1
|
Guerreiro SFC, Leal F, Dias AG, Granja PL, Dias JR. Polycaprolactone (PCL)-Gelatin Electrospun Meshes for Accelerated Gastric Wound Healing. Colloids Surf B Biointerfaces 2025; 250:114572. [PMID: 39987776 DOI: 10.1016/j.colsurfb.2025.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Gastric wound healing constitutes a complex challenge, even in the context of superficial wounds, due to the harsh stomach environment, characterized by high pH variability and dynamic enzyme concentrations. Therefore, effective healing depends on robust mechanical support and adequate biochemical cues to drive cell growth and proliferation. Electrospun-based dressings may offer a solution to these problems by providing physical support that mimics native extracellular matrix. In this study, electrospun dressings composed of a blend of polycaprolactone (PCL) and gelatin (Gel) were proposed for the first time for gastric application by tuning the relative PCL:Gel ratios (75:25, 50:50 and 25:75) to optimize both their retention capacity and cellular interaction. PCL/Gel dressings, in a proportion of 75:25, showed to have efficient mucoadhesion (ultimate stress of 1.8 MPa) when tested in ex vivo porcine samples. They were also stable in simulated gastric fluid for 14 days, a period compatible with the treatment window. Moreover, the non-cytotoxic biological response (>90 %) of the dressings was favorably validated in mouse fibroblast L929 cell line. Cell morphology, metabolic activity, cell viability and proliferative capacity were assessed using human specific gastric cell lines, including normal stomach fibroblasts (NST-20) and gastric adenocarcinoma (AGS). Overall, PCL/Gel dressings of 75:25 increased the proliferation rate of NST20 and AGS cells after 3 and 7 days in culture, respectively, with significant expression of proliferation marker Ki-67 protein.
Collapse
Affiliation(s)
- Sara F C Guerreiro
- CDRSP - Centro para o Desenvolvimento Rápido e Sustentado do Produto, Politécnico de Leiria, R. de Portugal, Leiria 2430-028, Portugal; Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPO), Portuguese Oncology Institute of Porto (IPO/Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPO (Health Research Network), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto 4200-135, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, s/n, Porto 4200-135, Portugal
| | - Filipa Leal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto 4200-135, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, s/n, Porto 4200-135, Portugal
| | - Anabela G Dias
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPO), Portuguese Oncology Institute of Porto (IPO/Porto)/Porto Comprehensive Cancer Centre (Porto.CCC) & RISE@CI-IPO (Health Research Network), R. Dr. António Bernardino de Almeida, Porto 4200-072, Portugal
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, Porto 4200-135, Portugal
| | - Juliana R Dias
- CDRSP - Centro para o Desenvolvimento Rápido e Sustentado do Produto, Politécnico de Leiria, R. de Portugal, Leiria 2430-028, Portugal.
| |
Collapse
|
2
|
Tayeed MH, Tehranchi M, Ehterami A, Shanei F, Taleghani F, Semyari H, Mahdipour Ganji S, Mehrnia N, Bozorgzadeh S, Zamani S, Salehi M. Enhancing Bone Regeneration with Silybin-Loaded PCL/Gelatin/Nanoclay Nanocomposite Scaffolds: An In Vitro & In Vivo Study. J Biomater Appl 2025:8853282251329901. [PMID: 40131131 DOI: 10.1177/08853282251329901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study focuses on the development of a 3-dimensional porous scaffold using Polycaprolactone/Gelatin/Nanoclay (PCL/GNF/NC) for bone tissue engineering. The scaffold incorporates varying dosages of silybin (Sil) through a mixture of electrospinning and thermal-induced phase separation (TIPS) techniques. Assessments of surface shape, porosity, compressive strength, water contact angle, degradation rate, releasing profile, hemolysis, and cell proliferation were among the investigations carried out to appraise the manufactured scaffolds. In vivo evaluation utilized a rat calvaria defect model, with histological analysis employed to assess the results. The scaffolds exhibited porosity within the range of 70-90%, and those containing silybin demonstrated lower compressive strength and contact angle, along with a higher degradation rate compared to those without silybin. Release experiments revealed a 61.09% release of silybin after 28 days. In both in vivo and in vitro assessments, the PCL/GNF/NC/Sil1% scaffold displayed superior cell proliferation and bone healing properties compared to other groups. These findings suggest the potential efficacy of silybin in bone defect treatment, warranting further investigation in future research.
Collapse
Affiliation(s)
- Mohammad Hossein Tayeed
- Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Tehranchi
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Fereshteh Shanei
- Department of Periodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ferial Taleghani
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Hasan Semyari
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Saeed Mahdipour Ganji
- Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Nika Mehrnia
- Department of Periodontics, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Shaghayegh Bozorgzadeh
- Oral and maxillofacial surgery department, Chaloos taleghani hospital, Mazandaran University of Medical Science, Chaloos, Iran
| | - Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
3
|
Douglas A, Chen Y, Elloso M, Levschuk A, Jeschke MG. Bioprinting-By-Design of Hydrogel-Based Biomaterials for In Situ Skin Tissue Engineering. Gels 2025; 11:110. [PMID: 39996653 PMCID: PMC11854875 DOI: 10.3390/gels11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Burns are one of the most common trauma injuries worldwide and have detrimental effects on the entire body. However, the current standard of care is autologous split thickness skin grafts (STSGs), which induces additional injuries to the patient. Therefore, the development of alternative treatments to replace traditional STSGs is critical, and bioprinting could be the future of burn care. Specifically, in situ bioprinting offers several advantages in clinical applications compared to conventional in vitro bioprinting, primarily due to its ability to deposit bioink directly onto the wound. This review provides an in-depth discussion of the aspects involved in in situ bioprinting for skin regeneration, including crosslinking mechanisms, properties of natural and synthetic hydrogel-based bioinks, various in situ bioprinting methods, and the clinical translation of in situ bioprinting. The current limitations of in situ bioprinting is the ideal combination of bioink and printing mechanism to allow multi-material dispensing or to produce well-orchestrated constructs in a timely manner in clinical settings. However, extensive ongoing research is focused on addressing these challenges, and they do not diminish the significant potential of in situ bioprinting for skin regeneration.
Collapse
Affiliation(s)
- Alisa Douglas
- Department of School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
| | - Yufei Chen
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Margarita Elloso
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Adam Levschuk
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - Marc G. Jeschke
- Department of School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- David Braley Research Institute, Hamilton, ON L8L 2X2, Canada;
- Hamilton Health Sciences, Hamilton, ON L8L 0A4, Canada;
- Department of Surgery, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
4
|
Calero-Castro FJ, Perez-Puyana VM, Laga I, Padillo Ruiz J, Romero A, de la Portilla de Juan F. Mechanical Stimulation and Aligned Poly(ε-caprolactone)-Gelatin Electrospun Scaffolds Promote Skeletal Muscle Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:6430-6440. [PMID: 39365939 PMCID: PMC11497210 DOI: 10.1021/acsabm.4c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The current treatments to restore skeletal muscle defects present several injuries. The creation of scaffolds and implant that allow the regeneration of this tissue is a solution that is reaching the researchers' interest. To achieve this, electrospinning is a useful technique to manufacture scaffolds with nanofibers with different orientation. In this work, polycaprolactone and gelatin solutions were tested to fabricate electrospun scaffolds with two degrees of alignment between their fibers: random and aligned. These scaffolds can be seeded with myoblast C2C12 and then stimulated with a mechanical bioreactor that mimics the physiological conditions of the tissue. Cell viability as well as cytoskeletal morphology and functionality was measured. Myotubes in aligned scaffolds (9.84 ± 1.15 μm) were thinner than in random scaffolds (11.55 ± 3.39 μm; P = 0.001). Mechanical stimulation increased the width of myotubes (12.92 ± 3.29 μm; P < 0.001), nuclear fusion (95.73 ± 1.05%; P = 0.004), and actin density (80.13 ± 13.52%; P = 0.017) in aligned scaffolds regarding the control. Moreover, both scaffolds showed high myotube contractility, which was increased in mechanically stimulated aligned scaffolds. These scaffolds were also electrostimulated at different frequencies and they showed promising results. In general, mechanically stimulated aligned scaffolds allow the regeneration of skeletal muscle, increasing viability, fiber thickness, alignment, nuclear fusion, nuclear differentiation, and functionality.
Collapse
Affiliation(s)
- Francisco José Calero-Castro
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | | | - Imán Laga
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Javier Padillo Ruiz
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| | - Alberto Romero
- Departamento
de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fernando de la Portilla de Juan
- Department
of General and Digestive Surgery, “Virgen
del Rocío” University Hospital/IBiS/CSIC/University
of Seville, 41013 Seville, Spain
- Oncology
Surgery, Cell Therapy, and Organ Transplantation Group. Institute
of Biomedicine of Seville (IBiS), “Virgen
del Rocío” University Hospital, IBiS, CSIC/University
of Seville, 41013 Sevilla, Spain
| |
Collapse
|
5
|
Zhang F, Jacobs AI, Woodall M, Hailes HC, Uchegbu IF, Fernandez-Reyes D, Smith CM, Dziemidowicz K, Williams GR. A one-step method for generating antimicrobial nanofibre meshes via coaxial electrospinning. MATERIALS ADVANCES 2024; 5:5561-5571. [PMID: 38957404 PMCID: PMC11216540 DOI: 10.1039/d4ma00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/18/2024] [Indexed: 07/04/2024]
Abstract
Respiratory diseases, including influenza, infectious pneumonia, and severe acute respiratory syndrome (SARS), are a leading cause of morbidity and mortality worldwide. The recent COVID-19 pandemic claimed over 6.9 million lives globally. With the possibility of future pandemics, the creation of affordable antimicrobial meshes for protective gear, such as facemasks, is essential. Electrospinning has been a focus for much of this research, but most approaches are complex and expensive, often wasting raw materials by distributing antiviral agents throughout the mesh despite the fact they can only be active if at the fibre surface. Here, we report a low cost and efficient one-step method to produce nanofibre meshes with antimicrobial activity, including against SARS-CoV-2. Cetrimonium bromide (CTAB) was deposited directly onto the surface of polycaprolactone (PCL) fibres by coaxial electrospinning. The CTAB-coated samples have denser meshes with finer nanofibres than non-coated PCL fibres (mean diameter: ∼300 nm versus ∼900 nm, with mean pore size: ∼300 nm versus > 600 nm). The formulations have > 90% coating efficiency and exhibit a burst release of CTAB upon coming into contact with aqueous media. The CTAB-coated materials have strong antibacterial activity against Staphylococcus aureus (ca. 100%) and Pseudomonas aeruginosa (96.5 ± 4.1%) bacteria, as well as potent antiviral activity with over 99.9% efficacy against both respiratory syncytial virus and SARS-CoV-2. The CTAB-coated nanofibre mesh thus has great potential to form a mask material for preventing both bacterial and viral respiratory infections.
Collapse
Affiliation(s)
- Fangyuan Zhang
- UCL School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Amy I Jacobs
- UCL Great Ormond Street Institute of Child Health, University College London 30 Guilford Street London WC1N 1EH UK
| | - Maximillian Woodall
- UCL Great Ormond Street Institute of Child Health, University College London 30 Guilford Street London WC1N 1EH UK
| | - Helen C Hailes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ijeoma F Uchegbu
- UCL School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Delmiro Fernandez-Reyes
- Department of Computer Science, University College London 66-72 Gower Street London WC1E 6EA UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, University College London 30 Guilford Street London WC1N 1EH UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| |
Collapse
|
6
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
7
|
Islam MS, Molley TG, Hung TT, Sathish CI, Putra VDL, Jalandhra GK, Ireland J, Li Y, Yi J, Kruzic JJ, Kilian KA. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37643902 DOI: 10.1021/acsami.3c07021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The extracellular matrix in tissue consists of complex heterogeneous soft materials with hierarchical structure and dynamic mechanical properties dictating cell and tissue level function. In many natural matrices, there are nanofibrous structures that serve to guide cell activity and dictate the form and function of tissue. Synthetic hydrogels with integrated nanofibers can mimic the structural properties of native tissue; however, model systems with dynamic mechanical properties remain elusive. Here we demonstrate modular nanofibrous hydrogels that can be reversibly stiffened in response to applied magnetic fields. Iron oxide nanoparticles were incorporated into gelatin nanofibers through electrospinning, followed by chemical stabilization and fragmentation. These magnetoactive nanofibers can be mixed with virtually any hydrogel material and reversibly stiffen the matrix at a low fiber content (≤3%). In contrast to previous work, where a large quantity of magnetic material disallowed cell encapsulation, the low nanofiber content allows matrix stiffening with cells in 3D. Using adipose derived stem cells, we show how nanofibrous matrices are beneficial for both osteogenesis and adipogenesis, where stiffening the hydrogel with applied magnetic fields enhances osteogenesis while discouraging adipogenesis. Skeletal myoblast progenitors were used as a model of tissue morphogenesis with matrix stiffening augmenting myogenesis and multinucleated myotube formation. The ability to reversibly stiffen fibrous hydrogels through magnetic stimulation provides a useful tool for studying nanotopography and dynamic mechanics in cell culture, with a scope for stimuli responsive materials for tissue engineering.
Collapse
Affiliation(s)
- Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Thomas G Molley
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - C I Sathish
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vina D L Putra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Gagan K Jalandhra
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Jake Ireland
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Yancheng Li
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Jiabao Yi
- School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
- School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Gnatowski P, Gwizdała K, Kurdyn A, Skorek A, Augustin E, Kucińska-Lipka J. Investigation on Filaments for 3D Printing of Nasal Septum Cartilage Implant. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093534. [PMID: 37176416 PMCID: PMC10180510 DOI: 10.3390/ma16093534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Septoplasty is a widely used method in treating deviated septum. Although it is successfully implemented, there are problems with excessive bleeding, septal perforation, or infections. The use of anatomically shaped implants could help overcome these problems. This paper focuses on assessing the possibility of the usage of a nasal septum cartilage implant 3D printed from various market-available filaments. Five different types of laments were used, two of which claim to be suitable for medical use. A combination of modeling, mechanical (bending, compression), structural (FTIR), thermal (DSC, MFR), surface (contact angle), microscopic (optical), degradation (2 M HCl, 5 M NaOH, and 0.01 M PBS), printability, and cell viability (MTT) analyses allowed us to assess the suitability of materials for manufacturing implants. Bioflex had the most applicable properties among the tested materials, but despite the overall good performance, cell viability studies showed toxicity of the material in MTT test. The results of the study show that selected filaments were not suitable for nasal cartilage implants. The poor cell viability of Bioflex could be improved by surface modification. Further research on biocompatible elastic materials for 3D printing is needed either by the synthesis of new materials or by modifying existing ones.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Karolina Gwizdała
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie Str. 3a, 80-210 Gdańsk, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
9
|
Hu Y, Yin X, Ding H, Kang M, Liang S, Wei Y, Huang D. Multilayer functional bionic fabricated polycaprolactone based fibrous membranes for osteochondral integrated repair. Colloids Surf B Biointerfaces 2023; 225:113279. [PMID: 36989815 DOI: 10.1016/j.colsurfb.2023.113279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Osteochondral defect repair is one of the challenging problems in orthopedics. In this study, a multilayer polycaprolactone (PCL) based fibrous membrane for osteochondral defect repair was biomimetically fabricated by combining self-induced crystallization, biomimetic mineralization and layer-by-layer electrospinning techniques. The multilayer functional bionic fibrous membrane consisted of cartilage repair layer, intermediate transition repair layer and subchondral bone repair layer. Glucosamine hydrochloride (GAH) encapsulated in core-shell structured PCL fibrous membrane (MGPCL) was suitable for cartilage repair. Shish-kebab (SK) structured PCL fibrous membrane with calcium phosphate coating (MSKPCL) was designed for subchondral bone repair. SK structured MGPCL fibrous membrane (SKMGPCL) was used as intermediate transition repair. The tensile modulus of MG/SKMG/MSKPCL fibrous membrane was 34.24 ± 2.39 MPa which met the requirements of cartilage and subchondral bone repair scaffolds, and in vitro culture results showed that MG/SKMG/MSKPCL fibrous membrane had good biological activity and osteogenic ability. These results showed that MG/SKMG/MSKPCL fibrous membrane provides a promising material basis for osteochondral integrated repair scaffold.
Collapse
Affiliation(s)
- Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China.
| | - Xiangfei Yin
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huixiu Ding
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Shan Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
10
|
Chain-End Functionalization of Poly(ε-caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive Properties. Polymers (Basel) 2022; 14:polym14194203. [PMID: 36236153 PMCID: PMC9570970 DOI: 10.3390/polym14194203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Composite biocompatible scaffolds, obtained using the electrospinning (ES) technique, are highly promising for biomedical application thanks to their high surface area, porosity, adjustable fiber diameter, and permeability. However, the combination of synthetic biodegradable (such as poly(ε-caprolactone) PCL) and natural (such as gelatin Gt) polymers is complicated by the problem of low compatibility of the components. Previously, this problem was solved by PCL grafting and/or Gt cross-linking after ES molding. In the present study, composite fibrous scaffolds consisting of PCL and Gt were fabricated by the electrospinning (ES) method using non-functionalized PCL1 or NHS-functionalized PCL2 and hexafluoroisopropanol as a solvent. To provide covalent binding between PCL2 and Gt macromolecules, NHS-functionalized methyl glutarate was synthesized and studied in model reactions with components of spinning solution. It was found that selective formation of amide bonds, which provide complete covalent bonding of Gt in PCL/Gt composite, requires the presence of weak acid. With the use of the optimized ES method, fibrous mats with different PCL/Gt ratios were prepared. The sample morphology (SEM), hydrolytic resistance (FT-IR), cell adhesion and viability (MTT assay), cell penetration (fluorescent microscopy), and mechanical characteristics of the samples were studied. PCL2-based films with a Gt content of 20 wt% have demonstrated the best set of properties.
Collapse
|
11
|
Bone tissue engineering via application of a PCL/Gelatin/Nanoclay/Hesperetin 3D nanocomposite scaffold. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Singh YP, Dasgupta S. Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1704-1758. [PMID: 35443894 DOI: 10.1080/09205063.2022.2068943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Sudip Dasgupta
- Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
13
|
Ehterami A, Khastar H, Soleimannejad M, Salehi M, Nazarnezhad S, Majidi Ghatar J, Bit A, JafariSani M, Abbaszadeh-Goudarzi G, Shariatifar N. Bone Regeneration in Rat using Polycaprolactone/Gelatin/Epinephrine Scaffold. Drug Dev Ind Pharm 2022; 47:1915-1923. [PMID: 35484948 DOI: 10.1080/03639045.2022.2070640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Solid supports like the extracellular matrix network are necessary for bone cell attachment and start healing in the damaged bone. Scaffolds which are made of different materials are widely used as a supportive structure in bone tissue engineering. In the current study, a 3-D Polycaprolactone/Gelatin bone scaffold was developed by blending electrospinning and freeze-drying techniques for bone tissue engineering. To improve the efficiency of the scaffold, different concentrations of epinephrine due to its effect on bone healing were loaded. Fabricated scaffolds were characterized by different tests such as surface morphology, FTIR, porosity, compressive strength, water contact angle, degradation rate. The interaction between prepared scaffolds and blood and cells was evaluated by hemolysis, and MTT test, respectively, and bone healing was evaluated by a rat calvaria defect model. Based on the results, the porosity of scaffolds was about 75% and by adding epinephrine, mechanical strength decreased while due to the hydrophilic properties of it, degradation rate increased. In vivo and in vitro studies showed the best cell proliferation and bone healing were in PCL/Gelatin/Epinephrine1%-treated group. These results showed the positive effect of fabricated scaffold on osteogenesis and bone healing and the possibility of using it in clinical trials.
Collapse
Affiliation(s)
- Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khastar
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Salehi
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jila Majidi Ghatar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arindam Bit
- Department of Biomedical Engineering, National Institute of Technology Raipur, India
| | - Moslem JafariSani
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nabi Shariatifar
- Department of Environmental of health engineering, school of public health, Tehran university of medical science, Tehran, Iran
| |
Collapse
|
14
|
Tamura A, Lee DH, Arisaka Y, Kang TW, Yui N. Post-Cross-Linking of Collagen Hydrogels by Carboxymethylated Polyrotaxanes for Simultaneously Improving Mechanical Strength and Cell Proliferation. ACS Biomater Sci Eng 2022; 8:588-597. [PMID: 34994537 DOI: 10.1021/acsbiomaterials.1c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To improve the mechanical properties of collagen hydrogels, which are widely utilized as biomaterials, post-cross-linking of collagen hydrogels was performed using polyrotaxane (PRX) as a cross-linker. Herein, carboxymethyl group-modified PRXs (CMPRs) composed of carboxymethylated α-cyclodextrins (α-CDs) threaded along poly(ethylene glycol) (PEG) capped with bulky stoppers were used to cross-link via reaction with the amino groups in the collagen. Four series of CMPRs with different α-CD threading ratios and axle PEG molecular weights were used for the post-cross-linking of the collagen hydrogels to verify the optimal CMPR chemical compositions. The post-cross-linking of the collagen hydrogels with CMPRs improved the swelling ratios and mechanical properties, such as viscoelasticity and tensile strength. Among the tested CMPRs, CMPRs with an axle PEG molecular weight of 35,000 (PEG35k) resulted in better mechanical properties than CMPRs with a PEG10k axis. Additionally, the cell adhesion and proliferation were greatly improved on the surface of the collagen hydrogels post-cross-linked with CMPRs with the PEG35k axle. These findings suggest that the molecular weight of an axle polymer in CMPRs is a more important parameter than the α-CD threading ratios. Accordingly, the post-cross-linking of hydrogels with PRXs is promising for improving the mechanical properties and biomaterial functions of collagen hydrogels.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Dae Hoon Lee
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.,Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
15
|
Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane. Int J Mol Sci 2022; 23:ijms23031895. [PMID: 35163814 PMCID: PMC8836966 DOI: 10.3390/ijms23031895] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/20/2022] Open
Abstract
Combining multiple drugs or biologically active substances for wound healing could not only resist the formation of multidrug resistant pathogens, but also achieve better therapeutic effects. Herein, the hydrophobic fluoroquinolone antibiotic ciprofloxacin (CIP) and the hydrophilic broad-spectrum antibiotic tetracycline hydrochloride (TH) were introduced into the coaxial polycaprolactone/gelatin (PCL/GEL) nanofiber mat with CIP loaded into the PCL (core layer) and TH loaded into the GEL (shell layer), developing antibacterial wound dressing with the co-delivering of the two antibiotics (PCL-CIP/GEL-TH). The nanostructure, physical properties, drug release, antibacterial property, and in vitro cytotoxicity were investigated accordingly. The results revealed that the CIP shows a long-lasting release of five days, reaching the releasing rate of 80.71%, while the cumulative drug release of TH reached 83.51% with a rapid release behavior of 12 h. The in vitro antibacterial activity demonstrated that the coaxial nanofiber mesh possesses strong antibacterial activity against E. coli and S. aureus. In addition, the coaxial mats showed superior biocompatibility toward human skin fibroblast cells (hSFCs). This study indicates that the developed PCL-CIP/GEL-TH nanofiber membranes hold enormous potential as wound dressing materials.
Collapse
|
16
|
Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/Gelatin nanofibrous scaffolds. Andrologia 2022; 54:e14380. [PMID: 35083770 DOI: 10.1111/and.14380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Improvement of culture system and increasing the proliferation of spermatogonia stem cells under in vitro condition are the essential treatment options for infertility before autologous transplantation. Therefore, the present study aimed to evaluate the proliferation of human spermatogonia stem cells on the electrospun polycaprolactone/gelatin nanocomposite. Therefore, for this purpose, nanofiber porous scaffolds were prepared using the electrospinning method and their structures were then confirmed by SEM. After performing swelling, biodegradability and cell adhesion tests, human spermatogonia stem cells were cultured on scaffolds. In addition, both cell viability and proliferation were assessed using immunocytochemistry, flow cytometry and real-time PCR techniques in culturing during a 3-week period. SEM images indicated the presence of fibres with suitable diameters and arrangement as well as a sufficient porosity in nanocomposite scaffolds, showing good biocompatibility and biodegradability. The results show a significant increase in the number of spermatogonia stem cells in the cultured group on scaffold compared with the control group (p ≤ 0.05). As well, the results show that the expressions of integrin ɑ6 and β1 and Plzf genes estimated using real-time PCR in nanofiber scaffolds were significantly higher than those of the control group (p ≤ 0.05). However, the expression of c-Kit gene in the 3D group showed a significant decrease compared with the 2D group. Flow cytometry analysis also showed that the number of Plzf-positive cells was significantly higher in nanofiber porous scaffolds compared with the control group (p ≤ 0.05). Additionally, immunocytochemistry findings confirmed the presence of human spermatogonia stem cell colonies. In general, it seems that the designed nanocomposite scaffold could provide a suitable capacity for self-renewal of human spermatogonia stem cells, which can have a good application potential in research and reconstructive medicine related to the field of male infertility.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamed Allahyari
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Banafshe Esmaeilzade
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
17
|
Homaeigohar S, Boccaccini AR. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Front Chem 2022; 9:809676. [PMID: 35127651 PMCID: PMC8807494 DOI: 10.3389/fchem.2021.809676] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
As a low cost, biocompatible, and bioresorbable synthetic polymer, poly (ɛ-caprolactone) (PCL) is widely used for different biomedical applications including drug delivery, wound dressing, and tissue engineering. An extensive range of in vitro and in vivo tests has proven the favourable applicability of PCL in biomedicine, bringing about the FDA approval for a plethora of PCL made medical or drug delivery systems. This popular polymer, widely researched since the 1970s, can be readily processed through various techniques such as 3D printing and electrospinning to create biomimetic and customized medical products. However, low mechanical strength, insufficient number of cellular recognition sites, poor bioactivity, and hydrophobicity are main shortcomings of PCL limiting its broader use for biomedical applications. To maintain and benefit from the high potential of PCL, yet addressing its physicochemical and biological challenges, blending with nature-derived (bio)polymers and incorporation of nanofillers have been extensively investigated. Here, we discuss novel additives that have been meant for enhancement of PCL nanofiber properties and thus for further extension of the PCL nanofiber application domain. The most recent researches (since 2017) have been covered and an updated overview about hybrid PCL nanofibers is presented with focus on those including nature-derived additives, e.g., polysaccharides and proteins, and synthetic additives, e.g., inorganic and carbon nanomaterials.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
18
|
Yu L, Liu Y, Wu J, Wang S, Yu J, Wang W, Ye X. Genipin Cross-Linked Decellularized Nucleus Pulposus Hydrogel-Like Cell Delivery System Induces Differentiation of ADSCs and Retards Intervertebral Disc Degeneration. Front Bioeng Biotechnol 2022; 9:807883. [PMID: 35004657 PMCID: PMC8733700 DOI: 10.3389/fbioe.2021.807883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the pathological basis of disc degenerative diseases (DDD). Reduction in the number of cells and degeneration of the extracellular matrix (ECM) in the nucleus pulposus (NP) are characteristics of IDD. Bio-hydrogel combined with stem cell transplantation is a promising treatment. Injectable ECM hydrogels have good biological activity and in-situ gelatinization. However, its biomechanics and stability are insufficient to provide adequate mechanical support for intervertebral discs and to maintain the long-term differential stimulus for seeded stem cells. In our study, we developed genipin cross-linked decellularized nucleus pulposus hydrogel (GDH) as delivery system. We evaluated the mechanical properties, stability, biocompatibility, and differentiation induction of GDH cross-linked with different concentrations of genipin in vitro. The GDH-loaded adipose-derived mesenchymal stem cells (ADSCs) (GDHA) were injected into the rat degenerated coccygeal intervertebral disc. The effect of intervertebral disc regeneration in vivo was evaluated. The results showed that GDH with 0.02% of genipin had similar elastic modulus to human nucleus pulposus, good biocompatibility, and inducibility of expressing NP-related genes. In vivo studies showed that GDHA improved the survival of ADSCs and improved the intervertebral height, MRI index, and histological grading score. In conclusion, GDH, as an outstanding bio-hydrogel cell delivery system, has the therapeutic potential for retarding IDD.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianxin Wu
- Department of Orthopedics, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuang Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiangming Yu
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Evaluation of physicochemical properties of polycaprolactone/gelatin/polydimethylsiloxane hybrid nanofibers as potential scaffolds for elastic tissue engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Ehterami A, Abbaszadeh‐Goudarzi G, Haghi‐Daredeh S, Niyakan M, Alizadeh M, JafariSani M, Atashgahi M, Salehi M. Bone tissue engineering using
3‐D
polycaprolactone/gelatin nanofibrous scaffold containing berberine: In vivo and in vitro study. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arian Ehterami
- Institute for Regenerative Medicine University of Zurich Zurich Switzerland
| | - Ghasem Abbaszadeh‐Goudarzi
- Department of Medical Biotechnology, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
| | - Saeed Haghi‐Daredeh
- Student Research Committee, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
| | - Maryam Niyakan
- Student Research Committee, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
| | - Moslem JafariSani
- School of Medicine Shahroud University of Medical Sciences Shahroud Iran
| | - Mahboubeh Atashgahi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM) Tehran University of Medical Sciences Tehran Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine Shahroud University of Medical Sciences Shahroud Iran
- Tissue Engineering and Stem Cells Research Center Shahroud University of Medical Sciences Shahroud Iran
- Sexual Health and Fertility Research center Shahroud University of Medical Sciences Shahroud Iran
| |
Collapse
|
22
|
Choi DJ, Choi K, Park SJ, Kim YJ, Chung S, Kim CH. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Int J Mol Sci 2021; 22:ijms222111600. [PMID: 34769034 PMCID: PMC8584198 DOI: 10.3390/ijms222111600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (-10 °C cryogenic plate, 40-80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts' proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.
Collapse
Affiliation(s)
- Dong Jin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Kyoung Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea;
| | - Seok Chung
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Correspondence: ; Tel.: +82-2-970-1319; Fax: +82-2-970-2402
| |
Collapse
|
23
|
Ding H, Hu Y, Cheng Y, Yang H, Gong Y, Liang S, Wei Y, Huang D. Core-Shell Nanofibers with a Shish-Kebab Structure Simulating Collagen Fibrils for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2021; 4:6167-6174. [PMID: 35006871 DOI: 10.1021/acsabm.1c00493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The repair of bone defects is one of the great challenges facing modern orthopedics clinics. Bone tissue engineering scaffold with a nanofibrous structure similar to the original microstructure of a bone is beneficial for bone tissue regeneration. Here, a core-shell nanofibrous membrane (MS), MS containing glucosamine (MS-GLU), MS with a shish-kebab (SK) structure (SKMS), and MS-GLU with a SK structure (SKMS-GLU) were prepared by micro-sol electrospinning technology and a self-induced crystallization method. The diameter of MS nanofibers was 50-900 nm. Contact angle experiments showed that the hydrophilicity of SKMS was moderate, and its contact angle was as low as 72°. SK and GLU have a synergistic effect on cell growth. GLU in the core of MS was demonstrated to obviously promote MC3T3-E1 cell proliferation. At the same time, the SK structure grown on MS-GLU nanofibers mimicked natural collagen fibers, which facilitated MC3T3-E1 cell adhesion and differentiation. This study showed that a biomimetic SKMS-GLU nanofibrous membrane was a promising tissue engineering scaffold for bone defect repair.
Collapse
Affiliation(s)
- Huixiu Ding
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yizhu Cheng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hui Yang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yue Gong
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Shan Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China.,Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
24
|
Studies on novel chitosan/alginate and chitosan/bentonite flexible films incorporated with ZnO nano particles for accelerating dermal burn healing: In vivo and in vitro evaluation. Int J Biol Macromol 2021; 184:235-249. [PMID: 34126144 DOI: 10.1016/j.ijbiomac.2021.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
This research work was performed to prepare chitosan-alginate-gelatin and chitosan-bentonite-gelatin films in different mass ratios incorporated with nano particles of Zinc Oxide, which were achieved through the method of green synthesis from Nettle leaf extract. The films were prepared and characterized based on their physicochemical properties, such as water absorption and porosity and surface morphology. Bentonite containing films illustrate more flexibility than alginate ones while the chitosan/bentonite composite films have a maximum water absorption capacity of about 170%. The antibacterial activity of the films was investigated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria and it presents good inhibitory activities against the tested bacteria as compared to the control sample. Furthermore, vivo animal tests were performed to confirm the applicability of the prepared films as a healing material for burned skin. Skin appendages, such as hair follicles and sebaceous gland in the dermis, were detected in normal structures by applying both of the composites to damaged skin. In the control sample (gauze), no re-epithelialized area was observed, except in close proximity of the wound border. The results show that due to its full coverage of the wounds with new epithelium and hair follicles, bentonite-containing composites are more preferred.
Collapse
|
25
|
Sowmya B, Hemavathi AB, Panda PK. Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Prog Biomater 2021; 10:91-117. [PMID: 34075571 PMCID: PMC8271057 DOI: 10.1007/s40204-021-00157-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/15/2021] [Indexed: 12/27/2022] Open
Abstract
The restoration of normal functioning of damaged body tissues is one of the major objectives of tissue engineering. Scaffolds are generally used as artificial supports and as substrates for regenerating new tissues and should closely mimic natural extracellular matrix (ECM). The materials used for fabricating scaffolds must be biocompatible, non-cytotoxic and bioabsorbable/biodegradable. For this application, specifically biopolymers such as PLA, PGA, PTMC, PCL etc. satisfying the above criteria are promising materials. Poly(ε-caprolactone) (PCL) is one such potential candidate which can be blended with other materials forming blends, copolymers and composites with the essential physiochemical and mechanical properties as per the requirement. Nanofibrous scaffolds are fabricated by various techniques such as template synthesis, fiber drawing, phase separation, self-assembly, electrospinning etc. Among which electrospinning is the most popular and versatile technique. It is a clean, simple, tunable and viable technique for fabrication of polymer-based nanofibrous scaffolds. The design and fabrication of electrospun nanofibrous scaffolds are of intense research interest over the recent years. These scaffolds offer a unique architecture at nano-scale with desired porosity for selective movement of small molecules and form a suitable three-dimensional matrix similar to ECM. This review focuses on PCL synthesis, modifications, properties and scaffold fabrication techniques aiming at the targeted tissue engineering applications.
Collapse
Affiliation(s)
- B Sowmya
- Materials Science Division, CSIR - National Aerospace Laboratories, Bangalore, 560017, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A B Hemavathi
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, 570 006, India
| | - P K Panda
- Materials Science Division, CSIR - National Aerospace Laboratories, Bangalore, 560017, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
26
|
Merk M, Chirikian O, Adlhart C. 3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2006. [PMID: 33923751 PMCID: PMC8072632 DOI: 10.3390/ma14082006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 01/30/2023]
Abstract
Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.
Collapse
Affiliation(s)
- Markus Merk
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, 8820 Wädenswil, Switzerland;
- Biomolecular Science and Engineering, University of California Santa Barbara UCSB, Santa Barbara, CA 93106, USA;
| | - Orlando Chirikian
- Biomolecular Science and Engineering, University of California Santa Barbara UCSB, Santa Barbara, CA 93106, USA;
| | - Christian Adlhart
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, 8820 Wädenswil, Switzerland;
| |
Collapse
|
27
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
28
|
Hashemi SF, Mehrabi M, Ehterami A, Gharravi AM, Bitaraf FS, Salehi M. In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Giuntoli G, Muzio G, Actis C, Ganora A, Calzone S, Bruno M, Ciardelli G, Carmagnola I, Tonda-Turo C. In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating. Front Bioeng Biotechnol 2021; 8:589223. [PMID: 33553112 PMCID: PMC7856147 DOI: 10.3389/fbioe.2020.589223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Abdominal hernia repair is a frequently performed surgical procedure worldwide. Currently, the use of polypropylene (PP) surgical meshes for the repair of abdominal hernias constitutes the primary surgical approach, being widely accepted as superior to primary suture repair. Surgical meshes act as a reinforcement for the weakened or damaged tissues and support tissue restoration. However, implanted meshes could suffer from poor integration with the surrounding tissues. In this context, the present study describes the preliminary evaluation of a PCL-Gel-based nanofibrous coating as an element to develop a multicomponent hernia mesh device (meshPCL-Gel) that could overcome this limitation thanks to the presence of a nanostructured biomimetic substrate for enhanced cell attachment and new tissue formation. Through the electrospinning technique, a commercial PP hernia mesh was coated with a nanofibrous membrane from a polycaprolactone (PCL) and gelatin (Gel) blend (PCL-Gel). Resulting PCL-Gel nanofibers were homogeneous and defect-free, with an average diameter of 0.15 ± 0.04 μm. The presence of Gel decreased PCL hydrophobicity, so that membranes average water contact angle dropped from 138.9 ± 1.1° (PCL) to 99.9 ± 21.6°, while it slightly influenced mechanical properties, which remained comparable to those of PCL (E = 15.7 ± 2.7 MPa, σ R = 7.7 ± 0.6 ε R = 118.8 ± 13.2%). Hydrolytic and enzymatic degradation was conducted on PCL-Gel up to 28 days, with maximum weight losses around 20 and 40%, respectively. The meshPCL-Gel device was obtained with few simple steps, with no influences on the original mechanical properties of the bare mesh, and good stability under physiological conditions. The biocompatibility of meshPCL-Gel was assessed by culturing BJ human fibroblasts on the device, up to 7 days. After 24 h, cells adhered to the nanofibrous substrate, and after 72 h their metabolic activity was about 70% with respect to control cells. The absence of detectable lactate dehydrogenase in the culture medium indicated that no necrosis induction occurred. Hence, the developed nanostructured coating provided the meshPCL-Gel device with chemical and topographical cues similar to the native extracellular matrix ones, that could be exploited for enhancing the biological response and, consequently, mesh integration, in abdominal wall hernia repair.
Collapse
Affiliation(s)
- Giulia Giuntoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
- Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| |
Collapse
|
30
|
An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Wang Q, Feng Y, He M, Zhao W, Qiu L, Zhao C. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202008906] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yunbo Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Min He
- State Key Laboratory of Oral Disease West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Li Qiu
- Department of Ultrasound West China School of Medicine/West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
32
|
Park JK, Pham-Nguyen OV, Yoo HS. Coaxial Electrospun Nanofibers with Different Shell Contents to Control Cell Adhesion and Viability. ACS OMEGA 2020; 5:28178-28185. [PMID: 33163800 PMCID: PMC7643203 DOI: 10.1021/acsomega.0c03902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 05/04/2023]
Abstract
Electrospun nanofibers are widely employed as cell culture matrices because their biomimetic structures resemble a natural extracellular matrix. However, due to the limited cell infiltration into nanofibers, three-dimensional (3D) construction of a cell matrix is not easily accomplished. In this study, we developed a method for the partial digestion of a nanofiber into fragmented nanofibers composed of gelatin and polycaprolactone (PCL). The PCL shells of the coaxial fragments were subsequently removed with different concentrations of chloroform to control the remaining PCL on the shell. The swelling and exposure of the gelatin core were manipulated by the remaining PCL shells. When cells were cultivated with the fragmented nanofibers, they were spontaneously assembled on the cell sheets. The cell adhesion and proliferation were significantly affected by the amount of PCL shells on the fragmented nanofibers.
Collapse
Affiliation(s)
- Jae Keun Park
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Oanh-Vu Pham-Nguyen
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department
of Biomedical Materials Engineering, Kangwon
National University, Chuncheon 24341, Republic of Korea
- Institute
of Bioscience and Biotechnology, Kangwon
National University, Chuncheon 24341, Republic of Korea
- . Website: http://nano-bio.kangwon.ac.kr
| |
Collapse
|
33
|
Jiang Z, Zhao L, He F, Tan H, Li Y, Tang Y, Duan X, Li Y. Palmatine-loaded electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds accelerate wound healing and inhibit hypertrophic scar formation in a rabbit ear model. J Biomater Appl 2020; 35:869-886. [PMID: 32799702 DOI: 10.1177/0885328220950060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertrophic scar (HS) has been considered as a great concern for patients and a challenging problem for clinicians as it can cause functional debility, cosmetic disfigurement and psychological trauma. Although many methods have been developed to prevent and treat HS, the scarless healing is still a worldwide medical problem. In this study, palmatine-loaded poly(ε-caprolactone)/gelatin nanofibrous scaffolds (PCL/GE/PALs) were fabricated by electrospinning, and their effects on wound healing and HS formation were investigated. These nanofiber mats exhibit good antibacterial and antioxidant activities. In vitro studies indicate PCL/GE/PAL scaffolds can facilitate the adhesion, spreading and proliferation of L929 fibroblasts. In vivo tests demonstrate the full-thickness wounds treated with PCL/GE/PAL scaffolds heal about 3.5 days earlier than those in the control group. Scar elevation index measurements and histological analyses reveal PCL/GE/PAL scaffolds significantly inhibit HS formation, with the decrease in the thickness of dermis and epidermis, the number of fibroblasts, as well as the density of collagen and microvascular. Accelerating wound healing and inhibiting HS formation of these scaffolds are contributed to the sustained release of palmatine. The present work validates the potential use of palmatine-loaded electrospun nanofibrous scaffold PCL/GE/PALs as a functional wound dressing for healing wounds and preventing HS formation.
Collapse
Affiliation(s)
- Zhimin Jiang
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Lichi Zhao
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Feixiang He
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Haixin Tan
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Yongling Li
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Yu Tang
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Xiaoqun Duan
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| | - Yingying Li
- School of Pharmacy, 74716Guilin Medical University, Guangxi, China
| |
Collapse
|
34
|
Tang X, Saveh-Shemshaki N, Kan HM, Khan Y, Laurencin CT. Biomimetic electroconductive nanofibrous matrices for skeletal muscle regenerative engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:228-237. [PMID: 33426269 PMCID: PMC7793553 DOI: 10.1007/s40883-019-00136-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/05/2019] [Accepted: 10/19/2019] [Indexed: 01/02/2023]
Abstract
The regeneration of the muscles of the rotator cuff represents a grand challenge in musculoskeletal regenerative engineering. Several types of matrices have been proposed for skeletal muscle regeneration. However, biomimetic matrices to promote muscle regeneration and mimic native muscle tissue have not been successfully engineered. Besides topographical cues, an electrical stimulus may serve as a critical cue to improve interactions between materials and cells in scenarios fostering muscle regeneration. In this in vitro study, we engineered a novel stimuli-responsive conductive nanocomposite matrix, and studied its ability to regulate muscle cell adhesion, proliferation, and differentiation. Electroconductive nanocomposite matrices demonstrated tunable conductivity and biocompatibility. Under the optimum concentration of conductive material, the matrices facilitated muscle cell adhesion, proliferation, and differentiation. Importantly, conductive aligned fibrous matrices were effective in promoting myoblast differentiation by upregulation of myogenic markers. The results demonstrated promising potential of aligned conductive fibrous matrices for skeletal muscle regenerative engineering.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Nikoo Saveh-Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yusuf Khan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
35
|
Urciuolo A, Serena E, Ghua R, Zatti S, Giomo M, Mattei N, Vetralla M, Selmin G, Luni C, Vitulo N, Valle G, Vitiello L, Elvassore N. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale. PLoS One 2020; 15:e0232081. [PMID: 32374763 PMCID: PMC7202609 DOI: 10.1371/journal.pone.0232081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs (“myobundles”) at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 μm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions.
Collapse
Affiliation(s)
- Anna Urciuolo
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Elena Serena
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Rusha Ghua
- Department of Biology, University of Padova, Padova, Italy
| | - Susi Zatti
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Monica Giomo
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Nicolò Mattei
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Massimo Vetralla
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - Giulia Selmin
- Industrial Engineering Department, University of Padova, Padova, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Nicola Vitulo
- Department of Biotechnologies, University of Verona, Verona, Italy
| | - Giorgio Valle
- Department of Biology, University of Padova, Padova, Italy
| | - Libero Vitiello
- Department of Biology, University of Padova, Padova, Italy.,Interuniversity Institute of Myology (IIM), Assisi, Italy
| | - Nicola Elvassore
- Industrial Engineering Department, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,University College London ICH, London, England, United Kingdom
| |
Collapse
|
36
|
Khosravi F, Nouri Khorasani S, Khalili S, Esmaeely Neisiany R, Rezvani Ghomi E, Ejeian F, Das O, Nasr-Esfahani MH. Development of a Highly Proliferated Bilayer Coating on 316L Stainless Steel Implants. Polymers (Basel) 2020; 12:E1022. [PMID: 32369977 PMCID: PMC7284519 DOI: 10.3390/polym12051022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/26/2022] Open
Abstract
In this research, a bilayer coating has been applied on the surface of 316 L stainless steel (316LSS) to provide highly proliferated metallic implants for bone regeneration. The first layer was prepared using electrophoretic deposition of graphene oxide (GO), while the top layer was coated utilizing electrospinning of poly (ε-caprolactone) (PCL)/gelatin (Ge)/forsterite solutions. The morphology, porosity, wettability, biodegradability, bioactivity, cell attachment and cell viability of the prepared coatings were evaluated. The Field Emission Scanning Electron Microscopy (FESEM) results revealed the formation of uniform, continuous, and bead-free nanofibers. The Energy Dispersive X-ray (EDS) results confirmed well-distributed forsterite nanoparticles in the structure of the top coating. The porosity of the electrospun nanofibers was found to be above 70%. The water contact angle measurements indicated an improvement in the wettability of the coating by increasing the amount of nanoparticles. Furthermore, the electrospun nanofibers containing 1 and 3 wt.% of forsterite nanoparticles showed significant bioactivity after soaking in the simulated body fluid (SBF) solution for 21 days. In addition, to investigate the in vitro analysis, the MG-63 cells were cultured on the PCL/Ge/forsterite and GO-PCL/Ge/forsterite coatings. The results confirmed an excellent cell adhesion along with considerable cell growth and proliferation. It should be also noted that the existence of the forsterite nanoparticles and the GO layer substantially enhanced the cell proliferation of the coatings.
Collapse
Affiliation(s)
- Fatemeh Khosravi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; (F.K.); (S.K.)
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Erfan Rezvani Ghomi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 119260, Singapore;
| | - Fatemeh Ejeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 8159358686, Iran;
| |
Collapse
|
37
|
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020; 147:547-559. [DOI: 10.1016/j.ijbiomac.2020.01.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 01/11/2023]
|
38
|
Joshi A, Xu Z, Ikegami Y, Yamane S, Tsurashima M, Ijima H. Co-culture of mesenchymal stem cells and human umbilical vein endothelial cells on heparinized polycaprolactone/gelatin co-spun nanofibers for improved endothelium remodeling. Int J Biol Macromol 2020; 151:186-192. [PMID: 32070734 DOI: 10.1016/j.ijbiomac.2020.02.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022]
Abstract
Endothelization of a tissue-engineered substrate is important for its application as an artificial vascular graft. Despite recent advancements in artificial graft fabrication, a graft of <5 mm is difficult to fabricate owing to insufficient endothelization that results in thrombosis after transplantation. We aimed to perform a co-culture of adipose-derived mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) on antithrombogenic polycaprolactone (PCL)/heparin-gelatin co-spun nanofibers to evaluate the role of co-culturing in promoting quick endothelization of vascular substrates without surface modification by growth factors or other ECM proteins that trigger the endothelization process. Using a co-axial electrospinning technique, we attempted to fabricate our scaffold balancing between mechanical properties and biocompatibility. Antithrombogenic characteristics were then imparted to the fabricated nanofiber substrate by grafting of heparin. Finally, we performed a co-culture of MSCs and HUVECs on the fabricated co-spun nanofiber substrate to obtain proper endothelization of our material under the in-vitro culture. Staining for CD-31 at seven days of culture revealed enhanced CD-31 expression under the co-culture condition; actin staining revealed healthy cobblestone HUVEC morphology, suggesting that MSCs can aid in proper endothelization. Hence, we conclude that co-culture is effective for quick endothelization of vascular substrates.
Collapse
Affiliation(s)
- Akshat Joshi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Zhe Xu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Soichiro Yamane
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Masanori Tsurashima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
39
|
Patel KH, Talovic M, Dunn AJ, Patel A, Vendrell S, Schwartz M, Garg K. Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss. J Biomed Mater Res B Appl Biomater 2020; 108:2528-2537. [DOI: 10.1002/jbm.b.34584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Krishna H. Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Andrew J. Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Sara Vendrell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Mark Schwartz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and TechnologySaint Louis University St. Louis Missouri
| |
Collapse
|
40
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
41
|
Soltani S, Khanian N, Choong TSY, Rashid U. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj01071e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The advancements of nanotechnology, particularly nanomaterials science, have produced a broad range of nanomaterials including nanofibers, nanorods, nanowires and etc., which have been technically and practically examined over various applications.
Collapse
Affiliation(s)
- Soroush Soltani
- Department of Chemical and Environmental Engineering
- Universiti Putra Malaysia
- Malaysia
| | | | | | - Umer Rashid
- Institute of Advanced Technology
- Universiti Putra Malaysia
- Malaysia
| |
Collapse
|
42
|
Mao W, Lee S, Kim SR, Kim KN, Yoo HS. Electrospun nanohybrid hydrogels for enhanced differentiation of myoblasts. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Lee DH, Tamura A, Arisaka Y, Seo JH, Yui N. Mechanically Reinforced Gelatin Hydrogels by Introducing Slidable Supramolecular Cross-Linkers. Polymers (Basel) 2019; 11:E1787. [PMID: 31683825 PMCID: PMC6918157 DOI: 10.3390/polym11111787] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Tough mechanical properties are generally required for tissue substitutes used in regeneration of damaged tissue, as these substitutes must be able to withstand the external physical force caused by stretching. Gelatin, a biopolymer derived from collagen, is a biocompatible and cell adhesive material, and is thus widely utilized as a component of biomaterials. However, the application of gelatin hydrogels as a tissue substitute is limited owing to their insufficient mechanical properties. Chemical cross-linking is a promising method to improve the mechanical properties of hydrogels. We examined the potential of the chemical cross-linking of gelatin hydrogels with carboxy-group-modified polyrotaxanes (PRXs), a supramolecular polymer comprising a poly(ethylene glycol) chain threaded into the cavity of α-cyclodextrins (α-CDs), to improve mechanical properties such as stretchability and toughness. Cross-linking gelatin hydrogels with threading α-CDs in PRXs could allow for freely mobile cross-linking points to potentially improve the mechanical properties. Indeed, the stretchability and toughness of gelatin hydrogels cross-linked with PRXs were slightly higher than those of the hydrogels with the conventional chemical cross-linkers 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). In addition, the hysteresis loss of gelatin hydrogels cross-linked with PRXs after repeated stretching and relaxation cycles in a hydrated state was remarkably improved in comparison with that of conventional cross-linked hydrogels. It is considered that the freely mobile cross-linking points of gelatin hydrogels cross-linked with PRXs attenuates the stress concentration. Accordingly, gelatin hydrogels cross-linked with PRXs would provide excellent mechanical properties as biocompatible tissue substitutes exposed to a continuous external physical force.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, School of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
44
|
Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110296. [PMID: 31761169 DOI: 10.1016/j.msec.2019.110296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Nanofibrous scaffolds composed of polycaprolactone (PCL) and gelatin (Ge) were obtained through a hydrolytic assisted electrospinning process. The PCL-to-Ge proportion (100/0 to 20/80), as well as the dissolution time (24, 48, 72, 96, 120 h) into a 1:1 formic/acetic acid solvent before electrospinning were modified to obtain the different samples. A strong influence of these factors on the physicochemical properties of the scaffolds was observed. Higher Ge percentage reduced crystallinity, allowed a uniform morphology and increased water contact angle. The increase in the dissolution time considerably reduced the molar mass and, subsequently, fibre diameter and crystallinity were affected. During in vitro biocompatibility tests, higher cell adhesion and proliferation were found for the 60/40, 50/50 and 40/60 PCL/Ge compositions that was corroborated by MTT assay, fluorescence and microscopy. A weakened structure, more labile to the in vitro degradation in physiologic conditions was found for these compositions with higher dissolution times (72 and 96 h). Particularly, the 40/60 PCL/Ge scaffolds revealed an interesting progressive degradation behaviour as a function of the dissolution time. Moreover, these scaffolds were non-inflammatory, as revealed by the pyrogen test and after the 15-day subcutaneous in vivo implantation in mice. Finally, a reduction of the scar tissue area after infarction was found for the 40/60 PCL/Ge scaffolds electrospun after 72 h implanted in rat hearts. These results are especially interesting and represent a feasible way to avoid undesired inflammatory reactions during the scaffold assimilation.
Collapse
|
45
|
Du W, Zhang Z, Li Z. Influence of the weight ratio of polydimethylsiloxane modified gelatin to silicone rubber on the potential performance of asymmetric bilayer membranes as wound dressings. POLYM INT 2019. [DOI: 10.1002/pi.5881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Weining Du
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zetian Zhang
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| | - Zhengjun Li
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu China
| |
Collapse
|
46
|
Augustine R, Hasan A, Patan NK, Augustine A, Dalvi YB, Varghese R, Unni RN, Kalarikkal N, Al Moustafa AE, Thomas S. Titanium Nanorods Loaded PCL Meshes with Enhanced Blood Vessel Formation and Cell Migration for Wound Dressing Applications. Macromol Biosci 2019; 19:e1900058. [PMID: 31183959 DOI: 10.1002/mabi.201900058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/28/2019] [Indexed: 12/20/2022]
Abstract
Proper management of nonhealing wounds is an imperative clinical challenge. For the effective healing of chronic wounds, suitable wound coverage materials with the capability to accelerate cell migration, cell proliferation, angiogenesis, and wound healing are required to protect the healing wound bed. Biodegradable polymeric meshes are utilized as effective wound coverage materials to protect the wounds from the external environment and prevent infections. Among them, electrospun biopolymeric meshes have got much attention due to their extracellular matrix mimicking morphology, ability to support cell adhesion, and cell proliferation. Herein, electrospun nanocomposite meshes based on polycaprolactone (PCL) and titanium dioxide nanorods (TNR) are developed. TNR incorporated PCL meshes are fabricated by electrospinning technique and characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy (FTIR) analysis, and X-Ray diffraction (XRD) analysis. In vitro cell culture studies, in ovo angiogenesis assay, in vivo implantation study, and in vivo wound healing study are performed. Interestingly, obtained in vitro and in vivo results demonstrated that the presence of TNR in the PCL meshes greatly improved the cell migration, proliferation, angiogenesis, and wound healing. Owing to the above superior properties, they can be used as excellent biomaterials in wound healing and tissue regeneration applications.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.,Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.,Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar
| | - Noorunnisa Khanam Patan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Anitha Augustine
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.,Department of Chemistry, Bishop Kurialacherry College for Women, Amalagiri, Kottayam, Kerala, 686561, India
| | - Yogesh B Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, 689101, India
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala, 689101, India
| | | | - Nandakumar Kalarikkal
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre (BRC), Qatar University, P. O. Box 2713, Doha, Qatar.,College of Medicine, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Sabu Thomas
- International & Inter University Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| |
Collapse
|
47
|
Ostrovidov S, Salehi S, Costantini M, Suthiwanish K, Ebrahimi M, Sadeghian RB, Fujie T, Shi X, Cannata S, Gargioli C, Tamayol A, Dokmeci MR, Orive G, Swieszkowski W, Khademhosseini A. 3D Bioprinting in Skeletal Muscle Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805530. [PMID: 31012262 PMCID: PMC6570559 DOI: 10.1002/smll.201805530] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Indexed: 05/13/2023]
Abstract
Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state-of-the-art on developments made in SMTE with "conventional methods," the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth 95440, Germany
| | - Marco Costantini
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Kasinan Suthiwanish
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Majid Ebrahimi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto ON M5S3G9, Canada
| | - Ramin Banan Sadeghian
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, B-50, 4259 Nagatsuta -cho, Midori-ku, Yokohama 226-8501, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China, University of Technology, Guangzhou 510006, PR China
| | - Stefano Cannata
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Cesare Gargioli
- Department of Biology, Tor Vergata Rome University, Rome 00133, Italy
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA
| | - Mehmet Remzi Dokmeci
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-106 Warsaw, Poland
| | - Ali Khademhosseini
- Department of Radiological Sciences, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, United States
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 05029, Republic of Korea
- Department of Chemical and Biomolecular Engineering, California NanoSystems Institute (CNSI), Department of Bioengineering, and Jonsson Comprehensive Cancer Centre University of California, Los Angeles, California 90095, United States
| |
Collapse
|
48
|
Shi R, Huang Y, Zhang J, Wu C, Gong M, Tian W, Zhang L. Effective delivery of mitomycin‐C and meloxicam by double‐layer electrospun membranes for the prevention of epidural adhesions. J Biomed Mater Res B Appl Biomater 2019; 108:353-366. [PMID: 31017374 DOI: 10.1002/jbm.b.34394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Rui Shi
- Beijing Laboratory of Biomedical MaterialsInstitute of Traumatology and Orthopaedics Beijing Jishuitan Hospital Beijing China
| | - Yuelong Huang
- Department of Spine SurgeryPeking University Fourth School of Clinical Medicine Beijing China
| | - Jingshuang Zhang
- Beijing Laboratory of Biomedical MaterialsInstitute of Traumatology and Orthopaedics Beijing Jishuitan Hospital Beijing China
| | - Chengai Wu
- Beijing Laboratory of Biomedical MaterialsInstitute of Traumatology and Orthopaedics Beijing Jishuitan Hospital Beijing China
| | - Min Gong
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing China
| | - Wei Tian
- Department of Spine SurgeryPeking University Fourth School of Clinical Medicine Beijing China
| | - Liqun Zhang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical Technology Beijing China
| |
Collapse
|
49
|
Electrospun Nanometer to Micrometer Scale Biomimetic Synthetic Membrane Scaffolds in Drug Delivery and Tissue Engineering: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The scaffold technology research utilizes biomimicry to produce efficient scaffolds that mimic the natural cell growth environment including the basement membrane for tissue engineering. Because the natural basement membrane is composed of fibrillar protein networks of nanoscale diameter, the scaffold produced should efficiently mimic the nanoscale topography at a low production cost. Electrospinning is a technique that can achieve that. This review discusses the physical and chemical characteristics of the basement membrane and its significance on cell growth and overall focuses on nanoscale biomimetic synthetic membrane scaffolds primarily generated using electrospinning and their application in drug delivery and tissue engineering.
Collapse
|
50
|
In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 2019; 57:49-56. [PMID: 30947963 DOI: 10.1016/j.tice.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
In this study, we report the development of a nanofiber polycaprolactone scaffold that can act as a stem cell carrier to induce chondrogenesis and promote cartilage repair in vivo. Infrapatellar fat pads were obtained from sheep knee and the stem cells were isolated and characterized by flow cytometry. Defects were created in sheep knee, two defects received adipose tissue derived stem cells (ASCs)-polycaprolactone construct, second group received polycaprolactone (PCL), the third group was chosen as the ASCs group and the fourth group was control group. Morphological evaluation showed that defects treated with ASCs-scaffold constructs were completely filled with cartilage-like tissue, while other groups revealed the formation of a thin layer of cartilage-like tissue in the defects. Real-Time RT-PCR showed the increase in collagen type 2 mRNA levels, aggrecan and Sox9 in ASCs/PCL groups in comparison with the other groups. Immunofluorescence and toluidine blue staining results showed the protein expression of collagen type 2 and formation of round and polygonal clusters of chondrocytes in ASCS/PCL group. According to our results nanofiber polycaprolactone promoted the chondrogenesis of infrapatellar adipose tissue derived stem cells in vivo and could offer significant promise in the biological functionality of stem cell tissue engineering in clinical practice.
Collapse
|