1
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Staltner R, Valder S, Wodak MF, Köpsel M, Herdegen V, Esatbeyoglu T, Kostov T, Diel P, Bergheim I. Sugar-sweetened beverage but not diluted cloudy apple juice consumption induces post-prandial endotoxemia in healthy adults. NPJ Sci Food 2024; 8:38. [PMID: 38906893 PMCID: PMC11192722 DOI: 10.1038/s41538-024-00283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Sugar beverages are discussed as critical in the development of metabolic endotoxemia. Here, employing a cross-over design study we assessed the effect of diluted cloudy apple juice (AJ), an iso-caloric and -sweetened placebo (P), or water (W) on post-prandial endotoxemia in healthy, normal weight adults. After obtaining fasting blood, 19 healthy men and women consumed 500 mL AJ, P, or W in a randomized order and blood was taken 120 and 180 min later. Caco-2 cells were incubated with the beverages. Markers of intestinal barrier function were assessed. The intake of P but not of AJ or W was associated with a significant increase in TLR2 ligands and bacterial endotoxin in serum after 120 min and 180 min, respectively. P but not AJ significantly increased bacterial toxin permeation in Caco-2 cells. Our results suggest that the effects of sugar-sweetened beverages on markers of intestinal barrier function markedly differ from those of fruit juices.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Sarah Valder
- Institute of Cardiology and Sports, Section Molecular and Cellular Medicine, German Sport University Cologne, Cologne, Germany
| | - Maximilian F Wodak
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Volker Herdegen
- Research and Innovation, Eckes-Granini Group GmbH, Nieder-Olm, Germany
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Tihomir Kostov
- Institute of Cardiology and Sports, Section Molecular and Cellular Medicine, German Sport University Cologne, Cologne, Germany
| | - Patrick Diel
- Institute of Cardiology and Sports, Section Molecular and Cellular Medicine, German Sport University Cologne, Cologne, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
do Nascimento DDSM, Mota ACCC, Carvalho MCDC, Andrade EDDO, de Oliveira ÉPSF, Galvão LLP, Maciel BLL. Can Diet Alter the Intestinal Barrier Permeability in Healthy People? A Systematic Review. Nutrients 2024; 16:1871. [PMID: 38931225 PMCID: PMC11206284 DOI: 10.3390/nu16121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Dietary factors can modify the function of the intestinal barrier, causing permeability changes. This systematic review analyzed evidence on the link between diet or dietary interventions and changes in intestinal barrier permeability (IBP) in healthy individuals. A systematic search for primary studies was conducted using the virtual databases EMBASE, PubMed, Web of Science, CINAHL, and Scopus. This review adhered to PRISMA 2020 guidelines, assessing the methodological quality using the Newcastle-Ottawa scale for observational studies and ROB 2.0 for randomized clinical trials. Out of 3725 studies recovered, 12 were eligible for review. Chicory inulin and probiotics reduced IBP in adults with a moderate GRADE level of evidence. The opposite result was obtained with fructose, which increased IBP in adults, with a very low GRADE level of evidence. Only intervention studies with different dietary components were found, and few studies evaluated the effect of specific diets on the IBP. Thus, there was no strong evidence that diet or dietary interventions increase or decrease IBP in healthy individuals. Studies on this topic are necessary, with a low risk of bias and good quality of evidence generated, as there is still little knowledge on healthy populations.
Collapse
Affiliation(s)
- Daniele de Souza Marinho do Nascimento
- Post Graduate Program in Health Science, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (D.d.S.M.d.N.); (M.C.d.C.C.); (E.D.d.O.A.); (L.L.P.G.)
| | - Ana Carolina Costa Campos Mota
- Post Graduate Program in Nutrition, Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.C.C.C.M.); (É.P.S.F.d.O.)
| | - Maria Clara da Cruz Carvalho
- Post Graduate Program in Health Science, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (D.d.S.M.d.N.); (M.C.d.C.C.); (E.D.d.O.A.); (L.L.P.G.)
| | - Eva Débora de Oliveira Andrade
- Post Graduate Program in Health Science, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (D.d.S.M.d.N.); (M.C.d.C.C.); (E.D.d.O.A.); (L.L.P.G.)
| | - Érika Paula Silva Freitas de Oliveira
- Post Graduate Program in Nutrition, Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.C.C.C.M.); (É.P.S.F.d.O.)
| | - Liana Letícia Paulino Galvão
- Post Graduate Program in Health Science, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (D.d.S.M.d.N.); (M.C.d.C.C.); (E.D.d.O.A.); (L.L.P.G.)
| | - Bruna Leal Lima Maciel
- Post Graduate Program in Health Science, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (D.d.S.M.d.N.); (M.C.d.C.C.); (E.D.d.O.A.); (L.L.P.G.)
- Post Graduate Program in Nutrition, Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.C.C.C.M.); (É.P.S.F.d.O.)
- Department of Nutrition, Center for Health Science, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
4
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
5
|
Valder S, Staltner R, Bizjak DA, Esatbeyoglu T, Herdegen V, Köpsel M, Kostov T, Bergheim I, Diel P. Effect of Sugar- and Polyphenol-Rich, Diluted Cloudy Apple Juice on the Intestinal Barrier after Moderate Endurance Exercise and in Ultra-Marathon Runners. Nutrients 2024; 16:1353. [PMID: 38732600 PMCID: PMC11085185 DOI: 10.3390/nu16091353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.
Collapse
Affiliation(s)
- Sarah Valder
- Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany; (S.V.); (T.K.)
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria; (R.S.); (I.B.)
| | - Daniel Alexander Bizjak
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany;
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany; (T.E.); (M.K.)
| | | | - Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany; (T.E.); (M.K.)
| | - Tihomir Kostov
- Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany; (S.V.); (T.K.)
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria; (R.S.); (I.B.)
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany; (S.V.); (T.K.)
| |
Collapse
|
6
|
Smiliotopoulos T, Zampelas A, Houliaras G, Sgouros SN, Michas G, Bamias G, Panagiotakos D, Cholopoulos N, Chrousos GP, Roma E, Magriplis E. Association of fructose consumption with prevalence of functional gastrointestinal disorders manifestations: results from Hellenic National Nutrition and Health Survey (HNNHS). Br J Nutr 2023; 130:1961-1972. [PMID: 37197939 PMCID: PMC10630147 DOI: 10.1017/s0007114523001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
The study aimed to assess the total prevalence of functional gastrointestinal disorders (FGID), and separately, irritable bowel syndrome (IBS) among adults and to determine their potential association with fructose consumption. Data from the Hellenic National Nutrition and Health Survey were included (3798 adults; 58·9 % females). Information regarding FGID symptomatology was assessed using self-reported physician diagnosis questionnaires the reliability of which were screened using the ROME III, in a sample of the population. Fructose intake was estimated from 24 h recalls, and the MedDiet score was used to assess adherence to the Mediterranean diet. The prevalence of FGID symptomatology was 20·2 %, while 8·2 % had IBS (representing 40·2 % of total FGID). The likelihood of FGID was 28 % higher (95 %CI: 1·03-1·6) and of IBS 49 % (95 %CI: 1·08-2·05) in individuals with higher fructose intake than with lower intake (3rd tertile compared with 1st). When area of residence was accounted for, individuals residing in the Greek islands had a significantly lower probability of FGID and IBS compared with those residing in Mainland and the main Metropolitan areas, with Islanders also achieving a higher MedDiet score and lower added sugar intake, comparatively to inhabitants of the main metropolitan areas. FGID and IBS symptomatology was most prominent among individuals with higher fructose consumption, and this was most conspicuous in areas with a lower Mediterranean diet adherence, suggesting that the dietary source of fructose rather than total fructose should be examined in relation to FGID.
Collapse
Affiliation(s)
- Theodoros Smiliotopoulos
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - Antonis Zampelas
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - George Houliaras
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Spiros N. Sgouros
- Department of Gastroenterology, Athens Naval Hospital, 7011528Athens, Greece
| | - George Michas
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| | - George Bamias
- Department of Gastroenterology, Athens Naval Hospital, 7011528Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education Harokopio University, 17676Athens, Greece
| | - Nikolaos Cholopoulos
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, University Campus, 54124Thessaloniki, Greece
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Eleftheria Roma
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, 11527Athens, Greece
| | - Emmanuella Magriplis
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855Athens, Greece
| |
Collapse
|
7
|
Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr 2023; 62:3113-3124. [PMID: 37596353 PMCID: PMC10611622 DOI: 10.1007/s00394-023-03232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if and how high dietary fructose intake interferes with human health has not yet been fully answered. RESULTS Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeostasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns (PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues. CONCLUSION In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Josef-Holaubek-Platz 2, A-1090, Vienna, Austria.
| |
Collapse
|
8
|
Staltner R, Sánchez V, Bergheim I, Baumann A. Acute Intake of Sucrose but Not of the Intense Sweetener Sucralose Is Associated with Post-Prandial Endotoxemia in Healthy Young Adults-A Randomized Controlled Trial. Nutrients 2023; 15:4038. [PMID: 37764821 PMCID: PMC10537596 DOI: 10.3390/nu15184038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sugar-rich diets, but also the use of intense sweeteners, may alter intestinal barrier function. Here, we assessed the effect of sucrose and sucralose on post-prandial endotoxemia in a randomized placebo-controlled single-blinded crossover-designed study. Following a 2-day standardization of their diet, healthy men and women received a beverage containing either sucrose, sucralose (iso-sweet) or an isocaloric combination of sucralose + maltodextrin. Plasma endotoxin levels were measured after consumption of the respective beverages. Moreover, the effect of sucrose and sucralose on intestinal permeability was assessed in Caco-2 cells and ex vivo in an everted gut sac model. The nutritional standardization recommended by nutrition societies was associated with a significant decrease in plasma endotoxin levels. The intake of the sucrose-sweetened beverage resulted in a significant increase in plasma endotoxin levels while being unchanged after the intake of sucralose-sweetened beverages. In Caco-2 cells, the challenge with sucrose but not with sucralose significantly increased the permeation of the bacterial endotoxin across the cell monolayer. Xylose permeation in small intestinal everted tissue sacs was significantly higher upon the challenge with sucrose while remaining unchanged in sucralose-challenged sacs. Our data suggest that an acute intake of physiologically relevant amounts of sucrose but not of sucralose can result in post-prandial endotoxemia.
Collapse
Affiliation(s)
- Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Inter-Day Variation in the Fasting Plasma Lipopolysaccharide Concentration in the Morning Is Associated with Inter-Day Variation in Appetite in Japanese Males: A Short-Term Cohort Study. Metabolites 2023; 13:metabo13030395. [PMID: 36984835 PMCID: PMC10053071 DOI: 10.3390/metabo13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Injection of lipopolysaccharide (LPS), a product of gut bacteria, into the blood increases blood triglycerides and cortisol, an appetite-stimulating hormone. Meanwhile, small amounts of LPS derived from gut bacteria are thought to enter the bloodstream from the gut in daily basis. This study aimed to investigate the effect of LPS influx on appetite or lipid metabolism in humans in everyday life. We measured the fasting plasma LPS concentration before breakfast and the corresponding days’ appetite and fat-burning markers for 10 days in four Japanese males (28–31 years) and analyzed the correlation of their inter-day variation. The LPS concentration was negatively correlated with fullness, and positively correlated with the carbohydrate intake. Against our hypothesis, the LPS concentration was positively correlated with the fasting breath acetone concentration, a fat-burning marker. There was a positive correlation between the LPS concentration and fasting body mass index (BMI), but the inter-day variation in BMI was slight. The results suggest that the LPS influx in everyday life is at least associated with appetite in the day.
Collapse
|
11
|
McLeod A, Penalver Bernabe B, Xia Y, Sanchez-Flack J, Lamar M, Schiffer L, Castellanos K, Fantuzzi G, Maki P, Fitzgibbon M, Tussing-Humphreys L. Comparing the gut microbiome of obese, African American, older adults with and without mild cognitive impairment. PLoS One 2023; 18:e0280211. [PMID: 36827280 PMCID: PMC9955629 DOI: 10.1371/journal.pone.0280211] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/08/2022] [Indexed: 02/25/2023] Open
Abstract
Those with mild cognitive impairment (MCI), a precursor to dementia, have a gut microbiome distinct from healthy individuals, but this has only been shown in healthy individuals, not in those exhibiting several risk factors for dementia. Using amplicon 16S rRNA gene sequencing in a case-control study of 60 older (ages 55-76), obese, predominately female, African American adults, those with MCI (cases) had different gut microbiota profiles than controls. While microbial community diversity was similar between cases and controls, the abundances of specific microbial taxa weren't, such as Parabacteroides distasonis (lower in cases) and Dialister invisus (higher in cases). These differences disappeared after adjusting for markers of oxidative stress and systemic inflammation. Cognitive scores were positively correlated with levels of Akkermansia muciniphila, a bacterium associated with reduced inflammation. Our study shows that gut microbial composition may be associated with inflammation, oxidative stress, and MCI in those at high risk for dementia.
Collapse
Affiliation(s)
- Andrew McLeod
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- * E-mail:
| | - Beatriz Penalver Bernabe
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Yinglin Xia
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jennifer Sanchez-Flack
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Melissa Lamar
- Rush Alzheimer’s Disease Center, Rush University, Chicago, Illinois, United States of America
| | - Linda Schiffer
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Karla Castellanos
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Giamila Fantuzzi
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Pauline Maki
- Departments of Psychology and Psychiatry, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Marian Fitzgibbon
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- Department of Pediatrics, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States of America
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, Illinois, United States of America
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Yang Y, Yu J, Huo J, Yan Y. Sesamolin Attenuates Kidney Injury, Intestinal Barrier Dysfunction, and Gut Microbiota Imbalance in High-Fat and High-Fructose Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1562-1576. [PMID: 36630317 DOI: 10.1021/acs.jafc.2c07084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of sesamolin on kidney injury, intestinal barrier dysfunction, and gut microbiota imbalance in high-fat and high-fructose (HF-HF) diet-fed mice and explored the underlying correlations among them. The results indicated that sesamolin suppressed metabolic disorders and increased renal function parameters. Histological evaluation showed that sesamolin mitigated renal epithelial cell degeneration and brush border damage. Meanwhile, sesamolin inhibited the endotoxin-mediated induction of the Toll-like receptor 4-related IKKα/NF-κB p65 pathway activation. Additionally, sesamolin mitigated intestinal barrier dysfunction and improved the composition of gut microbiota. The correlation results further indicated that changes in the dominant phyla, including Firmicutes, Deferribacterota, Desulfobacterota, and Bacteroidota, were more highly correlated with a reduction in endotoxemia and metabolic disorders, as well as decreases in intestinal proinflammatory response and related renal risk biomarkers. The results of this study suggest that sesamolin attenuates kidney injuries, which might be associated with its effects on the reduction of endotoxemia and related metabolic disorders through the restoration of the intestinal barrier and the modulation of gut microbiota. Thus, sesamolin may be a potential dietary supplement for protection against obesity-associated kidney injury.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Yu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayao Huo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
13
|
Elevated serum levels of diamine oxidase, D-lactate and lipopolysaccharides are associated with metabolic-associated fatty liver disease. Eur J Gastroenterol Hepatol 2023; 35:94-101. [PMID: 36468573 PMCID: PMC9719837 DOI: 10.1097/meg.0000000000002456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Studies have suggested an association between metabolic-associated fatty liver disease (MAFLD) and intestinal barrier function. The present study aims to investigate the association between MAFLD and intestinal barrier impairment in humans and identify potential risk factors for MAFLD. METHODS A total of 491 patients were retrospectively enrolled in this study. The serum levels of diamine oxidase, D-lactate and lipopolysaccharide were measured to evaluate intestinal barrier integrity in patients with and without MAFLD. Binary logistic regression and correlational analyses were conducted to verify the association between MAFLD and serum levels of intestinal barrier biomarkers. RESULTS We enrolled 294 patients with MAFLD and 197 patients without MAFLD in this study. Patients with MAFLD had higher serum levels of diamine oxidase, D-lactate and lipopolysaccharide (P < 0.001) than those without MAFLD. Multivariate logistic regression analyses showed that BMI [odds ratio (OR) 1.324; P < 0.001], triglycerides (OR 2.649; P = 0.002), nonesterified fatty acids (OR 1.002; P = 0.011), diamine oxidase (OR 1.149; P = 0.011) and D-lactate (OR 1.221; P < 0.001) were independent risk factors for MAFLD. Additionally, serum levels of diamine oxidase and D-lactate increase as liver steatosis became more severe. MAFLD patients with ≥2 metabolic abnormalities had higher serum levels of lipopolysaccharide (P = 0.034). CONCLUSIONS MAFLD is associated with intestinal barrier impairment. Diamine oxidase and D-lactate are potential predictors of MAFLD, and their serum levels are related to liver steatosis. Intestinal barrier impairment is related to metabolic disorders in patients with MAFLD.
Collapse
|
14
|
Wang R, Wang L, Wu H, Zhang L, Hu X, Li C, Liu S. Noni (Morinda citrifolia L.) fruit phenolic extract supplementation ameliorates NAFLD by modulating insulin resistance, oxidative stress, inflammation, liver metabolism and gut microbiota. Food Res Int 2022; 160:111732. [DOI: 10.1016/j.foodres.2022.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
15
|
Koene E, Schrauwen-Hinderling VB, Schrauwen P, Brouwers MCGJ. Novel insights in intestinal and hepatic fructose metabolism: from mice to men. Curr Opin Clin Nutr Metab Care 2022; 25:354-359. [PMID: 35838297 DOI: 10.1097/mco.0000000000000853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The rise in fructose consumption in parallel with the current epidemic of obesity and related cardiometabolic disease requires a better understanding of the pathophysiological pathways that are involved. RECENT FINDINGS Animal studies have shown that fructose has various effects on the intestines that subsequently affect intrahepatic lipid accumulation and inflammation. Fructose adversely affects the gut microbiome - as a producer of endotoxins and intermediates of de novo lipogenesis - and intestinal barrier function. Furthermore, intestinal fructose metabolism shields fructose away from the liver. Finally, fructose 1-phosphate (F1-P) serves as a signal molecule that promotes intestinal cell survival and, consequently, intestinal absorption capacity. Intervention and epidemiological studies have convincingly shown that fructose, particularly derived from sugar-sweetened beverages, stimulates de novo lipogenesis and intrahepatic lipid accumulation in humans. Of interest, individuals with aldolase B deficiency, who accumulate F1-P, are characterized by a greater intrahepatic lipid content. First phase II clinical trials have recently shown that reduction of F1-P, by inhibition of ketohexokinase, reduces intrahepatic lipid content. SUMMARY Experimental evidence supports current measures to reduce fructose intake, for example by the implementation of a tax on sugar-sweetened beverages, and pharmacological inhibition of fructose metabolism to reduce the global burden of cardiometabolic disease.
Collapse
Affiliation(s)
- Evi Koene
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
| | - Vera B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
- Department of Radiology and Nuclear Medicine, Maastricht University
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences
- School of Nutrition and Translational Research in Metabolism (NUTRIM)
| | - Martijn C G J Brouwers
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Center
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Liao J, Guo J, Niu Y, Fang T, Wang F, Fan Y. Flavonoids from Lycium barbarum leaves attenuate obesity through modulating glycolipid levels, oxidative stress, and gut bacterial composition in high-fat diet-fed mice. Front Nutr 2022; 9:972794. [PMID: 35967795 PMCID: PMC9366397 DOI: 10.3389/fnut.2022.972794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional herbal therapy made from Lycium barbarum leaves has been said to be effective in treating metabolic diseases, while its exact processes are yet unknown. Natural flavonoids are considered as a secure and reliable method for treating obesity. We thus made an effort to investigate the processes by which flavonoids from L. barbarum leaves (LBLF) reduce obesity. To assess the effectiveness of the intervention following intragastric injection of various dosages of LBLF (50, 100, and 200 mg/kg⋅bw), obese model mice developed via a high-fat diet were utilized. Treatment for LBLF may decrease body weight gain, Lee’s index, serum lipids levels, oxidative stress levels, and hepatic lipids levels. It may also enhance fecal lipids excretion and improve glucose tolerance. Additionally, LBLF therapy significantly restored gut dysfunction brought on by a high-fat diet by boosting gut bacterial diversities and altering the composition of the gut bacterial community by elevating probiotics and reducing harmful bacteria.
Collapse
Affiliation(s)
- JiaLe Liao
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - Jia Guo
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - YinHong Niu
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - Tian Fang
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| | - FangZhou Wang
- Ningxia Red Power Goji Co., Ltd., Zhongwei, China.,Ningxia Engineering Research Center for Goji Biological Fermentation & Milling, Zhongwei, China
| | - YanLi Fan
- Department of Food Science and Technology, School of Food & Wine, Ningxia University, Yinchuan, China
| |
Collapse
|
17
|
Baumann A, Rajcic D, Brandt A, Sánchez V, Jung F, Staltner R, Nier A, Trauner M, Staufer K, Bergheim I. Alterations of nitric oxide homeostasis as trigger of intestinal barrier dysfunction in non-alcoholic fatty liver disease. J Cell Mol Med 2022; 26:1206-1218. [PMID: 35029027 PMCID: PMC8831936 DOI: 10.1111/jcmm.17175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in intestinal nitric oxide metabolism are discussed to contribute for the development of intestinal barrier dysfunction in non‐alcoholic fatty liver disease (NAFLD). To induce steatosis, female C57BL/6J mice were pair‐fed with a liquid control diet (C) or a fat‐, fructose‐ and cholesterol‐rich diet (FFC) for 8 weeks. Mice received the diets ± 2.49 g L‐arginine/kg bw/day for additional 5 weeks. Furthermore, mice fed C or FFC ± L‐arginine/kg bw/day for 8 weeks were concomitantly treated with the arginase inhibitor Nω‐hydroxy‐nor‐L‐arginine (nor‐NOHA, 0.01 g/kg bw). Liver damage, intestinal barrier function, nitric oxide levels and arginase activity in small intestine were assessed. Also, arginase activity was measured in serum from 13 patients with steatosis (NAFL) and 14 controls. The development of steatosis with beginning inflammation was associated with impaired intestinal barrier function, increased nitric oxide levels and a loss of arginase activity in small intestine in mice. L‐arginine supplementation abolished the latter along with an improvement of intestinal barrier dysfunction; nor‐NOHA attenuated these effects. In patients with NAFL, arginase activity in serum was significantly lower than in healthy controls. Our data suggest that increased formation of nitric oxide and a loss of intestinal arginase activity is critical in NAFLD‐associated intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Victor Sánchez
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Katharina Staufer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Department of Surgery Division of Transplantation, Medical University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Wang G, Han Q, Yan X, Feng L, Zhang Y, Zhang R, Zhang Y. Polyphenols-rich extracts from walnut green husk prevent non-alcoholic fatty liver disease, vascular endothelial dysfunction and colon tissue damage in rats induced by high-fat diet. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Yki-Järvinen H, Luukkonen PK, Hodson L, Moore JB. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2021; 18:770-786. [PMID: 34257427 DOI: 10.1038/s41575-021-00472-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased in parallel with the epidemic of obesity. Controversy has emerged around dietary guidelines recommending low-fat-high-carbohydrate diets and the roles of dietary macronutrients in the pathogenesis of metabolic disease. In this Review, the topical questions of whether and how dietary fats and carbohydrates, including free sugars, differentially influence the accumulation of liver fat (specifically, intrahepatic triglyceride (IHTG) content) are addressed. Focusing on evidence from humans, we examine data from stable isotope studies elucidating how macronutrients regulate IHTG synthesis and disposal, alter pools of bioactive lipids and influence insulin sensitivity. In addition, we review cross-sectional studies on dietary habits of patients with NAFLD and randomized controlled trials on the effects of altering dietary macronutrients on IHTG. Perhaps surprisingly, evidence to date shows no differential effects between free sugars, with both glucose and fructose increasing IHTG in the context of excess energy. Moreover, saturated fat raises IHTG more than polyunsaturated or monounsaturated fats, with adverse effects on insulin sensitivity, which are probably mediated in part by increased ceramide synthesis. Taken together, the data support the use of diets that have a reduced content of free sugars, refined carbohydrates and saturated fat in the treatment of NAFLD.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland. .,Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| | - Panu K Luukkonen
- Department of Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | | |
Collapse
|
20
|
Toll-like receptor 1 as a possible target in non-alcoholic fatty liver disease. Sci Rep 2021; 11:17815. [PMID: 34497333 PMCID: PMC8426394 DOI: 10.1038/s41598-021-97346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) in the liver compartment have repeatedly been attributed to the development of non-alcoholic fatty liver disease (NAFLD). Knowledge on TLR expression in blood cells and their relation to intestinal microbiota and NAFLD development is limited. Here, we determined TLR expression patterns in peripheral blood mononuclear cells (PBMCs) of NAFLD patients and controls, their relation to intestinal microbiota and the impact of TLRs found altered in NAFLD development. Markers of intestinal permeability in blood and TLR mRNA expression in PBMCs were determined in 37 NAFLD patients and 15 age-matched healthy controls. Fecal microbiota composition was evaluated in 21 NAFLD patients and 9 controls using 16S rRNA gene amplicon sequencing. Furthermore, TLR1-/- and C57BL/6 mice (n = 5-6/group) were pair-fed a liquid control or a fat-, fructose- and cholesterol-rich diet. Intestinal microbiota composition and markers of intestinal permeability like zonulin and bacterial endotoxin differed significantly between groups with the latter markers being significantly higher in NAFLD patients. Expression of TLR1-8 and 10 mRNA was detectable in PBMCs; however, only TLR1 expression, being higher in NAFLD patients, were significantly positively correlated with the prevalence of Holdemanella genus while negative correlations were found with Gemmiger and Ruminococcus genera. TLR1-/- mice were significantly protected from the development of diet-induced NAFLD when compared to wild-type mice. While intestinal microbiota composition and permeability differed significantly between NAFLD patients and healthy subjects, in PBMCs, only TLR1 expression differed between groups. Still, targeting these alterations might be a beneficial approach in the treatment of NAFLD in some patients.
Collapse
|
21
|
Mazzoli A, Gatto C, Crescenzo R, Spagnuolo MS, Nazzaro M, Iossa S, Cigliano L. Gut and liver metabolic responses to dietary fructose - are they reversible or persistent after switching to a healthy diet? Food Funct 2021; 12:7557-7568. [PMID: 34286786 DOI: 10.1039/d1fo00983d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The link between increased fructose intake and induction of gut and liver dysfunction has been established, while it remains to be understood whether this damage is reversible, particularly in the young population, in which the intake of fructose has reached dramatic levels. To this end, young (30 days old) rats were fed a fructose-rich or control diet for 3 weeks to highlight the early response of the gut and liver to increased fructose intake. After this period, fructose-fed rats were returned to a control diet for 3 weeks and compared to the rats that received the control diet for the entire period to identify whether fructose-induced changes in the gut-liver axis persist or not after switching back to a control diet. Glucose transporter 5 and the tight junction protein occludin were assessed in the ileum and colon. Markers of inflammation and redox homeostasis as well as fructose and uric acid levels were also evaluated in the ileum, colon and liver. From the whole data, it is seen that metabolic derangement elicited by a fructose-rich diet, even after a brief period of intake, is fully reversed in the liver by a period of fructose withdrawal, while the alterations persist in the gut, especially in the ileum. In conclusion, given the increasing consumption of fructose-rich foods in young populations, the present results highlight the risk arising from gut persistent alterations even after the end of a fructose-rich diet. Therefore, dietary recommendations of reducing the intake of this simple sugar is mandatory to avoid not only the related metabolic alterations but also the persistence of these detrimental changes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang G, Yang X, Wang J, Zhong D, Zhang R, Zhang Y, Feng L, Zhang Y. Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. Int J Biol Macromol 2021; 182:879-898. [PMID: 33857511 DOI: 10.1016/j.ijbiomac.2021.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
High-fat (HF) diets cause obesity, gut microbial dysbiosis and associated disorders and inflammatory bowel disease (IBD) due to increased intestinal permeability, which is an important reason for chronic inflammation and oxidative stress. This study was to investigate the effects and mechanism by which walnut green husk polysaccharides (WGHP) prevents obesity, oxidative stress, inflammation, liver and colon damage in HF diet induced rats. We found that WGHP alleviated HF-induced abnormal weight gain, disordered lipid metabolism, inflammation, oxidative stress, colonic tissue injury and up-regulate the expression level of colonic tight junction protein in the rats. Besides, the administration of WGHP promoted browning of iWAT and thermogenesis in BAT of HF-fed rats, and improved gut microbiota dysbiosis by increasing the bacterial diversity and reducing the relative abundance of potential pathogenic bacteria in the colon of the rats. Furthermore, WGHP consumption not only increased the SCFAs content but also improved the relative abundance of Prevotellaceae and Allobaculum in the gut of rats. Our results suggest that the protective effect of WGHP on metabolic inflammation caused by HF may be due to the regulation of gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyue Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Diying Zhong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yani Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Luoluo Feng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
23
|
Binienda A, Twardowska A, Makaro A, Salaga M. Dietary Carbohydrates and Lipids in the Pathogenesis of Leaky Gut Syndrome: An Overview. Int J Mol Sci 2020; 21:ijms21218368. [PMID: 33171587 PMCID: PMC7664638 DOI: 10.3390/ijms21218368] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the recent knowledge on the effects of dietary carbohydrates and lipids on the pathophysiology of leaky gut syndrome (LGS). Alterations in intestinal barrier permeability may lead to serious gastrointestinal (GI) disorders. LGS is caused by intestinal hyperpermeability due to changes in the expression levels and functioning of tight junctions. The influence of dietary habits on intestinal physiology is clearly visible in incidence rates of intestinal diseases in industrial and developing countries. Diseases which are linked to intestinal hyperpermeability tend to localize to Westernized countries, where a diet rich in fats and refined carbohydrates predominates. Several studies suggest that fructose is one of the key carbohydrates involved in the regulation of the intestinal permeability and its overuse may cause harmful effects, such as tight junction protein dysfunction. On the other hand, short chain fatty acids (mainly butyrate) at appropriate concentrations may lead to the reduction of intestinal permeability, which is beneficial in LGS. However, long chain fatty acids, including n-3 and n-6 polyunsaturated fatty acids have unclear properties. Some of those behave as components untightening and tightening the intestinal membrane.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Correspondence: ; Tel.: +48-42-272-57-07; Fax: +48-42-272-56-94
| |
Collapse
|
24
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:E8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
25
|
Brandt A, Rajcic D, Jin CJ, Sánchez V, Engstler AJ, Jung F, Nier A, Baumann A, Bergheim I. Fortifying diet with rapeseed oil instead of butterfat attenuates the progression of diet-induced non-alcoholic fatty liver disease (NAFLD) and impairment of glucose tolerance. Metabolism 2020; 109:154283. [PMID: 32497536 DOI: 10.1016/j.metabol.2020.154283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Absolute dietary fat intake but even more so fatty acid pattern is discussed to be critical in the development of non-alcoholic fatty liver disease (NAFLD). Here, we determined if switching a butterfat enriched diet to a rapeseed oil (RO) enriched diet affects progression of an existing NAFLD and glucose intolerance in mice. METHODS For eight weeks, female C57Bl/6J mice were either fed a liquid control (C) or a butterfat-, fructose- and cholesterol-rich diet (BFC, 25E% butterfat) to induce early signs of steatohepatitis and glucose intolerance in mice. For additional five weeks mice received either BFC or C or a fat-, fructose- and cholesterol-rich and control diet, in which butterfat was replaced with RO (ROFC and CRO). Markers of glucose metabolism, liver damage and intestinal barrier were assessed. RESULTS Exchanging butterfat with RO attenuated the progression of BFC diet-induced NAFLD and glucose intolerance. Beneficial effects of RO were associated with lower portal endotoxin levels and an attenuation of the induction of the toll-like receptor-4-dependent signaling cascades in liver. Peroxisome proliferator-activated receptor γ activity was induced in small intestine of ROFC-fed mice. CONCLUSION Taken together, exchanging butterfat with RO attenuated the progression of diet-induced steatohepatitis and glucose intolerance in mice.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Dragana Rajcic
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Cheng Jun Jin
- Institute of Nutrition, SD Model Systems of Molecular Nutrition, Friedrich-Schiller University of Jena, Jena, Germany
| | - Victor Sánchez
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anna Janina Engstler
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Finn Jung
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anika Nier
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Department of Nutritional Sciences, R.F. Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Adipokines and Endotoxemia Correlate with Hepatic Steatosis in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2020; 12:nu12030699. [PMID: 32151020 PMCID: PMC7146245 DOI: 10.3390/nu12030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: The etiology of non-alcoholic fatty liver disease (NAFLD) is multifactorial. Dietary composition has been implicated as a factor modulating intestinal barrier and could affect disease severity. The aim of this study was to evaluate dietary intake and markers of intestinal permeability in patients with NAFLD. (2) Methods: We enrolled 63 patients with NAFLD and compared them to age-matched controls. (3) Results: body mass index (BMI) and leptin to adiponectin ratio—the latter being an indicator of abdominal fat accumulation—correlated with the degree of hepatic steatosis being accompanied with rising levels of fasting insulin. Furthermore, endotoxin plasma levels and markers of inflammation were significantly higher in NAFLD compared to controls and increased with the severity of hepatic steatosis. Despite comparable intake of total energy and macronutrients, intake of fiber was lower in all patients with NAFLD compared to controls and were negatively related to disease severity. (4) Conclusions: Taken together, results of the present study suggest that fiber intake in patients is negatively related to steatosis degree and bacterial endotoxin levels, further suggesting that dietary fiber intake may be a target in NAFLD treatment (NCT: 02366052 and 03482284).
Collapse
|
27
|
Li W, Yang H, Zhao Q, Wang X, Zhang J, Zhao X. Polyphenol-Rich Loquat Fruit Extract Prevents Fructose-Induced Nonalcoholic Fatty Liver Disease by Modulating Glycometabolism, Lipometabolism, Oxidative Stress, Inflammation, Intestinal Barrier, and Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7726-7737. [PMID: 31203627 DOI: 10.1021/acs.jafc.9b02523] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fructose as a daily sweetener is widely recognized as a risk catalyst for nonalcoholic fatty liver disease (NAFLD). The aim of current study is to evaluate the effects and molecular mechanism by which polyphenol-rich loquat fruit extract (LFP) prevents NAFLD in mice fed 30% fructose water (HF) for 8 weeks. Administration of LFP to HF-fed mice mitigated abnormal body weight, disordered lipid metabolism, oxidative stress, and inflammation through a mechanism regulated by the AKT, ChREBP/SREBP-1c, Nrf2, and TLR4/MyD88/TRIF pathways. LFP caused a significant decrease in the endotoxin content (16.67-12.7 EU/mL) in the liver of HF-fed mice. LFP not only improved HF-induced breakage of the intestinal barrier via interacting with tight junction proteins (ZO-1, occludin), mucin, and immunoreaction in the colon but also maintained normal colonic Firmicutes/Bacteroidetes ratios and the relative abundance of Veillonella in HF-fed mice. Our results suggest that LFP may serve as a nutritional agent for protecting liver in HF-fed mice.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology , Yangtze Normal University , Chongqing 408100 , China
| | - Hongyan Yang
- School of Aerospace Medicine , Fourth Military Medical University , Xi'an 710032 , China
| | - Qiang Zhao
- Department of Cardiology , First Affiliated Hospital of Xinjiang Medical University , Urumqi , China
- Xinjiang Key Laboratory of Cardiovascular Disease Research , Urumqi , China
| | - Xv Wang
- School of Life Science and Biotechnology , Yangtze Normal University , Chongqing 408100 , China
| | - Jing Zhang
- School of Life Science and Biotechnology , Yangtze Normal University , Chongqing 408100 , China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food , Chongqing University of Education , Chongqing 400067 , China
| |
Collapse
|
28
|
Hoffman S, Alvares D, Adeli K. Intestinal lipogenesis: how carbs turn on triglyceride production in the gut. Curr Opin Clin Nutr Metab Care 2019; 22:284-288. [PMID: 31107259 DOI: 10.1097/mco.0000000000000569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review recent evidence for the role of carbohydrates in the promotion of de novo lipogenesis and lipoprotein secretion from the intestine. RECENT FINDINGS The consumption of diets rich in carbohydrates have been shown to promote elevations in circulating lipids. In particular, the consumption of monosaccharides, such as glucose and fructose, have been shown to induce increases in intestinal de novo lipogenesis, as well as be used as a substrate for the synthesis of triglycerides and lipoprotein export in the form of chylomicrons. Recently, various systematic reviews have analyzed the relative contribution of dietary fructose to intestinal lipogenesis. Although, there remains controversy within the literature, the body of evidence supports lipogenic effects of high fructose diets. In addition, alterations in markers of de novo lipogenesis within the jejunum of patients with insulin resistance may explain the alterations in their postprandial lipid profile. SUMMARY Recent evidence supports the contribution of dietary carbohydrates to intestinal lipogenesis and lipoprotein secretion; however, further research is required to fully understand the mechanisms underlying this complex process.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Alvares
- Molecular Medicine, Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Nier A, Brandt A, Rajcic D, Bruns T, Bergheim I. Short-Term Isocaloric Intake of a Fructose- but not Glucose-Rich Diet Affects Bacterial Endotoxin Concentrations and Markers of Metabolic Health in Normal Weight Healthy Subjects. Mol Nutr Food Res 2019; 63:e1800868. [PMID: 30570214 PMCID: PMC6590154 DOI: 10.1002/mnfr.201800868] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Indexed: 12/18/2022]
Abstract
SCOPE Dietary pattern and impairments of intestinal barrier function are discussed to be critical in the development of metabolic impairments. Here, it is determined if an isocaloric exchange of complex carbohydrates with monosaccharides affects markers of intestinal permeability and metabolic health in healthy subjects. METHODS AND RESULTS After a dietary standardization for 4 days, all 12 subjects aged 21-33 years receive an isocaloric fructose- and glucose-enriched diet for 3 days separated by a wash-out phase. Anthropometry, blood pressure, markers of intestinal permeability and metabolic as well as inflammatory parameters are determined in blood samples or isolated peripheral blood mononuclear cells collected at baseline, after standardizations and the monosaccharide interventions, respectively. While anthropometric and inflammatory parameters are not changed, the intake of an isocaloric fructose- but not glucose-enriched diet is associated with a significant increase of bacterial endotoxin plasma levels and alanine aminotransferase activity in serum, while total plasma nitrate/nitrite concentrations are significantly decreased. In peripheral blood mononuclear cells, Toll like receptors 4, 2, and MYD88 mRNA expressions are significantly induced after the fructose-rich but not the glucose-rich diet. CONCLUSION In metabolically healthy subjects, even a short-term intake of a fructose-rich diet can elevate bacterial endotoxin levels and change markers of liver health and vascular endothelial function.
Collapse
Affiliation(s)
- Anika Nier
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Annette Brandt
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| | - Dragana Rajcic
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
| | - Tony Bruns
- Department of Internal Medicine IVUniversity Hospital Jena07743JenaGermany
| | - Ina Bergheim
- Department of Nutritional SciencesMolecular Nutritional ScienceUniversity of Vienna1090ViennaAustria
- SD Model Systems of Molecular NutritionInstitute of NutritionFriedrich–Schiller University Jena07743JenaGermany
| |
Collapse
|