1
|
Wang Y, Wang H, Hu J, Chai J, Luan J, Li J, Xu Q. FLASH radiotherapy: mechanisms, nanotherapeutic strategy and future development. NANOSCALE ADVANCES 2024:d4na00753k. [PMID: 39781242 PMCID: PMC11705069 DOI: 10.1039/d4na00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Ultra-high dose-rate (FLASH) radiotherapy serves as an ideal procedure to treat tumors efficiently without harming normal tissues and has demonstrated satisfactory antitumor effects in multiple animal tumor models. However, the biological mechanisms of FLASH radiotherapy have not yet been fully elucidated, and the small number of devices delivering FLASH dose rate has limited its wide application. This review summarizes the possible biological mechanisms and antitumor effects of FLASH radiotherapy, its application in nanotherapeutic strategy, as well as its challenges and future development. Furthermore, some valuable guidance for promoting the progress of FLASH radiotherapy in nanotherapeutic strategies are provided.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| | - Huifang Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| | - Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| | - Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| | - Jie Li
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China Mianyang China
| | - Qingwen Xu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College Wuhu China
| |
Collapse
|
2
|
Tho D, Beddar S. Characterization of an Inorganic Powder-Based Scintillation Detector Under a UHDR Electron Beam. SENSORS (BASEL, SWITZERLAND) 2024; 24:8064. [PMID: 39771799 PMCID: PMC11679140 DOI: 10.3390/s24248064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber. We evaluated the dependence of the detector on dose per pulse (DPP), pulse repetition frequency (PRF), and pulse width (PW). Additionally, we determined the stability and the reproducibility of the detector. (3) Results: The signal ratio between the PMMA clear optical fiber and the ZnS:Ag scintillator was around 210. ZnS:Ag produced a signal yield 54 times greater than that of a BCF-12 plastic scintillator. Signal variation with PRF changes was under 0.5%. The signal was linear to the integrated dose up to the maximum deliverable dose, 180 Gy. The variation in signal was linear to the change in both PW and DPP. Regarding stability, the standard deviation of 10 consecutive irradiations was 0.83%. For the reproducibility, all daily measurements varied within ±1.5%. (4) Conclusions: These findings show that the ZnS:Ag detector can be used for accurate dosimetry with UHDR beams.
Collapse
Affiliation(s)
- Daline Tho
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Medical Physics Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
3
|
Schönfeld AA, Hildreth J, Bourgouin A, Flatten V, Kozelka J, Simon W, Schüller A. A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons. Med Phys 2024. [PMID: 39688375 DOI: 10.1002/mp.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector. In ultra-high dose rate beams, the delivered dose needed for a set of beam profile scans may exceed the regulatory dose limit specified for a typical treatment room, or degrade components of the scanning system and scanning detector. Point detector scans also cannot quantify the pulse-to-pulse stability of a beam profile. Detector arrays can overcome these challenges, but to date, no detector arrays suitable for ultra-high dose rate beams are commercially available. PURPOSE The study presents the development and characterization of a two-dimensional detector array for measuring pulse-resolved spatial fluence distributions in real-time and temporal structure of intra-pulse dose rate of ultra-high pulsed dose rate (UHPDR) electron beams used in FLASH radiotherapy. METHODS The performance of the SunPoint 1 diode was evaluated by measuring the response of the EDGE Detector in a 20 MeV UHPDR electron beam with a dose per pulse of 0.04 Gy - 6 Gy at a pulse duration of 1 µs or 1.9 µs, and instantaneous dose rates of 0.040 - 3.2 MGy·s-1. Based on the findings regarding a suitable signal acquisition technique, a PROFILER 2 detector array made of SunPoint 1 diodes was then modified by minimizing trace resistance, applying a reverse bias, and implementing an RC component to each diode to optimize the transfer of the collected charge during a pulse. The resultant "FLASH Profiler" was then tested in the same UHPDR electron beam. RESULTS The FLASH Profiler exhibited a linear response within ± 3% deviation over the investigated dose per pulse range. The FLASH Profiler array showed good agreement with the absolute dose measured using a flashDiamond point detector and an integrating current transformer for dose-per-pulse values of up to 6 Gy. The FLASH Profiler was able to measure lateral beam profiles in real-time and on a single-pulse basis. The ability to capture and display the profiles during steering of UHPDR beams was demonstrated. The SunPoint 1 diode was able to measure the pulse duration and the intra-pulse dose rate with a time resolution of 4 ns. CONCLUSION The FLASH Profiler could be used for characterizing UHPDR electron beams and facilitating quality control and beam steering service of electron FLASH irradiators.
Collapse
Affiliation(s)
| | - Jeff Hildreth
- Research and Development, Sun Nuclear Corp., Melbourne, Florida, USA
| | - Alexandra Bourgouin
- Dosimetry for Radiotherapy, Physikalisch-Technische Bundesanstalt, Braunschweig, 38116, Germany
- Metrology Research Center, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Veronika Flatten
- Research and Development, Sun Nuclear Corp., Melbourne, Florida, USA
| | - Jakub Kozelka
- Research and Development, Sun Nuclear Corp., Melbourne, Florida, USA
| | - William Simon
- Research and Development, Sun Nuclear Corp., Melbourne, Florida, USA
| | - Andreas Schüller
- Dosimetry for Radiotherapy, Physikalisch-Technische Bundesanstalt, Braunschweig, 38116, Germany
| |
Collapse
|
4
|
Liu K, Holmes S, Khan AU, Hooten B, DeWerd L, Schüler E, Beddar S. Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy. Med Phys 2024; 51:9275-9289. [PMID: 39311014 DOI: 10.1002/mp.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reference dosimetry in ultra-high dose rate (UHDR) beamlines is significantly hindered by limitations in conventional ionization chamber design. In particular, conventional chambers suffer from severe charge collection efficiency (CCE) degradation in high dose per pulse (DPP) beams. PURPOSE The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in UHDR dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chamber designs were produced to determine the influence of the ion chamber response on electrode separation, field strength, and collection volume on the ion chamber response under UHDR and ultra-high dose per pulse (UHDPP) conditions. METHODS Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector). The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120 Hz), pulse width (PW, 0.5-4 µs), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the DPP, PRF, PW, dose rate, electric field strength, and electrode gap. RESULTS The chamber response was found to be dependent on DPP and PW, and these dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger CCE as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1 to 5 Gy at PWs ranging from 0.5 to 4 µs, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. CONCLUSION This study confirmed that the CCE of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. A significant finding of this study is that although chamber performance does depend on PW, the effect on the CCE becomes negligible with reduced electrode spacing and increased electric field. A CCE of ≥95% was achieved for DPPs of up to 5 Gy with no observable dependence on PW using the A30 chamber, while still achieving an acceptable performance in conventional dose rate beams, opening up the possibility for this type of chamber to be used as a reference class chamber for calibration purposes of electron FLASH beamlines.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | | | - Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Hooten
- Standard Imaging Inc., Middleton, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
5
|
Baikalov A, Tho D, Liu K, Bartzsch S, Beddar S, Schüler E. Characterization of a Time-Resolved, Real-Time Scintillation Dosimetry System for Ultra-High Dose-Rate Radiation Therapy Applications. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03669-1. [PMID: 39615658 DOI: 10.1016/j.ijrobp.2024.11.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
PURPOSE Scintillation dosimetry has promising qualities for ultra-high-dose-rate (UHDR) radiation therapy (RT), but no system has shown compatibility with mean dose rates (DR¯) above 100 Gy/s and doses per pulse (Dp) exceeding 1.5 Gy typical of UHDR (FLASH)-RT. The aim of this study was to characterize a novel scintillation dosimetry system with the potential of accommodating UHDRs. METHODS AND MATERIALS We undertook a thorough dosimetric characterization of the system on an UHDR electron beamline. The system's response as a function of dose, DR¯, Dp, and the pulse dose-rate (DRp) was investigated, as was the system's dose sensitivity (signal per unit dose) as a function of dose history. The capabilities of the system for time-resolved dosimetric readout were also evaluated. RESULTS Within a tolerance of ±3%, the system exhibited dose linearity and was independent of DR¯ and Dp within the tested ranges of 1.8 to 1341 Gy/s and 0.005 to 7.68 Gy, respectively. A 6% reduction in the signal per unit dose was observed as DRp was increased from 8.9e4 to 1.8e6 Gy/s. The dose delivered per integration window of the continuously sampling photodetector had to remain between 0.028 and 11.56 Gy to preserve a stable signal response per unit dose. The system accurately measured Dp of individual pulses delivered at up to 120 Hz. The day-to-day variation of the signal per unit dose in a reference setup varied by up to ±13% but remained consistent (<±2%) within each treatment day and showed no signal loss as a function of dose history. CONCLUSIONS With daily calibrations and DRp-specific correction factors, the system reliably provides real-time, millisecond-resolved dosimetric measurements of pulsed conventional and UHDR beams from typical electron linacs, marking an important advancement in UHDR dosimetry and offering diverse applications to FLASH-RT and related fields.
Collapse
Affiliation(s)
- Alexander Baikalov
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daline Tho
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center
| | - Kevin Liu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sam Beddar
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Emil Schüler
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
6
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Palmiero A, Liu K, Colnot J, Chopra N, Neill D, Connell L, Velasquez B, Koong AC, Lin SH, Balter P, Tailor R, Robert C, Germond JF, Gonçalves Jorge P, Geyer R, Beddar S, Moeckli R, Schüler E. On the acceptance, commissioning, and quality assurance of electron FLASH units. Med Phys 2024. [PMID: 39462477 DOI: 10.1002/mp.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND PURPOSE FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. METHODS A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. RESULTS The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. CONCLUSION This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.
Collapse
Affiliation(s)
- Allison Palmiero
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Julie Colnot
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Nitish Chopra
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denae Neill
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luke Connell
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Albert C Koong
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Division of Radiation Oncology, Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ramesh Tailor
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charlotte Robert
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Reiner Geyer
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|
8
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
9
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
10
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
11
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
12
|
Dai T, Sloop AM, Ashraf MR, Sunnerberg JP, Clark MA, Bruza P, Pogue BW, Jarvis L, Gladstone DJ, Zhang R. Commissioning an ultra-high-dose-rate electron linac with end-to-end tests. Phys Med Biol 2024; 69:165028. [PMID: 39084661 DOI: 10.1088/1361-6560/ad69fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective. The FLASH effect can potentially be used to improve the therapeutic ratio of radiotherapy (RT) through delivery of Ultra-high-dose-rate (UHDR) irradiation. Research is actively being conducted to translate UHDR-RT and for this purpose the Mobetron is capable of producing electron beams at both UHDR and conventional dose rates for FLASH research and translation. This work presents commissioning of an UHDR Mobetron with end-to-end tests developed for preclinical research.Approach. UHDR electron beams were commissioned with an efficient approach utilizing a 3D-printed water tank and film to fully characterize beam characteristics and dependences on field size, pulse width (PW) and pulse repetition frequency (PRF). This commissioning data was used to implement a beam model using the GAMOS Monte Carlo toolkit for the preclinical research. Then, the workflow for preclinical FLASH irradiation was validated with end-to-end tests delivered to a 3D-printed mouse phantom with internal inhomogeneities.Main results.PDDs, profiles and output factors acquired with radiochromic films were precisely measured, with a PRF that showed little effect on the UHDR beam energy and spatial characteristics. Increasing PW reduced theDmaxand R50by 2.08 mmµs-1and 1.28 mmµs-1respectively. An end-to-end test of the preclinical research workflow showed that both profiles in head-foot and lateral directions were in good agreement with the MC calculations for the heterogeneous 3D printed mouse phantom with Gamma index above 93% for 2 mm/2% criteria, and 99% for 3 mm/3%.Significance. The UHDR Mobetron is a versatile tool for FLASH preclinical research and this comprehensive beam model and workflow was validated to meet the requirements for conducting translational FLASH research.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, People's Republic of China
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Muhammad R Ashraf
- Stanford Radiation Oncology, Palo Alto, CA 94304, United States of America
| | - Jacob P Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Megan A Clark
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, United States of America
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
13
|
Dai T, Sloop AM, Schönfeld A, Flatten V, Kozelka J, Hildreth J, Bill S, Sunnerberg JP, Clark MA, Jarvis L, Pogue BW, Bruza P, Gladstone DJ, Zhang R. Electron beam response corrections for an ultra-high-dose-rate capable diode dosimeter. Med Phys 2024; 51:5738-5745. [PMID: 38762909 DOI: 10.1002/mp.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Simon Bill
- Sun Nuclear Corp, Melbourne, Florida, USA
| | - Jacob P Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan A Clark
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
14
|
Oh K, Hyun MA, Gallagher KJ, Yan Y, Zhou S. Characterization of a commercial plastic scintillator for electron FLASH dosimetry. J Appl Clin Med Phys 2024; 25:e14451. [PMID: 38952057 PMCID: PMC11302813 DOI: 10.1002/acm2.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE This study investigated the potential of a commercially available plastic scintillator, the Exradin W2, as a real-time dosimeter for ultra-high-dose-rate (UHDR) electron beams. This work aimed to characterize this system's performance under UHDR conditions and addressed limitations inherent to other conventional dosimetry systems. METHODS AND MATERIALS We assessed the W2's performance as a UHDR electron dosimeter using a 16 MeV UHDR electron beam from the FLASH research extension (FLEX) system. Additionally, the vendor provided a beta firmware upgrade to better handle the processing of the high signal generated in the UHDR environment. We evaluated the W2 regarding dose-per-pulse, pulse repetition rate, charge versus distance, and pulse linearity. Absorbed dose measurements were compared against those from a plane-parallel ionization chamber, optically stimulated luminescent dosimeters and radiochromic film. RESULTS We observed that the 1 × 1 mm W2 scintillator with the MAX SD was more suitable for UHDR dosimetry compared to the 1 × 3 mm W2 scintillator, capable of matching film measurements within 2% accuracy for dose-per-pulse up to 3.6 Gy/pulse. The W2 accurately ascertained the inverse square relationship regarding charge versus virtual source distance with R2 of ∼1.00 for all channels. Pulse linearity was accurately measured with the W2, demonstrating a proportional response to the delivered pulse number. There was no discernible impact on the measured charge of the W2 when switching between the available repetition rates of the FLEX system (18-180 pulses/s), solidifying consistent beam output across pulse frequencies. CONCLUSIONS This study tested a commercial plastic scintillator detector in a UHDR electron beam, paving the way for its potential use as a real-time, patient-specific dosimetry tool for future FLASH radiotherapy treatments. Further research is warranted to test and improve the signal processing of the W2 dosimetry system to accurately measure in UHDR environments using exceedingly high dose-per-pulse and pulse numbers.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Megan A. Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sumin Zhou
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
15
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
16
|
Dai T, Sloop AM, Rahman MR, Sunnerberg JP, Clark MA, Young R, Adamczyk S, Voigts-Rhetz PV, Patane C, Turk M, Jarvis L, Pogue BW, Gladstone DJ, Bruza P, Zhang R. First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC. Med Phys 2024; 51:5109-5118. [PMID: 38493501 PMCID: PMC11316970 DOI: 10.1002/mp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong 250000, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | | | | | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Ralph Young
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | | | | | - Chris Patane
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Michael Turk
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison WI 53705 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
17
|
Liu K, Holmes S, Schüler E, Beddar S. A comprehensive investigation of the performance of a commercial scintillator system for applications in electron FLASH radiotherapy. Med Phys 2024; 51:4504-4512. [PMID: 38507253 PMCID: PMC11147715 DOI: 10.1002/mp.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Cucinotta FA, Smirnova OA. Effects of Partial-Body, Continuous/Pulse Irradiation at Dose Rates from FLASH to Conventional Rates on the Level of Surviving Blood Lymphocytes: Modeling Approach. I. Continuous Irradiation. Radiat Res 2024; 201:535-545. [PMID: 38616047 DOI: 10.1667/rade-23-00222.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
A mathematical model developed by Cucinotta and Smirnova is extended to describe effects of continuous, partial-body irradiation at high doses D and at dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and small laboratory animals (mice). Specifically, whereas the applicability of the model is limited to the exposure times shorter than a single cardiac cycle T0, the extended model is capable of describing such effects for the aforementioned and longer exposure times. The extended model is implemented as the algebraic equations. It predicts that the level of surviving blood lymphocytes in humans and mice increases with increasing the dose rate from N= D/T0 to FLASH rates and approaches the upper limiting level of 1-vR, where vR is the fraction of blood volume in the irradiated part of the blood circulatory system. Levels of surviving blood lymphocytes computed at doses from 10 Gy to 40 Gy and at dose rates N, which equal or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. In turn, the level of surviving blood lymphocytes in humans and mice decreases with decreasing the dose rate from N= D/T0 to conventional rates and approaches a lower limiting level. This level strongly depends on the dose D (it is smaller at larger values of D) with a slight dependence on the dose rate N. The model with the parameters specified for mice (together with the model of the dynamics of lymphopoietic system in mice after partial-body irradiation) reproduce, on a quantitative level, the experimental data, according to which the concentration of blood lymphocytes measured in mice in one day after continuous, partial-body irradiation at a high dose and conventional dose rate is smaller at the larger value of vR. Additionally, the model predicts at the same high dose (>10 Gy) a faster restoration of the blood lymphocyte population in humans exposed to continuous, partial-body irradiation at a FLASH dose rate compared to a conventional dose rate.
Collapse
|
19
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
20
|
Pageot C, Zerouali K, Guillet D, Muir B, Renaud J, Lalonde A. The effect of electron backscatter and charge build up in media on beam current transformer signal for ultra-high dose rate (FLASH) electron beam monitoring. Phys Med Biol 2024; 69:105016. [PMID: 38640916 DOI: 10.1088/1361-6560/ad40f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Beam current transformers (BCT) are promising detectors for real-time beam monitoring in ultra-high dose rate (UHDR) electron radiotherapy. However, previous studies have reported a significant sensitivity of the BCT signal to changes in source-to-surface distance (SSD), field size, and phantom material which have until now been attributed to the fluctuating levels of electrons backscattered within the BCT. The purpose of this study is to evaluate this hypothesis, with the goal of understanding and mitigating the variations in BCT signal due to changes in irradiation conditions.Approach.Monte Carlo simulations and experimental measurements were conducted with a UHDR-capable intra-operative electron linear accelerator to analyze the impact of backscattered electrons on BCT signal. The potential influence of charge accumulation in media as a mechanism affecting BCT signal perturbation was further investigated by examining the effects of phantom conductivity and electrical grounding. Finally, the effectiveness of Faraday shielding to mitigate BCT signal variations is evaluated.Main Results.Monte Carlo simulations indicated that the fraction of electrons backscattered in water and on the collimator plastic at 6 and 9 MeV is lower than 1%, suggesting that backscattered electrons alone cannot account for the observed BCT signal variations. However, our experimental measurements confirmed previous findings of BCT response variation up to 15% for different field diameters. A significant impact of phantom type on BCT response was also observed, with variations in BCT signal as high as 14.1% when comparing measurements in water and solid water. The introduction of a Faraday shield to our applicators effectively mitigated the dependencies of BCT signal on SSD, field size, and phantom material.Significance.Our results indicate that variations in BCT signal as a function of SSD, field size, and phantom material are likely driven by an electric field originating in dielectric materials exposed to the UHDR electron beam. Strategies such as Faraday shielding were shown to effectively prevent these electric fields from affecting BCT signal, enabling reliable BCT-based electron UHDR beam monitoring.
Collapse
Affiliation(s)
- Charles Pageot
- École Polytechnique de Montréal, Montreal, QC, Canada
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Karim Zerouali
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Dominique Guillet
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Bryan Muir
- National Research Council, Ottawa, ON, Canada
| | | | - Arthur Lalonde
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
- Université de Montréal , Montreal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
21
|
Yamaguchi S, Ariga H, Yoshioka K. Development of a dose-rate dosimeter using a silicon photodiode for a medical linear accelerator in a 10 MV flattening filter-free mode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:053102. [PMID: 38743570 DOI: 10.1063/5.0179656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
This study was aimed at developing a dose-rate dosimeter to measure the instantaneous dose rate of a commercially available medical linear accelerator. A dose-rate dosimeter composed of a silicon photodiode (Si-PD), a complementary metal-oxide semiconductor single operational amplifier, a resistor of 20 MΩ, a capacitor of 100 pF, and a mini-substrate measuring 16 × 16 mm2 was evaluated. Voltage outputs from the proposed dosimeter were measured using an analog-to-digital converter on a microcomputer. A custom-made x-ray tube generator at an energy of 120 kV with a tube current ranging from 0.1 to 2.0 mA was used for the dose-rate calibration. Dose-rate calibration was performed 83.3 mm from an x-ray source using a commercially available semiconductor dosimeter. The developed Si-PD dosimeter could measure up to 0.6 Gy/s at a distance of 19.3 mm from the x-ray source. Measurements were also performed using a medical linear accelerator in a 10 MV flattening filter-free mode at depths of 0, 25, 50, and 100 mm with an irradiation field of 100 × 100 mm2 at a constant distance of 1000 mm from the source to the dosimeter. A peak voltage variation corresponding to the instantaneous dose rate was observed using a sampling period of 1.0 ms, and the peak voltages decreased with the depth. The detected pulse numbers were 512, 484, 491, and 511 at depths of 0, 25, 50, and 100 mm, respectively.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Hisanori Ariga
- Department of Radiation Oncology, Iwate Medical University Hospital, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| |
Collapse
|
22
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Cengel KA, Kim MM, Diffenderfer ES, Busch TM. FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma? Semin Radiat Oncol 2024; 34:218-228. [PMID: 38508786 DOI: 10.1016/j.semradonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania..
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Konradsson E, Ericsson Szecsenyi R, Wahlqvist P, Thoft A, Blad B, Bäck SÅ, Ceberg C, Petersson K. Reconfiguring a Plane-Parallel Transmission Ionization Chamber to Extend the Operating Range into the Ultra-High Dose-per-pulse Regime. Radiat Res 2024; 201:252-260. [PMID: 38308528 DOI: 10.1667/rade-23-00177.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was ∼100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Åj Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Schoenauen L, Stubbe FX, Van Gestel D, Penninckx S, Heuskin AC. C. elegans: A potent model for high-throughput screening experiments investigating the FLASH effect. Clin Transl Radiat Oncol 2024; 45:100712. [PMID: 38125649 PMCID: PMC10731598 DOI: 10.1016/j.ctro.2023.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
This study explores the effects of UHDR irradiation on Caenorhabditis elegans embryos. UHDR proton and electron beams demonstrate a sparing effect, aligning with literature findings. This highlights C. elegans suitability as a screening model for studying the LET impact on the FLASH effect, reinforcing its potential in radiation research.
Collapse
Affiliation(s)
- Lucas Schoenauen
- NAmur Research Insitute for Life Sciences, University of Namur, Belgium
| | | | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | - Sébastien Penninckx
- Department of Radiation Oncology, Institut Jules Bordet, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
26
|
Liu K, Velasquez B, Schüler E. Technical note: High-dose and ultra-high dose rate (UHDR) evaluation of Al 2 O 3 :C optically stimulated luminescent dosimeter nanoDots and powdered LiF:Mg,Ti thermoluminescent dosimeters for radiation therapy applications. Med Phys 2024; 51:2311-2319. [PMID: 37991111 PMCID: PMC10939935 DOI: 10.1002/mp.16832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
27
|
Cetnar AJ, Jain S, Gupta N, Chakravarti A. Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons. Med Phys 2024; 51:1415-1420. [PMID: 38159300 DOI: 10.1002/mp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate radiation (UHDR) is being explored by researchers in promise of advancing radiation therapy treatments. PURPOSE This work presents the commissioning of Varian's Flash Extension for research (FLEX) conversion of a Clinac to deliver UHDR electrons. METHODS A Varian Clinac iX with the FLEX conversion was commissioned for non-clinical research use with 16 MeV UHDR (16H) energy. This involved addition of new hardware, optimizing the electron gun voltages, radiofrequency (RF) power, and steering coils in order to maximize the accelerated electron beam current, sending the beam through custom scattering foils to produce the UHDR with 16H beam. Profiles and percent depth dose (PDD) measurements for 16H were obtained using radiochromic film in a custom vertical film holder and were compared to 16 MeV conventional electrons (16C). Dose rate and dose per pulse (DPP) were calculated from measured dose in film. Linearity and stability were assessed using an Advanced Markus ionization chamber. RESULTS Energies for 16H and 16C had similar beam quality based on PDD measurements. Measurements at the head of the machine (61.3 cm SSD) with jaws set to 10×10 cm2 showed the FWHM of the profile as 7.2 cm, with 3.4 Gy as the maximum DPP and instantaneous dose rate of 8.1E5 Gy/s. Measurements at 100 cm SSD with 10 cm standard cone showed the full width at half max (FWHM) of the profile as 10.5 cm, 1.08 Gy as the maximum DPP and instantaneous dose rate of 2.E5 Gy/s. Machine output with number of pulses was linear (R = 1) from 1 to 99 delivered pulses. Output stability was measured within ±1% within the same session and within ±2% for daily variations. CONCLUSIONS The FLEX conversion of the Clinac is able to generate UHDR electron beams which are reproducible with beam properties similar to clinically used electrons at 16 MeV. Having a platform which can quickly transition between UHDR and conventional modes (<1 min) can be advantageous for future research applications.
Collapse
Affiliation(s)
- Ashley J Cetnar
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sagarika Jain
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nilendu Gupta
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
Oh K, Gallagher KJ, Hyun M, Schott D, Wisnoskie S, Lei Y, Hendley S, Wong J, Wang S, Graff B, Jenkins C, Rutar F, Ahmed M, McNeur J, Taylor J, Schmidt M, Senadheera L, Smith W, Umstadter D, Lele SM, Dai R, Jianghu (James) D, Yan Y, Su‐min Z. Initial experience with an electron FLASH research extension (FLEX) for the Clinac system. J Appl Clin Med Phys 2024; 25:e14159. [PMID: 37735808 PMCID: PMC10860433 DOI: 10.1002/acm2.14159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Megan Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Diane Schott
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Yu Lei
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jeffrey Wong
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shuo Wang
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Brendan Graff
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Frank Rutar
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Md Ahmed
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | | | | | - Wendy Smith
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | - Ran Dai
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Zhou Su‐min
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
29
|
Konradsson E, Wahlqvist P, Thoft A, Blad B, Bäck S, Ceberg C, Petersson K. Beam control system and output fine-tuning for safe and precise delivery of FLASH radiotherapy at a clinical linear accelerator. Front Oncol 2024; 14:1342488. [PMID: 38304871 PMCID: PMC10830783 DOI: 10.3389/fonc.2024.1342488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction We have previously adapted a clinical linear accelerator (Elekta Precise, Elekta AB) for ultra-high dose rate (UHDR) electron delivery. To enhance reliability in future clinical FLASH radiotherapy trials, the aim of this study was to introduce and evaluate an upgraded beam control system and beam tuning process for safe and precise UHDR delivery. Materials and Methods The beam control system is designed to interrupt the beam based on 1) a preset number of monitor units (MUs) measured by a monitor detector, 2) a preset number of pulses measured by a pulse-counting diode, or 3) a preset delivery time. For UHDR delivery, an optocoupler facilitates external control of the accelerator's thyratron trigger pulses. A beam tuning process was established to maximize the output. We assessed the stability of the delivery, and the independent interruption capabilities of the three systems (monitor detector, pulse counter, and timer). Additionally, we explored a novel approach to enhance dosimetric precision in the delivery by synchronizing the trigger pulse with the charging cycle of the pulse forming network (PFN). Results Improved beam tuning of gun current and magnetron frequency resulted in average dose rates at the dose maximum at isocenter distance of >160 Gy/s or >200 Gy/s, with or without an external monitor chamber in the beam path, respectively. The delivery showed a good repeatability (standard deviation (SD) in total film dose of 2.2%) and reproducibility (SD in film dose of 2.6%). The estimated variation in DPP resulted in an SD of 1.7%. The output in the initial pulse depended on the PFN delay time. Over the course of 50 measurements employing PFN synchronization, the absolute percentage error between the delivered number of MUs calculated by the monitor detector and the preset MUs was 0.8 ± 0.6% (mean ± SD). Conclusion We present an upgraded beam control system and beam tuning process for safe and stable UHDR electron delivery of hundreds of Gy/s at isocenter distance at a clinical linac. The system can interrupt the beam based on monitor units and utilize PFN synchronization for improved dosimetric precision in the dose delivery, representing an important advancement toward reliable clinical FLASH trials.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Liu K, Holmes S, Hooten B, Schüler E, Beddar S. Evaluation of ion chamber response for applications in electron FLASH radiotherapy. Med Phys 2024; 51:494-508. [PMID: 37696271 PMCID: PMC10840726 DOI: 10.1002/mp.16726] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Ion chambers are required for calibration and reference dosimetry applications in radiation therapy (RT). However, exposure of ion chambers in ultra-high dose rate (UHDR) conditions pertinent to FLASH-RT leads to severe saturation and ion recombination, which limits their performance and usability. The purpose of this study was to comprehensively evaluate a set of commonly used commercially available ion chambers in RT, all with different design characteristics, and use this information to produce a prototype ion chamber with improved performance in UHDR conditions as a first step toward ion chambers specific for FLASH-RT. The Advanced Markus and Exradin A10, A26, and A20 ion chambers were evaluated. The chambers were placed in a water tank, at a depth of 2 cm, and exposed to an UHDR electron beam at different pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings on an IntraOp Mobetron. Ion chamber responses were investigated for the various beam parameter settings to isolate their dependence on integrated dose, mean dose rate and instantaneous dose rate, dose-per-pulse (DPP), and their design features such as chamber type, bias voltage, and collection volume. Furthermore, a thin parallel-plate (TPP) prototype ion chamber with reduced collector plate separation and volume was constructed and equally evaluated as the other chambers. The charge collection efficiency of the investigated ion chambers decreased with increasing DPP, whereas the mean dose rate did not affect the response of the chambers (± 1%). The dependence of the chamber response on DPP was found to be solely related to the total dose within the pulse, and not on mean dose rate, PW, or instantaneous dose rate within the ranges investigated. The polarity correction factor (Ppol ) values of the TPP prototype, A10, and Advanced Markus chambers were found to be independent of DPP and dose rate (± 2%), while the A20 and A26 chambers yielded significantly larger variations and dependencies under the same conditions. Ion chamber performance evaluated under different irradiation conditions of an UHDR electron beam revealed a strong dependence on DPP and a negligible dependence on the mean and instantaneous dose rates. These results suggest that modifications to ion chambers design to improve their usability in UHDR beamlines should focus on minimizing DPP effects, with emphasis on optimizing the electric field strength, through the construction of smaller electrode separation and larger bias voltages. This was confirmed through the production and evaluation of a prototype ion chamber specifically designed with these characteristics.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | | | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|
31
|
No HJ, Wu YF, Dworkin ML, Manjappa R, Skinner L, Ashraf MR, Lau B, Melemenidis S, Viswanathan V, Yu ASJ, Surucu M, Schüler E, Graves EE, Maxim PG, Loo BW. Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. Int J Radiat Oncol Biol Phys 2023; 117:482-492. [PMID: 37105403 DOI: 10.1016/j.ijrobp.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.
Collapse
Affiliation(s)
- Hyunsoo Joshua No
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yufan Fred Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Louis Dworkin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edward Elliot Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter Gregor Maxim
- Department of Radiation Oncology, University of California, Irvine, Orange, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
32
|
Dal Bello R, von der Grün J, Fabiano S, Rudolf T, Saltybaeva N, Stark LS, Ahmed M, Bathula M, Kucuker Dogan S, McNeur J, Guckenberger M, Tanadini-Lang S. Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments. Radiother Oncol 2023; 187:109822. [PMID: 37516362 DOI: 10.1016/j.radonc.2023.109822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup. MATERIALS AND METHODS The first Varian TrueBeam (SN 1001) was clinically operative between 2009-2022, it was then decommissioned and converted into a research platform. The 18 MeV electron beam was converted into the experimental 16 MeV UHDR. Modifications were performed by Varian and included a software patch, thinner scattering foil and beam tuning. The dose rate, beam characteristics and reproducibility were measured with electron applicators at SSD = 100 cm. RESULTS The dose per pulse at isocenter was up to 1.28 Gy/pulse, corresponding to average and instantaneous dose rates up to 256 Gy/s and 3⋅105 Gy/s, respectively. Beam characteristics were equivalent between 16 MeV UHDR and conventional for field sizes up to 10x10cm2 and an overall beam reproducibility within ± 2.5% was measured. CONCLUSIONS We report on the first technical conversion of a Varian TrueBeam to produce 16 MeV UHDR electron beams. This research platform will allow isocenter experiments and deliveries with conventional setups up to field sizes of 10x10 cm2 within a hospital environment, reducing the gap between preclinical and clinical electron FLASH investigations.
Collapse
Affiliation(s)
- Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Jens von der Grün
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thomas Rudolf
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Natalia Saltybaeva
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Luisa S Stark
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Md Ahmed
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | - Manohar Bathula
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | | | - Joshua McNeur
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Jain S, Cetnar A, Woollard J, Gupta N, Blakaj D, Chakravarti A, Ayan AS. Pulse parameter optimizer: an efficient tool for achieving prescribed dose and dose rate with electron FLASH platforms. Phys Med Biol 2023; 68:19NT01. [PMID: 37735967 DOI: 10.1088/1361-6560/acf63e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Purpose. Commercial electron FLASH platforms deliver ultra-high dose rate doses at discrete combinations of pulse parameters including pulse width (PW), pulse repetition frequency (PRF) and number of pulses (N), which dictate unique combinations of dose and dose rates. Additionally, collimation, source to surface distance, and airgaps also vary the dose per pulse (DPP). Currently, obtaining pulse parameters for the desired dose and dose rate is a cumbersome manual process involving creating, updating, and looking up values in large spreadsheets for every treatment configuration. This work presents a pulse parameter optimizer application to match intended dose and dose rate precisely and efficiently.Methods. Dose and dose rate calculation methods have been described for a commercial electron FLASH platform. A constrained optimization for the dose and dose rate cost function was modelled as a mixed integer problem in MATLAB (The MathWorks Inc., Version9.13.0 R2022b, Natick, Massachusetts). The beam and machine data required for the application were acquired using GafChromic film and alternating current current transformers (ACCTs). Variables for optimization included DPP for every collimator, PW and PRF measured using ACCT and airgap factors.Results. Using PW, PRF,Nand airgap factors as parameters, a software was created to optimize dose and dose rate, reaching the closest match if exact dose and dose rates are not achievable. Optimization took 20 s or less to converge to results. This software was validated for accuracy of dose calculation and precision in matching prescribed dose and dose rate.Conclusion. A pulse parameter optimization application was built for a commercial electron FLASH platform to increase efficiency in dose, dose rate, and pulse parameter prescription process. Automating this process reduces safety concerns associated with manual look up and calculation of these parameters, especially when many subjects at different doses and dose rates are to be safely managed.
Collapse
Affiliation(s)
- S Jain
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Cetnar
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - J Woollard
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - N Gupta
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - D Blakaj
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Chakravarti
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A S Ayan
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| |
Collapse
|
34
|
Petoukhova A, Snijder R, Vissers T, Ceha H, Struikmans H. In vivodosimetry in cancer patients undergoing intraoperative radiation therapy. Phys Med Biol 2023; 68:18TR01. [PMID: 37607566 DOI: 10.1088/1361-6560/acf2e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
In vivodosimetry (IVD) is an important tool in external beam radiotherapy (EBRT) to detect major errors by assessing differences between expected and delivered dose and to record the received dose by individual patients. Also, in intraoperative radiation therapy (IORT), IVD is highly relevant to register the delivered dose. This is especially relevant in low-risk breast cancer patients since a high dose of IORT is delivered in a single fraction. In contrast to EBRT, online treatment planning based on intraoperative imaging is only under development for IORT. Up to date, two commercial treatment planning systems proposed intraoperative ultrasound or in-room cone-beam CT for real-time IORT planning. This makes IVD even more important because of the possibility for real-time treatment adaptation. Here, we summarize recent developments and applications of IVD methods for IORT in clinical practice, highlighting important contributions and identifying specific challenges such as a treatment planning system for IORT. HDR brachytherapy as a delivery technique was not considered. We add IVD for ultrahigh dose rate (FLASH) radiotherapy that promises to improve the treatment efficacy, when compared to conventional radiotherapy by limiting the rate of toxicity while maintaining similar tumour control probabilities. To date, FLASH IORT is not yet in clinical use.
Collapse
Affiliation(s)
- Anna Petoukhova
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Roland Snijder
- Haaglanden Medical Centre , Department of Medical Physics, Leidschendam, The Netherlands
| | - Thomas Vissers
- Haaglanden Medical Centre , Medical Library, Leidschendam, The Netherlands
| | - Heleen Ceha
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| | - Henk Struikmans
- Haaglanden Medical Centre , Department of Radiation Oncology, Leidschendam, The Netherlands
| |
Collapse
|
35
|
Marinelli M, di Martino F, Del Sarto D, Pensavalle JH, Felici G, Giunti L, De Liso V, Kranzer R, Verona C, Verona Rinati G. A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Phys Med Biol 2023; 68:175011. [PMID: 37494946 DOI: 10.1088/1361-6560/acead0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofμs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.
Collapse
Affiliation(s)
- Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | - Fabio di Martino
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Damiano Del Sarto
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | | | | | | | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg D-79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, D-26121 Germany
| | - Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | | |
Collapse
|
36
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Almeida A, Togno M, Ballesteros-Zebadua P, Franco-Perez J, Geyer R, Schaefer R, Petit B, Grilj V, Meer D, Safai S, Lomax T, Weber DC, Bailat C, Psoroulas S, Vozenin MC. Dosimetric and biologic intercomparison between electron and proton FLASH beams. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537497. [PMID: 37131769 PMCID: PMC10153243 DOI: 10.1101/2023.04.20.537497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and purpose The FLASH effect has been validated in different preclinical experiments with electrons (eFLASH) and protons (pFLASH) operating at a mean dose rate above 40 Gy/s. However, no systematic intercomparison of the FLASH effect produced by e vs. pFLASH has yet been performed and constitutes the aim of the present study. Materials and methods The electron eRT6/Oriatron/CHUV/5.5 MeV and proton Gantry1/PSI/170 MeV were used to deliver conventional (0.1 Gy/s eCONV and pCONV) and FLASH (≥100 Gy/s eFLASH and pFLASH) irradiation. Protons were delivered in transmission. Dosimetric and biologic intercomparisons were performed with previously validated models. Results Doses measured at Gantry1 were in agreement (± 2.5%) with reference dosimeters calibrated at CHUV/IRA. The neurocognitive capacity of e and pFLASH irradiated mice was indistinguishable from the control while both e and pCONV irradiated cohorts showed cognitive decrements. Complete tumor response was obtained with the two beams and was similar between e and pFLASH vs. e and pCONV. Tumor rejection was similar indicating that T-cell memory response is beam-type and dose-rate independent. Conclusion Despite major differences in the temporal microstructure, this study shows that dosimetric standards can be established. The sparing of brain function and tumor control produced by the two beams were similar, suggesting that the most important physical parameter driving the FLASH effect is the overall time of exposure which should be in the range of hundreds of milliseconds for WBI in mice. In addition, we observed that immunological memory response is similar between electron and proton beams and is independent off the dose rate.
Collapse
Affiliation(s)
- A Almeida
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Togno
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - P Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - J Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - R Geyer
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
| | - R Schaefer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - B Petit
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - V Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - D Meer
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - S Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - T Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - D C Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
- Department of Radiation Oncology, lnselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Radiation Oncology, University Hospital of Zurich, Switzerland
| | - C Bailat
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, 5323 Villigen PSI, Switzerland
| | - M C Vozenin
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Valdés Zayas A, Kumari N, Liu K, Neill D, Delahoussaye A, Gonçalves Jorge P, Geyer R, Lin SH, Bailat C, Bochud F, Moeckli R, Koong AC, Bourhis J, Taniguchi CM, Herrera FG, Schüler E. Independent Reproduction of the FLASH Effect on the Gastrointestinal Tract: A Multi-Institutional Comparative Study. Cancers (Basel) 2023; 15:cancers15072121. [PMID: 37046782 PMCID: PMC10093322 DOI: 10.3390/cancers15072121] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
FLASH radiation therapy (RT) is a promising new paradigm in radiation oncology. However, a major question that remains is the robustness and reproducibility of the FLASH effect when different irradiators are used on animals or patients with different genetic backgrounds, diets, and microbiomes, all of which can influence the effects of radiation on normal tissues. To address questions of rigor and reproducibility across different centers, we analyzed independent data sets from The University of Texas MD Anderson Cancer Center and from Lausanne University (CHUV). Both centers investigated acute effects after total abdominal irradiation to C57BL/6 animals delivered by the FLASH Mobetron system. The two centers used similar beam parameters but otherwise conducted the studies independently. The FLASH-enabled animal survival and intestinal crypt regeneration after irradiation were comparable between the two centers. These findings, together with previously published data using a converted linear accelerator, show that a robust and reproducible FLASH effect can be induced as long as the same set of irradiation parameters are used.
Collapse
Affiliation(s)
- Anet Valdés Zayas
- Radio-Oncology Department, AGORA Cancer Research Institute, Lausanne University Hospital, Lausanne University, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Neeraj Kumari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kevin Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Denae Neill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abagail Delahoussaye
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne University, Rue du Grand-Pré-1, CH-1007 Lausanne, Switzerland
| | - Reiner Geyer
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne University, Rue du Grand-Pré-1, CH-1007 Lausanne, Switzerland
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne University, Rue du Grand-Pré-1, CH-1007 Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne University, Rue du Grand-Pré-1, CH-1007 Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne University, Rue du Grand-Pré-1, CH-1007 Lausanne, Switzerland
| | - Albert C. Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Jean Bourhis
- Radio-Oncology Department, AGORA Cancer Research Institute, Lausanne University Hospital, Lausanne University, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Cullen M. Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| | - Fernanda G. Herrera
- Radio-Oncology Department, AGORA Cancer Research Institute, Lausanne University Hospital, Lausanne University, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| |
Collapse
|
39
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
40
|
Rahman M, Zhang R, Gladstone DJ, Williams BB, Chen E, Dexter CA, Thompson L, Bruza P, Pogue BW. Failure Mode and Effects Analysis for Experimental Use of FLASH on a Clinical Accelerator. Pract Radiat Oncol 2023; 13:153-165. [PMID: 36375771 PMCID: PMC10373055 DOI: 10.1016/j.prro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/21/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE The use of a linear accelerator (LINAC) in ultrahigh-dose-rate (UHDR) mode can provide a conduit for wider access to UHDR FLASH effects, sparing normal tissue, but care needs to be taken in the use of such systems to ensure errors are minimized. The failure mode and effects analysis was carried out in a team that has been involved in converting a LINAC between clinical use and UHDR experimental mode for more than 1 year after the proposed methods of TG100. METHODS AND MATERIALS A team of 9 professionals with extensive experience were polled to outline the process map and workflow for analysis, and developed fault trees for potential errors, as well as failure modes that would result. The team scored the categories of severity magnitude, occurrence likelihood, and detectability potential in a scale of 1 to 10, so that a risk priority number (RPN = severity×occurrence×detectability) could be assessed for each. RESULTS A total of 46 potential failure modes were identified, including 5 with an RPN >100. These failure modes involved (1) patient set up, (2) gating mechanisms in delivery, and (3) detector in the beam stop mechanism. The identified methods to mitigate errors included the (1) use of a checklist post conversion, (2) use of robust radiation detectors, (3) automation of quality assurance and beam consistency checks, and (4) implementation of surface guidance during beam delivery. CONCLUSIONS The failure mode and effects analysis process was considered critically important in this setting of a new use of a LINAC, and the expert team developed a higher level of confidence in the ability to safely move UHDR LINAC use toward expanded research access.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Erli Chen
- Cheshire Medical Center, Keene, New Hampshire
| | - Chad A Dexter
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lawrence Thompson
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
41
|
Liu K, Palmiero A, Chopra N, Velasquez B, Li Z, Beddar S, Schüler E. Dual beam-current transformer design for monitoring and reporting of electron ultra-high dose rate (FLASH) beam parameters. J Appl Clin Med Phys 2023; 24:e13891. [PMID: 36601691 PMCID: PMC9924113 DOI: 10.1002/acm2.13891] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate the usefulness and effectiveness of a dual beam-current transformer (BCTs) design to monitor and record the beam dosimetry output and energy of pulsed electron FLASH (eFLASH) beams in real-time, and to inform on the usefulness of this design for future eFLASH beam control. METHODS Two BCTs are integrated into the head of a FLASH Mobetron system, one located after the primary scattering foil and the other downstream of the secondary scattering foil. The response of the BCTs was evaluated individually to monitor beam output as a function of dose, scattering conditions, and ability to capture physical beam parameters such as pulse width (PW), pulse repetition frequency (PRF), and dose per pulse (DPP), and in combination to determine beam energy using the ratio of the lower-to-upper BCT signal. RESULTS A linear relationship was observed between the absorbed dose measured on Gafchromic film and the BCT signals for both the upper and lower BCT (R2 > 0.99). A linear relationship was also observed in the BCT signals as a function of the number of pulses delivered regardless of the PW, DPP, or PRF (R2 > 0.99). The lower-to-upper BCT ratio was found to correlate strongly with the energy of the eFLASH beam due to differential beam attenuation caused by the secondary scattering foil. The BCTs were also able to provide accurate information about the PW, PRF, energy, and DPP for each individual pulse delivered in real-time. CONCLUSION The dual BCT system integrated within the FLASH Mobetron was shown to be a reliable monitoring system able to quantify accelerator performance and capture all essential physical beam parameters on a pulse-by-pulse basis, and the ratio between the two BCTs was strongly correlated with beam energy. The fast signal readout and processing enables the BCTs to provide real-time information on beam output and energy and is proposed as a system suitable for accurate beam monitoring and control of eFLASH beams.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA,Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Allison Palmiero
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Nitish Chopra
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Brett Velasquez
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ziyi Li
- Department of BiostatisticsDivision of Basic SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sam Beddar
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA,Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emil Schüler
- Department of Radiation PhysicsDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA,Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
42
|
Held T, Franke H, Lang K, Eichkorn T, Regnery S, Weusthof K, Bauer L, Plath K, Dyckhoff G, Plinkert PK, Harrabi SB, Herfarth K, Debus J, Adeberg S. Intensity modulated proton therapy for early-stage glottic cancer: high-precision approach to laryngeal function preservation with exceptional treatment tolerability. Radiat Oncol 2022; 17:199. [PMID: 36471398 PMCID: PMC9724307 DOI: 10.1186/s13014-022-02144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to the increasing expertise in transoral laser surgery and image-guided radiation therapy, treatment outcomes have recently improved in patients with early-stage glottic cancer. The objective of the current study was to evaluate intensity-modulated proton therapy (IMPT) as novel treatment option. METHODS A total of 15 patients with T1-2N0 glottic squamous cell carcinoma, treated between 2017 and 2020, were evaluated. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.03. RESULTS The majority were T1a/b tumors (66.7%) and no patient had lymph node or distant metastases. The median total dose was 70 Gy relative biological effectiveness (RBE) (range 66-70 Gy RBE). The one- and two-year OS and metastases-free survival were 100%. One patient developed local failure and received salvage laryngectomy. No higher-grade acute or late toxicity was reported. The mean number of CTCAE grade I and II overall toxicity events per patient was 4.1 (95%-[confidence interval] CI 3.1-5.3) and 1.0 (95%-CI 0.5-1.5). CONCLUSION High-precision proton therapy of T1-2N0 glottic cancer resulted in exceptional treatment tolerability with high rates of laryngeal function preservation and promising oncological outcome. IMPT has the potential to become a standard treatment option for patients with early-stage laryngeal cancer.
Collapse
Affiliation(s)
- Thomas Held
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Henrik Franke
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Kristin Lang
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Tanja Eichkorn
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Katharina Weusthof
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Lukas Bauer
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Karim Plath
- grid.7700.00000 0001 2190 4373Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Dyckhoff
- grid.7700.00000 0001 2190 4373Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter K. Plinkert
- grid.7700.00000 0001 2190 4373Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Semi B. Harrabi
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- grid.5253.10000 0001 0328 4908Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany ,grid.488831.eHeidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365National Center for Tumor diseases (NCT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Schültke E, Jaekel F, Bartzsch S, Bräuer-Krisch E, Requardt H, Laissue JA, Blattmann H, Hildebrandt G. Good Timing Matters: The Spatially Fractionated High Dose Rate Boost Should Come First. Cancers (Basel) 2022; 14:cancers14235964. [PMID: 36497446 PMCID: PMC9738329 DOI: 10.3390/cancers14235964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Monoplanar microbeam irradiation (MBI) and pencilbeam irradiation (PBI) are two new concepts of high dose rate radiotherapy, combined with spatial dose fractionation at the micrometre range. In a small animal model, we have explored the concept of integrating MBI or PBI as a simultaneously integrated boost (SIB), either at the beginning or at the end of a conventional, low-dose rate schedule of 5x4 Gy broad beam (BB) whole brain radiotherapy (WBRT). MBI was administered as array of 50 µm wide, quasi-parallel microbeams. For PBI, the target was covered with an array of 50 µm × 50 µm pencilbeams. In both techniques, the centre-to-centre distance was 400 µm. To assure that the entire brain received a dose of at least 4 Gy in all irradiated animals, the peak doses were calculated based on the daily BB fraction to approximate the valley dose. The results of our study have shown that the sequence of the BB irradiation fractions and the microbeam SIB is important to limit the risk of acute adverse effects, including epileptic seizures and death. The microbeam SIB should be integrated early rather than late in the irradiation schedule.
Collapse
Affiliation(s)
- Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
- Correspondence:
| | - Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University of Munich, 81675 Munich, Germany
- Institute for Radiation Medicine, Helmholtz Center Munich, 85764 Munich, Germany
| | - Elke Bräuer-Krisch
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | - Herwig Requardt
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France
| | | | - Hans Blattmann
- Independent Researcher, 5417 Untersiggenthal, Switzerland
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany
| |
Collapse
|
44
|
Faillace L, Alesini D, Bisogni G, Bosco F, Carillo M, Cirrone P, Cuttone G, De Arcangelis D, De Gregorio A, Di Martino F, Favaudon V, Ficcadenti L, Francescone D, Franciosini G, Gallo A, Heinrich S, Migliorati M, Mostacci A, Palumbo L, Patera V, Patriarca A, Pensavalle J, Perondi F, Remetti R, Sarti A, Spataro B, Torrisi G, Vannozzi A, Giuliano L. Perspectives in linear accelerator for FLASH VHEE: Study of a compact C-band system. Phys Med 2022; 104:149-159. [PMID: 36427487 DOI: 10.1016/j.ejmp.2022.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In order to translate the FLASH effect in clinical use and to treat deep tumors, Very High Electron Energy irradiations could represent a valid technique. Here, we address the main issues in the design of a VHEE FLASH machine. We present preliminary results for a compact C-band system aiming to reach a high accelerating gradient and high current necessary to deliver a Ultra High Dose Rate with a beam pulse duration of 3μs. METHODS The proposed system is composed by low energy high current injector linac followed by a high acceleration gradient structure able to reach 60-160 MeV energy range. To obtain the maximum energy, an energy pulse compressor options is considered. CST code was used to define the specifications RF parameters of the linac. To optimize the accelerated current and therefore the delivered dose, beam dynamics simulations was performed using TSTEP and ASTRA codes. RESULTS The VHEE parameters Linac suitable to satisfy FLASH criteria were simulated. Preliminary results allow to obtain a maximum energy of 160 MeV, with a peak current of 200 mA, which corresponds to a charge of 600 nC. CONCLUSIONS A promising preliminary design of VHEE linac for FLASH RT has been performed. Supplementary studies are on going to complete the characterization of the machine and to manufacture and test the RF prototypes.
Collapse
Affiliation(s)
- L Faillace
- INFN Laboratori Nazionali di Frascati, Italy.
| | - D Alesini
- INFN Laboratori Nazionali di Frascati, Italy
| | - G Bisogni
- INFN Sezione di Pisa, Italy; Department of Physics, University of Pisa, 56127 Pisa, Italy
| | - F Bosco
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - M Carillo
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - P Cirrone
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - G Cuttone
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - D De Arcangelis
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - A De Gregorio
- INFN Sezione di Roma, Italy; Department of Physics, Sapienza University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - F Di Martino
- U.O. Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - V Favaudon
- Institut Curie, Paris-Saclay University, PSL Research University, INSERM U1021/UMR3347, Orsay, France
| | - L Ficcadenti
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - D Francescone
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - G Franciosini
- INFN Sezione di Roma, Italy; Department of Physics, Sapienza University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - A Gallo
- INFN Laboratori Nazionali di Frascati, Italy
| | - S Heinrich
- Institut Curie, Paris-Saclay University, PSL Research University, INSERM U1021/UMR3347, Orsay, France
| | - M Migliorati
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - A Mostacci
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - L Palumbo
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - V Patera
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - A Patriarca
- Institut Curie, PSL Research University, Proton Therapy Centre, Centre Universitaire, Orsay, France
| | - J Pensavalle
- INFN Sezione di Pisa, Italy; Department of Physics, University of Pisa, 56127 Pisa, Italy
| | - F Perondi
- SBAI Department, Sapienza University of Rome, Italy
| | - R Remetti
- SBAI Department, Sapienza University of Rome, Italy
| | - A Sarti
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| | - B Spataro
- INFN Laboratori Nazionali di Frascati, Italy
| | - G Torrisi
- INFN Laboratori Nazionali del Sud, Catania, Italy
| | - A Vannozzi
- INFN Laboratori Nazionali di Frascati, Italy
| | - L Giuliano
- SBAI Department, Sapienza University of Rome, Italy; INFN Sezione di Roma, Italy
| |
Collapse
|
45
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
46
|
Gao Y, Liu R, Chang C, Charyyev S, Zhou J, Bradley JD, Liu T, Yang X. A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. J Appl Clin Med Phys 2022; 23:e13790. [PMID: 36168677 PMCID: PMC9588273 DOI: 10.1002/acm2.13790] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/08/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022] Open
Abstract
FLASH radiotherapy (RT) is a novel technique in which the ultrahigh dose rate (UHDR) (≥40 Gy/s) is delivered to the entire treatment volume. Recent outcomes of in vivo studies show that the UHDR RT has the potential to spare normal tissue without sacrificing tumor control. There is a growing interest in the application of FLASH RT, and the ultrahigh dose irradiation delivery has been achieved by a few experimental and modified linear accelerators. The underlying mechanism of FLASH effect is yet to be fully understood, but the oxygen depletion in normal tissue providing extra protection during FLASH irradiation is a hypothesis that attracts most attention currently. Monte Carlo simulation is playing an important role in FLASH, enabling the understanding of its dosimetry calculations and hardware design. More advanced Monte Carlo simulation tools are under development to fulfill the challenge of reproducing the radiolysis and radiobiology processes in FLASH irradiation. FLASH RT may become one of standard treatment modalities for tumor treatment in the future. This paper presents the history and status of FLASH RT studies with a focus on FLASH irradiation delivery modalities, underlying mechanism of FLASH effect, in vivo and vitro experiments, and simulation studies. Existing challenges and prospects of this novel technique are discussed in this manuscript.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Ruirui Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Chih‐Wei Chang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Serdar Charyyev
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jeffrey D. Bradley
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
47
|
Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological Aspects of FLASH Radiotherapy. Biomolecules 2022; 12:biom12101376. [PMID: 36291585 PMCID: PMC9599153 DOI: 10.3390/biom12101376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy (RT) is one of the primary treatment modalities for cancer patients. The clinical use of RT requires a balance to be struck between tumor effect and the risk of toxicity. Sparing normal tissue is the cornerstone of reducing toxicity. Advances in physical targeting and dose-shaping technology have helped to achieve this. FLASH RT is a promising, novel treatment technique that seeks to exploit a potential normal tissue-sparing effect of ultra-high dose rate irradiation. A significant body of in vitro and in vivo data has highlighted a decrease in acute and late radiation toxicities, while preserving the radiation effect in tumor cells. The underlying biological mechanisms of FLASH RT, however, remain unclear. Three main mechanisms have been hypothesized to account for this differential FLASH RT effect between the tumor and healthy tissue: the oxygen depletion, the DNA damage, and the immune-mediated hypothesis. These hypotheses and molecular mechanisms have been evaluated both in vitro and in vivo. Furthermore, the effect of ultra-high dose rate radiation with extremely short delivery times on the dynamic tumor microenvironment involving circulating blood cells and immune cells in humans is essentially unknown. Therefore, while there is great interest in FLASH RT as a means of targeting tumors with the promise of an increased therapeutic ratio, evidence of a generalized FLASH effect in humans and data to show that FLASH in humans is safe and at least effective against tumors as standard photon RT is currently lacking. FLASH RT needs further preclinical investigation and well-designed in-human studies before it can be introduced into clinical practice.
Collapse
Affiliation(s)
- Eline Hageman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Pei-Pei Che
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Max Dahele
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ben J. Slotman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Peter Sminia
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
48
|
Lazarus GL, van Eeden D, du Plessis FCP. Validation of Monte Carlo-based calculations for megavolt electron beams for IORT and FLASH-IORT. Heliyon 2022; 8:e10682. [PMID: 36185136 PMCID: PMC9519483 DOI: 10.1016/j.heliyon.2022.e10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022] Open
Abstract
In Intra-Operative Radiation Therapy (IORT) the tumour site is surgically exposed and normal tissue located around the tumour may be avoided. Electron applicators would require large surgical incisions; therefore, the preferred mechanism for beam collimation is the IORT cone system. FLASH radiotherapy (FLASH-RT) involves the treatment of tumours at ultra-high dose rates and the IORT cone system can also be used. This study validates the Monte Carlo-based calculations for these small electron beams to accurately determine the dose characteristics of each possible cone-energy combination as well as custom-built alloy cutouts attached to the end of the IORT cone. This will contribute to accurate dose distribution and output factor calculations that are essential to all radiation therapy treatments. A Monte Carlo (MC) model was modelled for electron beams produced by a Siemens Primus LINAC and the IORT cones. The accelerator was built with the component modules available in the BEAMnrc code. The phase-space file generated by the BEAM simulation was used as the source input for the subsequent DOSXYZnrc simulations. Percentage Depth Dose (PDD) data and profiles were extracted from the dose distributions obtained with the DOSXYZnrc simulations. These beam characteristics were compared with measured data for 6, 12, and 18 MeV electron beams for the IORT open cones of diameters 19, 45, and 64 mm and irregularly shaped cutouts. The MC simulations could replicate electron beams within a criterion of 3%/3 mm. Applicator factors were within 0.7%, and cone factors showed good agreement, except for the 9 mm cone size. Based on the successful comparisons between measurement and MC-calculated dose distributions, output factors for the open cones and for small irregularly shaped IORT beams, it may be concluded that the Monte Carlo based dose calculation could replicate electron beams used for IORT and FLASH-IORT.
Collapse
Affiliation(s)
- Graeme L. Lazarus
- University of Kwazulu-Natal, School of Clinical Medicine, College of Health Sciences, Durban, 4013, South Africa
| | - Déte van Eeden
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| | - Frederik CP. du Plessis
- Department of Medical Physics, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
49
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
50
|
Wei S, Lin H, Isabelle Choi J, Shi C, Simone CB, Kang M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother Oncol 2022; 175:238-247. [PMID: 35961583 DOI: 10.1016/j.radonc.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the "FLASHness" of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application. METHODS Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect. RESULTS For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less "FLASHness" region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05). CONCLUSION Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | | | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA 92618, USA
| | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|