1
|
Radulescu C, Olteanu RL, Buruleanu CL, (Tudorache) MN, Dulama ID, Stirbescu RM, Bucurica IA, Stanescu SG, Banica AL. Polyphenolic Screening and the Antioxidant Activity of Grape Pomace Extracts of Romanian White and Red Grape Varieties. Antioxidants (Basel) 2024; 13:1133. [PMID: 39334792 PMCID: PMC11429185 DOI: 10.3390/antiox13091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Due to its valuable organic compounds, grape pomace represents a valuable resource in the creation of value-added food products. In this study, we investigated grape pomace hydroalcoholic extracts obtained by ultrasonication from two white and two red Romanian grape varieties. The phytochemical parameters, i.e., polyphenolics, flavonoids, anthocyanins, condensed tannins content, and antioxidant activity, were determined by UV-Vis spectrometry. The statistical analysis revealed that Tămâioasă Românească and Negru de Drăgășani, respectively, and Fetească Albă and Fetească Neagră are similar to each other. Significant differences among the pomaces obtained from different grape varieties were noticed in terms of their phenolic contents. The red varieties (Fetească Neagră and Negru de Drăgășani) were richest in terms of total phenolics and total anthocyanins, respectively. The antioxidant activity of extracts obtained from grape pomace showed that Negru de Drăgășani had the higher value due to its high amounts of polyphenols, followed by Fetească Neagră, Fetească Albă, and Tămâioasă Românească. Higher levels of bioactive polyphenolic substances, i.e., catechin, myricetin, resveratrol, and vanillic acid, were found in the pomace of Negru de Drăgășani extracts using high-performance liquid chromatography. These results emphasize the potential of the Negru de Drăgășani variety to be further exploited for nutritional and functional applications.
Collapse
Affiliation(s)
- Cristiana Radulescu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.N.); (A.L.B.)
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Radu Lucian Olteanu
- Faculty of Sciences and Arts, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania
| | - Mihaela Nechifor (Tudorache)
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.N.); (A.L.B.)
| | - Ioana Daniela Dulama
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (I.D.D.); (R.M.S.); (I.A.B.); (S.G.S.)
| | - Raluca Maria Stirbescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (I.D.D.); (R.M.S.); (I.A.B.); (S.G.S.)
| | - Ioan Alin Bucurica
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (I.D.D.); (R.M.S.); (I.A.B.); (S.G.S.)
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (I.D.D.); (R.M.S.); (I.A.B.); (S.G.S.)
| | - Andreea Laura Banica
- Doctoral School Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (M.N.); (A.L.B.)
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Sinaia Alley, 130004 Targoviste, Romania; (I.D.D.); (R.M.S.); (I.A.B.); (S.G.S.)
| |
Collapse
|
2
|
Nery-Flores SD, Castro-López CM, Martínez-Hernández L, García-Chávez CV, Palomo-Ligas L, Ascacio-Valdés JA, Flores-Gallegos AC, Campos-Múzquiz LG, Rodríguez-Herrera R. Grape Pomace Polyphenols Reduce Acute Inflammatory Response Induced by Carrageenan in a Murine Model. Chem Biodivers 2024; 21:e202302065. [PMID: 38768437 DOI: 10.1002/cbdv.202302065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Grape pomace (GP), a by-product of wine production, contains bioactive polyphenols with potential health benefits. This study investigates the anti-inflammatory properties of a polyphenolic fraction derived from GP, obtained by ultrasound-microwave hybrid extraction and purified using ion-exchange chromatography. In the inflammation model, mice were divided into six groups: intact, carrageenan, indomethacin, and three GP polyphenols treatment groups. Paw edema was induced by subplantar injection of carrageenan, and the GP polyphenols were administered intraperitoneally at doses of 10, 20, and 40 mg/kg. The anti-inflammatory effect was evaluated by measuring paw volume, and expression of inflammatory markers: cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), and cytokines (IL-1β and IL-6), along with lipid peroxidation levels. The GP polyphenols significantly reduced paw edema and expression levels of COX-2, MPO, and cytokines in a dose-dependent manner effect, with the highest dose showing the greatest reduction. Additionally, lipid peroxidation levels were also decreased by GP polyphenols treatment at doses of 10 and 20 mg/kg. These findings suggest that ultrasound-microwave extraction combined with amberlite purification proved to be effective in obtaining a polyphenolic-rich fraction from GP. Thus, GP polyphenols may serve as a natural anti-inflammatory and antioxidant agent for treating inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lissethe Palomo-Ligas
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| | | | | | | | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Coahuila, 25280, México
| |
Collapse
|
3
|
Mosele J, da Costa BS, Bobadilla S, Motilva MJ. Phenolic Composition of Red and White Wine Byproducts from Different Grapevine Cultivars from La Rioja (Spain) and How This Is Affected by the Winemaking Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18746-18757. [PMID: 37983717 PMCID: PMC10730009 DOI: 10.1021/acs.jafc.3c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
The recovery of raw materials offers an opportunity for applying the principles of circular bioeconomy. The phenolic composition of three underused wine byproducts (skin, seed, and bunch stem) was analyzed through UHPLC-QqQ-MS/MS to evaluate the intercultivar variability comparing red and white grape cultivars from La Rioja (Spain) and the influence of the winemaking, comparing conventional fermentation and carbonic maceration. We observed that the red skin, especially from Graciano, is rich in anthocyanins, whereas the white skin contains mainly phenolic acids, flavonols, and flavan-3-ols, with Maturana Blanca being the richest variety. Seeds are rich in flavan-3-ols and lignans with Maturana Blanca and Viura, respectively, the richest cultivars. Stems contain high amounts of flavan-3-ols, lignans, and stilbenes, with the red cultivars of Garnacha and Tempranillo being the richest samples. Carbonic maceration has a negative effect on the phenolic amount compared to conventional fermentation. In synthesis, we observed that each type of byproduct from red or white grape cultivars has a particular phenolic composition that can result in obtaining different ingredients with particular phenolic composition for target applications.
Collapse
Affiliation(s)
- Juana Mosele
- Fisicoquímica,
Facultad de Farmacia y Bioquímica-IBIMOL, Universidad de Buenos Aries-CONICET, Buenos Aires C1053ABH, Argentina
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Bianca Souza da Costa
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Silvia Bobadilla
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| | - Maria-Jose Motilva
- Instituto
de Ciencias de la Vid y del Vino-ICVV (Consejo Superior de Investigaciones
Científicas-CSIC, Universidad de La Rioja, Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos
Km. 6 (LO-20, -salida 13), Logroño (La
Rioja) 26007, Spain
| |
Collapse
|
4
|
Elgamily HM, El-Sayed SM, El-Sayed HS, Youssef AM. Laboratory evaluation of anti-plaque and remineralization efficacy of sugarless probiotic jelly candy supplemented with natural nano prebiotic additive. Sci Rep 2023; 13:10977. [PMID: 37414826 PMCID: PMC10326239 DOI: 10.1038/s41598-023-37645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
We evaluated the anti-cariogenic effect of an experimental synbiotic compound containing probiotic Lacticaseibacillus rhamnosus (NRRL B-442)-based jelly candy supplemented with natural prebiotic grape seed extract (GSE) in a nanoemulsion formula on the colonization and establishment of Streptococcus mutans (ATCC 25175) and Actinomyces viscosus (ATTCC 19246) biofilms through counting colony forming units, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). We were then analysing the remineralizing effect of synbiotic jelly candy on human enamel surface lesions using Vickers microhardness testers, atomic force microscopy (AFM), SEM, energy-dispersive X-ray spectroscopy (EDAX), and confocal laser scanning microscopy (CLSM) at three stages (sound, after demineralization, and after pH cycling). We found after 21 days of treatment of the pH-cycled enamel discs with jelly candy for 10 min twice daily, a 68% decrease in S. mutans colony formation, reducing biofilm development, trapping S. mutans visualized in jelly candy under SEM examination, and significantly altering the morphological structure of these bacteria under TEM analysis. For remineralization measurements, statistically significant differences in microhardness integrated mineral loss, and lesion depth through CLSM between demineralization and treatment stages. These findings provide an effective anti-cariogenic synbiotic compound of grape seed extract and probiotic jelly candy with potential remineralizing activity.
Collapse
Affiliation(s)
- Hanaa M Elgamily
- Restorative and Dental Materials Department, Oral and Dental Research Institutes, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Samah M El-Sayed
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Hoda S El-Sayed
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Anti- and Pro-Oxidant Activity of Polyphenols Extracts of Syrah and Chardonnay Grapevine Pomaces on Melanoma Cancer Cells. Antioxidants (Basel) 2022; 12:antiox12010080. [PMID: 36670942 PMCID: PMC9855015 DOI: 10.3390/antiox12010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The phenolic composition of Syrah and Chardonnay grape pomaces was studied to assess their antioxidant and prooxidant properties. Polyphenols were extracted by a "green" hydroalcoholic solvent (ethanol/water 1:1 v/v), and a detailed chemical and electrochemical characterization of the phenolic compounds was performed. The antioxidant and prooxidant capacity of the pomace was first studied by cyclic voltammetry (CV) and other reference analytical assays, then with biological tests on B16F10 metastatic melanoma cancer cells. Electrochemical data showed that, when a +0.5 V potential was applied, a low to moderate antioxidant capacity was observed. MTT test showed an increasing viability of melanoma cells, after treatments at low concentration (up to 100 μg/mL) and for a short time (6 h), but when cells were treated with higher doses of extract (≥250 μg/mL for 12/24 h), their viability decreased from 25 to 50% vs. control, depending on treatment time, dose, and extract origin. A stronger prooxidant activity resulted when 250 μg/mL of extract was combined with non-toxic doses of H2O2; this activity was correlated with the presence of copper in the extracts. This study shows the potential of winemaking by-products and suggests the opportunity to exploit them for the production of cosmeceuticals, or for combined therapies with approved anticancer drugs.
Collapse
|
6
|
Phytocompounds Recovered from the Waste of Cabernet Sauvignon (Vitis vinifera L.) Vinification: Cytotoxicity (in Normal and Stressful Conditions) and In Vitro Photoprotection Efficacy in a Sunscreen System. COSMETICS 2022. [DOI: 10.3390/cosmetics10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated plausible reuse for the dermocosmetic industry of byproducts from the winemaking process of red grapes (Vitis vinifera L. cv. C. Sauvignon) through the evaluation of one extract (grape pomace extract, GPE) and two fractions (one chloroform, GPE-CHF; one ethyl acetate, GPE-EAF). The samples were characterized analytically by liquid chromatography (HPLC) using a NIH 3T3 fibroblast cell culture to verify a cytosafety profile in normal and stressful environment (presence of H2O2), and by using it in a sunscreen system to observe improvements in the in vitro efficacy by diffuse reflectance spectrophotometry with an integrating sphere. The HPLC results for GPE-EAF and GPE-CHF samples with the best profile of syringic and p-coumaric acids, quercetin, and trans-resveratrol were used in the further assays. GPE-EAF and GPE-CHF, both at 30.00 µg/mL, maintained the cell viability in the absence of H2O2 (normal condition). In the sequence, GPE-EAF and GPE-CHF were evaluated against the oxidative stressor H2O2 in NIH 3T3 cells. A sharp drop in viability was only observed for GPE-CHF, and cytotoxicity of GPE-EAF was considered absent even in a hostile environment. Since GPE-EAF previously developed the best results, its potential performance was investigated in a sunscreen system. The in vitro sun protection factor of the phytoderivative-free formulation was 9.0 + 2.5; by adding GPE-EAF at 10.0%, its efficacy was elevated to 15.0 + 2.5. Both samples suffered a negative effect after artificial ultraviolet exposition (500 W/m2); however, the presence of GPE-EAF improved the photostability of the sunscreen system.
Collapse
|
7
|
Holt RR, Barile D, Wang SC, Munafo JP, Arvik T, Li X, Lee F, Keen CL, Tagkopoulos I, Schmitz HH. Chardonnay Marc as a New Model for Upcycled Co-products in the Food Industry: Concentration of Diverse Natural Products Chemistry for Consumer Health and Sensory Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15007-15027. [PMID: 36409321 PMCID: PMC9732887 DOI: 10.1021/acs.jafc.2c04519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Research continues to provide compelling insights into potential health benefits associated with diets rich in plant-based natural products (PBNPs). Coupled with evidence from dietary intervention trials, dietary recommendations increasingly include higher intakes of PBNPs. In addition to health benefits, PBNPs can drive flavor and sensory perceptions in foods and beverages. Chardonnay marc (pomace) is a byproduct of winemaking obtained after fruit pressing that has not undergone fermentation. Recent research has revealed that PBNP diversity within Chardonnay marc has potential relevance to human health and desirable sensory attributes in food and beverage products. This review explores the potential of Chardonnay marc as a valuable new PBNP ingredient in the food system by combining health, sensory, and environmental sustainability benefits that serves as a model for development of future ingredients within a sustainable circular bioeconomy. This includes a discussion on the potential role of computational methods, including artificial intelligence (AI), in accelerating research and development required to discover and commercialize this new source of PBNPs.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torey Arvik
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Fanny Lee
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- PIPA, LLC, Davis, California 95616, United States
- Department of Computer Science and Genome Center, USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, Davis, California 95616 United States
| | - Harold H Schmitz
- March Capital US, LLC, Davis, California 95616, United States
- T.O.P., LLC, Davis, California 95616, United States
- Graduate School of Management, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Chedea VS, Macovei ȘO, Bocsan IC, Măgureanu DC, Levai AM, Buzoianu AD, Pop RM. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation—A Possible Alternative for Non-Steroidal Anti-Inflammatory Drugs? Molecules 2022; 27:molecules27206826. [PMID: 36296420 PMCID: PMC9612310 DOI: 10.3390/molecules27206826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/25/2022] Open
Abstract
Flavonoids, stilbenes, lignans, and phenolic acids, classes of polyphenols found in grape pomace (GP), were investigated as an important alternative source for active substances that could be used in the management of oxidative stress and inflammation. The benefic antioxidant and anti-inflammatory actions of GP are presented in the literature, but they are derived from a large variety of experimental in vitro and in vivo settings. In these in vitro works, the decrease in reactive oxygen species, malondialdehyde, and thiobarbituric acid reactive substances levels and the increase in glutathione levels show the antioxidant effects. The inhibition of nuclear factor kappa B and prostaglandin E2 inflammatory pathways and the decrease of some inflammatory markers such as interleukin-8 (IL-8) demonstrate the anti-inflammatory actions of GP polyphenols. The in vivo studies further confirmed the antioxidant (increase in catalase, superoxide dismutase and glutathione peroxidase levels and a stimulation of endothelial nitric oxide synthase -eNOS gene expression) and anti-inflammatory (inhibition of IL-1𝛼, IL-1β, IL-6, interferon-𝛾, TNF-α and C-reactive protein release) activities. Grape pomace as a whole extract, but also different individual polyphenols that are contained in GP can modulate the endogenous pathway responsible in reducing oxidative stress and chronic inflammation. The present review analyzed the effects of GP in oxidative stress and inflammation, suggesting that it could become a valuable therapeutic candidate capable to reduce the aforementioned pathological processes. Grape pomace extract could become an adjuvant treatment in the attempt to reduce the side effects of the classical anti-inflammatory medication like non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Veronica Sanda Chedea
- Research Department, Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Corina Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonia Mihaela Levai
- Department Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3–5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
10
|
Bocsan IC, Măgureanu DC, Pop RM, Levai AM, Macovei ȘO, Pătrașca IM, Chedea VS, Buzoianu AD. Antioxidant and Anti-Inflammatory Actions of Polyphenols from Red and White Grape Pomace in Ischemic Heart Diseases. Biomedicines 2022; 10:biomedicines10102337. [PMID: 36289599 PMCID: PMC9598344 DOI: 10.3390/biomedicines10102337] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Grape pomace (GP) represents a very reliable source of polyphenols because it could be found globally as a remnant of the wine industry. During the winemaking process, two types of GP are generated: red GP and white GP, according to the produced wine, red or white. Grape pomace represents a viable source of polyphenols, mainly flavanols, procyanidins anthocyanins, and resveratrol which possess antioxidant and anti-inflammatory activities. Multiple differences were observed between red and white GP in terms of their antioxidant and anti-inflammatory activity in both in vitro and in vivo studies. Although most studies are focused on the antioxidant and anti-inflammatory effect of red grape pomace, there are still many variables that need to be taken into consideration, as well as extensive study of the white GP. It was observed that in both in vitro and in vivo studies, the GP polyphenols have a direct antioxidant activity by acting as a free radical scavenger or donating a hydrogen atom. It also possesses an indirect antioxidant and anti-inflammatory activity by reducing mitochondrial reactive oxygen species (ROS) generation, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κβ), and inhibitor of nuclear factor kappa-B kinase subunit beta (Iκκβ) levels or nitrate oxide-4 (NOX4) expression and by increasing the levels of antioxidants enzymes like superoxide dismutase (SOD), catalase (CAT) glutathione reductase (GRx) and glutathione peroxidase(GPx). Besides these activities, many beneficial effects in ischemic heart diseases were also observed, such as the maintenance of the ventricular function as close as possible to normal, and the prevention of infarcted area extension. In this context, this review intends to present the actual knowledge of grape pomace’s potential antioxidant and anti-inflammatory activity in ischemic heart disease, knowledge gathered from existing in vitro and in vivo studies focused on this.
Collapse
Affiliation(s)
- Ioana Corina Bocsan
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| | - Dan Claudiu Măgureanu
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Raluca Maria Pop
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
- Correspondence:
| | - Antonia Mihaela Levai
- Faculty of Medicine, Department Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 3-5, Clinicilor Street, 400012 Cluj Napoca, Romania
| | - Ștefan Octavian Macovei
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Ioana Maria Pătrașca
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), 515400 Blaj, Romania
| | - Anca Dana Buzoianu
- Faculty of Medicine, Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, No. 23, Marinescu Street, 400012 Cluj Napoca, Romania
| |
Collapse
|
11
|
Winemaking by-products as a source of phenolic compounds: Comparative study of dehydration processes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Martínez-Meza Y, Pérez-Jiménez J, Castaño-Tostado E, Pérez-Ramírez IF, Alonzo-Macías M, Reynoso-Camacho R. Instant Controlled Pressure Drop as a Strategy To Modify Extractable and Non-extractable Phenolic Compounds: A Study in Different Grape Pomace Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6911-6921. [PMID: 34761923 DOI: 10.1021/acs.jafc.1c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Instant controlled pressure drop (DIC) is a technology able to modify the polyphenol profile in vegetal materials. However, information about how polyphenols are transformed, particularly regarding non-extractable polyphenol (NEPP), as well as the association with the initial content of polyphenols of the material is scarce. Thus, this work aimed to evaluate the DIC effect, modifying the pressure (0.2 and 0.4 MPa), the number of cycles (2 and 4), and grape pomace material (Malbec, Merlot, and Syrah) on extractable polyphenol (EPP) and NEPP contents. The EPP content increased during DIC application, an effect associated with the pressure, cycles, and initial polyphenol content. While for extractable and non-extractable proanthocyanidin contents, the main factors explaining the DIC effect are the pressure and number of cycles. Therefore, changes in polyphenols from grape pomace by DIC treatment are dependent upon experimental conditions, but the origin of the grape pomace also influences the extraction of EPP.
Collapse
Affiliation(s)
- Yuridia Martínez-Meza
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Eduardo Castaño-Tostado
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Iza F Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| | - Maritza Alonzo-Macías
- Bioengineering Department, Tecnológico de Monterrey, Santiago de Querétaro, Querétaro 76130, Mexico
| | - Rosalía Reynoso-Camacho
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, Mexico
| |
Collapse
|
13
|
El‐Sayed SM, El‐Sayed HS, Elgamily HM, Youssef AM. Preparation and Evaluation of Yogurt fortified with Probiotics Jelly Candy Enriched with Grape Seeds Extract Nanoemulsion. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samah M. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hoda S. El‐Sayed
- Dairy science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Hanaa M. Elgamily
- Restorative and Dental Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| | - Ahmed. M. Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki Giza, P.O. 12622 Egypt
| |
Collapse
|
14
|
Polyphenols in the Waste Water Produced during the Hydrodistillation of ‘Narcea Roses’ Cultivated in the Cibea River Valley (Northern Spain). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The ‘Narcea rose’ is a recently described yet ancient rose cultivar of interest to the perfume industry. Given its excellent adaptation to the conditions of the place where it was rediscovered, the possibilities of its horticultural/industrial production have been under examination for some time. The hydrodistillation process produces a red-to-brownish mixture of water and rose petals that could contain compounds that could be used in other industrial procedures. Their recovery and further utilization would reduce disposal costs and improve the sustainability of relevant industries. This work reports the quantification, by high-performance liquid chromatography (HPLC–MS) and quadrupole time of flight Q-TOF analyses, of the polyphenol content in the waste water. This waste was found to contain high concentrations of quercetin, gallic acid and ellagic acid, as well as smaller concentrations of kaempferol and its derivatives, all of which can influence plant, human and animal health.
Collapse
|
15
|
Elshaer EE, Elwakil BH, Eskandrani A, Elshewemi SS, Olama ZA. Novel Clotrimazole and Vitis vinifera loaded chitosan nanoparticles: Antifungal and wound healing efficiencies. Saudi J Biol Sci 2022; 29:1832-1841. [PMID: 35280562 PMCID: PMC8913394 DOI: 10.1016/j.sjbs.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022] Open
Abstract
Chitosan integrated nanoparticles of clotrimazole and Egyptian Vitis vinifera juice extract was evaluated in order to maximize the antifungal activity and reduce the gross side effects. In the present study Egyptian Thompson Seedless Vitis vinifera and Clotrimazole (Cz) loaded chitosan nanoparticles (NCs/VJ/Cz) showed a promising antifungal effect with average inhibition zone diameters of 74 and 72 mm against Candida albicans and Aspergillus niger respectively. NCs/VJ /Cz was stable with significant drug entrapment efficiency reached 94.7%; PDI 0.24; zeta potential value + 31 and average size 35.4 nm diameter. Ex vivo and in vivo evaluation of skin retention, permeation and wound repair potentialities of NCs/VJ /Cz ointment was examined by experimental rats with wounded skin fungal infection. Data proved the ability of NCs/VJ /Cz to gradually release the drugs in a sustained manner with complete wound healing effect and tissue repair after 7 days administration. As a conclusion NCs/VJ /Cz ointment can be used as a novel anti-dermatophytic agent with high wound healing capacity.
Collapse
Affiliation(s)
- Esraa E Elshaer
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Bassma H Elwakil
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt
| | - Areej Eskandrani
- Chemistry Department, College of Science, Taibah University, Madinah 30002, Kingdom of Saudi Arabia
| | - Salma S Elshewemi
- Zoology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Zakia A Olama
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| |
Collapse
|
16
|
Assessment of “Sugranineteen” Table Grape Maturation Using Destructive and Auto-Fluorescence Methods. Foods 2022; 11:foods11050663. [PMID: 35267296 PMCID: PMC8909905 DOI: 10.3390/foods11050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The optimal harvesting of table grapes is commonly determined based on technological and phenolic indices analyzed over the course of its maturity. The classical techniques used for these analyses are destructive, time-consuming, and work for a limited number of samples that may not represent the heterogeneity of the vineyard. This study aimed to follow the ripening season of table grapes using non-destructive tools as a rapid and accurate alternative for destructive techniques. Grape samples were collected from a Sugranineteen vineyard during the ripening season to measure the basic maturity indices via wet chemistry, and total polyphenols, anthocyanins, and flavonoids were evaluated by spectrophotometry. Fluorescent readings were collected from intact clusters with a portable optical sensor (Multiplex® 3, Force-A, France) that generates indices correlated to different maturity parameters. Results revealed strong relationships between the Multiplex® indices ANTH_RG and FERARI and the skin anthocyanin content, with R2 values equal to 0.9613 and 0.8713, respectively. The NBI_R index was also related to total anthocyanins (R2 = 0.8032), while the SFR_R index was linked to the titratable acidity (R2 = 0.6186), the sugar content (R2 = 0.7954), and to the color index of red grapes (CIRG) (R2 = 0.7835). Results demonstrated that Multiplex® 3 can be applied on intact clusters as an effective non-destructive tool for a rapid estimation of table grapes’ anthocyanin content.
Collapse
|
17
|
Gil-Martín E, Forbes-Hernández T, Romero A, Cianciosi D, Giampieri F, Battino M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem 2021; 378:131918. [PMID: 35085901 DOI: 10.1016/j.foodchem.2021.131918] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/06/2021] [Accepted: 12/19/2021] [Indexed: 12/13/2022]
Abstract
Agro-foodindustries generate colossal amounts of non-edible waste and by-products, easily accessible as raw materials for up-cycling active phytochemicals. Phenolic compounds are particularly relevant in this field given their abundance in plant residues and the market interest of their functionalities (e.g. natural antioxidant activity) as part of nutraceutical, cosmetological and biomedical formulations. In "bench-to-bedside" achievements, sample extraction is essential because valorization benefits from matrix desorption and solubilization of targeted phytocompounds. Specifically, the composition and polarity of the extractant, the optimal sample particle size and sample:solvent ratio, as well as pH, pressure and temperature are strategic for the release and stability of mobilized species. On the other hand, current green chemistry environmental rules require extraction approaches that eliminate polluting consumables and reduce energy needs. Thus, the following pages provide an update on advanced technologies for the sustainable and efficient recovery of phenolics from plant matrices.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | - Tamara Forbes-Hernández
- Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-product Processing, Jiangsu University, Zhenjiang, China; Research group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| |
Collapse
|
18
|
Lanuza F, Zamora-Ros R, Petermann-Rocha F, Martínez-Sanguinetti MA, Troncoso-Pantoja C, Labraña AM, Leiva-Ordoñez AM, Nazar G, Ramírez-Alarcón K, Ulloa N, Lasserre-Laso N, Parra-Soto S, Martorell M, Villagrán M, Garcia-Diaz DF, Andrés-Lacueva C, Celis-Morales C. Advances in Polyphenol Research from Chile: A Literature Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- F Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Centro de Epidemiología Cardiovascular y Nutricional (EPICYN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - R Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Petermann-Rocha
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - C Troncoso-Pantoja
- Centro de Investigación en Educación y Desarrollo (CIEDE-UCSC), Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - AM Labraña
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - AM Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - G Nazar
- Departamento de Psicología, Facultad de Ciencias Sociales, y Centro de Vida Saludable. Universidad de Concepción, Concepción, Chile
| | - K Ramírez-Alarcón
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - N Ulloa
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, y Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - N Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - S Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - M Villagrán
- Department of Basic Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - DF Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027 Santiago, Chile
| | - C Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
- Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
19
|
Ranjbaran E, Gholami M, Jensen M. Changes in phenolic compounds, enzymatic and non‐enzymatic antioxidant properties in “Thompson Seedless” grape after UV‐C irradiation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ehsan Ranjbaran
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
- Department of Food Science Aarhus University Aarhus N Denmark
| | - Mansour Gholami
- Department of Horticultural Science Faculty of Agriculture Bu‐Ali Sina University Hamedan Iran
| | - Martin Jensen
- Department of Food Science Aarhus University Aarhus N Denmark
| |
Collapse
|
20
|
Chiavaroli A, Balaha M, Acquaviva A, Ferrante C, Cataldi A, Menghini L, Rapino M, Orlando G, Brunetti L, Leone S, Recinella L, di Giacomo V. Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts. Molecules 2021; 26:molecules26206216. [PMID: 34684793 PMCID: PMC8540556 DOI: 10.3390/molecules26206216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d’Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL−1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5–500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by RT-PCR. The extract reverted the cytotoxicity exerted by the oxidative stimulus at all the experimental times in a dose-dependent manner, whereas the catechin was able to revert the oxidative stress-induced depletion of dopamine 48 h and 72 h after the stimulus. The extract and the catechin were also effective in preventing the downregulation of BDNF and the concomitant upregulation of COX-2 gene expression. In accordance, PGE2 release was augmented by the oxidative stress conditions and reverted by the administration of the water extract from grace pomace and catechin, which were equally effective. These results suggest that the neuroprotection induced by the extract could be ascribed, albeit partially, to its catechin content.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Marwa Balaha
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
- Department of Pharmaceutical Chemistry, University of Kafrelsheikh, Kafrelsheikh 33516, Egypt
| | - Alessandra Acquaviva
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, University G. d'Annunzio, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana di Giacomo
- Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
21
|
Pérez-Álvarez EP, Intrigliolo DS, Almajano MP, Rubio-Bretón P, Garde-Cerdán T. Effects of Water Deficit Irrigation on Phenolic Composition and Antioxidant Activity of Monastrell Grapes under Semiarid Conditions. Antioxidants (Basel) 2021; 10:antiox10081301. [PMID: 34439549 PMCID: PMC8389212 DOI: 10.3390/antiox10081301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
The high phenolic compound content of grapes makes them an important source of natural antioxidants, among other beneficial health properties. Vineyard irrigation might affect berry composition and quality. Regulated deficit irrigation (RDI) is a widely used strategy to reduce the possible negative impact of irrigation on grapes, improving grape composition and resulting in water savings. Monastrell grapevines (Vitis vinifera L.) grown in eastern Spain were subjected to two water regime strategies: rainfed (non-irrigation) and RDI. The content of anthocyanins, flavonols, flavanols, hydroxybenzoic and hydroxycinnamic acids, and stilbenes was determined by HPLC and was related with total phenolic content and three antioxidant activity methods (ABTS, DPPH, and ORAC). The study aimed to evaluate and compare the phenolic composition and antioxidant potential of Monastrell grapes. The rainfed regime concentrated grapes in terms of phenolic compounds. Thus, total content of anthocyanins, flavonols, flavanols, hydroxybenzoic acids, and total phenols were higher in the rainfed grapes than in the RDI ones. Besides, the rainfed grapes doubled their antioxidant potential with respect to the RDI grapes with the ORAC method. Total phenolic content and antioxidant activity by ORAC assay positively correlated with most of the total phenolic compounds analyzed. This study demonstrates how field practices can modulate final grape composition in relation to their antioxidant activity.
Collapse
Affiliation(s)
- Eva P. Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain;
- Correspondence: (E.P.P.-Á.); (T.G.-C.)
| | - Diego S. Intrigliolo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Ed. 25, 30100 Murcia, Spain;
- Centro de Investigación Sobre Desertificación (CSIC-UV-GV), Carretera CV-315, Km 10.7, 46113 Moncada, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain;
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Ctra. de Burgos, Km. 6, 26007 Logroño, Spain;
- Correspondence: (E.P.P.-Á.); (T.G.-C.)
| |
Collapse
|
22
|
Chemical Properties of Vitis Vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes. Antioxidants (Basel) 2021; 10:antiox10030472. [PMID: 33802638 PMCID: PMC8002554 DOI: 10.3390/antiox10030472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Grape pomace polyphenols inhibit Type 2 Diabetes Mellitus (T2DM)-related enzymes, reinforcing their sustainable recovery to be used as an alternative to the synthetic drug acarbose. Protic co-solvents (ethanol 15% and glycerol 15%) were evaluated in the hot pressurized liquid extraction (HPLE) of Carménère pomace at 90, 120, and 150 °C in order to obtain extracts rich in monomers and oligomers of procyanidins with high antioxidant capacities and inhibitory effects on α-amylase and α-glucosidase. The higher the HPLE temperature (from 90 °C to 150 °C) the higher the total polyphenol content (~79%, ~83%, and ~143% for water-ethanol, water-glycerol and pure water, respectively) and antioxidant capacity of the extracts (Oxygen Radical Absorbance Capacity, ORAC), increased by ~26%, 27% and 13%, while the half maximal inhibitory concentration (IC50) decreased by ~65%, 67%, and 59% for water-ethanol, water-glycerol, and pure water extracts, respectively). Water-glycerol HPLE at 150 and 120 °C recovered the highest amounts of monomers (99, 421, and 112 µg/g dw of phenolic acids, flavanols, and flavonols, respectively) and dimers of procyanidins (65 and 87 µg/g dw of B1 and B2, respectively). At 90 °C, the water-ethanol mixture extracted the highest amounts of procyanidin trimers (13 and 49 µg/g dw of C1 and B2, respectively) and procyanidin tetramers of B2 di-O-gallate (13 µg/g dw). Among the Carménère pomace extracts analyzed in this study, 1000 µg/mL of the water-ethanol extract obtained, at 90 °C, reduced differentially the α-amylase (56%) and α-glucosidase (98%) activities. At the same concentration, acarbose inhibited 56% of α-amylase and 73% of α-glucosidase activities; thus, our grape HPLE extracts can be considered a good inhibitor compared to the synthetic drug.
Collapse
|
23
|
Carmona-Jiménez Y, Palma M, Guillén-Sánchez DA, García-Moreno MV. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Biomolecules 2021; 11:biom11020227. [PMID: 33562786 PMCID: PMC7914544 DOI: 10.3390/biom11020227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Thinning is a common viticulture practice in warm climates, and it is applied to increase the quality of the harvest. Thinning clusters are usually discarded, and they are considered another oenological industry waste. To valorize this by-product, the phenolic content and antioxidant activity of three red varieties (Tempranillo, Cabernet Sauvignon, and Syrah), thinned at three different times between veraison and harvest, were studied: the first at the beginning of the veraison stage, in a low ripening stage; the second in an intermediate ripening stage; and, finally, the third sampling in the highest ripening stage. These by-products showed high values of total phenolic contents (10.66–11.75 mg gallic acid equivalent/g), which is of the same order as or even higher than that found in grape pomace. In thinned grape were identified 24 phenolic compounds, being the flavan-3-ols (catechin and epicatechin) of particular interest, with mean contents ranging from 105.1 to 516.4 mg/kg of thinned grape. Antioxidant activity similar to that of the vintage grape was found. It is concluded that thinned grape is a good source of phenolic compounds. Its content does not depend mainly on the grape variety; however, it has been possible to establish differences based on the maturity stage of the thinning grapes: the intermediate ripeness stage, with a Brix degree in the range of 15–16 for this area, would be the optimum collection time for cluster thinning. In this intermediate ripeness stage, thinning grapes present a higher antioxidant activity and there is also appreciable anthocyanin content, which is not found for the lowest ripeness stage, since these samples present an intermediate composition in all the families of determined phenolic compounds: anthocyanins, flavonols, flavan-3-ols, cinnamic acids, and benzoic acids. It is important to note that the experiments in this study have been carried out with whole tinned grapes, without separating the skin or the seeds.
Collapse
|
24
|
Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020; 9:foods9111649. [PMID: 33198068 PMCID: PMC7697400 DOI: 10.3390/foods9111649] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
The winemaking process generates a large amount of residues such as vine shots, stalks, grape pomace, and wine lees, which were only recently considered for exploitation of their valuable compounds. The purpose of this work was to investigate the performance of nanofiltration for the recovery of phenolic compounds, with bioactive capacity like antioxidant, from red grape pomace extract. Four membranes were compared in this study-three cellulose acetate (CA series: lab-prepared by phase inversion) and one commercial (NF90). All membranes were characterized for their hydraulic permeability and rejection coefficients to reference solutes like saccharose, glucose, raffinose, polyethylene glycol, sodium chloride, and sodium sulfate. Permeation flowrates and rejection coefficients towards total phenolics content, antioxidant activity, proanthocyanidins, glucose and fructose were measured in the nanofiltration of grape pomace extract using selected operating conditions. Among the investigated membranes, the CA400-22 exhibited the highest permeate flux (50.58 L/m2 h at 20 bar and 25 °C), low fouling index (of about 23%), the lowest rejection coefficients towards the reference solutes and the best performance in terms of separation between sugars and phenolic compounds. Indeed, the observed rejections for glucose and fructose were 19% and 12%, respectively. On the other hand, total phenolics content and proanthocyanidins were rejected for 73% and 92%, respectively.
Collapse
|
25
|
Bruno Romanini E, Misturini Rodrigues L, Finger A, Perez Cantuaria Chierrito T, Regina da Silva Scapim M, Scaramal Madrona G. Ultrasound assisted extraction of bioactive compounds from BRS Violet grape pomace followed by alginate-Ca 2+ encapsulation. Food Chem 2020; 338:128101. [PMID: 33091979 DOI: 10.1016/j.foodchem.2020.128101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Objective of this study was to recover bioactive compounds from grape pomace, and to investigate the effect of thermosonication in the rate of aqueous extraction. The best extraction for phenolics and total anthocyanins, was at 55 °C, amplitude of 40% and 6 min of treatment. The ultrasound assisted extraction showed superior results when compared to conventional extraction, extraction averages were: 11% total phenolic compounds, 25% total anthocyanins. The extract obtained by ultrasound showed higher antioxidant capacity when compared to the one obtained by conventional extraction. The alginate-Ca2+ capsules were stable when stored in the presence or absence of light, with a reduced t1/2 (absence of light), indicating longer half-life in the absence of light. The use of thermosonication favored greater amounts of bioactive compounds in the grape pomace aqueous extract, and this encapsulated extract in alginate-Ca2+ shows good stability and less degradation in the light absence.
Collapse
Affiliation(s)
- Edilson Bruno Romanini
- State University of Maringa, Avenue Colombo, 5790 - Zona 7, 87020-900 Maringa, PR, Brazil; Instituto Federal do Parana, Campus Paranavai, Avenue Jose Felipe Tequinha, 1400 - Jardim das Nacoes, 87703-536 Paranavai, PR, Brazil.
| | | | - Aline Finger
- Instituto Federal do Parana, Campus Paranavai, Avenue Jose Felipe Tequinha, 1400 - Jardim das Nacoes, 87703-536 Paranavai, PR, Brazil
| | - Talita Perez Cantuaria Chierrito
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Cafe, 14040-903 Ribeirao Preto, SP, Brazil
| | - Monica Regina da Silva Scapim
- Department of Food Engineering, State University of Maringa, Avenida Colombo, 5790 - Zona 7, 87020-900 Maringa, PR, Brazil
| | - Grasiele Scaramal Madrona
- Department of Food Engineering, State University of Maringa, Avenida Colombo, 5790 - Zona 7, 87020-900 Maringa, PR, Brazil
| |
Collapse
|
26
|
New Insights into the Exploitation of Vitis vinifera L. cv. Aglianico Leaf Extracts for Nutraceutical Purposes. Antioxidants (Basel) 2020; 9:antiox9080708. [PMID: 32759838 PMCID: PMC7463595 DOI: 10.3390/antiox9080708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
The leaves of Vitis vinifera L. have been used for a long time in traditional medicine for the treatment of many ailments. Grape polyphenols, indeed, have been demonstrated to be able to defend against oxidative stress, responsible for various disorders such as cancer, diabetes and neurodegenerative diseases. The effects of different extraction techniques, Soxhlet (SOX), Accelerated Solvent (ASE 40, ASE 50) and Ultrasound Assisted Extraction (UAE) were studied in this work to evaluate their impact on the chemical profile and bioactive potential of Vitis vinifera L. (cv. Aglianico) leaf extracts. The phytochemical profile was investigated by HPLC-DAD and 9 phenolic compounds were identified and quantified in the extract. Moreover, the antioxidant, anticholinesterase and antityrosinase activities were evaluated. In detail, the total polyphenol content and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, Oxygen Radical Absorbance Capacities and β-Carotene Bleaching assays) were evaluated and compared to assess the Relative Antioxidant Capacity Index (RACI). To test the inhibitory activity of extracts towards cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition assays were performed. SOX and ASE 50 have shown the highest value of RACI, 0.76 and 0.65, respectively. Regarding enzymatic inhibitory activity, ASE 50 (IC50 = 107.16 ± 8.12 μg/mL) and SOX (IC50 = 171.34 ± 12.12 μg/mL) extracts exhibited the highest AChE and BChE inhibitory activity, respectively, while UAE (IC50 = 293.2 ± 25.6 μg/mL, followed by SOX (IC50 = 302.5 ± 38.3 μg/mL) showed the highest tyrosinase inhibition value. Our results demonstrated for the first time that Aglianico leaves are important sources of phenols that could be used to prevent oxidative stress and be potentially helpful in diseases treatable with tyrosinase and cholinesterase inhibitors, like myasthenia gravis or Alzheimer’s.
Collapse
|
27
|
Iuga M, Mironeasa S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 2020; 19:2473-2505. [PMID: 33336974 DOI: 10.1111/1541-4337.12597] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
28
|
Kwiatkowski M, Cozzolino D, Taylor DK. ATR-MIR Spectroscopy Predicts Total Phenolics and Colour for Extracts Produced by Microwave-Assisted or Conventional Thermal Extraction Methods Applied Separately to Mixtures of Grape Skins from White or Red Commercial Cultivars. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01702-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Carpiné D, Dagostin JLA, Mazon E, Barbi RCT, Alves FEDSB, Chaimsohn FP, Ribani RH. Valorization of Euterpe edulis Mart. agroindustrial residues (pomace and seeds) as sources of unconventional starch and bioactive compounds. J Food Sci 2019; 85:96-104. [PMID: 31872872 DOI: 10.1111/1750-3841.14978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Juçara fruit pomace is one of the most abundant byproducts of the pulp-making process, generally discarded despite their attractive nutritional content. In this sense, this study aimed to investigate the potential of juçara fruit pomace as an alternative source of starch and natural dyes. Starch extracted from juçara seed (JS) was characterized in approximate composition, crystallinity, thermal profile, morphology, and equilibrium moisture data. Total phenolic content, anthocyanins content, and in vitro antioxidant capacity were assessed for the juçara seedless pomace (JSP). JSP is rich in monomeric anthocyanins (7.19 to 7.23 mg cyanidin 3-O-glycoside/g dry matter [dm]), presents high antioxidant potential, elevated dietary fibers (72.7% dm), considerable amount of lipids (12.8% dm), low protein content, and ash traces. JS is a rich carbon source (76.91% fibers [dm]; 12.21% amylaceous reserve). Being high in carbohydrates, mainly starch, it can be classified as high starch content flour (juçara seed starch-flour [JSS-F]). JSS-F presented B-type crystallinity and conventional starch-like thermal stability. JSS-F exhibited type III sorption isotherm behavior and the Gugghenheim-Anderson-DeBoer model adequately represented the moisture equilibrium data. As a nutritive source of bioactive compounds and starch, juçara pomace should be regarded as a coproduct to be explored as an alternative natural ingredient to food, pharmaceutical, and chemical industries. PRACTICAL APPLICATION: Juçara agroindustrial residues (pomace and seeds) are a promising source of antioxidants and unconventional starch, which are usually discarded after depulping, representing approximately 74% of the fruits. Juçara pomace can be used to produce flour with marketing potential due to their functional properties and nutritional value. This flour can be incorporated directly into formulations or be used in extraction processes to obtain components of interest, for example, anthocyanins, to be used as a natural food dye. Starch can be extracted from juçara seeds, presenting adequate technological properties for partial replacement of conventional starches.
Collapse
Affiliation(s)
- Danielle Carpiné
- Food Engineering Graduate Program, Federal Univ. of Paraná, Polytechnic Center, 81531-980, Curitiba, Brazil
| | | | - Elisa Mazon
- Chemical Engineering Dept., Federal Univ. of Paraná, Polytechnic Center, 81531-980, Curitiba, Brazil
| | | | | | | | - Rosemary Hoffmann Ribani
- Food Engineering Graduate Program, Federal Univ. of Paraná, Polytechnic Center, 81531-980, Curitiba, Brazil
| |
Collapse
|
30
|
The Synergistic Behavior of Antioxidant Phenolic Compounds Obtained from Winemaking Waste's Valorization, Increased the Efficacy of a Sunscreen System. Antioxidants (Basel) 2019; 8:antiox8110530. [PMID: 31703285 PMCID: PMC6912203 DOI: 10.3390/antiox8110530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023] Open
Abstract
Grape pomace retains polyphenols in the peels and in the seeds after winemaking, which is indicative of the high valorization potential of this industrial waste. There is strong evidence that phenolics are robust antioxidants and confer photoprotection; thus, it is rational to apply these active compounds from winemaking waste to sunscreens, in order to increase UV protection. Despite the importance of this class of cosmetics to public health, more efficacious strategies are still needed to overcome the problems caused by the photoinstability of some UV filters. The hydroethanolic extract of Vitis vinifera L. grapes was obtained by percolation and then lyophilized. Six formulations were developed: Type I—cosmetic base and UV filters; Type II—cosmetic base and extract; and Type III—cosmetic base, extract and UV filters. Each formulation was prepared in the pHs 5 and 7. The antioxidant activities of the samples were measured by DPPH• and expressed in Trolox® equivalents (TE), and their photostability and in vitro sun protection factor (SPF) were analyzed by diffuse reflectance spectrophotometry. The anti-radical efficiencies observed in the formulations with grape extract were: (II) 590.12 ± 0.01 μmol TE g−1 at pH 5 and 424.51 ± 0.32 μmol TE g−1 at pH 7; (III) 550.88 ± 0.00 μmol TE g−1 at pH 5 and 429.66 ± 0.10 μmol TE g−1, at pH 7, demonstrating that the UV filters, butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl 4-aminobenzoic acid had no influence on this effect. The photoprotective efficacy and the photostability of formulation III containing the extract and UV filters at pH 5 suggested that a synergism between the active molecules provided an 81% increase in SPF. Additionally, this was the only sample that maintained a broad spectrum of protection after irradiation. These results confirmed that the grape pomace extract has multifunctional potential for cosmetic use, mainly in sunscreens, granting them superior performance.
Collapse
|
31
|
A Design of Experiments Strategy to Enhance the Recovery of Polyphenolic Compounds from Vitis vinifera By-Products through Heat Reflux Extraction. Biomolecules 2019; 9:biom9100529. [PMID: 31557922 PMCID: PMC6843815 DOI: 10.3390/biom9100529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to establish the best experimental conditions that lead to the extracts richest in polyphenolic compounds obtained from pomace and canes of Vitis vinifera. In this regard, a D-Optimal design of experiments (DoE) method was applied to investigate the extraction process parameters from each of three materials: red pomace (RP), white pomace (WP) and canes (C). The input variables were the extraction temperature and the ethanol ratio and as response, the total polyphenols content (TPC) was determined. A design space was generated for each of the plant materials and the most concentrated polyphenol extracts were obtained using 50% ethanol at a temperature of 80 °C. Further, the phenolic profiles of the concentrated extracts were detected by LC/MS/MS and the results showed that WP extract was richer in polyphenolic compounds, both flavonoid and phenolic acids, followed by the RP and C extracts. The antioxidant assays revealed that WP and RP extracts exhibited a higher antioxidant activity which correlated to the high content of polyphenols. These findings revealed that RP, WP and C, currently considered agricultural wastes from winery, may be valorized as an important source of natural antioxidants.
Collapse
|
32
|
Huaman-Castilla NL, Martínez-Cifuentes M, Camilo C, Pedreschi F, Mariotti-Celis M, Pérez-Correa JR. The Impact of Temperature and Ethanol Concentration on the Global Recovery of Specific Polyphenols in an Integrated HPLE/RP Process on Carménère Pomace Extracts. Molecules 2019; 24:E3145. [PMID: 31470596 PMCID: PMC6749334 DOI: 10.3390/molecules24173145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023] Open
Abstract
Sequential extraction and purification stages are required to obtain extracts rich in specific polyphenols. However, both separation processes are often optimized independently and the effect of the integrated process on the global recovery of polyphenols has not been fully elucidated yet. We assessed the impact of hot-pressurized liquid extraction (HPLE) conditions (temperature: 90-150 °C; ethanol concentration: 15%-50%) on the global recovery of specific phenolic acids, flavanols, flavonols and stilbenes from Carménère grape pomace in an integrated HPLE/resin purification (RP) process. HPLE of phenolic acids, flavanols and stilbenes were favored when temperature and ethanol concentration increased, except for chlorogenic acid which showed an increment of its Gibbs free energy of solvation at higher ethanol contents. Ethanol concentration significantly impacted the global yield of the integrated HPLE/RP process. The lower the ethanol content of the HPLE extracts, the higher the recovery of phenolic acids, flavanols and stilbenes after RP, except for flavonols which present more polar functional groups. The best specific recovery conditions were 150 °C and ethanol concentrations of 15%, 32.5% and 50% for phenolic acids, flavanols and stilbenes, and flavonols, respectively. At 150 °C and 32.5% of ethanol, the extracts presented the highest total polyphenol content and antioxidant capacity. The integrated HPLE/RP process allows a selective separation of specific polyphenols and eliminates the interfering compounds, ensuring the safety of the extracts at all evaluated conditions.
Collapse
Affiliation(s)
- Nils Leander Huaman-Castilla
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile
- Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Prolongación calle Ancash s/n, Moquegua 18001, Peru
| | - Maximiliano Martínez-Cifuentes
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Escuela de Tecnología Médica, Facultad de Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370993, Chile
| | - Conrado Camilo
- Centro de Aromas y Sabores (DICTUC S.A.), Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile
| | - Franco Pedreschi
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile
| | - María Mariotti-Celis
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 9845, Santiago 8940577, Chile.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
33
|
Puglisi R, Severgnini A, Tava A, Montedoro M. In Vitro Assessment of the Antioxidant Properties of Aqueous Byproduct Extracts of Vitis vinifera. Food Technol Biotechnol 2019; 57:119-125. [PMID: 31316284 PMCID: PMC6600299 DOI: 10.17113/ftb.57.01.19.5879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aqueous extracts were obtained at low temperature with the Naviglio technology from grapevine stalks (Merlot), marc (Merlot and Cabernet Sauvignon) and leaves (Merlot) as typical byproducts of winemaking industry, and their properties were evaluated cytofluorometrically on human dermal fibroblasts. Leaf extracts had the greatest total phenolic ((47.6±3.5) mg/g) and proanthocyanidin ((24.2±0.1) mg/g) contents compared to the others. The preliminary colorimetric MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) assay individuated two consecutive non-toxic volume fractions of each extract (from 0.8 to 12.8%) that were adopted for three cytofluorometric tests. The first cell membrane test did not evidence any harmful effects against plasma membranes at the two non-toxic volume fractions. The second mitochondrial membrane test showed a decreased (p<0.01) percentage of cells ((15.7±8.3) vs (32.5±1.3) %) with active polarized mitochondrial membranes at the higher non-cytotoxic volume fractions of extracts from Cabernet Sauvignon marc in response to 4.5 mM H2O2, and from Merlot stalks (p<0.05) at 1.5 mM H2O2 ((49.3±6.1) vs (64.6±2.4) %) and without H2O2 ((89.7±2.4) vs (96.9±1.8) %), compared to the controls submitted to the same H2O2 concentration. Conversely, mitochondrial activity of leaf extracts significantly (p<0.05) increased ((96.3±1.8) and (96.4±1.4) %) after treatment with 0.5 mM H2O2 at both non-cytotoxic volume fractions compared to control ((88.2±1.1) %). Finally, as evidenced by the third oxidative status test, stalk extracts did not evidence relevant effects on the cellular oxidative state, while the extracts of marc and leaves demonstrated significantly medium (p<0.05) to highly (p<0.001) positive effects following exposure to H2O2 ranging from 0.5 to 4.5 mM, compared to controls.
Collapse
Affiliation(s)
- Roberto Puglisi
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027 Rivolta d'Adda (CR), Italy
| | - Alex Severgnini
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027 Rivolta d'Adda (CR), Italy
| | - Aldo Tava
- CREA-ZA Centro di Ricerca Zootecnia e Acquacoltura, Viale Piacenza 29, 26900 Lodi, Italy
| | - Marina Montedoro
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Loc. La Quercia, 26027 Rivolta d'Adda (CR), Italy
| |
Collapse
|
34
|
Cossetin JF, da Silva Brum E, Casoti R, Camponogara C, Dornelles RC, Maziero M, Tatiane de David Antoniazzi C, Guex CG, Ramos AP, Pintos FG, Engelmann AM, Melazzo de Andrade C, Manfron MP, Oliveira SM, de Freitas Bauermann L, Sagrillo MR, Machado AK, Soares Santos AR, Trevisan G. Peanut leaf extract has antioxidant and anti-inflammatory activity but no acute toxic effects. Regul Toxicol Pharmacol 2019; 107:104407. [PMID: 31226392 DOI: 10.1016/j.yrtph.2019.104407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
Arachis hypogaea L. (peanut) leaves have been popularly used for the treatment of insomnia and inflammation, but no toxicological study has been performed for this plant preparation. This study aimed to examine the phytochemical composition of peanut leaf hydroalcoholic extract (PLHE) and describe its potential toxic effects and antioxidant and anti-inflammatory properties. The qualitative chemical analysis of PLHE by UHPLC-ESI-HRMS allowed the identification of eight metabolites types (totaling 29 compounds). The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay revealed that PLHE had strong antioxidant effects; it also exhibited nitric oxide (NO)-scavenging capacity. Human peripheral blood mononuclear cells (PBMCs) exposed to PLHE showed no reduced cell viability or increased free double-stranded DNA, NO, or reactive species production. PLHE reversed the cytotoxicity, pro-inflammatory (release of interleukin-1β), and pro-oxidant effects of H2O2 on human PBMCs. Acute PLHE toxicity analysis was performed in vivo using the Organization for Economic Co-operation and Development (OECD) 423 guidelines. PLHE single injection (2000 mg/kg, intragastric) did not cause mortality or morbidity or induce changes in hematological or biochemical parameters after 14 days of administration. Thus, PLHE could be a source of bioactive compounds and possesses antioxidant and anti-inflammatory properties without elicitin cytotoxicity or genotoxicity in human PBMCs or acute toxicity in rats.
Collapse
Affiliation(s)
| | - Evelyne da Silva Brum
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rosana Casoti
- Graduate Program in Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, 14040-903, Ribeirão Preto, SP, Brazil
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Rafaela Castro Dornelles
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Maiara Maziero
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Andiara Prattes Ramos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Francielle Guedes Pintos
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Ana Martiele Engelmann
- Veterinary Hospital, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Melânia Palermo Manfron
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria (UFSM), 97105-900, Santa Maria, RS, Brazil
| | | | - Michele Rorato Sagrillo
- Graduate Program in Nanoscience, Franciscan University Center (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Alencar Kolinski Machado
- Laboratory of Cell Culture and Genetics, Franciscan University (UFN), 97010-032, Santa Maria, RS, Brazil
| | - Adair Roberto Soares Santos
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil; Graduate Program in Neuroscience, Laboratory of Neurobiology of Pain and Inflammation, Federal University of Santa Catarina (UFSC), 88040-900, Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Averilla JN, Oh J, Kim HJ, Kim JS, Kim JS. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci Biotechnol 2019; 28:1607-1615. [PMID: 31807333 DOI: 10.1007/s10068-019-00628-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Prevention emerges as a powerful approach in minimizing the risk of deleterious lifestyle diseases because therapies do not necessarily guarantee a permanent cure. Accordingly, consumers' growing preference for natural and health-promoting dietary options that are rich in antioxidants has become widespread. Grape (Vitis vinifera) is an antioxidant-rich fruit extensively grown for fresh or processed consumption. The long-term consumption of its polyphenolic antioxidants may promote multiple health benefits. However, grape pomace (GP), consisting of peel, seed, stem, and pulp, is discarded during grape processing, including juice extraction and winemaking, despite its substantial antioxidant content. Polyphenolic extraction techniques have been widely explored to date, but the consolidation of reported physiological impacts of GP-derived polyphenolic constituents is limited. Thus, this review highlights current studies of the potential applications of GP extract in disease prevention and treatment, emphasizing the major influence of polyphenolic compositions and origins of different grape varieties.
Collapse
Affiliation(s)
- Janice N Averilla
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jisun Oh
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Hyo Jung Kim
- 2National Development Institute of Korean Medicine, Gyeongbuk Gyeongsan, 38540 Republic of Korea
| | - Jae Sik Kim
- Kimjaesik Health Foods, Gyeongbuk Yeongcheon, 38912 Republic of Korea
| | - Jong-Sang Kim
- 1School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
36
|
Lingua MS, Theumer MG, Kruzynski P, Wunderlin DA, Baroni MV. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res Int 2019; 122:496-505. [PMID: 31229105 DOI: 10.1016/j.foodres.2019.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
The primary objective of this study was to assess the changes on phenolic composition and AC (antioxidant capacity) of white grape and its winemaking product, during in vitro gastrointestinal (GI) digestion. Phenolic compounds were evaluated by HPLC-MS/MS. The AC was measured by in vitro (FRAP, ABTS and DPPH) and cellular (Caco-2 cells) assays. Digestion had a reducing effect on phenolic content, being only 31% and 67% of native polyphenols from grapes and wines, respectively, potentially bioaccessible. At same polyphenol concentration, cellular AC of nondigested and digested foods was the same, indicating that changes in phenolic profile did not modify the bioactivity. Phenolic acids, in addition to quercetin, were the most resistant polyphenols to digestion, and would be the most relevant to explain the biological activity of digested foods. Results indicate that the changes occurred in the native phenolic profile of foods as a consequence of GI digestion, do not modify the bioactivity of white grapes and wines.
Collapse
Affiliation(s)
- Mariana S Lingua
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina
| | - Martín G Theumer
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), UNC, CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula Kruzynski
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel A Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Baroni
- Instituto de Ciencia y Tecnología de Alimentos Córdoba. (ICYTAC), CONICET, UNC, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, ISIDSA-SECyT, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
37
|
Muhlack RA, Potumarthi R, Jeffery DW. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:99-118. [PMID: 29132780 DOI: 10.1016/j.wasman.2017.11.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Grapes are one of the most cultivated fruits worldwide, with one third of total production used in winemaking. Both red and white winemaking processes result in substantial quantities of solid organic waste, such as grape marc (pomace) and stalks, which requires suitable disposal. Grape marc accounts for approximately 10-30% of the mass of grapes crushed and contains unfermented sugars, alcohol, polyphenols, tannins, pigments, and other valuable products. Being a natural plant product rich in lignocellulosic compounds, grape marc is also a promising feedstock for renewable energy production. However, despite grape marc having such potential, advanced technologies to exploit this have not been widely adopted in wineries and allied industries. This review covers opportunities beyond traditional composting and animal feed, and examines value-added uses via the extraction of useful components from grape marc, as well as thermochemical and biological treatments for energy recovery, fuel or beverage alcohol production, and specialty novel products and applications such as biosurfactants and environmental remediation. New advances in relevant technology for each of these processes are discussed, and future directions proposed at both individual producer and regional facility scales, including advanced processing techniques for integrated ethanol production followed by bioenergy generation from the spent marc.
Collapse
Affiliation(s)
- Richard A Muhlack
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Ravichandra Potumarthi
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - David W Jeffery
- The Australian Research Council Training Centre for Innovative Wine Production, and Department of Wine and Food Science, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
38
|
Ferri M, Rondini G, Calabretta MM, Michelini E, Vallini V, Fava F, Roda A, Minnucci G, Tassoni A. White grape pomace extracts, obtained by a sequential enzymatic plus ethanol-based extraction, exert antioxidant, anti-tyrosinase and anti-inflammatory activities. N Biotechnol 2017; 39:51-58. [DOI: 10.1016/j.nbt.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
|
39
|
Lagunes I, Vázquez-Ortega F, Trigos Á. Singlet Oxygen Detection Using Red Wine Extracts as Photosensitizers. J Food Sci 2017; 82:2051-2055. [DOI: 10.1111/1750-3841.13815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Irene Lagunes
- Doctorado en Ciencias Biomédicas; Universidad Veracruzana; Av. Luis Castelazo Ayala s/n, Col. Industrial Ánimas C.P. 91190 Xalapa Veracruz México
| | - Fernanda Vázquez-Ortega
- Laboratorio de Alta Tecnología de Xalapa (LATEX), Calle Médicos 5; Col. Unidad del Bosque; C.P. 91010 Xalapa Veracruz México
| | - Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa (LATEX), Calle Médicos 5; Col. Unidad del Bosque; C.P. 91010 Xalapa Veracruz México
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n; Col. Industrial Ánimas; C.P. 91190 Xalapa Veracruz México
| |
Collapse
|
40
|
Huamán-Castilla NL, Mariotti-Celis MS, Pérez-Correa JR. Polyphenols of Carménère Grapes. MINI-REV ORG CHEM 2017; 14:176-186. [PMID: 28845147 PMCID: PMC5543587 DOI: 10.2174/1570193x14666170206151439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/29/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Carménère is the emblematic grape of Chile. Recent studies indicate that it has a different polyphenolic profile than other commercial varieties of grape among other factors, due to its long maturation period. The grape and wine of Carménère stand out for having high concentrations of anthocyanins (malvidin), flavonols (quercetin and myricetin) and flavanols (catechin, epicatechin and epigallocatechin). These compounds are related to the distinctive characteristic of Carménère wine regarding astringency and color. In vivo and in vitro models suggest some positive effects of these polyphenols in the treatment and prevention of chronic diseases, such as atherosclerosis and cancer. Therefore, there is a high level of interest to develop scalable industrial methods in order to obtain and purify Carménère grape polyphenol extracts that could be used to improve the characteristics of wines from other varieties or produce nutraceuticals or functional foods for preventing and treating various chronic diseases.
Collapse
Affiliation(s)
- Nils Leander Huamán-Castilla
- Chemical and Bioprocess Engineering Department, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, P.O. Box 306, Santiago7820436, Chile.,Escuela de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Avenida Ejército s/n, Moquegua 18001, Perú
| | - María Salomé Mariotti-Celis
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación Universidad Tecnológica Metropolitana Ignacio Valdivieso 2409, P.O. Box 9845, Santiago 8940577, Chile and
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, P.O. Box 306, Santiago7820436, Chile
| |
Collapse
|
41
|
Luo J, Wei Z, Zhang S, Peng X, Huang Y, Zhang Y, Lu J. Phenolic Fractions from Muscadine Grape “Noble” Pomace can Inhibit Breast Cancer Cell MDA-MB-231 Better than those from European Grape “Cabernet Sauvignon” and Induce S-Phase Arrest and Apoptosis. J Food Sci 2017; 82:1254-1263. [DOI: 10.1111/1750-3841.13670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Jianming Luo
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing China
- Dept. of Food Science and Engineering; Jinan Univ.; Guangzhou China
| | - Zheng Wei
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing China
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab; Guangxi Academy of Agricultural Science; Guangxi China
| | - Shengyu Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing China
| | - Xichun Peng
- Dept. of Food Science and Engineering; Jinan Univ.; Guangzhou China
| | - Yu Huang
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab; Guangxi Academy of Agricultural Science; Guangxi China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering; China Agricultural Univ.; Beijing China
| | - Jiang Lu
- Guangxi Crop Genetic Improvement and Biotechnology Key Lab; Guangxi Academy of Agricultural Science; Guangxi China
- Center for Viticulture and Enology, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai China
| |
Collapse
|
42
|
Machado NFL, Domínguez-Perles R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules 2017; 22:E286. [PMID: 28216592 PMCID: PMC6155862 DOI: 10.3390/molecules22020286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Grape and wine phenolics display a noticeable structural diversity, encompassing distinct compounds ranging from simple molecules to oligomers, as well as polymers usually designated as tannins. Since these compounds contribute critically to the organoleptic properties of wines, their analysis and quantification are of primordial importance for winery industry operators. Besides, the occurrence of these compounds has been also extensively described in winery residues, which have been pointed as a valuable source of bioactive phytochemicals presenting potential for the development of new added value products that could fit the current market demands. Therefore, the cumulative knowledge generated during the last decades has allowed the identification of the most promising compounds displaying interesting biological functions, as well as the chemical features responsible for the observed bioactivities. In this regard, the present review explores the scope of the existing knowledge, concerning the compounds found in these winery by-products, as well as the chemical features presumably responsible for the biological functions already identified. Moreover, the present work will hopefully pave the way for further actions to develop new powerful applications to these materials, thus, contributing to more sustainable valorization procedures and the development of newly obtained compounds with enhanced biological properties.
Collapse
Affiliation(s)
- Nelson F L Machado
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Raúl Domínguez-Perles
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (CITAB-UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal.
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University, Edif. 25, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
43
|
Fontana A, Antoniolli A, D'Amario Fernández MA, Bottini R. Phenolics profiling of pomace extracts from different grape varieties cultivated in Argentina. RSC Adv 2017. [DOI: 10.1039/c7ra04681b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Grape pomace can be considered as an excellent and inexpensive source of phenolic compounds with potential bioactive properties.
Collapse
Affiliation(s)
- Ariel Fontana
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - Andrea Antoniolli
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - María Agustina D'Amario Fernández
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| | - Rubén Bottini
- Laboratorio de Bioquímica Vegetal
- Instituto de Biología Agrícola de Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo
- Argentina
| |
Collapse
|
44
|
Wang S, Amigo-Benavent M, Mateos R, Bravo L, Sarriá B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int J Food Sci Nutr 2016; 68:188-200. [PMID: 27609024 DOI: 10.1080/09637486.2016.1228099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Red grape pomace (RGP) is a major winery by-product with interesting applications due to its high phenolic content and antioxidant capacity. Effects of in vitro gastrointestinal digestion and storage on the phenolic content and antioxidant capacity of RGP were studied. RGP polyphenols were stable under stomach-mimicking conditions and more sensitive to small intestine conditions, reducing anthocyanins and flavonols. After 3- and 6-month storage, at either 4 or 25 °C, there were no changes in the total phenolic and condensed tannin content, or antioxidant capacity (evaluated by ABTS, FRAP, ORAC assays); however, after 9 months these parameters decreased. Contrarily, chromatic b* values were higher, thus the samples had more intense red color, which may be related to the increased condensed tannin content. Storage time or temperature induced no changes in microbiological load. RGP preserves high antioxidant capacity after storage and in vitro digestion and thus presents potential as a functional ingredient or nutraceutical.
Collapse
Affiliation(s)
- Shenli Wang
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Miryam Amigo-Benavent
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Raquel Mateos
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Laura Bravo
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| | - Beatriz Sarriá
- a Department of Metabolism and Nutrition, Institute of Food Science , Technology and Nutrition (ICTAN-CSIC) , Madrid , Spain
| |
Collapse
|
45
|
Reis GM, Faccin H, Viana C, Rosa MBD, de Carvalho LM. Vitis vinifera L. cv Pinot noir pomace and lees as potential sources of bioactive compounds. Int J Food Sci Nutr 2016; 67:789-96. [DOI: 10.1080/09637486.2016.1204595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gabriel M. Reis
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Carine Viana
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Center of Health Sciences, UFSM, Santa Maria, Brazil
| | - Marcelo Barcellos da Rosa
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Department of Chemistry, UFSM, Santa Maria, Brazil
| | - Leandro M. de Carvalho
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Department of Chemistry, UFSM, Santa Maria, Brazil
| |
Collapse
|
46
|
Nassiri-Asl M, Hosseinzadeh H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother Res 2016; 30:1392-403. [PMID: 27196869 DOI: 10.1002/ptr.5644] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 01/31/2023]
Abstract
Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Uysal S, Zengin G, Aktumsek A, Karatas S. Chemical and biological approaches on nine fruit tree leaves collected from the Mediterranean region of Turkey. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
48
|
Fanali C, Belluomo MG, Cirilli M, Cristofori V, Zecchini M, Cacciola F, Russo M, Muleo R, Dugo L. Antioxidant activity evaluation and HPLC-photodiode array/MS polyphenols analysis of pomegranate juice from selected italian cultivars: A comparative study. Electrophoresis 2016; 37:1947-55. [PMID: 26814700 DOI: 10.1002/elps.201500501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Chemical composition of pomegranate juice can vary due to cultivar, area of cultivation, ripening, climate, and other variables. This study investigates the polyphenolic composition and antioxidant activity of juices obtained from six old Italian pomegranate cultivars. Fruit accessions physicochemical characteristics were determined. Total polyphenols content (TPC), anthocyanin content (TAC) and proanthocyanidin content (TPAC) were measured in the juice samples. Phenolic bioactive molecules were analyzed by HPLC-photodiode array (PDA)/ESI-MS in all the pomegranate juices. In total, seven nonanthocyanidinic and six anthocyanidinic compounds were identified. The six anthocyanins were found in all juices although at different amounts. These results were correlated with antioxidant activity measured by three different chemical assays: 2,2 diphenyl-1-picrylhydrazyl (DPPH(•) ) scavenging activity assay, Trolox equivalent antioxidant capacity (TEAC) method and ferric reducing-antioxidant power (FRAP) assay. Pomegranate juices obtained by six different varieties show variable polyphenolic content and antioxidant activity. The antioxidant capacity methods used have shown variable sensitivity, supporting the hypothesis that different methods for the assessment of antioxidant capacity of food compounds are indeed necessary, due to complexity of sample composition and assay chemical mechanism and sensitivity. Juices from Italian pomegranate show good levels of polyphenols content and antioxidant activity making them potential candidates for employment in the food industry.
Collapse
Affiliation(s)
- Chiara Fanali
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Maria Giovanna Belluomo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco Cirilli
- Department of Agriculture and Forestry Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Valerio Cristofori
- Department of Agriculture and Forestry Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Maurizio Zecchini
- Department of Agriculture and Forestry Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Cacciola
- Department of "Scienze biomediche, odontoiatriche e delle immagini morfologiche e funzionali", University of Messina, Messina, Italy
| | - Marina Russo
- Chromaleont s.r.l, c/o University of Messina, Messina, Italy
| | - Rosario Muleo
- Department of Agriculture and Forestry Science (DAFNE), University of Tuscia, Viterbo, Italy
| | - Laura Dugo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
49
|
Alvarez-Casas M, Pájaro M, Lores M, Garcia-Jares C. Characterization of grape marcs from native and foreign white varieties grown in northwestern Spain by their polyphenolic composition and antioxidant activity. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2573-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Garcia-Jares C, Vazquez A, Lamas JP, Pajaro M, Alvarez-Casas M, Lores M. Antioxidant White Grape Seed Phenolics: Pressurized Liquid Extracts from Different Varieties. Antioxidants (Basel) 2015; 4:737-49. [PMID: 26783956 PMCID: PMC4712939 DOI: 10.3390/antiox4040737] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022] Open
Abstract
Grape seeds represent a high percentage (20% to 26%) of the grape marc obtained as a byproduct from white winemaking and keep a vast proportion of grape polyphenols. In this study, seeds obtained from 11 monovarietal white grape marcs cultivated in Northwestern Spain have been analyzed in order to characterize their polyphenolic content and antioxidant activity. Seeds of native (Albariño, Caiño, Godello, Loureiro, Torrontés, and Treixadura) and non-native (Chardonnay, Gewurtzträminer, Pinot blanc, Pinot gris, and Riesling) grape varieties have been considered. Low weight phenolics have been extracted by means of pressurized liquid extraction (PLE) and further analyzed by LC-MS/MS. The results showed that PLE extracts, whatever the grape variety of origin, contained large amounts of polyphenols and high antioxidant activity. Differences in the varietal polyphenolic profiles were found, so a selective exploitation of seeds might be possible.
Collapse
Affiliation(s)
- Carmen Garcia-Jares
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
- Grape Laboratory, Universidade de Santiago de Compostela, Edificio Emprendia, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | - Alberto Vazquez
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | - Juan P Lamas
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | - Marta Pajaro
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | - Marta Alvarez-Casas
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
- Grape Laboratory, Universidade de Santiago de Compostela, Edificio Emprendia, Campus Vida, E-15782 Santiago de Compostela, Spain.
| | - Marta Lores
- Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Quimica, Universidade de Santiago de Compostela, Avda das Ciencias s/n, Campus Vida, E-15782 Santiago de Compostela, Spain.
- Grape Laboratory, Universidade de Santiago de Compostela, Edificio Emprendia, Campus Vida, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|