1
|
de la O V, Fernández-Cruz E, Valdés A, Cifuentes A, Walton J, Martínez JA. Exhaustive Search of Dietary Intake Biomarkers as Objective Tools for Personalized Nutrimetabolomics and Precision Nutrition Implementation. Nutr Rev 2024:nuae133. [PMID: 39331531 DOI: 10.1093/nutrit/nuae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE To conduct an exhaustive scoping search of existing literature, incorporating diverse bibliographic sources to elucidate the relationships between metabolite biomarkers in human fluids and dietary intake. BACKGROUND The search for biomarkers linked to specific dietary food intake holds immense significance for precision health and nutrition research. Using objective methods to track food consumption through metabolites offers a more accurate way to provide dietary advice and prescriptions on healthy dietary patterns by healthcare professionals. An extensive investigation was conducted on biomarkers associated with the consumption of several food groups and consumption patterns. Evidence is integrated from observational studies, systematic reviews, and meta-analyses to achieve precision nutrition and metabolism personalization. METHODS Tailored search strategies were applied across databases and gray literature, yielding 158 primary research articles that met strict inclusion criteria. The collected data underwent rigorous analysis using STATA and Python tools. Biomarker-food associations were categorized into 5 groups: cereals and grains, dairy products, protein-rich foods, plant-based foods, and a miscellaneous group. Specific cutoff points (≥3 or ≥4 bibliographic appearances) were established to identify reliable biomarkers indicative of dietary consumption. RESULTS Key metabolites in plasma, serum, and urine revealed intake from different food groups. For cereals and grains, 3-(3,5-dihydroxyphenyl) propanoic acid glucuronide and 3,5-dihydroxybenzoic acid were significant. Omega-3 fatty acids and specific amino acids showcased dairy and protein foods consumption. Nuts and seafood were linked to hypaphorine and trimethylamine N-oxide. The miscellaneous group featured compounds like theobromine, 7-methylxanthine, caffeine, quinic acid, paraxanthine, and theophylline associated with coffee intake. CONCLUSIONS Data collected from this research demonstrate potential for incorporating precision nutrition into clinical settings and nutritional advice based on accurate estimation of food intake. By customizing dietary recommendations based on individualized metabolic profiles, this approach could significantly improve personalized food consumption health prescriptions and support integrating multiple nutritional data.This article is part of a Nutrition Reviews special collection on Precision Nutrition.
Collapse
Affiliation(s)
- Victor de la O
- Nutrition Precision and Cardiometabolic Health Program of IMDEA-Food Institute (Madrid Institute for Advances Studies), 28040, Madrid, Spain
- Faculty of Health Sciences, International University of La Rioja, 26006, Logroño, Spain
| | - Edwin Fernández-Cruz
- Nutrition Precision and Cardiometabolic Health Program of IMDEA-Food Institute (Madrid Institute for Advances Studies), 28040, Madrid, Spain
- Faculty of Health Sciences, International University of La Rioja, 26006, Logroño, Spain
| | - Alberto Valdés
- Foodomics Lab, Institute of Food Science Research, Spanish National Research Council, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Foodomics Lab, Institute of Food Science Research, Spanish National Research Council, 28049, Madrid, Spain
| | - Janette Walton
- Department of Biological Sciences, Munster Technological University, Cork, Republic of Ireland
| | - J Alfredo Martínez
- Nutrition Precision and Cardiometabolic Health Program of IMDEA-Food Institute (Madrid Institute for Advances Studies), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28049, Madrid, Spain
- Department of Medicine and Endocrinology, Campus of Soria, University of Valladolid, Valladolid, Spain
| |
Collapse
|
2
|
Ulusoy-Gezer HG, Rakıcıoğlu N. The Future of Obesity Management through Precision Nutrition: Putting the Individual at the Center. Curr Nutr Rep 2024; 13:455-477. [PMID: 38806863 PMCID: PMC11327204 DOI: 10.1007/s13668-024-00550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW: The prevalence of obesity continues to rise steadily. While obesity management typically relies on dietary and lifestyle modifications, individual responses to these interventions vary widely. Clinical guidelines for overweight and obesity stress the importance of personalized approaches to care. This review aims to underscore the role of precision nutrition in delivering tailored interventions for obesity management. RECENT FINDINGS: Recent technological strides have expanded our ability to detect obesity-related genetic polymorphisms, with machine learning algorithms proving pivotal in analyzing intricate genomic data. Machine learning algorithms can also predict postprandial glucose, triglyceride, and insulin levels, facilitating customized dietary interventions and ultimately leading to successful weight loss. Additionally, given that adherence to dietary recommendations is one of the key predictors of weight loss success, employing more objective methods for dietary assessment and monitoring can enhance sustained long-term compliance. Biomarkers of food intake hold promise for a more objective dietary assessment. Acknowledging the multifaceted nature of obesity, precision nutrition stands poised to transform obesity management by tailoring dietary interventions to individuals' genetic backgrounds, gut microbiota, metabolic profiles, and behavioral patterns. However, there is insufficient evidence demonstrating the superiority of precision nutrition over traditional dietary recommendations. The integration of precision nutrition into routine clinical practice requires further validation through randomized controlled trials and the accumulation of a larger body of evidence to strengthen its foundation.
Collapse
Affiliation(s)
- Hande Gül Ulusoy-Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye
| | - Neslişah Rakıcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100, Sıhhiye, Ankara, Türkiye.
| |
Collapse
|
3
|
Shima H, Asakura T, Sakata K, Koiso M, Kikuchi J. Feed Components and Timing to Improve the Feed Conversion Ratio for Sustainable Aquaculture Using Starch. Int J Mol Sci 2024; 25:7921. [PMID: 39063163 PMCID: PMC11276616 DOI: 10.3390/ijms25147921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture contributes to the sustainable development of food security, marine resource conservation, and economy. Shifting aquaculture feed from fish meal and oil to terrestrial plant derivatives may result in cost savings. However, many carnivorous fish cannot be sustained on plant-derived materials, necessitating the need for the identification of important factors for farmed fish growth and the identification of whether components derived from terrestrial plants can be used in feed. Herein, we focused on the carnivorous fish leopard coral grouper (P. leopardus) to identify the essential growth factors and clarify their intake timing from feeds. Furthermore, we evaluated the functionality of starch, which are easily produced by terrestrial plants. Results reveal that carbohydrates, which are not considered essential for carnivorous fish, can be introduced as a major part of an artificial diet. The development of artificial feed using starch offers the possibility of increasing the growth of carnivorous fish in aquaculture.
Collapse
Affiliation(s)
- Hideaki Shima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Taiga Asakura
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Masahiko Koiso
- Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fishery Research and Education Agency, 148 Fukaiota, Ishigaki 907-0451, Okinawa, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
4
|
Evans M, Dai L, Avesani CM, Kublickiene K, Stenvinkel P. The dietary source of trimethylamine N-oxide and clinical outcomes: an unexpected liaison. Clin Kidney J 2023; 16:1804-1812. [PMID: 37915930 PMCID: PMC10616480 DOI: 10.1093/ckj/sfad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 11/03/2023] Open
Abstract
The profile of gut microbiota can vary according to host genetic and dietary characteristics, and be influenced by disease state and environmental stressors. The uremic dysbiosis results in a loss of biodiversity and overgrowth of microorganisms that may cause elevation of metabolic solutes such as trimethylamine N-oxide (TMAO), inducing pathogenic effects on its host. In patients with chronic kidney disease (CKD), TMAO levels are elevated because of a decreased clearance and an increased production from the uremic gut dysbiosis with a disrupted intestinal barrier and elevated enzymatic hepatic activity. Dietary precursors of TMAO are abundant in animal-derived foods such as red meat, egg yolk and other full-fat dietary products. TMAO is also found naturally in fish and certain types of seafood, with the TMAO content highly variable according to the depth of the sea where the fish is caught, as well as processing and storage. Although evidence points towards TMAO as being an important link to vascular damage and adverse cardiovascular outcomes, the evidence in CKD patients has not been consistent. In this review we discuss the potential dietary sources of TMAO and its actions on the intestinal microbiome as an explanation for the divergent results. We further highlight the potential of a healthy diet as one feasible therapeutic opportunity to prevent gut dysbiosis and reduce uremic toxin levels in patients with CKD.
Collapse
Affiliation(s)
- Marie Evans
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Carla Maria Avesani
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Ong ES. Urine Metabolites and Bioactive Compounds from Functional Food: Applications of Liquid Chromatography Mass Spectrometry. Crit Rev Anal Chem 2023; 54:3196-3211. [PMID: 37454386 DOI: 10.1080/10408347.2023.2235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bioactive compounds in functional foods, medicinal plants and others are considered attractive value-added molecules based on their wide range of bioactivity. It is clear that an important role is occupied by polyphenol, phenolic compounds and others. Urine is an effective biofluid to evaluate and monitor alterations in homeostasis and other processes related to metabolism. The current review provides a detailed description of the formation of urine in human body, various aspects relevant to sampling and analysis of urinary metabolites before presenting recent developments leveraging on metabolite profiling of urine. For the profiling of small molecules in urine, advancement of liquid chromatography mass tandem spectrometry (LC/MS/MS), establishment of standardized chemical fragmentation libraries, computational resources, data-analysis approaches with pattern recognition tools have made it an attractive option. The profiling of urinary metabolites gives an overview of the biomarkers associated with the diet and evaluates its biological effects. Metabolic pathways such as glycolysis, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine metabolism and others can be evaluated. Finally, a combination of metabolite profiling with chemical standardization and bioassay in functional food and medicinal plants will likely lead to the identification of new biomarkers and novel biochemical insights.
Collapse
Affiliation(s)
- Eng Shi Ong
- Singapore University of Technology and Design, Singapore, Republic of Singapore
| |
Collapse
|
6
|
Ongun MC, Orgul G, Celik C, Bariskaner H. Contractile effect of trimethylamine and trimethylamine-n-oxide on isolated human umbilical arteries. J Obstet Gynaecol Res 2023. [PMID: 37045561 DOI: 10.1111/jog.15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The aim of this study is to investigate the effect of trimethylamine (TMA) and trimethylamine-n-oxide (TMAO) on the contractility of human umbilical artery and the possible mechanisms involved. METHODS Vasoactive responses to TMA and TMAO on human umbilical artery rings were measured in isolated organ baths. Cumulative dose-response curves for TMA and TMAO were obtained before and after incubation with atropine, yohimbine, prazosin, indomethacin, verapamil, and Ca+2 -free Krebs-Henselite solution. RESULTS Administration of cumulative TMA and TMAO resulted in dose-dependent contraction at concentrations ranging from 10 to 100 mM on human umbilical artery rings. TMA-induced contractions were more potent than TMAO-induced contractions (TMA: -logEC50 = 1.00 ± 0.02, TMAO: -logEC50 = 0.57 ± 0.02). Contraction responses to TMA were significantly lower in the presence of verapamil and in the absence of external Ca+2 (p < 0.001, p < 0.05, respectively). CONCLUSION Our results showed that TMA and TMAO caused vasoconstriction in isolated human umbilical artery rings. Our findings also indicated that TMA but not TMAO-induced vasoconstriction was partially dependent on extracellular Ca2+ and calcium influx through L-type Ca2+ channels. Our results suggest that TMA and TMAO may have the potential to contribute to cardiovascular diseases through their direct effect on vascular contractility in human arteries.
Collapse
Affiliation(s)
- Mert C Ongun
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Gokcen Orgul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Cetin Celik
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Hulagu Bariskaner
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Liang H, Yu A, Wang Z, Zhang N, Wang Q, Gao H, Gao J, Wang X, Wang H. Atherosclerotic patients with diabetes mellitus may break through the threshold of healthy TMAO levels formed by long-term statins therapy. Heliyon 2023; 9:e13657. [PMID: 36879744 PMCID: PMC9984437 DOI: 10.1016/j.heliyon.2023.e13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Background Cardiovascular disease (CVD) is the leading course of disease-related death in both developed and developing countries. Atherosclerosis is main pathology of CVD, and its severity is thought to be related to trimethylamine N-oxide (TMAO) level in plasma. Therefore, it is necessary to deeply understand the synergistic patterns between TMAO and other contribution variables to atherosclerosis, allowing for effective and timely monitoring or intervention. Methods A total of 359 participants were recruited in our study, including 190 atherosclerosis patients, 82 MI or stroke patients, 68 non-atherosclerosis controls and 19 healthy controls. Information on their risk associated with atherosclerosis and plasma TMAO concentration were collected. LASSO regression, multivariate analysis and univariate analysis were then performed to confirm the correlation between TMAO level and risk factors of atherosclerosis. Results Compared to patients and non-atherosclerosis controls, healthy participants had a normal BMI range (lower than 24), lower triglyceride concentration, and healthy lifestyle habits (no smoking and low salt diet). However, under backgrounds of statins treatment and balanced dietary preferences, TMAO levels were not significantly different among patients, non-atherosclerosis controls and healthy controls. Using LASSO regression model, four indicators was identified to have contribution to TMAO levels, including diabetes, atherosclerosis, low-density lipoprotein and total cholesterol. Subsequent univariate analysis further confirmed that the presence or absence of diabetes had a decisive effect on patients' plasma TMAO levels, even though they had been taking statin lipid-lowering drugs for a long time. Conclusion Diabetics have abnormally high plasma TMAO levels even under continuous statins treatment, which may contribute to the development and progression of atherosclerosis. Therefore, it is necessary to focus on monitoring TMAO levels in diabetic patients to reduce adverse cardiovascular events in diabetic patients.
Collapse
Affiliation(s)
- Hao Liang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Anqi Yu
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Zheng Wang
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Na Zhang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Qingsong Wang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Haichao Gao
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| | - Junhui Gao
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Xinjun Wang
- Shanghai Biotecan Pharmaceuticals Co., Ltd, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People's Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200072, China
| | - Hong Wang
- Department of Cardiology, Affiliated Hospital of Chengde Medical University, Chengde 067000, China
| |
Collapse
|
8
|
Bertram HC. NMR foodomics in the assessment of diet and effects beyond nutrients. Curr Opin Clin Nutr Metab Care 2023:00075197-990000000-00051. [PMID: 36942870 DOI: 10.1097/mco.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of most recent research studies employing nuclear magnetic resonance (NMR)-based metabolomics in the assessment of effects of diet and food ingestion. RECENT FINDINGS NMR metabolomics is a useful tool in the elucidation of specific diets, for example, the Mediterranean diet, the New Nordic diet types, and also for comparing vegan, vegetarian and omnivore diets where specific diet-linked metabolite perturbations have been identified. Another core area where NMR metabolomics is employed involves research focused on examining specific food components or ingredients, including dietary fibers and other functional components. In several cases, NMR metabolomics has aided to document how specific food components exert effects on the metabolic activity of the gut microbiota. Research has also demonstrated the potential use of NMR metabolomics in assessing diet quality and interactions between specific food components such as meat and diet quality. The implications of these findings are important as they address that background diet can be decisive for if food items turn out to exert either harmful or health-promoting effects. SUMMARY NMR metabolomics can provide important mechanistic insight and aid to biomarker discovery with implications for compliance and food registration purposes.
Collapse
|
9
|
Chiang EPI, Syu JN, Hung HC, Rodriguez RL, Wang WJ, Chiang ER, Chiu SC, Chao CY, Tang FY. N-3 polyunsaturated fatty acids block the trimethylamine-N-oxide- ACE2- TMPRSS2 cascade to inhibit the infection of human endothelial progenitor cells by SARS-CoV-2. J Nutr Biochem 2022; 109:109102. [PMID: 35817244 PMCID: PMC9264727 DOI: 10.1016/j.jnutbio.2022.109102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is a novel coronavirus that infects many types of cells and causes cytokine storms, excessive inflammation, acute respiratory distress to induce failure of respiratory system and other critical organs. In this study, our results showed that trimethylamine-N-oxide (TMAO), a metabolite generated by gut microbiota, acts as a regulatory mediator to enhance the inerleukin-6 (IL-6) cytokine production and the infection of human endothelial progenitor cells (hEPCs) by SARS-CoV-2. Treatment of N-3 polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) could effectively block the entry of SARS-CoV-2 in hEPCs. The anti-infection effects of N-3 PUFAs were associated with the inactivation of NF-κB signaling pathway, a decreased expression of the entry receptor angiotensin-converting enzyme 2 (ACE2) and downstream transmembrane serine protease 2 in hEPCs upon the stimulation of TMAO. Treatment of DHA and EPA further effectively inhibited TMAO-mediated expression of IL-6 protein, probably through an inactivation of MAPK/p38/JNK signaling cascades and a downregulation of microRNA (miR)-221 in hEPCs. In conclusion, N-3 PUFAs such as DHA and EPA could effectively act as preventive agents to block the infection of SARS-CoV-2 and IL-6 cytokine production in hEPCs upon the stimulation of TMAO.
Collapse
Affiliation(s)
- En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jia-Ning Syu
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China
| | - Hung-Chang Hung
- Department of Internal Medicine, Nantou Hospital, Ministry of Health and Welfare, Nantou City, Taiwan, Republic of China
| | - Raymond L Rodriguez
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
| | - En-Rung Chiang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China; National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan, Republic of China
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Che-Yi Chao
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
10
|
Dai L, Massy ZA, Stenvinkel P, Chesnaye NC, Larabi IA, Alvarez JC, Caskey FJ, Torino C, Porto G, Szymczak M, Krajewska M, Drechsler C, Wanner C, Jager KJ, Dekker FW, Evenepoel P, Evans M, Torp A, Iwig B, Perras B, Marx C, Drechsler C, Blaser C, Wanner C, Emde C, Krieter D, Fuchs D, Irmler E, Platen E, Schmidt-Gürtler H, Schlee H, Naujoks H, Schlee I, Cäsar S, Beige J, Röthele J, Mazur J, Hahn K, Blouin K, Neumeier K, Anding-Rost K, Schramm L, Hopf M, Wuttke N, Frischmuth N, Ichtiaris P, Kirste P, Schulz P, Aign S, Biribauer S, Manan S, Röser S, Heidenreich S, Palm S, Schwedler S, Delrieux S, Renker S, Schättel S, Stephan T, Schmiedeke T, Weinreich T, Leimbach T, Stövesand T, Bahner U, Seeger W, Cupisti A, Sagliocca A, Ferraro A, Mele A, Naticchia A, Còsaro A, Ranghino A, Stucchi A, Pignataro A, De Blasio A, Pani A, Tsalouichos A, Antonio B, Iorio BRD, Alessandra B, Abaterusso C, Somma C, D'alessandro C, Torino C, Zullo C, Pozzi C, Bergamo D, Ciurlino D, Motta D, Russo D, Favaro E, Vigotti F, Ansali F, Conte F, Cianciotta F, Giacchino F, Cappellaio F, Pizzarelli F, Greco G, Porto G, Bigatti G, Marinangeli G, Cabiddu G, Fumagalli G, Caloro G, Piccoli G, Capasso G, Gambaro G, Tognarelli G, Bonforte G, Conte G, Toscano G, Del Rosso G, Capizzi I, Baragetti I, Oldrizzi L, Gesualdo L, Biancone L, Magnano M, Ricardi M, Bari MD, Laudato M, Sirico ML, Ferraresi M, Provenzano M, Malaguti M, Palmieri N, Murrone P, Cirillo P, Dattolo P, Acampora P, Nigro R, Boero R, Scarpioni R, Sicoli R, Malandra R, Savoldi S, Bertoli S, Borrelli S, Maxia S, Maffei S, Mangano S, Cicchetti T, Rappa T, Palazzo V, De Simone W, Schrander A, van Dam B, Siegert C, Gaillard C, Beerenhout C, Verburgh C, Janmaat C, Hoogeveen E, Hoorn E, Dekker F, Boots J, Boom H, Eijgenraam JW, Kooman J, Rotmans J, Jager K, Vogt L, Raasveld M, Vervloet M, van Buren M, van Diepen M, Chesnaye N, Leurs P, Voskamp P, van Esch S, Boorsma S, Berger S, Konings C, Aydin Z, Musiała A, Szymczak A, Olczyk E, Augustyniak-Bartosik H, Miśkowiec-Wiśniewska I, Manitius J, Pondel J, Jędrzejak K, Nowańska K, Nowak Ł, Szymczak M, Durlik M, Dorota S, Nieszporek T, Heleniak Z, Jonsson A, Rogland B, Wallquist C, Vargas D, Dimény E, Sundelin F, Uhlin F, Welander G, Hernandez IB, Gröntoft KC, Stendahl M, Svensson ME, Evans M, Heimburger O, Kashioulis P, Melander S, Almquist T, Woodman A, McKeever A, Ullah A, McLaren B, Harron C, Barrett C, O'Toole C, Summersgill C, Geddes C, Glowski D, McGlynn D, Sands D, Caskey F, Roy G, Hirst G, King H, McNally H, Masri-Senghor H, Murtagh H, Rayner H, Turner J, Wilcox J, Berdeprado J, Wong J, Banda J, Jones K, Haydock L, Wilkinson L, Carmody M, Weetman M, Joinson M, Dutton M, Matthews M, Morgan N, Bleakley N, Cockwell P, Roderick P, Mason P, Kalra P, Sajith R, Chapman S, Navjee S, Crosbie S, Brown S, Tickle S, Mathavakkannan S, Kuan Y. The association between TMAO, CMPF, and clinical outcomes in advanced chronic kidney disease: results from the European QUALity (EQUAL) Study. Am J Clin Nutr 2022; 116:1842-1851. [PMID: 36166845 PMCID: PMC9761748 DOI: 10.1093/ajcn/nqac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO), a metabolite from red meat and fish consumption, plays a role in promoting cardiovascular events. However, data regarding TMAO and its impact on clinical outcomes are inconclusive, possibly due to its undetermined dietary source. OBJECTIVES We hypothesized that circulating TMAO derived from fish intake might cause less harm compared with red meat sources by examining the concomitant level of 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF), a known biomarker of fish intake, and investigated the association between TMAO, CMPF, and outcomes. METHODS Patients were recruited from the European QUALity (EQUAL) Study on treatment in advanced chronic kidney disease among individuals aged ≥65 y whose estimated glomerular filtration rate (eGFR) had dropped for the first time to ≤20 mL/min per 1.73 m2 during the last 6 mo. The association between TMAO, CMPF, and outcomes including all-cause mortality and kidney replacement therapy (KRT) was assessed among 737 patients. Patients were further stratified by median cutoffs of TMAO and CMPF, suggesting high/low red meat and fish intake. RESULTS During a median of 39 mo of follow-up, 232 patients died. Higher TMAO was independently associated with an increased risk of all-cause mortality (multivariable HR: 1.46; 95% CI: 1.17, 1.83). Higher CMPF was associated with a reduced risk of both all-cause mortality (HR: 0.79; 95% CI: 0.71, 0.89) and KRT (HR: 0.80; 95% CI: 0.71, 0.90), independently of TMAO and other clinically relevant confounders. In comparison to patients with low TMAO and CMPF, patients with low TMAO and high CMPF had reduced risk of all-cause mortality (adjusted HR: 0.49; 95% CI: 0.31, 0.73), whereas those with high TMAO and high CMPF showed no association across adjusted models. CONCLUSIONS High CMPF conferred an independent role in health benefits and might even counteract the unfavorable association between TMAO and outcomes. Whether higher circulating CMPF concentrations are due to fish consumption, and/or if CMPF is a protective factor, remains to be verified.
Collapse
Affiliation(s)
- Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden,Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, Boulogne-Billancourt, France,Centre for Research in Epidemiology and Population Health (CESP), Inserm UMRS 1018, Team 5, University Versailles-Saint Quentin, University Paris-Saclay, Paris, France
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas C Chesnaye
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Islam Amine Larabi
- Laboratory of Pharmacology and Toxicology, CHU, Raymond Poincare, Garches, France,INSERM U1173, UFR des Sciences de la Santé Simone Veil, Montigny le Bretonneux, Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Jean Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU, Raymond Poincare, Garches, France,INSERM U1173, UFR des Sciences de la Santé Simone Veil, Montigny le Bretonneux, Université de Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Fergus J Caskey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Claudia Torino
- IFC-CNR, Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Reggio Calabria, Italy
| | - Gaetana Porto
- G.O.M., Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Maciej Szymczak
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Christoph Wanner
- Division of Nephrology, University Hospital of Würzburg, Würzburg, Germany
| | - Kitty J Jager
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Friedo W Dekker
- ERA-EDTA Registry, Department of Medical Informatics, Academic Medical Center, University of Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Pieter Evenepoel
- Department of Microbiology, Immunology, and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Associations of Diet with Urinary Trimethylamine-N-Oxide (TMAO) and Its Precursors among Free-Living 10-Year-Old Children: Data from SMBCS. Nutrients 2022; 14:nu14163419. [PMID: 36014922 PMCID: PMC9413070 DOI: 10.3390/nu14163419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a diet-derived cometabolite linked to cardiometabolic disease, has been associated with elevated dietary status, particularly in people with kidney failure and adults with dietary modulations. However, the influence of the current diet on TMAO levels in free-living children has not been adequately described. This study was to explore associations of food compositions and dietary diversity with urinary TMAO and its precursor concentrations. Urinary TMAO and its precursor concentrations of 474 healthy children from the Sheyang Mini Birth Cohort were quantified by ultra-performance liquid chromatography−Q Exactive high-resolution mass spectrometer (UPLC-Q Exactive HRMS). Individual food compositions from 24 h dietary recall data were classified into 20 groups and diversity scores were calculated according to the guidelines of the Food and Agriculture Organization of the United Nations (FAO). Associations of urinary TMAO and its precursors with food compositions and dietary diversity scores were assessed by generalized linear regression models. In models adjusted for potential confounders, urinary TMAO was significantly associated with intakes of fish (β, regression coefficient = 0.155, p < 0.05) and vegetables (β = 0.120, p < 0.05). Eggs intake showed positive associations with TMAO’s precursors (trimethylamine: β = 0.179, p < 0.05; choline: β = 0.181, p < 0.05). No association between meat intake and TMAO was observed, whereas meat and poultry intakes were related to the levels of acetyl-L-carnitine and L-carnitine (β: 0.134 to 0.293, p < 0.05). The indicators of dietary diversity were positively correlated to TMAO concentration (β: 0.027 to 0.091, p < 0.05). In this free-living children-based study, dietary factors were related to urinary TMAO and its precursors, especially fish, meat, and eggs. As such, dietary diversity was positively related to the level of TMAO.
Collapse
|
12
|
Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, Hanhineva K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022; 14:2102878. [PMID: 35903003 PMCID: PMC9341364 DOI: 10.1080/19490976.2022.2102878] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in the gut microbiota composition have been associated with a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The gut microbes transform and metabolize dietary- and host-derived molecules generating a diverse group of metabolites with local and systemic effects. The bi-directional communication between brain and the microbes residing in the gut, the so-called gut-brain axis, consists of a network of immunological, neuronal, and endocrine signaling pathways. Although the full variety of mechanisms of the gut-brain crosstalk is yet to be established, the existing data demonstrates that a single metabolite or its derivatives are likely among the key inductors within the gut-brain axis communication. However, more research is needed to understand the molecular mechanisms underlying how gut microbiota associated metabolites alter brain functions, and to examine if different interventional approaches targeting the gut microbiota could be used in prevention and treatment of neurological disorders, as reviewed herein.Abbreviations:4-EPS 4-ethylphenylsulfate; 5-AVA(B) 5-aminovaleric acid (betaine); Aβ Amyloid beta protein; AhR Aryl hydrocarbon receptor; ASD Autism spectrum disorder; BBB Blood-brain barrier; BDNF Brain-derived neurotrophic factor; CNS Central nervous system; GABA ɣ-aminobutyric acid; GF Germ-free; MIA Maternal immune activation; SCFA Short-chain fatty acid; 3M-4-TMAB 3-methyl-4-(trimethylammonio)butanoate; 4-TMAP 4-(trimethylammonio)pentanoate; TMA(O) Trimethylamine(-N-oxide); TUDCA Tauroursodeoxycholic acid; ZO Zonula occludens proteins.
Collapse
Affiliation(s)
- Hany Ahmed
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,CONTACT Hany Ahmed Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku, Finland
| | - Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, Turku, Finland,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Identifying a Correlation among Qualitative Non-Numeric Parameters in Natural Fish Microbe Dataset Using Machine Learning. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent technical innovations and developments in computer-based technology have enabled bioscience researchers to acquire comprehensive datasets and identify unique parameters within experimental datasets. However, field researchers may face the challenge that datasets exhibit few associations among any measurement results (e.g., from analytical instruments, phenotype observations as well as field environmental data), and may contain non-numerical, qualitative parameters, which make statistical analyses difficult. Here, we propose an advanced analysis scheme that combines two machine learning steps to mine association rules between non-numerical parameters. The aim of this analysis is to identify relationships between variables and enable the visualization of association rules from data of samples collected in the field, which have less correlations between genetic, physical, and non-numerical qualitative parameters. The analysis scheme presented here may increase the potential to identify important characteristics of big datasets.
Collapse
|
14
|
Lim T, Lee K, Kim RH, Cha KH, Koo SY, Moon EC, Hwang KT. Black raspberry extract can lower serum LDL cholesterol via modulation of gut microbial composition and serum bile acid profile in rats fed trimethylamine-N-oxide with a high-fat diet. Food Sci Biotechnol 2022; 31:1041-1051. [PMID: 35873380 PMCID: PMC9300784 DOI: 10.1007/s10068-022-01079-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Blood trimethylamine-N-oxide (TMAO) has been associated with cardiovascular disease. Black raspberry (Rubus occidentalis, BR) has been regarded to be beneficial for cardiovascular health. This study aimed to investigate how BR extract affects serum lipid profile, gut microbial composition, metabolites in rats fed TMAO with a high-fat diet. Dietary TMAO increased serum LDL cholesterol, while BR extract decreased its level. α-Diversity of gut microbiota was not changed; however, in the rats fed TMAO, Macellibacteroides and Mucispirillum were enriched, while Ruminococcaceae was reduced. The BR supplementation could restore Macellibacteroides, Clostridium, and Ruminococcaceae. The BR supplementation increased cecal hippuric acid and serum farnesoid X receptor-antagonistic bile acids, including ursodeoxycholic acid (UDCA), tauro-α-muricholic acid, and tauro-UDCA. The BR supplementation tended to upregulate Cyp7a1 and Abcg5 expressions while downregulating Srebf2 and Hmgcr expressions. BR extract affects the gut bacterial community and microbial metabolites, lowering serum LDL cholesterol in rats with elevated serum TMAO. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01079-y.
Collapse
Affiliation(s)
- Taehwan Lim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
| | - Ryun Hee Kim
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 South Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451 South Korea
| | - Song Yi Koo
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
- Natural Product Informatics Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451 South Korea
| | - Eun Chae Moon
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 South Korea
- BK21 FOUR Education and Research Team for Sustainable Food & Nutrition, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
15
|
Mazzucca CB, Scotti L, Cappellano G, Barone-Adesi F, Chiocchetti A. Nutrition and Rheumatoid Arthritis Onset: A Prospective Analysis Using the UK Biobank. Nutrients 2022; 14:nu14081554. [PMID: 35458116 PMCID: PMC9025922 DOI: 10.3390/nu14081554] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects the joints. The multifactorial etiopathogenesis of RA has been heavily investigated, but is still only partially understood. Diet can represent both a risk factor and a protective factor, based on some evidence that suggests specific properties of certain foods and their ability to increase/reduce inflammation. To date, the studies done on this topic provide discordant results and are heterogeneous in terms of design and cohort size. In this work, we investigated for the first time the relationship between nutrition and the risk of RA onset using a sample size of about half a million subjects from one of the largest publicly available biobanks that is the UK biobank. Results showed that oily fish, alcohol, coffee and breakfast cereals have protective roles in RA; whereas, tea can increase the risk of RA. In conclusion, the obtained results confirm that diet plays key roles in RA, either by promoting or by preventing RA onset and development. Future research should focus on unravelling the effects of dietary habits on immune-mediated diseases to establish better preventive strategies.
Collapse
Affiliation(s)
- Camilla Barbero Mazzucca
- Dipartimento di Scienze Della Salute, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Lorenza Scotti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, 28100 Novara, Italy; (L.S.); (F.B.-A.)
| | - Giuseppe Cappellano
- Dipartimento di Scienze Della Salute, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Barone-Adesi
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, 28100 Novara, Italy; (L.S.); (F.B.-A.)
| | - Annalisa Chiocchetti
- Dipartimento di Scienze Della Salute, Interdisciplinary Research Center of Autoimmune Diseases—IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy; (C.B.M.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
- Correspondence:
| |
Collapse
|
16
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Wang Z, Tang WHW, O'Connell T, Garcia E, Jeyarajah EJ, Li XS, Jia X, Weeks TL, Hazen SL. Circulating trimethylamine N-oxide levels following fish or seafood consumption. Eur J Nutr 2022; 61:2357-2364. [PMID: 35113194 PMCID: PMC9283263 DOI: 10.1007/s00394-022-02803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Some species of fish and seafood are high in trimethylamine N-oxide (TMAO), which accumulates in muscle where it protects against pressure and cold. Trimethylamine (TMA), the metabolic precursor to TMAO, is formed in fish during bacterial spoilage. Fish intake is promoted for its potential cardioprotective effects. However, numerous studies show TMAO has pro-atherothrombotic properties. Here, we determined the effects of fish or seafood consumption on circulating TMAO levels in participants with normal renal function. METHODS TMAO and omega-3 fatty acid content were quantified across multiple different fish or seafood species by mass spectrometry. Healthy volunteers (n = 50) were recruited for three studies. Participants in the first study consented to 5 consecutive weekly blood draws and provided dietary recall for the 24 h preceding each draw. In the second study, TMAO levels were determined following defined low and high TMAO diets. Finally, participants consumed test meals containing shrimp, tuna, fish sticks, salmon or cod. TMAO levels were quantified by mass spectrometry in blood collected before and after dietary challenge. RESULTS TMAO + TMA content varied widely across fish and seafood species. Consumption of fish sticks, cod, and to a lesser extent salmon led to significant increases in circulating TMAO levels. Within 1 day, circulating TMAO concentrations in all participants returned to baseline levels. CONCLUSIONS We conclude that some fish and seafood contain high levels of TMAO, and may induce a transient elevation in TMAO levels in some individuals. Selection of low TMAO content fish is prudent for subjects with elevated TMAO, cardiovascular disease or impaired renal function.
Collapse
Affiliation(s)
- Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas O'Connell
- LipoScience, Laboratory Corporation of America® Holdings, Raleigh, NC, 27616, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erwin Garcia
- LipoScience, Laboratory Corporation of America® Holdings, Raleigh, NC, 27616, USA.,Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC, 27560, USA
| | - Elias J Jeyarajah
- LipoScience, Laboratory Corporation of America® Holdings, Raleigh, NC, 27616, USA
| | - Xinmin S Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA
| | - Xun Jia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA
| | - Taylor L Weeks
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Mail Code NC10, Cleveland, OH, 44195, USA. .,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
18
|
Rafiq T, Azab SM, Teo KK, Thabane L, Anand SS, Morrison KM, de Souza RJ, Britz-McKibbin P. Nutritional Metabolomics and the Classification of Dietary Biomarker Candidates: A Critical Review. Adv Nutr 2021; 12:2333-2357. [PMID: 34015815 PMCID: PMC8634495 DOI: 10.1093/advances/nmab054] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in metabolomics allow for more objective assessment of contemporary food exposures, which have been proposed as an alternative or complement to self-reporting of food intake. However, the quality of evidence supporting the utility of dietary biomarkers as valid measures of habitual intake of foods or complex dietary patterns in diverse populations has not been systematically evaluated. We reviewed nutritional metabolomics studies reporting metabolites associated with specific foods or food groups; evaluated the interstudy repeatability of dietary biomarker candidates; and reported study design, metabolomic approach, analytical technique(s), and type of biofluid analyzed. A comprehensive literature search of 5 databases (PubMed, EMBASE, Web of Science, BIOSIS, and CINAHL) was conducted from inception through December 2020. This review included 244 studies, 169 (69%) of which were interventional studies (9 of these were replicated in free-living participants) and 151 (62%) of which measured the metabolomic profile of serum and/or plasma. Food-based metabolites identified in ≥1 study and/or biofluid were associated with 11 food-specific categories or dietary patterns: 1) fruits; 2) vegetables; 3) high-fiber foods (grain-rich); 4) meats; 5) seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and cocoas; 9) dairy and soya; 10) sweet and sugary foods; and 11) complex dietary patterns and other foods. We conclude that 69 metabolites represent good candidate biomarkers of food intake. Quantitative measurement of these metabolites will advance our understanding of the relation between diet and chronic disease risk and support evidence-based dietary guidelines for global health.
Collapse
Affiliation(s)
- Talha Rafiq
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
| | - Sandi M Azab
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
| | - Koon K Teo
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Russell J de Souza
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | | |
Collapse
|
19
|
D'Angelo S, Gormley IC, McNamara AE, Brennan L. multiMarker: software for modelling and prediction of continuous food intake using multiple biomarkers measurements. BMC Bioinformatics 2021; 22:469. [PMID: 34583648 PMCID: PMC8480054 DOI: 10.1186/s12859-021-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Metabolomic biomarkers offer potential for objective and reliable food intake assessment, and there is growing interest in using biomarkers in place of or with traditional self-reported approaches. Ongoing research suggests that multiple biomarkers are associated with single foods, offering great sensitivity and specificity. However, currently there is a dearth of methods to model the relationship between multiple biomarkers and single food intake measurements. Results Here, we introduce multiMarker, a web-based application based on the homonymous R package, that enables one to infer the relationship between food intake and two or more metabolomic biomarkers. Furthermore, multiMarker allows prediction of food intake from biomarker data alone. multiMarker differs from previous approaches by providing distributions of predicted intakes, directly accounting for uncertainty in food intake quantification. Usage of both the R package and the web application is demonstrated using real data concerning three biomarkers for orange intake. Further, example data is pre-loaded in the web application to enable users to examine multiMarker’s functionality. Conclusion The proposed software advance the field of Food Intake Biomarkers providing researchers with a novel tool to perform continuous food intake quantification, and to assess its associated uncertainty, from multiple biomarkers. To facilitate widespread use of the framework, multiMarker has been implemented as an R package and a Shiny web application.
Collapse
Affiliation(s)
- Silvia D'Angelo
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland. .,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland.
| | - Isobel Claire Gormley
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland.,Insight Centre for Data Analytics, University College Dublin, Dublin, Ireland
| | - Aoife E McNamara
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Lorraine Brennan
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Craven H, McGuinness D, Buchanan S, Galbraith N, McGuinness DH, Jones B, Combet E, Mafra D, Bergman P, Ellaway A, Stenvinkel P, Ijaz UZ, Shiels PG. Socioeconomic position links circulatory microbiota differences with biological age. Sci Rep 2021; 11:12629. [PMID: 34135381 PMCID: PMC8209159 DOI: 10.1038/s41598-021-92042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Imbalanced nutrition is associated with accelerated ageing, possibly mediated by microbiota. An analysis of the circulatory microbiota obtained from the leukocytes of participants in the MRC Twenty-07 general population cohort was performed. We now report that in this cohort, the most biologically aged exhibit a significantly higher abundance of circulatory pathogenic bacteria, including Neisseria, Rothia and Porphyromonas, while those less biologically aged possess more circulatory salutogenic (defined as being supportive of human health and wellbeing) bacteria, including Lactobacillus, Lachnospiraceae UCG-004 and Kocuria. The presence of these salutogenic bactreria is consistent with a capacity to metabolise and produce Nrf2 agonists. We also demonstrate that associated one carbon metabolism, notably betaine levels, did not vary with chronological age, but displayed a difference with socioeconomic position (SEP). Those at lower SEP possessed significantly lower betaine levels indicative of a poorer diet and poorer health span and consistent with reduced global DNA methylation levels in this group. Our data suggest a clear route to improving age related health and resilience based on dietary modulation of the microbiota.
Collapse
Affiliation(s)
- Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Dagmara McGuinness
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | - Sarah Buchanan
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK
| | | | | | - Brian Jones
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Emilie Combet
- School of Medicine, University of Glasgow, Glasgow, UK
| | - Denise Mafra
- Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Peter Bergman
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anne Ellaway
- Institute of Health and Wellbeing, MVLS, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Glasgow, UK.
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, MVLS, Garscube Estate, University of Glasgow, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
21
|
Lombardo M, Aulisa G, Marcon D, Rizzo G, Tarsisano MG, Di Renzo L, Federici M, Caprio M, De Lorenzo A. Association of Urinary and Plasma Levels of Trimethylamine N-Oxide (TMAO) with Foods. Nutrients 2021; 13:nu13051426. [PMID: 33922680 PMCID: PMC8145508 DOI: 10.3390/nu13051426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction: Trimethylamine N-oxide (TMAO) may play a key mediator role in the relationship between the diet, gut microbiota and cardiovascular diseases, particularly in people with kidney failure. The aim of this review is to evaluate which foods have a greater influence on blood or urinary trimethylamine N-oxide (TMAO) levels. Methods: 391 language articles were screened, and 27 were analysed and summarized for this review, using the keywords “TMAO” AND “egg” OR “meat” OR “fish” OR “dairy” OR “vegetables” OR “fruit” OR “food” in December 2020. Results: A strong correlation between TMAO and fish consumption, mainly saltwater fish and shellfish, but not freshwater fish, has been demonstrated. Associations of the consumption of eggs, dairy and meat with TMAO are less clear and may depend on other factors such as microbiota or cooking methods. Plant-based foods do not seem to influence TMAO but have been less investigated. Discussion: Consumption of saltwater fish, dark meat fish and shellfish seems to be associated with an increase in urine or plasma TMAO values. Further studies are needed to understand the relationship between increased risk of cardiovascular disease and plasma levels of TMAO due to fish consumption. Interventions coupled with long-term dietary patterns targeting the gut microbiota seem promising.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy; (G.A.); (D.M.); (M.C.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00173 Rome, Italy;
- Correspondence:
| | - Giovanni Aulisa
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy; (G.A.); (D.M.); (M.C.)
| | - Daniele Marcon
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy; (G.A.); (D.M.); (M.C.)
| | - Gianluca Rizzo
- Independent Researcher, via Venezuela 66, 98121 Messina, Italy;
| | - Maria Grazia Tarsisano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (A.D.L.)
| | - Massimo Federici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00173 Rome, Italy;
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, 00166 Rome, Italy; (G.A.); (D.M.); (M.C.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, via Montpellier 1, 00133 Rome, Italy; (L.D.R.); (A.D.L.)
| |
Collapse
|
22
|
Sugano M, Matsuoka R. Nutritional Viewpoints on Eggs and Cholesterol. Foods 2021; 10:494. [PMID: 33669005 PMCID: PMC7996514 DOI: 10.3390/foods10030494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Although most current epidemiologic studies indicate no significant association between consuming one egg daily and blood cholesterol levels and cardiovascular risk, arguments still persist with a positive association. Since the diet is one of the most influential factors for this association, we illustrate characteristic features in Japanese people whose dietary pattern is distinct from that, for example, the US (United States) population. Available epidemiologic studies in healthy Japanese people show no association between consumption of one egg daily and blood cholesterol level, consistent with those observed in the US population. However, when consumption of major nutrients and food sources of cholesterol are compared to the US population, Japanese people may have an extra-reserve against the influence of eggs on cardiovascular risk markers, despite consuming relatively more eggs. Further discussion on the influence of nutrients contained in the egg and dietary pattern, including interaction with gut microbes, is necessary. In addition, special consideration at the personalized level is needed for judgment regarding dietary cholesterol not only for hypercholesterolemic patients but for hyper-responsive healthy persons. Although randomized controlled trials with long-term follow-up are required to evaluate the association between consumption of eggs and human health, available information, at least from the nutritional viewpoint, suggests that egg is a healthy and cost-efficient food worldwide.
Collapse
Affiliation(s)
- Michihiro Sugano
- Kyushu University, Fukuoka 819-0395, Japan;
- Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
- Japan Egg Science Society, Tokyo 182-0002, Japan
| | | |
Collapse
|
23
|
Simó C, García-Cañas V. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food Funct 2020; 11:6745-6776. [PMID: 32686802 DOI: 10.1039/d0fo01237h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing body of clinical evidence that supports a strong association between elevated circulating trimethylamine N-oxide (TMAO) levels with increased risk of developing adverse cardiovascular outcomes such as atherosclerosis and thrombosis. TMAO is synthesized through a meta-organismal stepwise process that involves (i) the microbial production of TMA in the gut from dietary precursors and (ii) its subsequent oxidation to TMAO by flavin-containing monooxygenases in the liver. Choline, l-carnitine, betaine, and other TMA-containing compounds are the major dietary precursors of TMA. TMAO can also be absorbed directly from the gastrointestinal tract after the intake of TMAO-rich foods such as fish and shellfish. Thus, diet is an important factor as it provides the nutritional precursors to eventually produce TMAO. A number of studies have attempted to associate circulating TMAO levels with the consumption of diets rich in these foods. On the other hand, there is growing interest for the development of novel food ingredients that reduce either the TMAO-induced damage or the endogenous TMAO levels through the interference with microbiota and host metabolic processes involved in TMAO pathway. Such novel functional food ingredients would offer great opportunities to control circulating TMAO levels or its effects, and potentially contribute to decrease cardiovascular risk. In this review we summarize and discuss current data regarding the effects of TMA precursors-enriched foods or diets on circulating TMAO levels, and recent findings regarding the circulating TMAO-lowering effects of specific foods, food constituents and phytochemicals found in herbs, individually or in extracts, and their potential beneficial effect for cardiovascular health.
Collapse
Affiliation(s)
- C Simó
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC-UAM), c/Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | |
Collapse
|
24
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|