1
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Pan D, Hao J, Wu T, Shen T, Yu K, Li Q, Hu R, Yang Z, Li Y. Sodium Butyrate Inhibits the Malignant Proliferation of Colon Cancer Cells via the miR-183/DNAJB4 Axis. Biochem Genet 2024; 62:4174-4190. [PMID: 38244156 DOI: 10.1007/s10528-023-10599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/11/2023] [Indexed: 01/22/2024]
Abstract
Colorectal carcinoma (CRC) is one of the most common malignant tumors in the digestive tract. It was found that butyric acid could inhibit the expression of miR-183 to slow down malignant progression of CRC in the early stage. However, its regulatory mechanism remains unclear. This study screened the IC50 value of butyrate on inhibition of CRC cells malignant progression. Its inhibitory effects were detected by MTT assay, colony formation experiment, Transwell migration experiment, and apoptosis evaluation by flow cytometry. Next, the expressions of miR-183 and DNAJB4 were, respectively, determined in butyrate treated and miR-183 analog or si-DNAJB4-transfected CRC cells to further detect the role of upregulated miR-183 or silencing DNAJB4 in CRC cells malignant progression. Subsequently, the targeted regulatory relationship between miR-183 and si-DNAJB4 was confirmed by bioinformatic prediction tools and double luciferase report genes analysis method. The regulatory mechanism of butyrate on miR-183/DNAJB4 axis signal pathway was evaluated in molecular level, and verified in nude mouse xerograft tumor model and immunohistochemical analysis tests of Ki67 positive rates. The results displayed that butyrate with increased concentration can hinder the proliferation and improve apoptosis of CRC cells by decreasing the expression of miR-183. Thus, butyrate reduces miR-183 expression and increases DNAJB4 expression via the miR-183/DNAJB4 axis, ultimately inhibiting the malignant progression and increasing apoptosis of CRC. While over expression of miR-183 downregulate the expression of DNAJB4, which can reverse the inhibitory effect of butyrate.
Collapse
Affiliation(s)
- Dingguo Pan
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jingchao Hao
- School of Pharmaceutical Science & Key Laboratory of Natural Pharmacology of Yunnan Province, Kunming Medical University, Kunming, 650500, Yunnan, China
- Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Tao Wu
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Tao Shen
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Kun Yu
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Qiang Li
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ruixi Hu
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Zhaoyu Yang
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
- Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yunfeng Li
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China.
| |
Collapse
|
3
|
Hu M, Yuan L, Zhu J. The Dual Role of NRF2 in Colorectal Cancer: Targeting NRF2 as a Potential Therapeutic Approach. J Inflamm Res 2024; 17:5985-6004. [PMID: 39247839 PMCID: PMC11380863 DOI: 10.2147/jir.s479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC), as the third most common bisexual cancer worldwide, requires urgent research on its underlying mechanisms and intervention methods. NRF2 is an important transcription factor involved in the regulation of redox homeostasis, protein degradation, DNA repair, and other cancer processes, playing an important role in cancer. In recent years, the complex role of NRF2 in CRC has been continuously revealed: on the one hand, it exhibits a chemopreventive effect on cancer by protecting normal cells from oxidative stress, and on the other hand, it also exhibits a protective effect on malignant cells. Therefore, this article explores the dual role of NRF2 and its related signaling pathways in CRC, including their chemical protective properties and promoting effects in the occurrence, development, metastasis, and chemotherapy resistance of CRC. In addition, this article focuses on exploring the regulation of NRF2 in CRC ferroptosis, as well as NRF2 drug modulators (activators and inhibitors) targeting CRC, including natural products, compounds, and traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Mengyun Hu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lingling Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jie Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Oncology Department II, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Gou H, Zeng R, Lau HCH, Yu J. Gut microbial metabolites: Shaping future diagnosis and treatment against gastrointestinal cancer. Pharmacol Res 2024; 208:107373. [PMID: 39197712 DOI: 10.1016/j.phrs.2024.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Gastrointestinal cancer is a worldwide health challenge due to its dramatically increasing prevalence and as a leading cause of cancer-related mortality. Increasing evidence has illustrated the vital role of gut microbes-derived metabolites in gastrointestinal cancer progression and treatment. Microbial metabolites are produced by the gut microbiota that utilizes both extrinsic dietary components and intrinsic host-generated compounds. Meanwhile, certain categories of metabolites such as short-chain fatty acids, bile acids, tryptophan, and indole derivatives, are linked to gastrointestinal malignancy. In this review, the major classes of microbial metabolites and their impacts on various gastrointestinal cancers including colorectal cancer, gastric cancer, and hepatocellular carcinoma, have been introduced. The application of microbial metabolites as predictive biomarkers for early diagnosis and prognosis of gastrointestinal cancer has also been explored. In addition, therapeutic potential of strategies that target microbial metabolites against gastrointestinal cancer is further evaluated.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
5
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
6
|
Feng Y, Lu J, Jiang J, Wang M, Guo K, Lin S. Berberine: Potential preventive and therapeutic strategies for human colorectal cancer. Cell Biochem Funct 2024; 42:e4033. [PMID: 38742849 DOI: 10.1002/cbf.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.
Collapse
Affiliation(s)
- Yuqian Feng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiamin Lu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Xu W, Li Y, Liu L, Xie J, Hu Z, Kuang S, Fu X, Li B, Sun T, Zhu C, He Q, Sheng W. Icaritin-curcumol activates CD8 + T cells through regulation of gut microbiota and the DNMT1/IGFBP2 axis to suppress the development of prostate cancer. J Exp Clin Cancer Res 2024; 43:149. [PMID: 38778379 PMCID: PMC11112810 DOI: 10.1186/s13046-024-03063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Dermatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China
| | - Yingqiu Li
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lumei Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jing Xie
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
| | - Zongren Hu
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China
| | - Shida Kuang
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xinying Fu
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bonan Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tiansong Sun
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Congxu Zhu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qinghu He
- Andrology Laboratory, Hunan University of Chinese Medicine, Changsha, 410208, China.
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| | - Wen Sheng
- School of Traditional Chinese Medicine, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
- School of Rehabilitation Medicine and Health Care, Hunan University of Medicine, No. 492 Jinxi South Road, Huaihua, 418000, China.
| |
Collapse
|
8
|
Sarwar MS, Ramirez CN, Kuo HCD, Chou P, Wu R, Sargsyan D, Yang Y, Shannar A, Peter RM, Yin R, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid regulates the environmental carcinogen benzo[a]pyrene-driven epigenetic and metabolic alterations in SKH-1 hairless mice for skin cancer interception. Carcinogenesis 2024; 45:288-299. [PMID: 38466106 PMCID: PMC11102768 DOI: 10.1093/carcin/bgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 03/12/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.
Collapse
Affiliation(s)
- Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christina N Ramirez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Pérez-Fernández BA, Calzadilla L, Enrico Bena C, Del Giudice M, Bosia C, Boggiano T, Mulet R. Sodium acetate increases the productivity of HEK293 cells expressing the ECD-Her1 protein in batch cultures: experimental results and metabolic flux analysis. Front Bioeng Biotechnol 2024; 12:1335898. [PMID: 38659646 PMCID: PMC11039900 DOI: 10.3389/fbioe.2024.1335898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.
Collapse
Affiliation(s)
- Bárbara Ariane Pérez-Fernández
- Group of Complex Systems and Statistical Physics, Department of Applied Physics, Physics Faculty, University of Havana, Havana, Cuba
| | | | | | | | - Carla Bosia
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | | | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, Havana, Cuba
| |
Collapse
|
10
|
Chen F, Xiao M, Hu S, Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front Oncol 2024; 14:1381467. [PMID: 38634043 PMCID: PMC11021590 DOI: 10.3389/fonc.2024.1381467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway is a major regulator of the cytoprotective response, participating in endogenous and exogenous stress caused by ROS (reactive oxygen species). Nrf2 is the core of this pathway. We summarized the literature on Keap1-Nrf2 signaling pathway and summarized the following three aspects: structure, function pathway, and cancer and clinical application status. This signaling pathway is similar to a double-edged sword: on the one hand, Nrf2 activity can protect cells from oxidative and electrophilic stress; on the other hand, increasing Nrf2 activity can enhance the survival and proliferation of cancer cells. Notably, oxidative stress is also considered a marker of cancer in humans. Keap1-Nrf2 signaling pathway, as a typical antioxidant stress pathway, is abnormal in a variety of human malignant tumor diseases (such as lung cancer, liver cancer, and thyroid cancer). In recent years, research on the Keap1-Nrf2 signaling pathway has become increasingly in-depth and detailed. Therefore, it is of great significance for cancer prevention and treatment to explore the molecular mechanism of the occurrence and development of this pathway.
Collapse
Affiliation(s)
- Feilong Chen
- Sports Medicine Key Laboratory of Sichuan Province, Expert Centre of Sichuan Province, Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Mei Xiao
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shaofan Hu
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Meng Wang
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Barata T, Pereira V, Pires das Neves R, Rocha M. Reconstruction of cell-specific models capturing the influence of metabolism on DNA methylation in cancer. Comput Biol Med 2024; 170:108052. [PMID: 38308868 DOI: 10.1016/j.compbiomed.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The imbalance of epigenetic regulatory mechanisms such as DNA methylation, which can promote aberrant gene expression profiles without affecting the DNA sequence, may cause the deregulation of signaling, regulatory, and metabolic processes, contributing to a cancerous phenotype. Since some metabolites are substrates and cofactors of epigenetic regulators, their availability can be affected by characteristic cancer cell metabolic shifts, feeding cancer onset and progression through epigenetic deregulation. Hence, there is a need to study the influence of cancer metabolic reprogramming in DNA methylation to design new effective treatments. In this study, a generic Genome-Scale Metabolic Model (GSMM) of a human cell, integrating DNA methylation or demethylation reactions, was obtained and used for the reconstruction of Genome-Scale Metabolic Models enhanced with Enzymatic Constraints using Kinetic and Omics data (GECKOs) of 31 cancer cell lines. Furthermore, cell-line-specific DNA methylation levels were included in the models, as coefficients of a DNA composition pseudo-reaction, to depict the influence of metabolism over global DNA methylation in each of the cancer cell lines. Flux simulations demonstrated the ability of these models to provide simulated fluxes of exchange reactions similar to the equivalent experimentally measured uptake/secretion rates and to make good functional predictions. In addition, simulations found metabolic pathways, reactions and enzymes directly or inversely associated with the gene promoter methylation. Two potential candidates for targeted cancer epigenetic therapy were identified.
Collapse
Affiliation(s)
- Tânia Barata
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Vítor Pereira
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Pires das Neves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal; Department of Informatics, University of Minho, Portugal.
| |
Collapse
|
12
|
Zhang Y, Dong L, Dai X, Huang Y, Gao Y, Wang F. Modulation of intestinal metabolites by calorie restriction and its association with gut microbiota in a xenograft model of colorectal cancer. Discov Oncol 2024; 15:46. [PMID: 38386206 PMCID: PMC10884396 DOI: 10.1007/s12672-024-00897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor, and its occurrence and development are closely related to dysbiosis of gut microbes. Previously, we found calorie restriction altered the composition of the microbial community in a colorectal cancer mouse model and inhibited in vivo growth of CRC cells. Here, we aim to further investigate alteration in the intestinal metabolites and explore the interplay between gut microbiota and intestinal metabolites upon calorie restriction. METHODS Human colorectal cancer HCT116 cells were used to establish a colorectal cancer xenograft mouse model. The changes of intestinal metabolites in the ad libitum group and calorie restriction group were investigated through untargeted metabolomics analysis. The integrative analysis of gut microbiota and metabolites to elucidate the associations between gut microbiota and intestinal metabolites. RESULTS Compared with the mice in the ad libitum group, mice upon calorie restriction exhibited downregulation of Isoleucyl-Valine, and upregulation of D-Proline, 1-Palmitoylphosphatidylcholine, and 4-Trimethylammoniobutanoic acid. Additionally, an integrative analysis of gut microbiota and metabolites revealed that Lactobacillus, Parabacteroides and rC4-4 genus were upregulated in the calorie restriction group and positively correlated with D-Proline, 4-Trimethylammoniobutanoic acid or 1-Palmitoylphosphatidylcholine, while negatively correlated with Isoleucyl-Valine. In contrast, the Nitrospirae and Deferribacteres phylum exhibited opposite trends. CONCLUSION Calorie restriction affects the abundance of gut microbes such as Nitrospirae phylum and Lactobacillus genus in mouse model of colorectal cancer, leading to changes in the metabolites such as D-Proline、Isoleucyl-Valine, which contributes to the suppression of in vivo growth of CRC by calorie restriction.
Collapse
Affiliation(s)
- Yuhuan Zhang
- Department of Gastroenterology, General Hospital, Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, People's Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Lintao Dong
- Department of Gastroenterology, General Hospital, Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, People's Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Xingchen Dai
- Department of Gastroenterology, General Hospital, Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, People's Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Yongli Huang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, Ningxia, People's Republic of China.
| | - Fang Wang
- Department of Gastroenterology, General Hospital, Ningxia Medical University, 804 Shengli South Street, Yinchuan, 750004, Ningxia, People's Republic of China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia, People's Republic of China.
| |
Collapse
|
13
|
Bi R, Hu R, Jiang L, Wen B, Jiang Z, Liu H, Mei J. Butyrate enhances erastin-induced ferroptosis of lung cancer cells via modulating the ATF3/SLC7A11 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:529-538. [PMID: 37341073 DOI: 10.1002/tox.23857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Ferroptosis is a novel form of programmed cell death triggered by iron-dependent lipid peroxidation and has been associated with various diseases, including cancer. Erastin, an inhibitor of system Xc-, which plays a critical role in regulating ferroptosis, has been identified as an inducer of ferroptosis in cancer cells. In this study, we investigated the impact of butyrate, a short-chain fatty acid produced by gut microbiota, on erastin-induced ferroptosis in lung cancer cells. Our results demonstrated that butyrate significantly enhanced erastin-induced ferroptosis in lung cancer cells, as evidenced by increased lipid peroxidation and reduced expression of glutathione peroxidase 4 (GPX4). Mechanistically, we found that butyrate modulated the pathway involving activating transcription factor 3 (ATF3) and solute carrier family 7 member 11 (SLC7A11), leading to enhanced erastin-induced ferroptosis. Furthermore, partial reversal of the effect of butyrate on ferroptosis was observed upon knockdown of ATF3 or SLC7A11. Collectively, our findings indicate that butyrate enhances erastin-induced ferroptosis in lung cancer cells by modulating the ATF3/SLC7A11 pathway, suggesting its potential as a therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bohan Wen
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Mei J, Qian M, Hou Y, Liang M, Chen Y, Wang C, Zhang J. Association of saturated fatty acids with cancer risk: a systematic review and meta-analysis. Lipids Health Dis 2024; 23:32. [PMID: 38291432 PMCID: PMC10826095 DOI: 10.1186/s12944-024-02025-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Extensive research has explored the link between saturated fatty acids (SFAs) and cardiovascular diseases, alongside other biological dysfunctions. Yet, their association with cancer risk remains a topic of debate among scholars. The present study aimed to elucidate this association through a robust meta-analysis. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched systematically to identify relevant studies published until December 2023. The Newcastle-Ottawa Scale was used as the primary metric for evaluating the quality of the included studies. Further, fixed- or random-effects models were adopted to determine the ORs and the associated confidence intervals using the Stata15.1 software. The subsequent subgroup analysis revealed the source of detection and the cancer types, accompanied by sensitivity analyses and publication bias evaluations. RESULTS The meta-analysis incorporated 55 studies, comprising 38 case-control studies and 17 cohort studies. It revealed a significant positive correlation between elevated levels of total SFAs and the cancer risk (OR of 1.294; 95% CI: 1.182-1.416; P-value less than 0.001). Moreover, elevated levels of C14:0, C16:0, and C18:0 were implicated in the augmentation of the risk of cancer. However, no statistically significant correlation of the risk of cancer was observed with the elevated levels of C4:0, C6:0, C8:0, C10:0, C12:0, C15:0, C17:0, C20:0, C22:0, and C24:0. Subgroup analysis showed a significant relationship between excessive dietary SFA intake, elevated blood SFA levels, and heightened cancer risk. Increased total SFA levels correlated with higher risks of breast, prostate, and colorectal cancers, but not with lung, pancreatic, ovarian, or stomach cancers. CONCLUSION High total SFA levels were correlated with an increased cancer risk, particularly affecting breast, prostate, and colorectal cancers. Higher levels of specific SFA subtypes (C14:0, C16:0, and C18:0) are also linked to an increased cancer risk. The findings of the present study would assist in providing dietary recommendations for cancer prevention, thereby contributing to the development of potential strategies for clinical trials in which diet-related interventions would be used in combination with immunotherapy to alter the levels of SFAs in patients and thereby improve the outcomes in cancer patients. Nonetheless, further high-quality studies are warranted to confirm these associations.
Collapse
Affiliation(s)
- Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
15
|
Kwao-Zigah G, Bediako-Bowan A, Boateng PA, Aryee GK, Abbang SM, Atampugbire G, Quaye O, Tagoe EA. Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review. Cancer Control 2024; 31:10732748241263650. [PMID: 38889965 PMCID: PMC11186396 DOI: 10.1177/10732748241263650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Colorectal cancer is the second cause of cancer mortality and the third most commonly diagnosed cancer worldwide. Current data available implicate epigenetic modulations in colorectal cancer development. The health of the large bowel is impacted by gut microbiome dysbiosis, which may lead to colon and rectum cancers. The release of microbial metabolites and toxins by these microbiotas has been shown to activate epigenetic processes leading to colorectal cancer development. Increased consumption of a 'Westernized diet' and certain lifestyle factors such as excessive consumption of alcohol have been associated with colorectal cancer.Purpose: In this review, we seek to examine current knowledge on the involvement of gut microbiota, dietary factors, and alcohol consumption in colorectal cancer development through epigenetic modulations.Methods: A review of several published articles focusing on the mechanism of how changes in the gut microbiome, diet, and excessive alcohol consumption contribute to colorectal cancer development and the potential of using these factors as biomarkers for colorectal cancer diagnosis.Conclusions: This review presents scientific findings that provide a hopeful future for manipulating gut microbiome, diet, and alcohol consumption in colorectal cancer patients' management and care.
Collapse
Affiliation(s)
- Genevieve Kwao-Zigah
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Antionette Bediako-Bowan
- Department of Surgery, University of Ghana Medical School, Accra, Ghana
- Department of Surgery, Korle Bu Teaching Hospital, Accra, Ghana
| | - Pius Agyenim Boateng
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gloria Kezia Aryee
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Stacy Magdalene Abbang
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Gabriel Atampugbire
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology/West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Emmanuel A. Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
16
|
Peter RM, Chou PJ, Shannar A, Patel K, Pan Y, Dave PD, Xu J, Sarwar MS, Kong ANT. An Update on Potential Molecular Biomarkers of Dietary Phytochemicals Targeting Lung Cancer Interception and Prevention. Pharm Res 2023; 40:2699-2714. [PMID: 37726406 DOI: 10.1007/s11095-023-03595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.
Collapse
Affiliation(s)
- Rebecca Mary Peter
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Pochung Jordan Chou
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Komal Patel
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxin Pan
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Parv Dushyant Dave
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jiawei Xu
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
An X, Lan X, Feng Z, Li X, Su Q. Histone modification: Biomarkers and potential therapies in colorectal cancer. Ann Hum Genet 2023; 87:274-284. [PMID: 37712180 DOI: 10.1111/ahg.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
The complex mechanism of colorectal cancer development is closely associated with epigenetic modifications and is caused by overexpression and/or inactivation of oncogenes. Histone modifying enzymes catalyze histone modifications to alter gene expression, which plays a crucial role in the development and progression of colorectal cancer. Currently, there is more frequent study on histone acetylation, methylation, and phosphorylation, and their mechanisms in colorectal cancer development are clearer. This article elaborates on the role of histone modification in epigenetics in colorectal cancer development and discusses recent advances in using it as biomarkers and therapeutic targets for the treatment of colorectal cancer. The review aims to demonstrate the significant role of histone modification as a new therapeutic target in colorectal cancer and provides insights into the novel diagnostic and therapeutic options it offers.
Collapse
Affiliation(s)
- Xin An
- First College for Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohua Lan
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zizhen Feng
- School of Basic Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohong Li
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qisheng Su
- Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
18
|
Gutierrez-Angulo M, Ayala-Madrigal MDLL, Moreno-Ortiz JM, Peregrina-Sandoval J, Garcia-Ayala FD. Microbiota composition and its impact on DNA methylation in colorectal cancer. Front Genet 2023; 14:1037406. [PMID: 37614819 PMCID: PMC10442805 DOI: 10.3389/fgene.2023.1037406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
Colorectal cancer is a complex disease resulting from the interaction of genetics, epigenetics, and environmental factors. DNA methylation is frequently found in tumor suppressor genes to promote cancer development. Several factors are associated with changes in the DNA methylation pattern, and recently, the gastrointestinal microbiota could be associated with this epigenetic change. The predominant phyla in gut microbiota are Firmicutes and Bacteroidetes; however, an enrichment of Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus bovis, among others, has been reported in colorectal cancer, although the composition could be influenced by several factors, including diet, age, sex, and cancer stage. Fusobacterium nucleatum, a gram-negative anaerobic bacillus, is mainly associated with colorectal cancer patients positive for the CpG island methylator phenotype, although hypermethylation in genes such as MLH1, CDKN2A, MTSS1, RBM38, PKD1, PTPRT, and EYA4 has also been described. Moreover, Hungatella hathewayi, a gram-positive, rod-shaped bacterium, is related to hypermethylation in SOX11, THBD, SFRP2, GATA5, ESR1, EYA4, CDX2, and APC genes. The underlying epigenetic mechanism is unclear, although it could be implicated in the regulation of DNA methyltransferases, enzymes that catalyze the transfer of a methyl group on cytosine of CpG sites. Since DNA methylation is a reversible event, changes in gut microbiota could modulate the gene expression through DNA methylation and improve the colorectal cancer prognosis.
Collapse
Affiliation(s)
- Melva Gutierrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Maria de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jose Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Jorge Peregrina-Sandoval
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fernando Daniel Garcia-Ayala
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Kang X, Li C, Liu S, Baldwin RL, Liu GE, Li CJ. Genome-Wide Acetylation Modification of H3K27ac in Bovine Rumen Cell Following Butyrate Exposure. Biomolecules 2023; 13:1137. [PMID: 37509173 PMCID: PMC10377523 DOI: 10.3390/biom13071137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Butyrate contributes epigenetically to the changes in cellular function and tissue development of the rumen in ruminant animals, which might be achieved by its genetic or epigenetic regulation of gene expression. To explore the role of butyrate on bovine rumen epithelial function and development, this study characterized genome-wide H3K27ac modification changes and super-enhancer profiles in rumen epithelial primary cells (REPC) induced with butyrate by ChIP-seq, and analyzed its effects on gene expression and functional pathways by integrating RNA-seq data. The results showed that genome-wide acetylation modification was observed in the REPC with 94,675 and 48,688 peaks in the butyrate treatment and control group, respectively. A total of 9750 and 5020 genes with increased modification (H3K27ac-gain) and decreased modification (H3K27ac-loss) were detected in the treatment group. The super-enhancer associated genes in the butyrate-induction group were involved in the AMPK signaling pathway, MAPK signaling pathway, and ECM-receptor interaction. Finally, the up-regulated genes (PLCG1, CLEC3B, IGSF23, OTOP3, ADTRP) with H3K27ac gain modification by butyrate were involved in cholesterol metabolism, lysosome, cell adhesion molecules, and the PI3K-Akt signaling pathway. Butyrate treatment has the role of genome-wide H3K27ac acetylation on bovine REPC, and affects the changes in gene expression. The effect of butyrate on gene expression correlates with the acetylation of the H3K27ac level. Identifying genome-wide acetylation modifications and expressed genes of butyrate in bovine REPC cells will expand the understanding of the biological role of butyrate and its acetylation.
Collapse
Affiliation(s)
- Xiaolong Kang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chenglong Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
21
|
Zhang K, Ji X, Song Z, Song W, Huang Q, Yu T, Shi D, Wang F, Xue X, Guo J. Butyrate inhibits the mitochondrial complex Ι to mediate mitochondria-dependent apoptosis of cervical cancer cells. BMC Complement Med Ther 2023; 23:212. [PMID: 37370057 DOI: 10.1186/s12906-023-04043-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is a common gynecological malignancy with high morbidity worldwide. Butyrate, a short-chain fatty acid produced by intestinal flora, has been reported to inhibit cervical carcinogenesis. This study aimed to investigate the pro-apoptotic effects of butyrate on CC and the underlying mechanisms. METHODS Human HeLa and Ca Ski cells were used in this study. Cell proliferation, cell migration and invasion were detected by CCK-8 and EdU staining, transwell and wound healing assay, respectively. Cell cycle, mitochondrial membrane potential and apoptosis were evaluated by flow cytometry. Western blot and RT-qPCR were carried out to examine the related genes and proteins to the mitochondrial complex Ι and apoptosis. Metabolite changes were analyzed by energy metabolomics and assay kits. The association between G protein-coupled receptor 41, 43, 109a and CC prognosis was analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS CCK-8 results showed significant inhibition of CC cell proliferation induced by butyrate treatment, which was confirmed by EdU staining and cell cycle detection. Data from the transwell and wound healing assay revealed that CC cell migration was dramatically reduced following butyrate treatment. Additionally, invasiveness was also decreased by butyrate. Western blot analysis showed that cleaved Caspase 3 and cleaved PARP, the enforcers of apoptosis, were increased by butyrate treatment. The results of Annexin V/PI staining and TUNEL also showed an increase in butyrate-induced apoptotic cells. Expression of Cytochrome C (Cytc), Caspase 9, Bax, but not Caspase 12 or 8, were up-regulated under butyrate exposure. Mechanistically, the decrease in mitochondrial NADH and NAD + levels after treatment with butyrate was observed by energy metabolomics and the NAD+/NADH Assay Kit, similar to the effects of the complex Ι inhibitor rotenone. Western blot results also demonstrated that the constituent proteins of mitochondrial complex Ι were reduced by butyrate. Furthermore, mitochondria-dependent apoptosis has been shown to be initiated by inhibition of the complex Ι. CONCLUSION Collectively, our results revealed that butyrate inhibited the proliferation, migration and invasion of CC cells, and induced mitochondrial-dependent apoptosis by inhibiting mitochondrial complex Ι.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiawei Ji
- Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengyang Song
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenjing Song
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qunjia Huang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tiantian Yu
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Junping Guo
- Wuyunshan Hospital of Hangzhou, Health Promotion and Research Institute of Hangzhou, Hangzhou, 310000, China.
| |
Collapse
|
22
|
Stein RA, Riber L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. MICROLIFE 2023; 4:uqad032. [PMID: 37441522 PMCID: PMC10335734 DOI: 10.1093/femsml/uqad032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
Adult humans harbor at least as many microbial cells as eukaryotic ones. The largest compartment of this diverse microbial population, the gut microbiota, encompasses the collection of bacteria, archaea, viruses, and eukaryotic organisms that populate the gastrointestinal tract, and represents a complex and dynamic ecosystem that has been increasingly implicated in health and disease. The gut microbiota carries ∼100-to-150-times more genes than the human genome and is intimately involved in development, homeostasis, and disease. Of the several microbial metabolites that have been studied, short-chain fatty acids emerge as a group of molecules that shape gene expression in several types of eukaryotic cells by multiple mechanisms, which include DNA methylation changes, histone post-translational modifications, and microRNA-mediated gene silencing. Butyric acid, one of the most extensively studied short-chain fatty acids, reaches higher concentrations in the colonic lumen, where it provides a source of energy for healthy colonocytes, and its concentrations decrease towards the bottom of the colonic crypts, where stem cells reside. The lower butyric acid concentration in the colonic crypts allows undifferentiated cells, such as stem cells, to progress through the cell cycle, pointing towards the importance of the crypts in providing them with a protective niche. In cancerous colonocytes, which metabolize relatively little butyric acid and mostly rely on glycolysis, butyric acid preferentially acts as a histone deacetylase inhibitor, leading to decreased cell proliferation and increased apoptosis. A better understanding of the interface between the gut microbiota metabolites and epigenetic changes in eukaryotic cells promises to unravel in more detail processes that occur physiologically and as part of disease, help develop novel biomarkers, and identify new therapeutic modalities.
Collapse
Affiliation(s)
- Richard A Stein
- Corresponding author. Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: +1-917-684-9438; E-mail: ;
| | - Leise Riber
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
23
|
Ahmad F, Saha P, Singh V, Wahid M, Mandal RK, Nath Mishra B, Fagoonee S, Haque S. Diet as a modifiable factor in tumorigenesis: Focus on microbiome-derived bile acid metabolites and short-chain fatty acids. Food Chem 2023; 410:135320. [PMID: 36610090 DOI: 10.1016/j.foodchem.2022.135320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India.
| | - Priyanka Saha
- Department of Biotechnology, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021 (Uttar Pradesh), India
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
24
|
Chou PJ, Sarwar MS, Wang L, Wu R, Li S, Hudlikar RR, Wang Y, Su X, Kong AN. Metabolomic, DNA Methylomic, and Transcriptomic Profiling of Suberoylanilide Hydroxamic Acid Effects on LPS-Exposed Lung Epithelial Cells. Cancer Prev Res (Phila) 2023; 16:321-332. [PMID: 36867722 PMCID: PMC10238674 DOI: 10.1158/1940-6207.capr-22-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor with anticancer effects via epigenetic and non-epigenetic mechanisms. The role of SAHA in metabolic rewiring and epigenomic reprogramming to inhibit pro-tumorigenic cascades in lung cancer remains unknown. In this study, we aimed to investigate the regulation of mitochondrial metabolism, DNA methylome reprogramming, and transcriptomic gene expression by SAHA in lipopolysaccharide (LPS)-induced inflammatory model of lung epithelial BEAS-2B cells. LC/MS was used for metabolomic analysis, while next-generation sequencing was done to study epigenetic changes. The metabolomic study reveals that SAHA treatment significantly regulated methionine, glutathione, and nicotinamide metabolism with alteration of the metabolite levels of methionine, S-adenosylmethionine, S-adenosylhomocysteine, glutathione, nicotinamide, 1-methylnicotinamide, and nicotinamide adenine dinucleotide in BEAS-2B cells. Epigenomic CpG methyl-seq shows SAHA revoked a list of differentially methylated regions in the promoter region of the genes, such as HDAC11, miR4509-1, and miR3191. Transcriptomic RNA sequencing (RNA-seq) reveals SAHA abrogated LPS-induced differentially expressed genes encoding proinflammatory cytokines, including interleukin 1α (IL1α), IL1β, IL2, IL6, IL24, and IL32. Integrative analysis of DNA methylome-RNA transcriptome displays a list of genes, of which CpG methylation correlated with changes in gene expression. qPCR validation of transcriptomic RNA-seq data shows that SAHA treatment significantly reduced the LPS-induced mRNA levels of IL1β, IL6, DNA methyltransferase 1 (DNMT1), and DNMT3A in BEAS-2B cells. Altogether, SAHA treatment alters the mitochondrial metabolism, epigenetic CpG methylation, and transcriptomic gene expression to inhibit LPS-induced inflammatory responses in lung epithelial cells, which may provide novel molecular targets to inhibit the inflammation component of lung carcinogenesis. PREVENTION RELEVANCE Inflammation increases the risk of lung cancer and blocking inflammation could reduce the incidence of lung cancer. Herein, we demonstrate that histone deacetylase inhibitor suberoylanilide hydroxamic acid regulates metabolic rewiring and epigenetic reprogramming to attenuate lipopolysaccharide-driven inflammation in lung epithelial cells.
Collapse
Affiliation(s)
- Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika R Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
25
|
Fan N, Fusco JL, Rosenberg DW. Antioxidant and Anti-Inflammatory Properties of Walnut Constituents: Focus on Personalized Cancer Prevention and the Microbiome. Antioxidants (Basel) 2023; 12:982. [PMID: 37237848 PMCID: PMC10215340 DOI: 10.3390/antiox12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Walnuts have been lauded as a 'superfood', containing a remarkable array of natural constituents that may have additive and/or synergistic properties that contribute to reduced cancer risk. Walnuts are a rich source of polyunsaturated fatty acids (PUFAs: alpha-linolenic acid, ALA), tocopherols, antioxidant polyphenols (including ellagitannins), and prebiotics, including fiber (2 g/oz). There is a growing body of evidence that walnuts may contribute in a positive way to the gut microbiome, having a prebiotic potential that promotes the growth of beneficial bacteria. Studies supporting this microbiome-modifying potential include both preclinical cancer models as well as several promising human clinical trials. Mediated both directly and indirectly via its actions on the microbiome, many of the beneficial properties of walnuts are related to a range of anti-inflammatory properties, including powerful effects on the immune system. Among the most potent constituents of walnuts are the ellagitannins, primarily pedunculagin. After ingestion, the ellagitannins are hydrolyzed at low pH to release ellagic acid (EA), a non-flavonoid polyphenolic that is subsequently metabolized by the microbiota to the bioactive urolithins (hydroxydibenzo[b,d]pyran-6-ones). Several urolithins, including urolithin A, reportedly have potent anti-inflammatory properties. These properties of walnuts provide the rationale for including this tree nut as part of a healthy diet for reducing overall disease risk, including colorectal cancer. This review considers the latest information regarding the potential anti-cancer and antioxidant properties of walnuts and how they may be incorporated into the diet to provide additional health benefits.
Collapse
Affiliation(s)
| | | | - Daniel W. Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| |
Collapse
|
26
|
Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023; 12:pathogens12030486. [PMID: 36986408 PMCID: PMC10058806 DOI: 10.3390/pathogens12030486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Breast cancer is the leading cause of death among women worldwide, and certain subtypes are highly aggressive and drug resistant. As oxidative stress is linked to the onset and progression of cancer, new alternative therapies, based on plant-derived compounds that activate signaling pathways involved in the maintenance of cellular redox homeostasis, have received increasing interest. Among the bioactive dietary compounds considered for cancer prevention and treatment are flavonoids, such as quercetin, carotenoids, such as lycopene, polyphenols, such as resveratrol and stilbenes, and isothiocyanates, such as sulforaphane. In healthy cells, these bioactive phytochemicals exhibit antioxidant, anti-apoptotic and anti-inflammatory properties through intracellular signaling pathways and epigenetic regulation. Short-chain fatty acids (SCFAs), produced by intestinal microbiota and obtained from the diet, also exhibit anti-inflammatory and anti-proliferative properties related to their redox signaling activity—and are thus key for cell homeostasis. There is evidence supporting an antioxidant role for SCFAs, mainly butyrate, as modulators of Nrf2-Keap1 signaling involving the inhibition of histone deacetylases (HDACs) and/or Nrf2 nuclear translocation. Incorporation of SCFAs in nutritional and pharmacological interventions changes the composition of the the intestinal microbiota, which has been shown to be relevant for cancer prevention and treatment. In this review, we focused on the antioxidant properties of SCFAs and their impact on cancer development and treatment, with special emphasis on breast cancer.
Collapse
|
27
|
Alba G, Dakhaoui H, Santa-Maria C, Palomares F, Cejudo-Guillen M, Geniz I, Sobrino F, Montserrat-de la Paz S, Lopez-Enriquez S. Nutraceuticals as Potential Therapeutic Modulators in Immunometabolism. Nutrients 2023; 15:411. [PMID: 36678282 PMCID: PMC9865834 DOI: 10.3390/nu15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Marta Cejudo-Guillen
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Isabel Geniz
- Distrito Sanitario Seville Norte y Aljarafe, Servicio Andaluz de Salud, 41008 Seville, Spain
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville. Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
28
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|
29
|
Abstract
Trillions of microbes are indigenous to the human gastrointestinal tract, together forming an ecological community known as the gut microbiota. The gut microbiota is involved in dietary digestion to produce various metabolites. In healthy condition, microbial metabolites have unneglectable roles in regulating host physiology and intestinal homeostasis. However, increasing studies have reported the correlation between metabolites and the development of colorectal cancer (CRC), with the identification of oncometabolites. Meanwhile, metabolites can also influence the efficacy of cancer treatments. In this review, metabolites derived from microbes-mediated metabolism of dietary carbohydrates, proteins, and cholesterol, are introduced. The roles of pro-tumorigenic (secondary bile acids and polyamines) and anti-tumorigenic (short-chain fatty acids and indole derivatives) metabolites in CRC development are then discussed. The impacts of metabolites on chemotherapy and immunotherapy are further elucidated. Collectively, given the importance of microbial metabolites in CRC, therapeutic approaches that target metabolites may be promising to improve patient outcome.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
30
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
31
|
Chuanbing Z, Zhengle Z, Ruili D, Kongfan Z, Jing T. Genes Modulating Butyrate Metabolism for Assessing Clinical Prognosis and Responses to Systematic Therapies in Hepatocellular Carcinoma. Biomolecules 2022; 13:52. [PMID: 36671437 PMCID: PMC9856074 DOI: 10.3390/biom13010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Butyrate, one of the major products of the gut microbiota, has played notable roles in diverse therapies for multiple tumors. Our study aimed to determine the roles of genes that modulate butyrate metabolism (BM) in predicting the clinical prognosis and responses to systemic therapies in hepatocellular carcinoma (HCC). The genes modulating BM were available from the GeneCard database, and gene expression and clinical information were obtained from TCGA-LIHC, GEO, ICGC-JP, and CCLE databases. Candidate genes from these genes that regulate BM were then identified by univariate Cox analysis. According to candidate genes, the patients in TCGA were grouped into distinct subtypes. Moreover, BM- related gene signature (BMGs) was created via the LASSO Cox algorithm. The roles of BMGs in identifying high-risk patients of HCC, assessing the prognoses, and predicting systematic therapies were determined in various datasets. The statistical analyses were fulfilled with R 4.1.3, GraphPad Prism 8.0 and Perl 5.30.0.1 software. In the TCGA cohort, most butyrate-related genes were over-expressed in the B cluster, and patients in the B cluster showed worse prognoses. BMGs constructed by LASSO were composed of eight genes. BMGs exhibited a strong performance in evaluating the prognoses of HCC patients in various datasets, which may be superior to 33 published biomarkers. Furthermore, BMGs may contribute to the early surveillance of HCC, and BMGs could play active roles in assessing the effectiveness of immunotherapy, TACE, ablation therapy, and chemotherapeutic drugs for HCC. BMGs may be served as novel promising biomarkers for early identifying high-risk groups of HCC, as well as assessing prognoses, drug sensitivity, and the responses to immunotherapy, TACE, and ablation therapy in patients with HCC.
Collapse
Affiliation(s)
- Zhao Chuanbing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhang Zhengle
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Ding Ruili
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Zhu Kongfan
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| | - Tao Jing
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan 430061, China
| |
Collapse
|
32
|
Liu X, Fang X, Lu L, Liu G. Prognostic significance and immune landscape of a fatty acid metabolism-related gene signature in colon adenocarcinoma. Front Genet 2022; 13:996625. [PMID: 36568396 PMCID: PMC9780302 DOI: 10.3389/fgene.2022.996625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Fatty acid metabolism (FAM), as a hallmark of caner, plays important roles in tumor initiation and carcinogenesis. However, the significance of fatty acid metabolism-related genes in colon adenocarcinoma (COAD) are largely unknown. Methods: RNA sequencing data and clinical information were downloaded from the Cancer Genome Atlas (TCGA) cohort. Univariate and multivariate Cox regression analyses were utilized to construct a fatty acid metabolism-related gene signature. Kaplan-Meier survival and receiver operating characteristic (ROC) analyses were used to verify the performance of this signature. GEO datasets were applied to validate the signature. Maftools package was utilized to analyze the mutation profiles of this signature. Correlation between the risk signature and stemness scores was compared by RNA stemness score (RNAss). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set variation analysis (GSVA) were performed to explore the potential functions and signaling pathways. Immune landscape of the signature was explored by analyzing different immune cells infiltration, immune functions and microsatellite instability. A nomogram was constructed by combining the risk signature and multiple clinical factors. Expression levels and prognostic values of the risk genes were revealed in the cancer genome atlas and GEO databases. Moreover, the expression the risk genes were measured in cell lines using real time quantitative PCR (qRT-PCR). Results: Eight fatty acid metabolism-related genes (CD36, ENO3, MORC2, PTGR1, SUCLG2, ELOVL3, ELOVL6 and CPT2) were used to construct a risk signature. This signature demonstrated better prognostic value than other clinicopathological parameters, with AUC value was 0.734 according to the cancer genome atlas database. There was negative correlation between the riskscore and RNA stemness score. The patients in the high-risk group demonstrated higher infiltration of M0 macrophages, and less infiltration of activated CD4 memory T cells and Eosinophils. There were more MSI patients in the high-risk group than those in the low-risk group (38% vs. 30%). The risk scores of patients in the MSI group were slightly higher than those in the microsatellite stability group. Gene ontology, kyoto encyclopedia of genes and genomes and gene set variation analysis enrichment analyses showed that several metabolism-related functions and signaling pathways were enriched. A nomogram showed good predictive capability of the signature. Moreover, qRT-PCR revealed upregulated expression of ENO3, MORC2, SUCLG2 and ELOVL6, and downregulated expression of CPT2 in all examined colon adenocarcinoma cell lines. Conclusion: This study provided novel insights into a fatty acid metabolism-related signature in the prognosis an immune landscape of colon adenocarcinoma patients.
Collapse
Affiliation(s)
| | | | - Lin Lu
- *Correspondence: Guolong Liu, ; Lin Lu,
| | | |
Collapse
|
33
|
Wang L, Wang C, Sarwar MS, Chou P, Wang Y, Su X, Kong AN. PTEN-knockout regulates metabolic rewiring and epigenetic reprogramming in prostate cancer and chemoprevention by triterpenoid ursolic acid. FASEB J 2022; 36:e22626. [PMID: 36305462 PMCID: PMC9703918 DOI: 10.1096/fj.202201195r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 07/23/2023]
Abstract
PTEN (phosphatase and tensin homolog deleted on chromosome 10) is one of the most frequently mutated/deleted tumor suppressor genes in many human cancers. Ursolic acid (UA) is a natural triterpenoid possessing antioxidant, anti-inflammatory, and anticancer effects. However, how PTEN impacts metabolic rewiring and how UA modifies PTEN-driven metabolic and epigenetic reprogramming in prostate cancer (PCa) remains unknown. In the current study, we found that UA protects against PTEN knockout (KO)-induced tumorigenesis at different stages of PCa. Epigenomic CpG methyl-seq revealed UA attenuated PTEN KO-induced differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq showed UA abrogated PTEN KO-induced differentially expressed genes (DEGs) of PCa-related oncogenes' Has3, Cfh, and Msx1 overexpression, indicating UA plays a crucial role in PTEN KO-mediated gene regulation and its potential consequences on cancer interception. Association analysis of DEGs and DMRs identified that the mRNA expression of tumor suppressor gene BDH2, and oncogenes Ephas, Isg15, and Nos2 were correlated with the promoter CpG methylation status in the early-stage comparison groups indicating UA could regulate the oncogenes or tumor suppressor genes by modulating their promoter methylation at an early stage of prostate tumorigenesis. The metabolomic study showed UA attenuated PTEN KO-regulated cancer-associated metabolisms like purine metabolism/metabolites correlating with RNAseq findings, glycolysis/gluconeogenesis metabolism, as well as epigenetic-related metabolites pyruvate and lactate indicating UA plays a critical role in PTEN KO-mediated metabolic and epigenetic reprogramming and its consequences on cancer development. In this context, UA impacts metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the overall protection against prostate-specific PTEN KO-mediated PCa.
Collapse
Affiliation(s)
- Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Chao Wang
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Pochung Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|