI: 10.1002/cbdv.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 μg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 μg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gabriel Luiz Menezes Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Milton Barbosa
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Yumi Oki
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gustavo Heiden
- Empresa Brasileira de Pesquisa Agropecuária Clima Temperado, CEP 96010-971, Pelotas, Brazil
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
3
|
Antiviral Potential of Selected Medicinal Herbs and Their Isolated Natural Products. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7872406. [PMID: 34926691 PMCID: PMC8674041 DOI: 10.1155/2021/7872406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Viruses are responsible for a variety of human pathogenesis. Owing to the enhancement of the world population, global travel, and rapid urbanization, and infectious outbreaks, a critical threat has been generated to public health, as preventive vaccines and antiviral therapy are not available. Herbal medicines and refined natural products have resources for the development of novel antiviral drugs. These natural agents have shed light on preventive vaccine development and antiviral therapies. This review intends to discuss the antiviral activities of plant extracts and some isolated plant natural products based on mainly preclinical (in vitro and in vivo) studies. Twenty medicinal herbs were selected for the discussion, and those are commonly recognized antiviral medicinal plants in Ayurveda (Zingiber officinale, Caesalpinia bonducella, Allium sativum, Glycyrrhiza glabra, Ferula assafoetida, Gymnema sylvestre, Gossypium herbaceum, Phyllanthus niruri, Trachyspermum ammi, Withania somnifera, Andrographis paniculata, Centella asiatica, Curcuma longa, Woodfordia fruticose, Phyllanthus emblica, Terminalia chebula, Tamarindus indica, Terminalia arjuna, Azadirachta indica, and Ficus religiosa). However, many viruses remain without successful immunization and only a few antiviral drugs have been approved for clinical use. Hence, the development of novel antiviral drugs is much significant and natural products are excellent sources for such drug developments. In this review, we summarize the antiviral actions of selected plant extracts and some isolated natural products of the medicinal herbs.
Collapse
|
4
|
Giofrè SV, Napoli E, Iraci N, Speciale A, Cimino F, Muscarà C, Molonia MS, Ruberto G, Saija A. Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Comput Biol Med 2021; 134:104538. [PMID: 34116362 PMCID: PMC8186839 DOI: 10.1016/j.compbiomed.2021.104538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
The outbreak of COVID-19 disease caused by SARS-CoV-2, along with the lack of targeted medicaments, forced the scientific world to search for new antiviral formulations. In the current emergent situation, drug repurposing of well-known traditional and/or approved drugs could be the most effective strategy. Herein, through computational approaches, we aimed to screen 14 natural compounds from limonoids and terpenoids class for their ability to inhibit the key therapeutic target proteins of SARS-CoV-2. Among these, some limonoids, namely deacetylnomilin, ichangin and nomilin, and the terpenoid β-amyrin provided good interaction energies with SARS-CoV-2 3CL hydrolase (Mpro) in molecular dynamic simulation. Interestingly, deacetylnomilin and ichangin showed direct interaction with the catalytic dyad of the enzyme so supporting their potential role in preventing SARS-CoV-2 replication and growth. On the contrary, despite the good affinity with the spike protein RBD site, all the selected phytochemicals lose contact with the amino acid residues over the course of 120ns-long molecular dynamics simulations therefore suggesting they scarcely can interfere in SARS-CoV-2 binding to the ACE2 receptor. The in silico analyses of docking score and binding energies, along with predicted pharmacokinetic profiles, indicate that these triterpenoids might have potential as inhibitors of SARS-CoV-2 Mpro, recommending further in vitro and in vivo investigations for a complete understanding and confirmation of their inhibitory potential.
Collapse
Affiliation(s)
- Salvatore Vincenzo Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Edoardo Napoli
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Nunzio Iraci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Antonio Speciale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Francesco Cimino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy.
| | - Claudia Muscarà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Maria Sofia Molonia
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| | - Giuseppe Ruberto
- Istituto di Chimica Biomolecolare del Consiglio Nazionale delle Ricerche (ICB-CNR), Via Paolo Gaifami, 18, 95126, Catania, Italy
| | - Antonella Saija
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Messina, Italy
| |
Collapse
|
5
|
Kumar SB, Krishna S, Pradeep S, Mathews DE, Pattabiraman R, Murahari M, Murthy TPK. Screening of natural compounds from Cyperus rotundus Linn against SARS-CoV-2 main protease (M pro): An integrated computational approach. Comput Biol Med 2021; 134:104524. [PMID: 34090015 PMCID: PMC8164362 DOI: 10.1016/j.compbiomed.2021.104524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that has been spreading across the globe. The World Health Organization (WHO) declared it as a public health emergency. The treatment of COVID-19 has been hampered due to the lack of effective therapeutic efforts. Main Protease (Mpro) is a key enzyme in the viral replication cycle and its non-specificity to human protease makes it a potential drug target. Cyperus rotundus Linn, which belongs to the Cyperaceae family, is a traditional herbal medicine that has been widely studied for its antiviral properties. In this study, a computational approach was used to screen natural compounds from C. rotundus Linn using BIOVIA Discovery Suite and novel potential molecules against Mpro of SARS-CoV-2 were predicted. Molecular docking was performed using LibDock protocol and selected ligands were further subjected to docking analysis by CDOCKER. The docking scores of the selected ligands were compared with standard antiretroviral drugs such as lopinavir and ritonavir to assess their binding potentials. Interaction pharmacophore analysis was then performed for the compounds exhibiting good binding scores to evaluate their protein–ligand interactions. The selected protein–ligand complexes were subjected to molecular dynamics simulation for 50 ns. Results of binding free energy analysis revealed that two compounds—β-amyrin and stigmasta-5,22-dien-3-ol—exhibited the best binding interactions and stability. Finally, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were performed to understand the pharmacokinetic properties and safety profile of the compounds. The overall results indicate that the phytochemicals from Cyperus rotundus Linn, namely β-amyrin and stigmasta-5,22-dien-3-ol, can be screened as potential inhibitors of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- S Birendra Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Swati Krishna
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Sneha Pradeep
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Divya Elsa Mathews
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Ramya Pattabiraman
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India.
| | - T P Krishna Murthy
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, 560054, Karnataka, India.
| |
Collapse
|
6
|
Figueiredo GG, Coronel OA, Trabuco AC, Bazán DE, Russo RR, Alvarenga NL, Aquino VH. Steroidal saponins from the roots of Solanum sisymbriifolium Lam. (Solanaceae) have inhibitory activity against dengue virus and yellow fever virus. ACTA ACUST UNITED AC 2021; 54:e10240. [PMID: 34008751 PMCID: PMC8130103 DOI: 10.1590/1414-431x2020e10240] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023]
Abstract
Dengue is the most important arthropod-borne viral disease worldwide. Infection with any of the four dengue virus (DENV) serotypes can be asymptomatic or lead to disease with clinical symptoms ranging from undifferentiated and self-limiting fever to severe dengue disease, which can be fatal in some cases. Currently, no specific antiviral compound is available for treating DENV. The aim of this study was to identify compounds in plants from Paraguayan folk medicine with inhibitory effects against DENV. We found high virucidal activity (50% maximal effective concentration (EC50) value of 24.97 µg/mL) against DENV-2 in the ethanolic extract of the roots of Solanum sisymbriifolium Lam. (Solanaceae) without an evident cytotoxic effect on Vero E6 cells. Three saponins isolated from the root extract showed virucidal effects (EC50 values ranging from 24.9 to 35.1 µg/mL) against DENV-2. Additionally, the saponins showed inhibitory activity against yellow fever virus (EC50 values ranging from 126 to 302.6 µg/mL), the prototype virus of the Flavivirus genus, suggesting that they may also be effective against other members of this genus. Consequently, these saponins may be lead compounds for the development of antiviral agents.
Collapse
Affiliation(s)
- G G Figueiredo
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O A Coronel
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - A C Trabuco
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D E Bazán
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - R R Russo
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - N L Alvarenga
- Department of Phytochemistry, Faculty of Chemical Sciences, National University of Asuncion, San Lorenzo, Paraguay
| | - V H Aquino
- Laboratório de Virologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
7
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Hisham Shady N, Youssif KA, Sayed AM, Belbahri L, Oszako T, Hassan HM, Abdelmohsen UR. Sterols and Triterpenes: Antiviral Potential Supported by In-Silico Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 10:E41. [PMID: 33375282 PMCID: PMC7823815 DOI: 10.3390/plants10010041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
| | - Khayrya A. Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11865, Egypt;
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland;
| | - Tomasz Oszako
- Departement of Forest Protection, Forest Research Institute, 05-090 Sękocin Stary, Poland;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt; (A.M.S.); (H.M.H.)
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, P.O. Box 61111, New Minia City, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
9
|
Kar P, Kumar V, Vellingiri B, Sen A, Jaishee N, Anandraj A, Malhotra H, Bhattacharyya S, Mukhopadhyay S, Kinoshita M, Govindasamy V, Roy A, Naidoo D, Subramaniam MD. Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation. J Biomol Struct Dyn 2020; 40:4532-4542. [PMID: 33305988 PMCID: PMC7808002 DOI: 10.1080/07391102.2020.1860133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Pallab Kar
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Vijay Kumar
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arnab Sen
- Department of Botany, University of North Bengal, Siliguri, India
| | - Nishika Jaishee
- Department of Botany, St Joseph's College, Darjeeling, India
| | - Akash Anandraj
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Himani Malhotra
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | | | - Subhasish Mukhopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | | | - Ayan Roy
- Department of Biotechnology, Lovely Faculty of Technology and Sciences, Lovely Professional University, Punjab, India
| | - Devashan Naidoo
- Centre for Algal Biotechnology, Faculty of Natural Sciences, Mangosuthu University of Technology, Durban, South Africa
| | - Mohana Devi Subramaniam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
11
|
Roshdy WH, Rashed HA, Kandeil A, Mostafa A, Moatasim Y, Kutkat O, Abo Shama NM, Gomaa MR, El-Sayed IH, El Guindy NM, Naguib A, Kayali G, Ali MA. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One 2020; 15:e0241739. [PMID: 33206688 PMCID: PMC7673558 DOI: 10.1371/journal.pone.0241739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Due to the challenges for developing vaccines in devastating pandemic situations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing and screening of novel antiviral agents are peremptorily demanded. Herein, we developed EGYVIR as a potent immunomodulatory herbal extract with promising antiviral activity against SARS-CoV-2. It constitutes of a combination of black pepper extract with curcumin extract. The antiviral effect of EGYVIR extract is attributed to the two key phases of the disease in severe cases. First, the inhibition of the nuclear translocation of NF-kβ p50, attenuating the SARS-CoV-2 infection-associated cytokine storm. Additionally, the EGYVIR extract has an in vitro virucidal effect for SARS-CoV-2. The in vitro study of EGYVIR extract against SARS-CoV-2 on Huh-7 cell lines, revealed the potential role of NF-kβ/TNFα/IL-6 during the infection process. EGYVIR antagonizes the NF-kβ pathway in-silico and in-vitro studies. Consequently, it has the potential to hinder the release of IL-6 and TNFα, decreasing the production of essential cytokines storm elements.
Collapse
Affiliation(s)
- Wael H. Roshdy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Helmy A. Rashed
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ibrahim H. El-Sayed
- Biochemistry Department, Faculty of Science, Kafr El Sheikh University, Kafr El-Shaikh, Egypt
| | - Nancy M. El Guindy
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Amal Naguib
- Central Public Health Laboratory, Ministry of Health and Population, Cairo, Egypt
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, Texas, United States of America
- Human Link, Baabda, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| |
Collapse
|
12
|
Divya M, Vijayakumar S, Chen J, Vaseeharan B, Durán-Lara EF. South Indian medicinal plants can combat deadly viruses along with COVID-19? - A review. Microb Pathog 2020; 148:104277. [PMID: 32473390 PMCID: PMC7253980 DOI: 10.1016/j.micpath.2020.104277] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 is a causative agent of Coronavirus disease-19 (COVID-19), which is considered as a fatal disease for public health apprehension worldwide. This pathogenic virus can present everywhere. As it is a virus it can extend easily and cause severe illness to humans. Hence, an efficient international attentiveness of plan is necessary to cure and prevent. In this review, epidemic outbreak, clinical findings, prevention recommendations of COVID-19 and suggestive medicinal value of south Indian plant sources have been discussed. Though the varieties of improved approaches have been taken in scientific and medicinal concern, we have to pay attention to the medicinal value of the plant-based sources to prevent these types of pandemic diseases. This is one of the suggestive and effective ways to control the spreading of viruses. In the future, it is required to provide medicinal plant-based clinical products (Masks, sanitizers, soap, etc.,) with better techniques by clinicians to contend the scarcity and expose towards the nature-based medicine rather than chemical drugs. This may be a benchmark for the economical clinical trials of specific plant material to treat the viral diseases in the future.
Collapse
Affiliation(s)
- Mani Divya
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Sekar Vijayakumar
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India; Marine College, Shandong University, Weihai, 264209, PR China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai, 264209, PR China.
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| | - Esteban F Durán-Lara
- Bio & NanoMaterials Lab| Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de La Salud, Universidad de Talca, Talca, 3460000, Maule, Chile.
| |
Collapse
|
13
|
Salazar JR, Loza-Mejía MA, Soto-Cabrera D. Chemistry, Biological Activities and In Silico Bioprospection of Sterols and Triterpenes from Mexican Columnar Cactaceae. Molecules 2020; 25:molecules25071649. [PMID: 32260146 PMCID: PMC7180492 DOI: 10.3390/molecules25071649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
The Cactaceae family is an important source of triterpenes and sterols. The wide uses of those plants include food, gathering, medicinal, and live fences. Several studies have led to the isolation and characterization of many bioactive compounds. This review is focused on the chemistry and biological properties of sterols and triterpenes isolated mainly from some species with columnar and arborescent growth forms of Mexican Cactaceae. Regarding the biological properties of those compounds, apart from a few cases, their molecular mechanisms displayed are not still fully understand. To contribute to the above, computational chemistry tools have given a boost to traditional methods used in natural products research, allowing a more comprehensive exploration of chemistry and biological activities of isolated compounds and extracts. From this information an in silico bioprospection was carried out. The results suggest that sterols and triterpenoids present in Cactaceae have interesting substitution patterns that allow them to interact with some bio targets related to inflammation, metabolic diseases, and neurodegenerative processes. Thus, they should be considered as attractive leads for the development of drugs for the management of chronic degenerative diseases.
Collapse
Affiliation(s)
- Juan Rodrigo Salazar
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | - Marco A. Loza-Mejía
- Correspondence: (J.R.S.); (M.A.L.-M.); Tel.: +52-55-5278-9500 (J.R.S. & M.A.L.-M.)
| | | |
Collapse
|
14
|
Jang E, Kim S, Lee NR, Kim H, Chae S, Han CW, Kim Y, Lee KT, Kim BJ, Inn KS, Lee JH. Sanguisorba officinalis extract, ziyuglycoside I, and II exhibit antiviral effects against hepatitis B virus. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Mair C, Grienke U, Wilhelm A, Urban E, Zehl M, Schmidtke M, Rollinger JM. Anti-Influenza Triterpene Saponins from the Bark of Burkea africana. JOURNAL OF NATURAL PRODUCTS 2018; 81:515-523. [PMID: 29394063 PMCID: PMC5869419 DOI: 10.1021/acs.jnatprod.7b00774] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 05/23/2023]
Abstract
In an in vitro cytopathic effect inhibition assay with the H3N2 influenza virus A/Hong Kong/68 (HK/68), the bark extract of Burkea africana was found to be a promising antiviral lead with an IC50 value of 5.5 μg/mL without noteworthy cytotoxicity in Madin Darby canine kidney cells. After several chromatographic steps, triterpene saponins of the lupane and oleanane types were identified as the bioactive principles. In total, eight new triterpene saponins (1-8) with four so far undescribed aglycone structures were isolated and characterized via HRESIMS, GC-MS, and 1D and 2D NMR spectroscopy. Their anti-influenza virus activity on HK/68 and the 2009 pandemic H1N1 strain A/Jena/8178/09 revealed the most potent effects by compounds 7 and 8, with IC50 values between 0.05 and 0.27 μM. This is the first time triterpene saponins have been reported as constituents of the investigated plant material.
Collapse
Affiliation(s)
- Christina
E. Mair
- Department
of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Ulrike Grienke
- Department
of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Anke Wilhelm
- Department
of Chemistry, University of the Free State, PO Box 339, 9300 Bloemfontein, South Africa
| | - Ernst Urban
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Martin Zehl
- Department
of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Michaela Schmidtke
- Institute
of Medical Microbiology, Section Experimental Virology, Jena University
Hospital, Hans-Knöll-Straße
2, 07745 Jena, Germany
| | - Judith M. Rollinger
- Department
of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
16
|
Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J 2018; 26:685-693. [PMID: 29991912 PMCID: PMC6035322 DOI: 10.1016/j.jsps.2018.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022] Open
Abstract
Guiera senegalensis J.F. Gmel is a broad-spectrum African folk- medicinal plant, having activities against fowlpox and herpes viruses. Very recently, we have shown the anti-hepatitis B vius (HBV) potential of G. senegalensis leaves extract (GSLE). Here, we report the antioxidative and hepatoprotective efficacy of GSLE, including HPTLC quantification of four biomarkers of known antioxidative and antiviral activities. In cultured liver cells (HuH7) GSLE attenuated DCFH-induced oxidative stress and cytotoxicity. This was supported by in vitro DPPH radical-scavenging and β-carotene-linoleic acid bleaching assays that showed strong antioxidant activity of GSLE. Further, two simple and sensitive HPTLC methods (I and II) were developed and validated to quantify β-amyrin, β- sitosterol, lupeol, ursolic acid in GSLE. While HPTLC-I (hexane: ethylacetate; 75:25; v/v) enabled quantification of β-amyrin (Rf = 0.39; 20.64 μg/mg) and β-sitosterol (Rf = 0.25; 18.56 μg/mg), HPTLC-II (chloroform: methanol; 97:3; v/v) allowed estimation of lupeol (Rf = 0.47; 6.72 μg/mg) and ursolic acid (Rf = 0.23; 5.81 μg/mg) in GSLE. Taken together, the identified biomarkers strongly supported the antioxidant and anti-HBV potential of GSLE, suggesting its activity via abating the oxidative stress. To our knowledge, this is the first report on HPTLC analysis of these biomarkers in G. senegalensis that could be adopted for standardization and quality-control of herbal-formulations.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed H Arbab
- Department of Pharmacognosy, College of Pharmacy, Omdurman Islamic University, Khartoom 14415, Sudan
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tawfeq A Alhowiriny
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh I Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Tykheev ZA, Taraskin VV, Radnaeva LD, Zhang FQ, Chen SL. Composition of Lipids from Roots of Bupleurum scorzonerifolium and B. chinense. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
The Effect of Hydrocotyle sibthorpioides Lam. Extracts on In Vitro Dengue Replication. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:596109. [PMID: 25767554 PMCID: PMC4342073 DOI: 10.1155/2015/596109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 11/29/2022]
Abstract
Objective. To investigate the potential effect of Hydrocotyle sibthorpioides Lam. (H. sibthorpioides) extracts against in vitro dengue viral replication. Methods. The cytotoxicity of H. sibthorpioides was evaluated using a cell viability assay. Cells were pre- and posttreated with water and methanol extracts of H. sibthorpioides, and the viral inhibitory effect was investigated by observing the morphological changes, which were further confirmed by plaque assay. Results. The methanolic extract cytotoxicity was higher in Vero and C6/36 cells than the cytotoxicity of the water extract. Preincubation of the cells with H. sibthorpioides extract showed nonexistent to mild prophylactic effects. The posttreatment of Vero cells with H. sibthorpioides methanolic extract presented higher antidengue activities when compared with the water extract. Surprisingly, posttreatment of C6/36 cells resulted in an enhancement of viral replication. Conclusion. H. sibthorpioides had variable effects on dengue viral replication, depending on the treatment, cell lines, and solvent types. This study provides important novel insights on the phytomedicinal properties of H. sibthorpioides extracts on dengue virus.
Collapse
|
19
|
Kim SO, Park JY, Jeon SY, Yang CH, Kim MR. Saikosaponin a, an active compound of Radix Bupleuri, attenuates inflammation in hypertrophied 3T3-L1 adipocytes via ERK/NF-κB signaling pathways. Int J Mol Med 2015; 35:1126-32. [PMID: 25672367 DOI: 10.3892/ijmm.2015.2093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/19/2015] [Indexed: 11/06/2022] Open
Abstract
Bupleurum falcatum L. is employed in oriental medicine in Korea. This root has been used for anti-inflammatory, anti-pyretic, and anti-hepatotoxic effects in the treatments of common cold, fever, and hepatitis. One of major bioactive compounds of Radix Bupleuri is the saikosaponin a (SSNa). However, little is known concerning the effects of SSNa on obesity associated with a state of low-grade inflammation. Consequently, this study was conducted to determine the inhibition of the inflammation pathway of SSNa in obesity. MTT assay was conducted for cytotoxicity and viability; nuclear and cytoplasmic fractions were extracted from adipocytes for translocation of nuclear factor-κB cells (NF-κB); nitric oxide (NO) production and secretion using Griess reagent; reverse transcription-polymerase chain reaction (RT-PCR) and immunoblotting for mRNA and protein levels associated with inflammation in the hypertrophied adipocytes. The results revealed that SSNa significantly decreased the expression of tumor necrosis factor-α (TNFα), interleukin (IL)-1β and IL-6 as proinflammatory cytokines, compared to that of non-treated control cells. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as inflammatory factors were reduced by treatment of these cells with SSNa and also suppressed NO production. Phosphorylation of IκBα was inhibited and translocation of NF-κB was suppressed via the ERK pathway in response to SSNa treatment. In conclusion, the results demonstrated that SSNa can inhibit the expression of inflammatory-associated genes in hypertrophied 3T3-L1 adipocytes and is a potent inhibitor of NF-κB activation. Thus these results suggest that SSNa is a novel therapeutic agent against that can be used against obesity-associated inflammation.
Collapse
Affiliation(s)
- Sung Ok Kim
- Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Suseong‑gu, Daegu 706‑828, Republic of Korea
| | - Ji Yeoung Park
- Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Suseong‑gu, Daegu 706‑828, Republic of Korea
| | - Seo Young Jeon
- Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Suseong‑gu, Daegu 706‑828, Republic of Korea
| | - Chea Ha Yang
- Department of Physiology, College of Oriental Medicine, Daegu Haany University, Suseong‑gu, Daegu 706‑828, Republic of Korea
| | - Mi Ryeo Kim
- Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University, Suseong‑gu, Daegu 706‑828, Republic of Korea
| |
Collapse
|
20
|
Lu CN, Yuan ZG, Zhang XL, Yan R, Zhao YQ, Liao M, Chen JX. Saikosaponin a and its epimer saikosaponin d exhibit anti-inflammatory activity by suppressing activation of NF-κB signaling pathway. Int Immunopharmacol 2012; 14:121-6. [PMID: 22728095 DOI: 10.1016/j.intimp.2012.06.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/07/2012] [Accepted: 06/10/2012] [Indexed: 11/27/2022]
Abstract
Saikosaponin a (SSa) and its epimer saikosaponin d (SSd) are major triterpenoid saponin derivatives from Radix bupleuri (RB), which has been long used in Chinese traditional medicine for treatment of various inflammation-related diseases. In the present study, the anti-inflammatory activity, as well as the underlying mechanism, of SSa and SSd was investigated in lipopolysaccharide (LPS)-induced RAW264.7 cells. Our results demonstrated that both SSa and SSd significantly inhibited the expression of inducible nitric-oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW264.7 cells, and finally resulted in the reduction of nitric oxide (NO) and prostaglandin E(2) (PGE(2)). In addition, LPS-induced production of major pro-inflammatory cytokines: the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), was suppressed in a dose-dependent manner by the treatment of SSa or SSd in RAW264.7 cells. Further analysis revealed that both SSa and SSd could inhibit translocation of nuclear factor-κB (NF-κB) from the cytoplasm to the nucleus in the LPS-induced RAW264.7 cells. Furthermore, SSa and SSd exhibited significant anti-inflammatory activity in two different murine models of acute inflammation, carrageenan-induced paw edema in rats and acetic acid-induced vascular permeability in mice. In conclusion, SSa and SSd showed potent anti-inflammatory activity through inhibitory effects on NF-κB activation and thereby on iNOS, COX-2 and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Chun-Ni Lu
- The Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Tam KI, Roner MR. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antiviral Res 2011; 90:231-41. [PMID: 21549151 PMCID: PMC3106224 DOI: 10.1016/j.antiviral.2011.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 11/23/2022]
Abstract
Rotavirus is the leading cause of severe diarrhea disease in newborns and young children worldwide with approximately 300,000 pre-adolescent deaths each year. Quillaja saponins are a natural aqueous extract obtained from the Chilean soapbark tree. The extract is approved for use in humans by the FDA for use in beverages as a food addictive. We have demonstrated that Quillaja extracts have strong antiviral activities in vitro against six different viruses. In this study, we evaluated the in vivo antiviral activity of these extracts against rhesus rotavirus (RRV) using a mouse model. We established that at a dosage of 0.015 mg/mouse of saponin extract, RRV induced diarrhea can be significantly reduced from 79% to 11% when mice are exposed to 500 plaque-forming-units (PFU) for each of five consecutive days. Additionally, while a reduction of RRV induced diarrhea depended both on the concentration of virus introduced and on the amount of Quillaja extract given to each mouse, the severity and interval of diarrhea under a variety of conditions tested, in all the treated mice were greatly reduced when compared to those that did not receive the Quillaja extracts. Mechanistically, there is strong evidence that the Quillaja extracts are able to "block" rotavirus infection by inhibiting virus-host attachment through disruption of cellular membrane proteins and/or virus receptors. We believe that Quillaja extracts have promise as antivirals to reduce rotavirus infection and the severity of the disease in humans.
Collapse
Affiliation(s)
- Ka Ian Tam
- The University of Texas Arlington, Department of Biology, Arlington, TX 76019, USA.
| | | |
Collapse
|
22
|
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2007; 33:612-6. [PMID: 16789928 PMCID: PMC7162031 DOI: 10.1111/j.1440-1681.2006.04415.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Saikosaponins represent a group of oleanane derivatives, usually as glucosides, that are found in a number of plant families. Saikosaponins isolated from medicinal plants such as Bupleurum spp., Heteromorpha spp. and Scrophularia scorodonia have been reported to possess various biological activities, specifically antihepatitis, antinephritis, antihepatoma, anti-inflammation, immunomodulation and antibacterial effects. 2. The aim of the present study was to examine the anticoronaviral activity of saikosaponins (A, B2, C and D) and their mode of action. Using the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-5-[(phenylamino) carbonyl-2H-tetrazolium hydroxide] (XTT) assay, results showed that all saikosaponins tested demonstrated antiviral activity at concentrations of 0.25-25 micromol/L, with the strongest activity being noted for saikosaponin B2 (IC50 = 1.7 +/- 0.1 micromol/L). Interestingly, both saikosaponins A (50% cellular cytotoxicity (CC50) concentration = 228.1 +/- 3.8 micromol/L; selectivity index (SI) = 26.6) and B2 (CC50 = 383.3 +/- 0.2 micromol/L; SI = 221.9) exhibited no cytotoxic effects on target cells at concentrations that achieved antiviral activity. In the time-of-addition studies, saikosaponin B2, at 6 micromol/L, significantly inhibited human coronavirus 229E infection following its addition at various time pre-infection (-4 to -1 h), coinfection (0 h) and post-infection (1-4 h). Furthermore, saikosaponin B2 also showed an inhibitory effect on viral attachment and penetration. 3. The present results indicate that saikosaponin B2 has potent anticoronaviral activity and that its mode of action possibly involves interference in the early stage of viral replication, such as absorption and penetration of the virus.
Collapse
Affiliation(s)
- Pei-Win Cheng
- Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
23
|
Cheng PW, Chiang LC, Yen MH, Lin CC. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem Toxicol 2006; 45:24-31. [PMID: 17052829 DOI: 10.1016/j.fct.2006.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 05/25/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Coxsackie B virus type 1 (CVB1) infection is known to cause high morbidity and mortality in children, however, there is no effective drug for treating this disease. The present study aimed to examine the antiviral activity of Bupleurum kaoi (BK), a popular herbal drug for treating viral and bacterial infections, against CVB1 infection and its mechanisms of action. Our data showed that BK neutralized the CVB1-induced cytopathic effect in human neonatal foreskin fibroblast cell line (CCFS-1/KMC), with IC50 and EC50 values around 12.38 microg/ml and 50.93 microg/ml, respectively. Its CC50 and SI values were 883.56 microg/ml and 17.34, respectively. These results suggest that BK possessed anti-CVB1 activity, and showed no effect on CCFS-1 cell viability and growth at concentration 250 microg/ml. The time-of-addition studies showed that BK (50, 100 and 200 microg/ml) added at various time of preinfection (-1 to -3 h), coinfection (0 h) and postinfection (1-3 h) could inhibit CVB1 infection. Interestingly, BK also showed an inhibition on viral replication through the induction of IFN-alpha/beta expression. In conclusion, BK possessed antiviral activity against CVB1 infection. It interfered the early stage of viral replication and viral replication after infection through the induction of type I interferon expression.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
24
|
Farina C, Pinza M, Pifferi G. Synthesis and anti-ulcer activity of new derivatives of glycyrrhetic, oleanolic and ursolic acids. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 1998; 53:22-32. [PMID: 9543723 DOI: 10.1016/s0014-827x(97)00013-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A review is made of the literature describing the structural changes to glycyrrhetic, oleanolic and ursolic acids and their influence on anti-ulcer activity. For the glycyrrhetic acid derivatives some analogues were prepared in which the ketonic group in position 11 was removed and the carboxylic function at position 30 was either intact, reduced to alcohol or transformed into ketone. This first series of compounds suggests the possibility of obtaining compounds devoid of the conjugated ketonic group, maintaining anti-ulcer activity but with reduced or lacking mineralocorticoid activity. Based on these findings, a series of carbenoxolone analogues in the beta-amyrin series of glycyrrhetic and oleanolic acid was prepared. In particular, the delta 9,11 unsaturated compounds 14b and 23b and the 11-methylene derivative 18 present advantages in terms of acute toxicity and mineralocorticoid activity as compared to the reference compound. The derivative 14b in the volunteer showed an increase of gastric PGE2 levels with minor pseudoaldosteronic effect. Among the ursolic acid derivatives, the dihemisuccinate sodium salt 35b demonstrated a good separation between anti-ulcer and mineralocorticoid activities. Nevertheless, kidney and liver toxicity was observed in the monkey thus jeopardizing its further development. Better results were obtained with the uvaol dihemiphthalate sodium salt and the diene analogue 39b. In particular, 38b and 39b showed a potent anti-ulcer activity, 3- to 25-fold higher than carbenoxolone. Furthermore, compound 38b does not show signs of liver toxicity in the monkey.
Collapse
Affiliation(s)
- C Farina
- SmithKline Beecham SpA, Baranzate, Milan, Italy
| | | | | |
Collapse
|
25
|
Ryu SY, Lee CK, Lee CO, Kim HS, Zee OP. Antiviral triterpenes fromPrunella vulgaris. Arch Pharm Res 1992. [DOI: 10.1007/bf02974063] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Amoros M, Fauconnier B, Girre RL. In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antiviral Res 1987; 8:13-25. [PMID: 2825589 DOI: 10.1016/0166-3542(87)90084-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The antiviral activity of a triterpene saponin isolated from Anagallis arvensis, Primulaceae, was studied in vitro against several viruses including herpes simplex type 1, adenovirus type 6, vaccinia, vesicular stomatitis and poliovirus. The drug was found to inhibit the replication of herpes simplex virus type 1 and poliovirus type 2 as shown by inhibition of cytopathic effect and reduction of virus production. The action was not due to a virucidal effect but might involve inhibition of virus-host cell attachment. Single cycle experiments indicated that saponin interfered with both early and late events of herpes virus replication.
Collapse
Affiliation(s)
- M Amoros
- Laboratoire de Pharmacognosie, Faculté de Pharmacie, Rennes, France
| | | | | |
Collapse
|
27
|
Anisimov MM, Shentsova EB, Shcheglov VV, Shulmilov YN, Rasskazov VA, Strigina LI, Chetyrina NS, Elyakov GB. Mechanism of cytotoxic action of some triterpene glycosides. Toxicon 1978; 16:207-18. [PMID: 565961 DOI: 10.1016/0041-0101(78)90081-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|