1
|
Kojima K, Katsuno T, Kishimoto Y, Mizuta M, Nakamura R, Ohnishi H, Yamada K, Kawai Y, Tateya I, Omori K. In vitro model to evaluate effect of acidic pepsin on vocal fold barrier function. Biochem Biophys Res Commun 2024; 732:150401. [PMID: 39033554 DOI: 10.1016/j.bbrc.2024.150401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The pathophysiology of laryngopharyngeal reflux (LPR) and its impact on the vocal fold is not well understood, but may involve acid damage to vocal fold barrier functions. Two different components encompass vocal fold barrier function: the mucus barrier and tight junctions. Mucus retained on epithelial microprojections protects the inside of the vocal fold by neutralizing acidic damage. Tight junctions control permeability between cells. Here we developed an in vitro experimental system to evaluate acidic injury and repair of vocal fold barrier functions. We first established an in vitro model of rat vocal fold epithelium that could survive at least one week after barrier function maturation. The model enabled repeated evaluation of the course of vocal fold repair processes. Then, an injury experiment was conducted in which vocal fold cells were exposed to a 5-min treatment with acidic pepsin that injured tight junctions and cell surface microprojections. Both of them healed within one day of injury. Comparing vocal fold cells treated with acid alone with cells treated with acidic pepsin showed that acidic pepsin had a stronger effect on intercellular permeability than acid alone, whereas pepsin had little effect on microprojections. This result suggests that the proteolytic action of pepsin has a larger effect on protein-based tight junctions than on phospholipids in microprojections. This experimental system could contribute to a better understanding of vocal fold repair processes after chemical or physical injuries, as well as voice problems due to LPR pathogenesis.
Collapse
Affiliation(s)
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Japan
| | - Yo Kishimoto
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan.
| | | | - Ryosuke Nakamura
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, USA
| | - Hiroe Ohnishi
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Koichiro Yamada
- Department of Otolaryngology Head and Neck Surgery, Kurashiki Central Hospital, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Ichiro Tateya
- Department of Otorhinolaryngology, Fujita Health University, Japan
| | - Koichi Omori
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
2
|
Kimura A, Khan MI, Easwaran M, Soo J, Golchin A, Erickson-DiRenzo E. Establishing a Mouse Model of Surgical Vocal Fold Injury. Laryngoscope 2024. [PMID: 39180435 DOI: 10.1002/lary.31732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE Animal models of vocal fold (VF) surgical injury and scar formation provide insight into the wound healing process. The purpose of this study was to establish an alternative model of surgical injury to the mouse VF using materials commonly available in most research laboratories or for purchase and to investigate wound healing of the epithelium (EP) and lamina propria (LP). METHODS Mice were anesthetized by isoflurane gas delivery and positioned on a platform so that the larynx could be observed using a laryngoscope and dissection microscope. Unilateral VF injury was created using a wire brush. Mice were euthanized and the larynx evaluated 1-, 3-, 5-, 7-, 14-, and 28-days following injury. Histological and immunofluorescent analysis was used to evaluate thickness of the EP, LP area, proliferative (Ki67+) and basal cells (p63+) in the EP, and collagen III content in the LP. RESULTS The depth of injury reached the superficial thyroarytenoid muscle on Day 1. The thickness of the EP of the injured VF was increased on Days 3 and 5, and the LP area was increased on Days 3, 5, and 7 as compared with the uninjured VF. Ki67+ and p63+ cells were increased on Day 3 and collagen III content was increased on Days 5 and 28 as compared with the uninjured VF. CONCLUSION We successfully established an alternative method of creating unilateral VF injury in the mouse. This method will be useful for future research regarding VF surgical injury and wound healing. LEVEL OF EVIDENCE N/A Laryngoscope, 2024.
Collapse
Affiliation(s)
- Akari Kimura
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Meena Easwaran
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Joanne Soo
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Amirbahador Golchin
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology - Head & Neck surgery, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Easwaran M, Maria CS, Martinez JD, Hung B, Yu X, Soo J, Kimura A, Gross ER, Erickson-DiRenzo E. Effects of Short-term Electronic(e)-Cigarette Aerosol Exposure in the Mouse Larynx. Laryngoscope 2024; 134:1316-1326. [PMID: 37698394 PMCID: PMC10922082 DOI: 10.1002/lary.31043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES The effects of electronic cigarettes (e-cigarettes) on the larynx are relatively unknown. This study examined the short-term effects of e-cigarette inhalation on cellular and inflammatory responses within the mouse laryngeal glottic and subglottic regions after exposure to pod-based devices (JUUL). METHODS Male C57BL6/J mice (8-9 weeks) were assigned to control (n = 9), JUUL flavors Mint (JMi; n = 10) or Mango (JMa; n = 10). JUUL mice were exposed to 2 h/day for 1, 5, and 10 days using the inExpose inhalation system. Control mice were in room air. Vocal fold (VF) epithelial thickness, cell proliferation, subglandular area and composition, inflammatory cell infiltration, and surface topography were evaluated in the harvested larynges. Mouse body weight and urinary nicotine biomarkers were also measured. Chemical analysis of JUUL aerosols was conducted using selective ion flow tube mass spectrometry. RESULTS JUUL-exposed mice had reduced body weight after day 5. Urinary nicotine biomarker levels indicated successful JUUL exposure and metabolism. Quantitative analysis of JUUL aerosol indicated that chemical constituents differ between JMi and JMa flavors. VF epithelial thickness, cellular proliferation, glandular area, and surface topography remained unchanged after JUUL exposures. Acidic mucus content increased after 1 day of JMi exposure. VF macrophage and T-cell levels slightly increased after 10 days of JMi exposures. CONCLUSIONS Short-term e-cigarette exposures cause minimal flavor- and region-specific cellular and inflammatory changes in the mouse larynx. This work provides a foundation for long-term studies to determine if these responses are altered with multiple e-cigarette components and concentrations. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1316-1326, 2024.
Collapse
Affiliation(s)
- Meena Easwaran
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Chloe Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Joshua D. Martinez
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Barbara Hung
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Joanne Soo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Akari Kimura
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Khan MI, Easwaran M, Martinez JD, Kimura A, Erickson-DiRenzo E. Method for Collecting Single Epithelial Cells from the Mouse Larynx. Laryngoscope 2024; 134:786-794. [PMID: 37602769 PMCID: PMC10841475 DOI: 10.1002/lary.30970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE The larynx is lined by specialized epithelial cell populations. Studying molecular changes occurring in individual epithelial cell types requires a reliable method for removing these cells from the larynx. Our objective was to develop a method to harvest individual epithelial cells from the mouse larynx while minimizing contamination from non-laryngeal sites and non-epithelial laryngeal cells. METHODS Mice were euthanized, and the larynx was carefully exposed and separated from non-laryngeal sites. A small dental brush was inserted into the laryngeal inlet and rotated to obtain epithelial cells. Cells were transferred to collection media, counted, and cytospin preparations stained for laryngeal epithelial (i.e., Pan-Keratin, EpCAM, NGFR, p63, K5, β-tubulin, MUC5AC) and non-epithelial (i.e., vimentin) cell markers. Histopathology was completed on brushed laryngeal tissue sections to evaluate the depth of cell collection. Preliminary Single-cell RNA sequencing (scRNA-seq) was performed to confirm this method can capture diverse laryngeal cell types. RESULTS We collected 6000-8000 cells from a single larynx and 35000-40000 cells from combining brushings from three tissues. Histopathology demonstrated brushing removed the epithelial layer of the larynx and some underlying tissue. Immunofluorescence staining demonstrated the phenotype of harvested cells was primarily epithelial. Preliminary scRNA-seq was successfully conducted and displayed nine unique cell clusters. CONCLUSION We developed a reliable method of harvesting individual epithelial cells from the mouse larynx. This method will be useful for collection of laryngeal cells for a variety of downstream cellular and molecular assays, including scRNA-seq, protein analyses, and cell-culture-based experiments, following laryngeal injury. LEVEL OF EVIDENCE NA Laryngoscope, 134:786-794, 2024.
Collapse
Affiliation(s)
- Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Meena Easwaran
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Joshua D. Martinez
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Akari Kimura
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
5
|
Martinez JD, Easwaran M, Ramirez D, Erickson-DiRenzo E. Effects of Electronic (E)-cigarette Vapor and Cigarette Smoke in Cultured Vocal Fold Fibroblasts. Laryngoscope 2023; 133:139-146. [PMID: 35213064 DOI: 10.1002/lary.30073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The public use of electronic-cigarettes (e-cigs) is rapidly growing. When heated, e-cigs produce a vapor that is inhaled. The vocal folds are among the first tissues exposed to this insult. However, the impact of e-cigs on vocal fold health is almost entirely unknown. Our objective was to evaluate the effects of e-cig vapor on cultured human vocal fold fibroblasts (hVFFs), the primary cell type of the lamina propria. We compared the cellular effects of e-cig vapor without and with nicotine and conventional cigarette smoke. STUDY DESIGN In vitro. METHODS E-cig vapor extract (EVE) and cigarette smoke extract (CSE) were created by bubbling vapor and smoke, respectively, into the cell culture medium. hVFFs were exposed to EVE without or with nicotine or CSE for 24 hours. Untreated cells were used as a control group. Cells were harvested, and cytotoxicity, extracellular matrix and inflammatory gene expression, and DNA damage were assessed. RESULTS Undiluted EVE without and with nicotine reduced the viability of hVFFs to a cytotoxic level. CSE reduced hVFFs viability to a greater extent than EVE and induced DNA damage as measured by DNA double-strand breaks. No changes in gene expression were observed following EVE or CSE exposure. CONCLUSION EVE induces cytotoxicity in hVFFs. However, cellular responses were greater following exposure to CSE, suggesting cigarette smoke may induce more harm, at least in the short term. Findings from this investigation improve our understanding of responses of hVFFs to e-cigs and form the basis for an in vitro methodology to study the vocal fold responses to these products. LEVEL OF EVIDENCE NA Laryngoscope, 133:139-146, 2023.
Collapse
Affiliation(s)
- Joshua D Martinez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Meena Easwaran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Daniel Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, U.S.A
| |
Collapse
|
6
|
Easwaran M, Martinez JD, Kim JB, Erickson-DiRenzo E. Modulation of mouse laryngeal inflammatory and immune cell responses by low and high doses of mainstream cigarette smoke. Sci Rep 2022; 12:18667. [PMID: 36333510 PMCID: PMC9636197 DOI: 10.1038/s41598-022-23359-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoking is a major risk factor for laryngeal diseases. Despite well-documented cigarette smoke (CS) induced laryngeal histopathological changes, the underlying immunopathological mechanisms remain largely unexplored. The goal of this study was to evaluate inflammatory and immune cell responses in a CS-exposed larynx. Specifically, we used a 4-week subacute whole-body CS inhalation mouse model to assess these responses in the laryngeal mucosa upon exposure to low (LD; 1 h/day) and high dose (HD; 4 h/day) CS. Laryngeal tissues were harvested and evaluated using a 254-plex NanoString inflammation panel and neutrophil/macrophage/T-cell immunohistochemistry (IHC). NanoString global and differential gene expression analysis revealed a unique expression profile only in the HD group, with 26 significant differentially expressed genes (DEGs). StringDB KEGG pathway enrichment analysis revealed the involvement of these DEGs with pro-inflammatory pathways including TNF/TNFα and IL-17. Furthermore, inflammatory responses remained inhibited in conjunction with predicted activated states of anti-inflammatory regulators like PPARγ and NFE2L2 upon Ingenuity Pathway Analysis (IPA). Subglottic T-cell levels remained significantly inhibited as corroborated by IPA predictions. Overall, our key findings are consistent with HD exposures being anti-inflammatory and immunosuppressive. Furthermore, the identification of important regulatory genes and enriched pathways may help improve clinical interventions for CS-induced laryngeal diseases.
Collapse
Affiliation(s)
- Meena Easwaran
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D Martinez
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Juyong Brian Kim
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Erickson-DiRenzo
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Lungova V, Wendt K, Thibeault SL. Exposure to e-cigarette vapor extract induces vocal fold epithelial injury and triggers intense mucosal remodeling. Dis Model Mech 2022; 15:dmm049476. [PMID: 35770504 PMCID: PMC9438930 DOI: 10.1242/dmm.049476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Vaping has been reported to cause acute epiglottitis, a life-threatening airway obstruction induced by direct epithelial injury and subsequent inflammatory reaction. Here, we show that we were able to recapitulate this phenomenon in vitro. Exposure of human engineered vocal fold (VF) mucosae to 0.5% and 5% electronic cigarette (e-cigarette) vapor extract (ECVE) for 1 week induced cellular damage of luminal cells, disrupting homeostasis and innate immune responses. Epithelial erosion was likely caused by accumulation of solvents and lipid particles in the cytosol and intercellular spaces, which altered lipid metabolism and plasma membrane properties. Next, we investigated how the mucosal cells responded to the epithelial damage. We withdrew the ECVE from the experimental system and allowed VF mucosae to regenerate for 1, 3 and 7 days, which triggered intense epithelial remodeling. The epithelial changes included expansion of P63 (TP63)-positive basal cells and cytokeratin 14 (KRT14) and laminin subunit α-5 (LAMA5) deposition, which might lead to local basal cell hyperplasia, hyperkeratinization and basement membrane thickening. In summary, vaping presents a threat to VF mucosal health and airway protection, thereby raising further concerns over the safety of e-cigarette use. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Kristy Wendt
- Department of Surgery, University of Wisconsin-Madison, 5105 WIMR Madison, WI 53705, USA
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, 5103 WIMR, Madison, WI 53705, USA
| |
Collapse
|
8
|
King RE, Ward-Shaw ET, Hu R, Lambert PF, Thibeault SL. Expanded Basal Compartment and Disrupted Barrier in Vocal Fold Epithelium Infected with Mouse Papillomavirus MmuPV1. Viruses 2022; 14:v14051059. [PMID: 35632798 PMCID: PMC9146965 DOI: 10.3390/v14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Laryngeal infection with low-risk human papillomaviruses can cause recurrent respiratory papillomatosis (RRP), a disease with severe effects on vocal fold epithelium resulting in impaired voice function and communication. RRP research has been stymied by limited preclinical models. We recently reported a murine model of laryngeal MmuPV1 infection and disease in immunodeficient mice. In the current study, we compare quantitative and qualitative measures of epithelial proliferation, apoptosis, differentiation, and barrier between mice with MmuPV1-induced disease of the larynx and surrounding tissues and equal numbers of uninfected controls. Findings supported our hypothesis that laryngeal MmuPV1 infection recapitulates many features of RRP. Like RRP, MmuPV1 increased proliferation in infected vocal fold epithelium, expanded the basal compartment of cells, decreased differentiated cells, and altered cell–cell junctions and basement membrane. Effects of MmuPV1 on apoptosis were equivocal, as with RRP. Barrier markers resembled human neoplastic disease in severe MmuPV1-induced disease. We conclude that MmuPV1 infection of the mouse larynx provides a useful, if imperfect, preclinical model for RRP that will facilitate further study and treatment development for this intractable and devastating disease.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
9
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|