1
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
2
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
3
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
4
|
Lurie S. Proteomic and metabolomic studies on chilling injury in peach and nectarine. FRONTIERS IN PLANT SCIENCE 2022; 13:958312. [PMID: 36267944 PMCID: PMC9577496 DOI: 10.3389/fpls.2022.958312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Peaches and nectarines are temperate climate stone fruits, which should be stored at 0°C to prevent the ripening of these climacteric fruits. However, if stored for too long or if stored at a higher temperature (4 or 5°C), they develop chilling injury. Chilling injury damage includes (1) dry, mealy, wooly (lack of juice) fruits, (2) hard-textured fruits with no juice (leatheriness), (3) flesh browning, and (4) flesh bleeding or internal reddening. There are genetic components to these disorders in that early season fruits are generally more resistant than late season fruits, and white-fleshed fruits are more susceptible to internal browning than yellow-fleshed fruits. A recent review covered the recent research in genomic and transcriptomic studies, and this review examines findings from proteomic and metabolomics studies. Proteomic studies found that the ethylene synthesis proteins are decreased in cold compromised fruits, and this affects the processes initiated by ethylene including cell wall and volatile changes. Enzymes in metabolic pathways were both higher and lower in abundance in CI fruits, an indication of an imbalance in energy production. Stress proteins increased in both fruits with or without CI, but were higher in damaged fruits. Metabolomics showed the role of levels of sugars, sucrose, raffinose, galactinol, and glucose-6-phosphate in protection against chilling injury, along with other membrane stabilizers such as polyamines. Amino acid changes were inconsistent among the studies. Lipid species changes during storage could be correlated with sensitivity or resistance to CI, but more studies are needed.
Collapse
|
5
|
Lentil allergens identification and quantification: An update from omics perspective. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100109. [PMID: 35495776 PMCID: PMC9043643 DOI: 10.1016/j.fochms.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
|
6
|
Kumari M, Pradhan UK, Joshi R, Punia A, Shankar R, Kumar R. In-depth assembly of organ and development dissected Picrorhiza kurroa proteome map using mass spectrometry. BMC PLANT BIOLOGY 2021; 21:604. [PMID: 34937558 PMCID: PMC8693493 DOI: 10.1186/s12870-021-03394-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Picrorhiza kurroa Royle ex Benth. being a rich source of phytochemicals, is a promising high altitude medicinal herb of Himalaya. The medicinal potential is attributed to picrosides i.e. iridoid glycosides, which synthesized in organ-specific manner through highly complex pathways. Here, we present a large-scale proteome reference map of P. kurroa, consisting of four morphologically differentiated organs and two developmental stages. RESULTS We were able to identify 5186 protein accessions (FDR < 1%) providing a deep coverage of protein abundance array, spanning around six orders of magnitude. Most of the identified proteins are associated with metabolic processes, response to abiotic stimuli and cellular processes. Organ specific sub-proteomes highlights organ specialized functions that would offer insights to explore tissue profile for specific protein classes. With reference to P. kurroa development, vegetative phase is enriched with growth related processes, however generative phase harvests more energy in secondary metabolic pathways. Furthermore, stress-responsive proteins, RNA binding proteins (RBPs) and post-translational modifications (PTMs), particularly phosphorylation and ADP-ribosylation play an important role in P. kurroa adaptation to alpine environment. The proteins involved in the synthesis of secondary metabolites are well represented in P. kurroa proteome. The phytochemical analysis revealed that marker compounds were highly accumulated in rhizome and overall, during the late stage of development. CONCLUSIONS This report represents first extensive proteomic description of organ and developmental dissected P. kurroa, providing a platform for future studies related to stress tolerance and medical applications.
Collapse
Affiliation(s)
- Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Kumar Pradhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-IHBT, Palampur, HP, 176061, India
- Present address: ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, Delhi, 110012, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwani Punia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT, India), CSIR-IHBT, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, HP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Calvete JJ, Lomonte B, Saviola AJ, Bonilla F, Sasa M, Williams DJ, Undheim EA, Sunagar K, Jackson TN. Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon X 2021; 9-10:100070. [PMID: 34195606 PMCID: PMC8234350 DOI: 10.1016/j.toxcx.2021.100070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a "cocktail", as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake's lineage and adaptive responses to the snake's ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an "ecological stance". We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies - "venomics" and "antivenomics" - can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.
Collapse
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fabián Bonilla
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Laboratorio de Investigación en Animales Peligrosos (LIAP), Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, Costa Rica
| | | | - Eivind A.B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, NTNU, Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Timothy N.W. Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
9
|
Lew TTS, Sarojam R, Jang IC, Park BS, Naqvi NI, Wong MH, Singh GP, Ram RJ, Shoseyov O, Saito K, Chua NH, Strano MS. Species-independent analytical tools for next-generation agriculture. NATURE PLANTS 2020; 6:1408-1417. [PMID: 33257857 DOI: 10.1038/s41477-020-00808-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/16/2020] [Indexed: 05/26/2023]
Abstract
Innovative approaches are urgently required to alleviate the growing pressure on agriculture to meet the rising demand for food. A key challenge for plant biology is to bridge the notable knowledge gap between our detailed understanding of model plants grown under laboratory conditions and the agriculturally important crops cultivated in fields or production facilities. This Perspective highlights the recent development of new analytical tools that are rapid and non-destructive and provide tissue-, cell- or organelle-specific information on living plants in real time, with the potential to extend across multiple species in field applications. We evaluate the utility of engineered plant nanosensors and portable Raman spectroscopy to detect biotic and abiotic stresses, monitor plant hormonal signalling as well as characterize the soil, phytobiome and crop health in a non- or minimally invasive manner. We propose leveraging these tools to bridge the aforementioned fundamental gap with new synthesis and integration of expertise from plant biology, engineering and data science. Lastly, we assess the economic potential and discuss implementation strategies that will ensure the acceptance and successful integration of these modern tools in future farming practices in traditional as well as urban agriculture.
Collapse
Affiliation(s)
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gajendra P Singh
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Rajeev J Ram
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oded Shoseyov
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, Singapore.
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
10
|
Nutriproteomics survey of sweet chestnut (Castanea sativa Miller) genetic resources in Portugal. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Peled Y, Drake JL, Malik A, Almuly R, Lalzar M, Morgenstern D, Mass T. Optimization of skeletal protein preparation for LC-MS/MS sequencing yields additional coral skeletal proteins in Stylophora pistillata. ACTA ACUST UNITED AC 2020; 2:8. [PMID: 32724895 PMCID: PMC7115838 DOI: 10.1186/s42833-020-00014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stony corals generate their calcium carbonate exoskeleton in a highly controlled biomineralization process mediated by a variety of macromolecules including proteins. Fully identifying and classifying these proteins is crucial to understanding their role in exoskeleton formation, yet no optimal method to purify and characterize the full suite of extracted coral skeletal proteins has been established and hence their complete composition remains obscure. Here, we tested four skeletal protein purification protocols using acetone precipitation and ultrafiltration dialysis filters to present a comprehensive scleractinian coral skeletal proteome. We identified a total of 60 proteins in the coral skeleton, 44 of which were not present in previously published stony coral skeletal proteomes. Extracted protein purification protocols carried out in this study revealed that no one method captures all proteins and each protocol revealed a unique set of method-exclusive proteins. To better understand the general mechanism of skeletal protein transportation, we further examined the proteins’ gene ontology, transmembrane domains, and signal peptides. We found that transmembrane domain proteins and signal peptide secretion pathways, by themselves, could not explain the transportation of proteins to the skeleton. We therefore propose that some proteins are transported to the skeleton via non-traditional secretion pathways.
Collapse
Affiliation(s)
- Yanai Peled
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Jeana L Drake
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Ricardo Almuly
- Marine Biology Department, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - David Morgenstern
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Mass
- Marine Biology Department, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Boschetti E, Righetti PG. Detection of Plant Low-Abundance Proteins by Means of Combinatorial Peptide Ligand Library Methods. Methods Mol Biol 2020; 2139:381-404. [PMID: 32462601 DOI: 10.1007/978-1-0716-0528-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detection and identification of low-abundance proteins from plant tissues is still a major challenge. Among the reasons are the low protein content, the presence of few very high-abundance proteins, and the presence of massive amounts of other biochemical compounds. In the last decade numerous technologies have been devised to resolve the situation, in particular with methods based on solid-phase combinatorial peptide ligand libraries. This methodology, allowing for an enhancement of low-abundance proteins, has been extensively applied with the advantage of deciphering the proteome composition of various plant organs. This general methodology is here described extensively along with a number of possible variations. Specific guidelines are suggested to cover peculiar situations or to comply with other associated analytical methods.
Collapse
|
13
|
Righetti PG, Boschetti E. Low-abundance plant protein enrichment with peptide libraries to enlarge proteome coverage and related applications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110302. [PMID: 31779915 DOI: 10.1016/j.plantsci.2019.110302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/15/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In plant tissues proteins are present in low amounts but in a very large number. To this peculiar situation many complex foreign components render protein extraction and purification very difficult. In the last several years interesting technologies have been described to improve the technical situation to the point that some methodologies allow reaching very low-abundance proteins and minor allergens. Among enrichment methods the one documented in this report is based on combinatorial peptide ligand libraries (CPLLs) that emerged in the last decade by contributing to largely improve the knowledge in plant proteomics. It is the aim of this review to describe how this technology allows detecting low-abundance proteins from various plant tissues and to report the dynamics of the proteome components in response to environmental changes and biotic attacks. Typical documented examples with the description of their scientific interest are reported. The described technical approach and selected applications are considered as one of the most advanced approaches for plant proteomics investigations with possibilities not only to enlarge the knowledge of plant proteomes but also to discover novel allergens as well as plant biomarkers subsequent to stressful situations.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Egisto Boschetti
- Scientific Consultant, JAM Conseil, 92200, Neuilly-sur-Seine, France
| |
Collapse
|
14
|
Shah MA, Niaz K, Aslam N, Vargas-de la Cruz C, Kabir A, Khan AH, Khan F, Panichayupakaranant P. Analysis of proteins, peptides, and amino acids. RECENT ADVANCES IN NATURAL PRODUCTS ANALYSIS 2020:723-747. [DOI: 10.1016/b978-0-12-816455-6.00024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Label-free quantification of protein expression in the rainbow trout (Oncorhynchus mykiss) in response to short-term exposure to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:158-168. [PMID: 30851505 DOI: 10.1016/j.cbd.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) are a cold-water salmonid species that is highly susceptible to heat stress. Summer temperature stress is a common issue in trout aquaculture. To better understand the molecular mechanisms of the heat-stress response in the trout, we used label-free quantitative proteome techniques to identify differentially expressed proteins in the livers of rainbow trout exposed to heat stress. We identified 3362 proteins and 152 differentially expressed proteins (p < 0.05; fold-change >2). Of these, 37 were uniquely expressed in the heat-stress group and 35 were uniquely expressed in the control group. In addition, 42 proteins were significantly upregulated (fold-change >2) and 38 proteins were significantly downregulated (fold-change >2). GO (Gene Ontology) analysis indicated that these differentially expressed proteins were primarily expressed in the nucleus, extracellular matrix, and cytoplasm, and were associated with a variety of functions, including protein binding/bridging and enzyme facilitation. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the differentially expressed proteins showed that, during high temperature stress, many biological processes were extensively altered, particularly the estrogen signaling pathway, the complement and coagulation cascades, and the platelet activation pathway. Our study focused on the identification of a systematic approach for the characterization of regulatory networks. Our results provide a framework for further studies of the heat-stress response in fish.
Collapse
|
16
|
Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. PROGRESS IN BOTANY 2019. [DOI: 10.1007/124_2019_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J Proteomics 2018; 193:10-26. [PMID: 30576833 DOI: 10.1016/j.jprot.2018.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Oats are an important cereal crop worldwide, and they also serve as a phytoremediation crop to ameliorate salinized and alkalized soils. However, the mechanism of the oat response to alkali remains unclear. Physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate the mechanism of the oat response to alkali stress. Physiological and phenotypic data showed that oat root growth was inhibited more severely than shoot growth after alkali stress. In total, 164 proteins were up-regulated and 241 proteins were down-regulated in roots, and 93 proteins were up-regulated and 139 proteins were down-regulated in shoots. Under high pH stress, transmembrane proton transporters were down-regulated; conversely, organic acid synthesis related enzymes were increased. Transporters of N, P, Fe, Cu and Ca in addition to N assimilation enzymes in the root were highly increased. This result revealed that higher efficiency of P, Fe, Cu and Ca transport, especially higher efficiency of N intake and assimilation, greatly promoted oat root resistance to alkali stress. Furthermore, many resistance proteins, such as late embryogenesis abundant (LEA) mainly in shoots, GDSL esterase lipase mainly in roots, and WD40-like beta propeller repeat families, greatly accumulated to contribute to oat resistance to alkali stress. SIGNIFICANCE: In this study, physiological and tandem mass tag (TMT)-based proteomic analyses were employed to elucidate oats early seedlings in response to alkali stress. Many difference expression proteins were found involving in oats response to alkali stress. Also, higher efficiency transport of P, Fe, Cu, Ca and N greatly promoted oat resistance to alkali stress.
Collapse
|
18
|
Vilasboa J, Da Costa CT, Fett-Neto AG. Rooting of eucalypt cuttings as a problem-solving oriented model in plant biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:85-97. [PMID: 30557533 DOI: 10.1016/j.pbiomolbio.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Species of Eucalyptus are some of the most planted trees in the world, providing fiber, cellulose, energy, and wood for construction and furniture in renewable fashion, with the added advantage of fixing large amounts of atmospheric carbon. The efficiency of eucalypts in forestry relies mostly on the clonal propagation of selected genotypes both as pure species and interspecific hybrids. The formation of new roots from cambium tissues at the base of cuttings, referred to as adventitious rooting (AR), is essential for accomplishing clonal propagation successfully. AR is a highly complex, multi-level regulated developmental process, affected by a number of endogenous and environmental factors. In several cases, highly desirable genotypes from an industrial point of view carry along the undesirable trait of difficulty-to-root (recalcitrance). Understanding the bases of this phenotype is needed to identify ways to overcome recalcitrance and allow efficient clonal propagation. Herein, an overview of the state-of-the-art on the basis of AR recalcitrance in eucalypts addressed at various levels of regulation (transcript, protein, metabolite and phenotype), and OMICs techniques is presented. In addition, a focus is also provided on the gaps that need to be filled in order to advance in this strategic biological problem for global forestry industry relying on eucalypts.
Collapse
Affiliation(s)
- Johnatan Vilasboa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Cibele Tesser Da Costa
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Arthur Germano Fett-Neto
- Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
19
|
Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018; 37:473-499. [DOI: 10.1007/s10930-018-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Proteomic analysis and food-grade enzymes of Moringa oleifer Lam. a Lam. flower. Int J Biol Macromol 2018; 115:883-890. [DOI: 10.1016/j.ijbiomac.2018.04.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/28/2018] [Accepted: 04/21/2018] [Indexed: 01/28/2023]
|
21
|
Peharec Štefanić P, Cindrić M, Balen B. Proteomic Analysis of Non-model Plant Tissues Using Phenol Extraction, Two-Dimensional Electrophoresis, and MALDI Mass Spectrometry. Methods Mol Biol 2018; 1815:351-370. [PMID: 29981135 DOI: 10.1007/978-1-4939-8594-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Separation of plant proteins by means of electrophoretic techniques is quite challenging since different compounds typical for plant cells can interfere and/or reduce the effectiveness of the protein isolation. This is particularly problematic for two-dimensional electrophoresis (2-DE). Therefore, it is important to optimize protein extraction and to establish a robust protocol for 2-DE and downstream processing, primarily mass spectrometry (MS) analysis. Here we give a detailed protocol for protein extraction using phenol method, 2-DE, and MALDI-MS analysis.
Collapse
Affiliation(s)
- Petra Peharec Štefanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mario Cindrić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Biljana Balen
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
22
|
Kamies R, Farrant JM, Tadele Z, Cannarozzi G, Rafudeen MS. A Proteomic Approach to Investigate the Drought Response in the Orphan Crop Eragrostis tef. Proteomes 2017; 5:E32. [PMID: 29140297 PMCID: PMC5748567 DOI: 10.3390/proteomes5040032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 11/10/2017] [Indexed: 01/13/2023] Open
Abstract
The orphan crop, Eragrostis tef, was subjected to controlled drought conditions to observe the physiological parameters and proteins changing in response to dehydration stress. Physiological measurements involving electrolyte leakage, chlorophyll fluorescence and ultra-structural analysis showed tef plants tolerated water loss to 50% relative water content (RWC) before adverse effects in leaf tissues were observed. Proteomic analysis using isobaric tag for relative and absolute quantification (iTRAQ) mass spectrometry and appropriate database searching enabled the detection of 5727 proteins, of which 211 proteins, including a number of spliced variants, were found to be differentially regulated with the imposed stress conditions. Validation of the iTRAQ dataset was done with selected stress-related proteins, fructose-bisphosphate aldolase (FBA) and the protective antioxidant proteins, monodehydroascorbate reductase (MDHAR) and peroxidase (POX). Western blot analyses confirmed protein presence and showed increased protein abundance levels during water deficit while enzymatic activity for FBA, MDHAR and POX increased at selected RWC points. Gene ontology (GO)-term enrichment and analysis revealed terms involved in biotic and abiotic stress response, signaling, transport, cellular homeostasis and pentose metabolic processes, to be enriched in tef upregulated proteins, while terms linked to reactive oxygen species (ROS)-producing processes under water-deficit, such as photosynthesis and associated light harvesting reactions, manganese transport and homeostasis, the synthesis of sugars and cell wall catabolism and modification, to be enriched in tef downregulated proteins.
Collapse
Affiliation(s)
- Rizqah Kamies
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Mohammed Suhail Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| |
Collapse
|
23
|
Karasinski J, Wrobel K, Corrales Escobosa AR, Konopka A, Bulska E, Wrobel K. Allium cepa L. Response to Sodium Selenite (Se(IV)) Studied in Plant Roots by a LC-MS-Based Proteomic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3995-4004. [PMID: 28467079 DOI: 10.1021/acs.jafc.7b01085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Liquid chromatography-high-resolution mass spectrometry was used for the first time to investigate the impact of Se(IV) (10 mgSe L-1 as sodium selenite) on Allium cepa L. root proteome. Using MaxQuant platform, more than 600 proteins were found; 42 were identified based on at least 2 razor + unique peptides, score > 25, and were found to be differentially expressed in the exposed versus control roots with t-test difference > ±0.70 (p < 0.05, Perseus). Se(IV) caused growth inhibition and the decrease of total RNA in roots. Different abundances of proteins involved in transcriptional regulation, protein folding/assembly, cell cycle, energy/carbohydrate metabolism, stress response, and antioxidant defense were found in the exposed vs nonexposed roots. New evidence was obtained on the alteration of sulfur metabolism due to S-Se competition in A. cepa L. which, together with the original analytical approach, is the main scientific contribution of this study. Specifically, proteins participating in assimilation and transformation of both elements were affected; formation of volatile Se compounds seemed to be favored. Changes observed in methionine cycle suggested that Se(IV) stress might repress methylation capability in A. cepa L., potentially limiting accumulation of Se in the form of nonprotein methylated species and affecting adversely transmethylation-dependent signaling pathways.
Collapse
Affiliation(s)
- Jakub Karasinski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato , L de Retana Number 5, 36000 Guanajuato, Mexico
| | | | - Anna Konopka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato , L de Retana Number 5, 36000 Guanajuato, Mexico
| |
Collapse
|
24
|
Das P, Sarkar D, Datta R. Proteomic profiling of vetiver grass ( Chrysopogon zizanioides) under 2,4,6-trinitrotoluene (TNT) stress. GEOHEALTH 2017; 1:66-74. [PMID: 32158981 PMCID: PMC7007145 DOI: 10.1002/2017gh000063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 06/08/2023]
Abstract
Vetiver grass is an ideal plant for 2,4,6-trinitrotoluene (TNT) phytoremediation, due to its ability to tolerate and metabolize TNT as previously reported. The current study is the first attempt to investigate the changes in the proteomic profile of a plant under TNT stress. Vetiver plants were grown in nutrient media with varying concentrations of TNT (0, 25, 50, and 100 mg L-1) for 10 days. Although the plants appeared healthy, significant biomass reductions (p = 0.0008) were observed in treated plants. Total proteins in the root decreased significantly (p = 0.0003). Proteomic analysis of root proteins revealed the downregulation of functional proteins involved in key cellular mechanisms such as transcription, ribosome biogenesis, nucleo-cytoplasmic transport of proteins, protein glycosylation, and translation. Growth-related proteins were downregulated; plant defense proteins were upregulated at lower TNT concentrations but downregulated at higher concentrations. Comprehensive understanding of changes in the proteomic profile provides important clues to the mechanism of TNT stress response and tolerance in vetiver.
Collapse
Affiliation(s)
- Padmini Das
- Department of BiologyNazareth CollegeRochesterNew YorkUSA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean EngineeringStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Rupali Datta
- Department of Biological SciencesMichigan Technological UniversityHoughtonMichiganUSA
| |
Collapse
|
25
|
Munzi S, Sheppard LJ, Leith ID, Cruz C, Branquinho C, Bini L, Gagliardi A, Cai G, Parrotta L. The cost of surviving nitrogen excess: energy and protein demand in the lichen Cladonia portentosa as revealed by proteomic analysis. PLANTA 2017; 245:819-833. [PMID: 28054148 DOI: 10.1007/s00425-017-2647-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 05/10/2023]
Abstract
Different nitrogen forms affect different metabolic pathways in lichens. In particular, the most relevant changes in protein expression were observed in the fungal partner, with NO 3- mostly affecting the energetic metabolism and NH 4+ affecting transport and regulation of proteins and the energetic metabolism much more than NO 3- did. Excess deposition of reactive nitrogen is a well-known agent of stress for lichens, but which symbiont is most affected and how, remains a mystery. Using proteomics can expand our understanding of stress effects on lichens. We investigated the effects of different doses and forms of reactive nitrogen, with and without supplementary phosphorus and potassium, on the proteome of the lichen Cladonia portentosa growing in a 'real-world' simulation of nitrogen deposition. Protein expression changed with the nitrogen treatments but mostly in the fungal partner, with NO3- mainly affecting the energetic metabolism and NH4+ also affecting the protein synthesis machinery. The photobiont mainly responded overexpressing proteins involved in energy production. This suggests that in response to nitrogen stress, the photobiont mainly supports the defensive mechanisms initiated by the mycobiont with an increased energy production. Such surplus energy is then used by the cell to maintain functionality in the presence of NO3-, while a futile cycle of protein production can be hypothesized to be induced by NH4+ excess. External supply of potassium and phosphorus influenced differently the responses of particular enzymes, likely reflecting the many processes in which potassium exerts a regulatory function.
Collapse
Affiliation(s)
- Silvana Munzi
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal.
| | - Lucy J Sheppard
- Centre for Ecology and Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB, UK
| | - Ian D Leith
- Centre for Ecology and Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB, UK
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal
| | - Cristina Branquinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016, Lisbon, Portugal
| | - Luca Bini
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Assunta Gagliardi
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Pier Andrea Mattioli, 4, 53100, Siena, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio, 42, 40126, Bologna, Italy
| |
Collapse
|
26
|
Azri W, Barhoumi Z, Chibani F, Borji M, Bessrour M, Mliki A. Proteomic responses in shoots of the facultative halophyte Aeluropus littoralis (Poaceae) under NaCl salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1028-1047. [PMID: 32480524 DOI: 10.1071/fp16114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/13/2016] [Indexed: 06/11/2023]
Abstract
Salinity is an environmental constraint that limits agricultural productivity worldwide. Studies on the halophytes provide valuable information to describe the physiological and molecular mechanisms of salinity tolerance. Therefore, because of genetic relationships of Aeluropus littoralis (Willd) Parl. with rice, wheat and barley, the present study was conducted to investigate changes in shoot proteome patterns in response to different salt treatments using proteomic methods. To examine the effect of salinity on A. littoralis proteome pattern, salt treatments (0, 200 and 400mM NaCl) were applied for 24h and 7 and 30 days. After 24h and 7 days exposure to salt treatments, seedlings were fresh and green, but after 30 days, severe chlorosis was established in old leaves of 400mM NaCl-salt treated plants. Comparative proteomic analysis of the leaves revealed that the relative abundance of 95 and 120 proteins was significantly altered in 200 and 400mM NaCl treated plants respectively. Mass spectrometry-based identification was successful for 66 out of 98 selected protein spots. These proteins were mainly involved in carbohydrate, energy, amino acids and protein metabolisms, photosynthesis, detoxification, oxidative stress, translation, transcription and signal transduction. These results suggest that the reduction of proteins related to photosynthesis and induction of proteins involved in glycolysis, tricarboxylic acid (TCA) cycle, and energy metabolism could be the main mechanisms for salt tolerance in A. littoralis. This study provides important information about salt tolerance, and a framework for further functional studies on the identified proteins in A. littoralis.
Collapse
Affiliation(s)
- Wassim Azri
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Zouhaier Barhoumi
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Farhat Chibani
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Manel Borji
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Mouna Bessrour
- Laboratory of Extremophyle Plants, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Centre of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
27
|
Comparative Proteomic and Physiological Analysis Reveals the Variation Mechanisms of Leaf Coloration and Carbon Fixation in a Xantha Mutant of Ginkgo biloba L. Int J Mol Sci 2016; 17:ijms17111794. [PMID: 27801782 PMCID: PMC5133795 DOI: 10.3390/ijms17111794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Yellow-green leaf mutants are common in higher plants, and these non-lethal chlorophyll-deficient mutants are ideal materials for research on photosynthesis and plant development. A novel xantha mutant of Ginkgo biloba displaying yellow-colour leaves (YL) and green-colour leaves (GL) was identified in this study. The chlorophyll content of YL was remarkably lower than that in GL. The chloroplast ultrastructure revealed that YL had less dense thylakoid lamellae, a looser structure and fewer starch grains than GL. Analysis of the photosynthetic characteristics revealed that YL had decreased photosynthetic activity with significantly high nonphotochemical quenching. To explain these phenomena, we analysed the proteomic differences in leaves and chloroplasts between YL and GL of ginkgo using two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF MS. In total, 89 differential proteins were successfully identified, 82 of which were assigned functions in nine metabolic pathways and cellular processes. Among them, proteins involved in photosynthesis, carbon fixation in photosynthetic organisms, carbohydrate/energy metabolism, amino acid metabolism, and protein metabolism were greatly enriched, indicating a good correlation between differentially accumulated proteins and physiological changes in leaves. The identifications of these differentially accumulated proteins indicates the presence of a specific different metabolic network in YL and suggests that YL possess slower chloroplast development, weaker photosynthesis, and a less abundant energy supply than GL. These studies provide insights into the mechanism of molecular regulation of leaf colour variation in YL mutants.
Collapse
|
28
|
Naidoo RK, Rafudeen MS, Coyne VE. Investigation of the Gracilaria gracilis (Gracilariales, Rhodophyta) proteome response to nitrogen limitation. JOURNAL OF PHYCOLOGY 2016; 52:369-383. [PMID: 27273530 DOI: 10.1111/jpy.12400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 06/06/2023]
Abstract
Inorganic nitrogen has been identified as the major growth-limiting nutritional factor affecting Gracilaria gracilis populations in South Africa. Although the physiological mechanisms implemented by G. gracilis for adaption to low nitrogen environments have been investigated, little is known about the molecular mechanisms of these adaptions. This study provides the first investigation of G. gracilis proteome changes in response to nitrogen limitation and subsequent recovery. A differential proteomics approach employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry was used to investigate G. gracilis proteome changes in response to nitrogen limitation and recovery. The putative identity of 22 proteins that changed significantly (P < 0.05) in abundance in response to nitrogen limitation and recovery was determined. The identified proteins function in a range of biological processes including glycolysis, photosynthesis, ATP synthesis, galactose metabolism, protein-refolding and biosynthesis, nitrogen metabolism and cytoskeleton remodeling. The identity of fructose 1,6 biphosphate (FBP) aldolase was confirmed by western blot analysis and the decreased abundance of FBP aldolase observed with two-dimensional gel electrophoresis was validated by enzyme assays and western blots. The identification of key proteins and pathways involved in the G. gracilis nitrogen stress response provide a better understanding of G. gracilis proteome responses to varying degrees of nitrogen limitation and is the first step in the identification of biomarkers for monitoring the nitrogen status of cultivated G. gracilis populations.
Collapse
Affiliation(s)
- Rene K Naidoo
- Molecular and Cell Biology Department, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Muhammad S Rafudeen
- Molecular and Cell Biology Department, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Vernon E Coyne
- Molecular and Cell Biology Department, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
29
|
Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 2016; 143:3-14. [DOI: 10.1016/j.jprot.2016.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 01/07/2023]
|
30
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
31
|
Abstract
Proteomic approaches have been used to understand several regulatory aspects of plant development. Somatic embryogenesis is one of those developmental pathways that have beneficiated from the integration of proteomics data to the understanding of the molecular mechanisms that control embryogenic competence acquisition, somatic embryo development and conversion into viable plants. Nevertheless, most of the results obtained are based on the traditional model systems, very often not easily compared with the somatic embryogenesis systems of economical relevant woody species. The aim of this work is to summarize some of the applications of proteomics in the understanding of particular aspects of the somatic embryogenesis process in broad-leaf woody plants (model and non-model systems).
Collapse
|
32
|
Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S. The quest for tolerant varieties: the importance of integrating "omics" techniques to phenotyping. FRONTIERS IN PLANT SCIENCE 2015; 6:448. [PMID: 26217344 PMCID: PMC4496562 DOI: 10.3389/fpls.2015.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/31/2015] [Indexed: 05/19/2023]
Abstract
The primary objective of crop breeding is to improve yield and/or harvest quality while minimizing inputs. Global climate change and the increase in world population are significant challenges for agriculture and call for further improvements to crops and the development of new tools for research. Significant progress has been made in the molecular and genetic analysis of model plants. However, is science generating false expectations? Are 'omic techniques generating valuable information that can be translated into the field? The exploration of crop biodiversity and the correlation of cellular responses to stress tolerance at the plant level is currently a challenge. This viewpoint reviews concisely the problems one encounters when working on a crop and provides an outline of possible workflows when initiating cellular phenotyping via "-omic" techniques (transcriptomics, proteomics, metabolomics).
Collapse
Affiliation(s)
- Michel Zivy
- Department Génétique Quantitative et Évolution, Le Moulon INRA, CNRS, AgroParisTech, Plateforme PAPPSO, Université Paris-Sud, Gif-sur-Yvette, France
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Carla Pinheiro
- Instituto de Tecnologia Química e Biológica, New University of Lisbon, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, New University of Lisbon, Caparica, Portugal
| | - Estelle Goulas
- Department of Sciences et Technologies, CNRS/Université Lille, Villeneuve d’Ascq, France
| | - Sebastien Carpentier
- Department of Biosystems, University of Leuven, Leuven, Belgium
- SYBIOMA, University of Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Wang J, Meng Y, Li B, Ma X, Lai Y, Si E, Yang K, Xu X, Shang X, Wang H, Wang D. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus. PLANT, CELL & ENVIRONMENT 2015; 38:655-69. [PMID: 25124288 PMCID: PMC4407928 DOI: 10.1111/pce.12428] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Life Sciences and Technology, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Yong Lai
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xianliang Xu
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Xunwu Shang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| | - Di Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement & Germplasm EnhancementLanzhou, 730070, China
- College of Agronomy, Gansu Agricultural UniversityLanzhou, 730070, China
| |
Collapse
|
34
|
Vanhove AC, Vermaelen W, Swennen R, Carpentier SC. A look behind the screens: Characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics 2015; 119:10-20. [DOI: 10.1016/j.jprot.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
35
|
Rahman MA, Alam I, Kim YG, Ahn NY, Heo SH, Lee DG, Liu G, Lee BH. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:112-22. [PMID: 25743099 DOI: 10.1016/j.plaphy.2015.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/22/2015] [Indexed: 05/09/2023]
Abstract
A comparative proteomic approach was carried out between two contrasting alfalfa cultivars, nonomu (NM-801; salt tolerant) and vernal (VN; salt intolerant) in terms of salt tolerance. Seedlings were subjected to salt stress (50 and 100 mM NaCl) for three days. Several physiological parameters (leaf water, chlorophyll, root Na(+), K(+), and Ca(2+)) and root proteome profile were analyzed. Comparison of physiological status revealed that NM-801 is more tolerant to salt than VN. Eighty three differentially expressed proteins were found on 2-DE maps, of which 50 were identified by MALDI-TOF or MALDI-TOF/TOF mass spectrometry. These proteins were involved in ion homeostasis, protein turnover and signaling, protein folding, cell wall components, carbohydrate and energy metabolism, reactive oxygen species regulation and detoxification, and purine and fatty acid metabolism. The comparative proteome analysis showed that 33 salt-responsive proteins were significantly changed in both cultivars, while 17 (14 in VN and 3 in NM-801) were cultivar-specific. Peroxidase, protein disulfide-isomerase, NAD synthetase, and isoflavone reductase were up-regulated significantly only in NM-801 in all salt concentrations. In addition, we identified novel proteins including NAD synthetase and biotin carboxylase-3 that were not reported previously as salt-responsive. Taken together, these results provide new insights of salt stress tolerance in alfalfa.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Iftekhar Alam
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea; National Institute of Biotechnology, Ganakbari, Savar, Dhaka 1349, Bangladesh
| | - Yong-Goo Kim
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Na-Young Ahn
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung-Hyun Heo
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dong-Gi Lee
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Gongshe Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Byung-Hyun Lee
- Division of Applied Life Sciences (BK21Plus), IALS, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
36
|
Capriotti AL, Cavaliere C, Piovesana S, Stampachiacchiere S, Ventura S, Zenezini Chiozzi R, Laganà A. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of nonmodel plant proteomics. J Sep Sci 2015; 38:1017-25. [PMID: 25580831 DOI: 10.1002/jssc.201401319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 12/21/2022]
Abstract
A shotgun proteomics approach was used to characterize the quinoa seed proteome. To obtain comprehensive proteomic data from quinoa seeds three different precipitation procedures were employed: MeOH/CHCl3 /double-distilled H2 O, acetone either alone or with trichloroacetic acid; the isolated proteins were then in-solution digested and the resulting peptides were analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. However, since quinoa is a nonmodel plant species, only a few protein sequences are included in the most widely known protein sequence databases. To improve the data reliability a UniProt subdatabase, containing only proteins of Caryophillales order, was used. A total of 352 proteins were identified and evaluated both from a qualitative and quantitative point of view. This combined approach is certainly useful to increase the final number of identifications, but no particular class of proteins was extracted and identified in spite of the different chemistries and the different precipitation protocols. However, with respect to the other two procedures, from the relative quantitative analysis, based on the number of spectral counts, the trichloroacetic acid/acetone protocol was the best procedure for sample handling and quantitative protein extraction. This study could pave the way to further high-throughput studies on Chenopodium Quinoa.
Collapse
|
37
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Unamba CIN, Nag A, Sharma RK. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1074. [PMID: 26734016 PMCID: PMC4679907 DOI: 10.3389/fpls.2015.01074] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping.
Collapse
Affiliation(s)
- Chibuikem I. N. Unamba
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Department of Plant Science and Biotechnology, Imo State UniversityOwerri, Nigeria
| | - Akshay Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Ram K. Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- *Correspondence: Ram K. Sharma ;
| |
Collapse
|
39
|
Trapp J, Armengaud J, Salvador A, Chaumot A, Geffard O. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13560-13572. [PMID: 25345346 DOI: 10.1021/es501673s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Because of their ecological representativeness, invertebrates are commonly employed as test organisms in ecotoxicological assessment; however, to date, biomarkers employed for these species were the result of a direct transposition from vertebrates, despite deep evolutionary divergence. To gain efficiency in the diagnostics of ecosystem health, specific biomarkers must be developed. In this sense, next-generation proteomics enables the specific identification of proteins involved in key physiological functions or defense mechanisms, which are responsive to ecotoxicological challenges. However, the analytical investment required restricts use in biomarker discovery. Routine biomarker validation and assays rely on more conventional mass spectrometers. Here, we describe how proteomics remains a challenge for ecotoxicological test organisms because of the lack of appropriate protein sequences databases, thus restricting the analysis on conserved and ubiquitous proteins. These limits and some strategies used to overcome them are discussed. These new tools, such as proteogenomics and targeted proteomics, should result in new biomarkers specific to relevant environmental organisms and applicable to routine ecotoxicological assessment.
Collapse
Affiliation(s)
- Judith Trapp
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France
| | | | | | | | | |
Collapse
|
40
|
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 2014; 15:949. [PMID: 25363865 PMCID: PMC4237293 DOI: 10.1186/1471-2164-15-949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. RESULTS The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. CONCLUSIONS The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.
Collapse
Affiliation(s)
- Moniya Chatterjee
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sumanti Gupta
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Anirban Bhar
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Dipankar Chakraborti
- />Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), 30 Park Street, Kolkata, 700016 India
| | - Debabrata Basu
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sampa Das
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| |
Collapse
|
41
|
Maneja RH, Dineshram R, Thiyagarajan V, Skiftesvik AB, Frommel AY, Clemmesen C, Geffen AJ, Browman HI. The proteome of Atlantic herring (Clupea harengus L.) larvae is resistant to elevated pCO2. MARINE POLLUTION BULLETIN 2014; 86:154-160. [PMID: 25110053 DOI: 10.1016/j.marpolbul.2014.07.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 05/28/2023]
Abstract
Elevated anthropogenic pCO2 can delay growth and impair otolith structure and function in the larvae of some fishes. These effects may concurrently alter the larva's proteome expression pattern. To test this hypothesis, Atlantic herring larvae were exposed to ambient (370 μatm) and elevated (1800 μatm) pCO2 for one-month. The proteome structure of the larvae was examined using a 2-DE and mass spectrometry. The length of herring larvae was marginally less in the elevated pCO2 treatment compared to the control. The proteome structure was also different between the control and treatment, but only slightly: the expression of a small number of proteins was altered by a factor of less than 2-fold at elevated pCO2. This comparative proteome analysis suggests that the proteome of herring larvae is resilient to elevated pCO2. These observations suggest that herring larvae can cope with levels of CO2 projected for near future without significant proteome-wide changes.
Collapse
Affiliation(s)
- Rommel H Maneja
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia; Helmholtz-Zentrum für Ozeanforschung Kiel-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - R Dineshram
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region.
| | | | - Andrea Y Frommel
- Helmholtz-Zentrum für Ozeanforschung Kiel-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Catriona Clemmesen
- Helmholtz-Zentrum für Ozeanforschung Kiel-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Audrey J Geffen
- Department of Biology, University of Bergen, PO Box 7803, N-5020 Bergen, Norway
| | - Howard I Browman
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway.
| |
Collapse
|
42
|
Valledor L, Menéndez V, Canal MJ, Revilla A, Fernández H. Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant
L. Proteomics 2014; 14:2061-71. [DOI: 10.1002/pmic.201300166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/11/2014] [Accepted: 07/07/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Luis Valledor
- Area de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Universidad de Oviedo; Oviedo Spain
| | - Virginia Menéndez
- Area de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Universidad de Oviedo; Oviedo Spain
| | - María Jesús Canal
- Area de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Universidad de Oviedo; Oviedo Spain
| | - Angeles Revilla
- Area de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Universidad de Oviedo; Oviedo Spain
| | - Helena Fernández
- Area de Fisiología Vegetal, Dpto. Biología de Organismos y Sistemas, Universidad de Oviedo; Oviedo Spain
| |
Collapse
|
43
|
WANG Y, LI SM, HE MW. Fragmentation Characteristics and Utility of Immonium Ions for Peptide Identification by MALDI-TOF/TOF-Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or reference species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, i.e., high throughput identification of candidate gene products, tends to be lost in orphan species due to the lack of genomic information, the complexity of the genome (protein inference problem, polyploidy) or due to the sequence divergence to a related sequenced reference variety or to a related model organism. Nevertheless, a proteomics approach has a great potential to study orphan species. This chapter reviews concisely orphan plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. We discuss briefly the problems and solutions for orphan plants associated with sample preparation and focus further on the difficulties associated with protein redundancy in polyploid species and the protein inference issue which is particularly associated with a peptide based proteomics approach.
Collapse
Affiliation(s)
- Sebastien C Carpentier
- Faculty of Bioscience Engineering, Department of Biosystems, K.U. Leuven, Leuven, Belgium
| | | |
Collapse
|
45
|
Luzzatto-Knaan T, Kerem Z, Doron-Faigenboim A, Yedidia I. Priming of protein expression in the defence response of Zantedeschia aethiopica to Pectobacterium carotovorum. MOLECULAR PLANT PATHOLOGY 2014; 15:364-78. [PMID: 24822269 PMCID: PMC6638884 DOI: 10.1111/mpp.12100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The defence response of Zantedeschia aethiopica, a natural rhizomatous host of the soft rot bacterium Pectobacterium carotovorum, was studied following the activation of common induced resistance pathways—systemic acquired resistance and induced systemic resistance. Proteomic tools were used, together with in vitro quantification and in situ localization of selected oxidizing enzymes. In total, 527 proteins were analysed by label-free mass spectrometry (MS) and annotated against the National Center for Biotechnology Information (NCBI) nonredundant (nr) protein database of rice (Oryza sativa). Of these, the fore most differentially expressed group comprised 215 proteins that were primed following application of methyl jasmonate (MJ) and subsequent infection with the pathogen. Sixty-five proteins were down-regulated following MJ treatments. The application of benzothiadiazole (BTH) increased the expression of 23 proteins; however, subsequent infection with the pathogen repressed their expression and did not induce priming. The sorting of primed proteins by Gene Ontology protein function category revealed that the primed proteins included nucleic acid-binding proteins, cofactor-binding proteins, ion-binding proteins, transferases, hydrolases and oxidoreductases. In line with the highlighted involvement of oxidoreductases in the defence response, we determined their activities, priming pattern and localization in planta. Increased activities were confined to the area surrounding the pathogen penetration site, associating these enzymes with the induced systemic resistance afforded by the jasmonic acid signalling pathway. The results presented here demonstrate the concerted priming of protein expression following MJ treatment, making it a prominent part of the defence response of Z. aethiopica to P. carotovorum.
Collapse
|
46
|
Molassiotis A, Tanou G, Filippou P, Fotopoulos V. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Proteomics 2014; 13:1871-84. [PMID: 23986917 DOI: 10.1002/pmic.201200428] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting-edge "omics" technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high-density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. A panoramic view of ripening-related proteins is also discussed, as an example of proteomic application in fruit science.
Collapse
|
47
|
Buts K, Michielssens S, Hertog MLATM, Hayakawa E, Cordewener J, America AHP, Nicolai BM, Carpentier SC. Improving the identification rate of data independent label-free quantitative proteomics experiments on non-model crops: a case study on apple fruit. J Proteomics 2014; 105:31-45. [PMID: 24565695 DOI: 10.1016/j.jprot.2014.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/23/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Complex peptide extracts from non-model crops are troublesome for proper identification and quantification. To increase the identification rate of label free DIA experiments of Braeburn apple a new workflow was developed where a DDA database was constructed and linked to the DIA data. At a first level, parent masses found in DIA were searched in the DDA database based on their mass to charge ratio and retention time; at a second level, masses of fragmentation ions were compared for each of the linked spectrum. Following this workflow, a tenfold increase of peptides was identified from a single DIA run. As proof of principle, the designed workflow was applied to determine the changes during a storage experiment, achieving a two-fold identification increase in the number of significant peptides. The corresponding protein families were divided into nine clusters, representing different time profiles of changes in abundances during storage. Up-regulated protein families already show a glimpse of important pathways affecting aging during long-term storage, such as ethylene synthesis, and responses to abiotic stresses and their influence on the central metabolism. BIOLOGICAL SIGNIFICANCE Proteomics research on non-model crops causes additional difficulties in identifying the peptides present in, often complex, samples. This work proposes a new workflow to retrieve more identifications from a set of quantitative data, based on linking DIA and DDA data at two consecutive levels. As proof of principle, a storage experiment on Braeburn apple resulted in twice as much identified storage related peptides. Important proteins involved in central metabolism and stress are significantly up-regulated after long term storage. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Kim Buts
- BIOSYST-MeBioS, KU Leuven, Belgium.
| | - Servaas Michielssens
- Quantum Chemistry and Physical Chemistry Section, KU Leuven, Belgium; Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Eisuke Hayakawa
- Research Group of Functional Genomics and Proteomics, KU Leuven, Belgium
| | | | | | - Bart M Nicolai
- BIOSYST-MeBioS, KU Leuven, Belgium; Flanders Centre of Postharvest Technology, Leuven, Belgium
| | | |
Collapse
|
48
|
Abstract
The question of low-abundance proteins from biological tissues is still a major issue. Technologies have been devised to improve the situation and in the last few years a method based on solid-phase combinatorial peptide ligand libraries has been extensively applied to animal extracts. This method has also been extended to plant extracts taking advantage of findings from previous experience. Detailed methods are described and their pertinence highlighted according to various situations of plant sample origin, size of the sample, and analytical methods intended to be used for protein identifications.
Collapse
|
49
|
Ortiz R, Swennen R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 2014; 32:158-69. [DOI: 10.1016/j.biotechadv.2013.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
|
50
|
Making Progress in Plant Proteomics for Improved Food Safety. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62650-9.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|