1
|
Chen Y, Zhang Y, Jiang Q, Tang C, Wang Q, He C, Zuo Z, Yang C. Effects of whole life-cycle exposure to carbaryl on reproduction of female marine medaka (Oryzias melastigma) and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174789. [PMID: 39047820 DOI: 10.1016/j.scitotenv.2024.174789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Carbaryl is widely used as a highly effective insecticide which harms the marine environment. This study aimed to assess the reproductive toxicity of chronic carbaryl exposure on female marine medaka and their female offspring. After a 180-day exposure from embryonic period to adulthood, females exhibited reduced attraction to males, decreased ovulation, increased gonadosomatic index and a higher proportion of mature and atretic follicles. These reproductive toxic effects of carbaryl may stem from changes in hormone levels and transcription levels of key genes along the HPG axis. Furthermore, maternal carbaryl exposure had detrimental effects on the offspring. F1 females showed the reproductive disorders similar to those observed in F0 females. The significant changes in the transcription levels of DNA methyltransferase and demethylase genes in the F0 and F1 generations of ovaries indicate changes in their DNA methylation levels. The changes in DNA methylation levels in F1 female marine medaka may lead to changes in the expression of certain reproductive key genes, such as an increase in the transcription level of cyp19a, which may be the reason for F1 reproductive toxicity. These findings indicate that maternal exposure may induce severe generational toxicity through alterations in DNA methylation levels. This study assesses the negative impacts of whole life-cycle carbaryl exposure on the reproductive and developmental processes of female marine medaka and its female offspring, while offering data to support the evaluation of the ecological risk posed by carbaryl in marine ecosystems.
Collapse
Affiliation(s)
- Yuxin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yuxuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qun Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Ghosh S, Biswas S, Mukherjee U, Karmakar S, Maitra S. Participation of follicular superoxides, inflammatory modulators, and endocrine factors in zebrafish (Danio rerio) ovulation: Cross-talk between PKA and MAPK signaling in Pgr regulation of ovulatory markers. Mol Cell Endocrinol 2024; 585:112180. [PMID: 38342135 DOI: 10.1016/j.mce.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1β, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.
Collapse
Affiliation(s)
- Soumyajyoti Ghosh
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Urmi Mukherjee
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sampurna Karmakar
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
3
|
Ramachandran D, Sharma K, Saxena V, Nipu N, Rajapaksha DC, Mennigen JA. Knock-out of vasotocin reduces reproductive success in female zebrafish, Danio rerio. Front Endocrinol (Lausanne) 2023; 14:1151299. [PMID: 37670879 PMCID: PMC10475537 DOI: 10.3389/fendo.2023.1151299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/13/2023] [Indexed: 09/07/2023] Open
Abstract
The vertebrate nonapeptide vasotocin/vasopressin is evolutionarily highly conserved and acts as neuromodulator and endocrine/paracrine signaling molecule. Circumstantial and mechanistic evidence from pharmacological manipulations of the vasotocin system in several teleost fishes suggest sex- and species-specific reproductive roles of vasotocin. While effects of vasotocin on teleost reproductive physiology involve both courtship behaviors and the regulation of the hypothalamic-pituitary-gonadal (HPG) axes, comprehensive studies investigating behavioral and physiological reproductive consequences of genetic ablation of vasotocin in a genetically tractable fish model, such as the zebrafish, are currently lacking. Here, we report the generation of homozygous CRISPR/Cas9-based vasotocin gene knock-out zebrafish. Breeding pairs of vasotocin knock-out fish produce significantly fewer fertilized eggs per clutch compared to wildtype fish, an effect coincident with reduced female quivering courtship behavior. Crossbreeding experiments reveal that this reproductive phenotype is entirely female-dependent, as vasotocin-deficient males reproduce normally when paired with female wild-type fish. Histological analyses of vasotocin knock-out ovaries revealed an overall reduction in oocytes and differential distribution of oocyte maturation stages, demonstrating that the reproductive phenotype is linked to oocyte maturation and release. Ovarian hormone quantification and gene expression analysis in mutant fish indicated reduced synthesis of Prostaglandin F2α, a hormone involved in ovarian maturation, egg release and regulation of female courtship behavior in some cyprinids. However, acute injection of vasotocin did not rescue the female mutant reproductive phenotype, suggesting a contribution of organizational effects of vasotocin. Together, this study provides further support for emerging roles of vasotocin in female teleost reproduction in an important teleost model species.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan A. Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Ariki DGF, Roza de Abreu M, de Jesus Silva LM, Sato RT, Batlouni SR. Attempts for increasing Astyanax altiparanae spawning rates and percentage of responsive oocytes. Anim Reprod Sci 2023; 254:107262. [PMID: 37295049 DOI: 10.1016/j.anireprosci.2023.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
In this study, we aimed to propose changes in the protocol of cultured Astyanax altiparanae hypophysation to increase the maximum ovulation rate of 60% registered previously. To that two consecutive experiments were conducted. In the first experiment, three carp pituitary homogenate (CPH) doses (3, 6, and 9 mg/kg) were administered in a single injection, while in the second experiment, the 6 mg/kg CPH dose was tested either in single or double injections. In the first experiment, a single injection of 3 mg/kg CPH did not induce final oocyte maturation or spawning, while a dose of 6 mg/kg CPH resulted in an increase in the plasma level of prostaglandin (PGF2α) at ovulation. The single higher dose of 9 mg/kg CPH did not improve reproductive performance and even though anticipated the resumption of meiosis it was detrimental to the spawning rate. In the second experiment, the dose of 6 mg/kg CPH fractionated into two injections led to a higher spawning rate, spawning volume per female body mass, frequency of post-ovulatory complexes, and PGF2α concentration at ovulation compared to the single injection. The most effective treatment remained the 6 mg/kg of CPH fractionated into two injections, but still providing very low proportion of ovulated females (∼40 %). Overall, this study indicates that the spawning protocols for this species need to be improved to induce ovulation in a larger number of females and be more potent in those females that respond positively.
Collapse
Affiliation(s)
- Daniel Guimarães Figueiredo Ariki
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Mariana Roza de Abreu
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Laíza Maria de Jesus Silva
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Rafael Tomoda Sato
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil
| | - Sergio Ricardo Batlouni
- Centro de Aquicultura da UNESP - CAUNESP, Universidade Estadual Paulista - UNESP, Via de Acesso Prof. Paulo Donato Castellane, S/N, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|
5
|
Li X, Zhu Y, Zhao T, Zhang X, Qian H, Wang J, Miao X, Zhou L, Li N, Ye L. Role of COX-2/PGE2 signaling pathway in the apoptosis of rat ovarian granulosa cells induced by MEHP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114717. [PMID: 36889213 DOI: 10.1016/j.ecoenv.2023.114717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE MEHP, as the metabolite of DEHP, is a widely used environmental endocrine disruptor. Ovarian granulosa cells participate in maintaining the function of ovary and COX2/PGE2 pathway may regulate the function of granulosa cells. We aimed to explore how COX-2/PGE2 pathway affects cell apoptosis in ovarian granulosa cells caused by MEHP. METHODS Primary rat ovarian granulosa cells were treated with MEHP (0, 200, 250, 300 and 350 μM) for 48 h. Adenovirus was used for over-expression of COX-2 gene. The cell viability was tested with CCK8 kits. The apoptosis level was tested by flow cytometry. The levels of PGE2 were tested with ELISA kits. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and apoptosis-related genes, were measured with RT-qPCR and Western blot. RESULTS MEHP decreased the cell viability. After MEHP exposure, the cell apoptosis level increased. The level of PGE2 markedly decreased. The expression levels of COX-2/PGE2 pathway related genes, ovulation-related genes and anti-apoptotic genes decreased; the expression levels of pro-apoptotic genes increased. The apoptosis level was alleviated after over-expression of COX-2, and the level of PGE2 slightly increased. The expression levels of PTGER2 and PTGER4, and the levels of ovulation-related genes increased; the levels of pro-apoptotic genes decreased. CONCLUSION MEHP can cause cell apoptosis by down-regulating the levels of ovulation-related genes via COX-2/PGE2 pathway in rat ovarian granulosa cells.
Collapse
Affiliation(s)
- Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jia Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Tsakoumis E, Ahi EP, Schmitz M. Impaired leptin signaling causes subfertility in female zebrafish. Mol Cell Endocrinol 2022; 546:111595. [PMID: 35139421 DOI: 10.1016/j.mce.2022.111595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Reproduction is an energetically costly event across vertebrates and tightly linked to nutritional status and energy reserves. In mammals, the hormone leptin is considered as a link between energy homeostasis and reproduction. However, its role in fish reproduction is still unclear. In this study, we investigated the possible role of leptin in the regulation of reproduction in zebrafish, using a loss of function leptin receptor (lepr) strain. Impaired leptin signaling resulted in severe reproductive deficiencies in female zebrafish. lepr mutant females laid significantly fewer eggs, with low fertilization rates compared to wild-type females. Folliculogenesis was not affected, but oocyte maturation and ovulation were disrupted in lepr mutants. Interestingly, the expression of luteinizing hormone beta (lhb) in the pituitary was significantly lower in mutant females. Analysis of candidate genes in the ovaries and isolated fully grown follicles revealed differential expression of genes involved in steroidogenesis, oocyte maturation and ovulation in the mutants, which are known to be regulated by LH signaling. Moreover, subfertility in lepr mutants could be partially restored by administration of human chorionic gonadotropin. In conclusion, our results show that leptin deficiency does not affect early stages of follicular development, but leptin might be essential in later steps, such as in oocyte maturation and ovulation. To our knowledge, this is the first time that leptin is associated to reproductive deficiencies in zebrafish.
Collapse
Affiliation(s)
- Emmanouil Tsakoumis
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland.
| | - Monika Schmitz
- Department of Organismal Biology, Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Molecular determinants regulating the release of the egg during ovulation: Perspectives in piscine models. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Baker SJC, Van Der Kraak G. ADAMTS1 is regulated by the EP4 receptor in the zebrafish ovary. Gen Comp Endocrinol 2021; 311:113835. [PMID: 34181931 DOI: 10.1016/j.ygcen.2021.113835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Prostaglandins (PGs) are a class of fatty-acid derived hormones that are essential in ovulation of teleosts, but their exact role remains unknown. One putative target of PGs in ovulation is regulation of the expression of members of the A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) family, which are implicated in follicular rupture. This study investigated the regulation of ADAMTS, other proteases, and their inhibitors in response to treatment with PGE2 or PGF2α. Four members of the ADAMTS family, ADAMTS1, ADAMTS5, ADAMTS9, and ADAMTS16 were shown to be expressed in the ovary of zebrafish, but only adamts1 was upregulated in full-grown follicles following treatment with PGE2. Inhibitors of the PG receptors EP1 and EP2 had no effect on PGE2-stimulated adamts1 expression, while treatment of full-grown follicles with both PGE2 and GW627368x, an inhibitor of EP4 function, prevented the PGE2-induced increase in adamts1 expression. Treatment of full-grown follicles with the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P) in vitro had no effect on the expression of adamts1 mRNA. These findings suggest that expression of ADAMTS1 in zebrafish ovarian follicles is regulated by the prostaglandin PGE2 via the EP4 series prostaglandin receptor.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Baker SJC, Corrigan E, Melnyk N, Hilker R, Van Der Kraak G. Nuclear progesterone receptor regulates ptger4b and PLA2G4A expression in zebrafish (Danio rerio) ovulation. Gen Comp Endocrinol 2021; 311:113842. [PMID: 34252451 DOI: 10.1016/j.ygcen.2021.113842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20β-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20β-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20β-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20β-P.
Collapse
Affiliation(s)
- Sheridan J C Baker
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Emily Corrigan
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Nicholas Melnyk
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada
| | - Renee Hilker
- Department of Animal Biosciences, University of Guelph, Ont. N1G 2W1, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Ont. N1G 2W1, Canada.
| |
Collapse
|
11
|
Chatterjee A, Guchhait R, Maity S, Mukherjee D, Pramanick K. Functions of interleukin-6 in ovulation of female climbing perch, Anabas testudineus. Anim Reprod Sci 2020; 219:106528. [PMID: 32828404 DOI: 10.1016/j.anireprosci.2020.106528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
In mammals, interleukin 6 (IL-6) has an important function during ovulation, however, the functions of IL-6 in fish have not been elucidated. In the present study, there was quantification of de novo synthesis of ovarian IL-6 and tumor necrosis factor-alpha (TNFα) in control and hCG-treated fish and results were compared with those from an in vitro study where there was evaluation of the regulatory functions of gonadotropins and TNFα of IL-6 secretions. Relatively greater concentrations of ovarian IL-6 at the post-GVBD (post-germinal vesicle breakdown) stage indicates IL-6 modulates ovulatory processes. The hCG-induced increase in relative abundance of IL-6 (in vitro) mRNA transcript and secretion from the ovary were attenuated when there was administration of the inhibitor of TNFα secreting enzyme, TAPI-I, which indicates TNFα modulates IL-6 secretion. Treatments with IL-6 induced a marked increase in ovulation rate in vitro when there was induction of activating matrix metalloproteinase (MMP). Furthermore, treatment with IL-6 resulted in production of prostaglandin as indicated by the IL-6 induced increase in the abundance of ptgs2 mRNA transcript in the ovary of Anabas testudineus. Furthermore, results indicate the source of IL-6 in the ovary is the granulosa cells with secretion of IL-6 being induced by the additions of hCG and TNFα in the medium. There was also an IL-6-induced increase in abundance of receptors (IL-6 Rα and gp130) to which it binds indicating IL-6 autoregulates this population of receptors. Results from this study, for the first time, elucidate the reproductive functions of IL-6 in a teleost fish.
Collapse
Affiliation(s)
- Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India; P.G. Department of Zoology, Mahishadal Raj College, Purba Medinipur, India
| | - Sukhendu Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
12
|
Fowler LA, Dennis-Cornelius LN, Dawson JA, Barry RJ, Davis JL, Powell ML, Yuan Y, Williams MB, Makowsky R, D'Abramo LR, Watts SA. Both Dietary Ratio of n-6 to n-3 Fatty Acids and Total Dietary Lipid Are Positively Associated with Adiposity and Reproductive Health in Zebrafish. Curr Dev Nutr 2020; 4:nzaa034. [PMID: 32258992 PMCID: PMC7108797 DOI: 10.1093/cdn/nzaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Controversial findings have been reported in human and animal studies regarding the influence of n-6 (ω-6) to n-3 (ω-3) fatty acid ratios on obesity and health. Two confounding factors may be related to interactions with other dietary lipid components or sex-specific differences in fatty acid metabolism. OBJECTIVE This study investigated main and interactive effects of total dietary lipid, ratio of n-6 to n-3 fatty acids, and sex on growth, adiposity, and reproductive health in wild-type zebrafish. METHODS Male and female zebrafish (3 wk old) were fed 9 diets consisting of 3 ratios of n-6 to n-3 fatty acids (1.4:1, 5:1, and 9.5:1) varied within 3 total lipid amounts (80, 110, and 140 g/kg) for 16 wk. Data were then collected on growth, body composition (determined by chemical carcass analysis), and female reproductive success (n = 32 breeding events/diet over 4 wk). Main and interactive effects of dietary lipid and sex were evaluated with regression methods. Significant differences within each dietary lipid component were relative to the intercept/reference group (80 g/kg and 1.4:1 ratio). RESULTS Dietary lipid and sex interacted in their effects on body weight (P = 0.015), total body length (P = 0.003), and total lipid mass (P = 0.029); thus, these analyses were stratified by sex. Female spawning success decreased as dietary total lipid and fatty acid ratio increased (P = 0.030 and P = 0.026, respectively). While total egg production was not associated with either dietary lipid component, females fed the 5:1 ratio produced higher proportions of viable embryos compared with the 1.4:1 ratio [median (95% CI): 0.915 (0.863, 0.956) vs 0.819 (0.716, 0.876); P < 0.001]. CONCLUSIONS Further characterization of dietary lipid requirements will help define healthy balances of dietary lipid, while the sex-specific responses to dietary lipid identified in this study may partially explain sex disparities in the development of obesity and its comorbidities.
Collapse
Affiliation(s)
- Lauren A Fowler
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - John A Dawson
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Robert J Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James L Davis
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mickie L Powell
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuan Yuan
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Louis R D'Abramo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen A Watts
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Chen H, Feng W, Chen K, Qiu X, Xu H, Mao G, Zhao T, Ding Y, Wu X. Transcriptomic analysis reveals potential mechanisms of toxicity in a combined exposure to dibutyl phthalate and diisobutyl phthalate in zebrafish (Danio rerio) ovary. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105290. [PMID: 31518775 DOI: 10.1016/j.aquatox.2019.105290] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Phthalate esters (PAEs), which are notable plasticizers, can be prolific contaminants in aquatic environments, and have been shown to induce reproductive toxicity. However, the studies concerning their toxicity towards aquatic species are based on individual chemicals, and the combined toxicity of PAEs to aquatic organisms remains unclear. The aim of this study was to explore the potential toxicity mechanisms associated with combined exposure to dibutyl phthalate (DBP) and diisobutyl phthalate (DiBP) in adult female zebrafish ovaries. Zebrafish were exposed to DBP, DiBP and their mixtures for 30 days, and their effects on ovarian histology, plasma sex hormones and ovarian transcriptomics were investigated. Plasma estradiol (E2) levels were significantly decreased by 38.9% in the DBP-1133 exposure group and 41.0% in the DiBP-1038 exposure group. The percentage of late/mature oocytes was also significantly decreased by 17.3% under DBP-1133 exposure and 16.2% under DiBP-1038 exposure, while that under combined exposure was not significantly affected. Nevertheless, transcriptome sequencing revealed 2564 differentially expressed genes (DEGs) in zebrafish ovaries after exposure to the mixtures. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were involved in the neuroactive ligand-receptor interaction, GnRH, progesterone-mediated oocyte maturation, oocyte meiosis and steroid hormone biosynthesis signaling pathways. These results revealed that combined exposure exerts potential reproductive toxicity at the molecular level.
Collapse
Affiliation(s)
- Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ting Zhao
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yangyang Ding
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
14
|
Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: An overview. Gen Comp Endocrinol 2019; 279:35-44. [PMID: 30244056 DOI: 10.1016/j.ygcen.2018.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
15
|
Baek HJ, Lee DS. Prostaglandin affects in vitro ovulation and 17α, 20β-Dihydroxy- 4-pregnen-3-one production in longchin goby, Chasmichthys dolichognathus oocytes. Dev Reprod 2019; 23:111-117. [PMID: 31321351 PMCID: PMC6635616 DOI: 10.12717/dr.2019.23.2.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 01/02/2023]
Abstract
This study focused on the association of prostaglandins and a progestin,
17α, 20β-dihydroxy-4-pregnen-3-one (17α20βP) during
the ovulation process in longchin goby, Chasmichthys
dolichognathus. We performed several in vitro
experiments using 850–920 μm diameter oocytes which were at the
migratory nucleus stage. With the 890–920 μm diameter oocytes, no
significant difference in ovulation was observed in any of the prostaglandins
(PGE1, PGE2, and PGF2α) treated groups although PGE2 and PGF2α at
concentrations of 50 ng/mL increased ovulation slightly compared with controls;
however, 17α20βP production was stimulated with PGE1 alone at low
concentrations (5 ng/mL). In 850 μm diameter oocytes, PGF2α at
concentrations of 50 and 500 ng/ml resulted in a significant increase in
ovulation. 17α20βP (50 ng/ml) alone had no observable effect on
ovulation, but in the combined of PGF2α 50 or 500 ng/ml it caused the
greatest effect on ovulation. The sensitivity of oocytes to the induction of
ovulation varies between 850 and 890–920 μm, it appeared to vary
depending on the migration status of nucleus. These results suggest that
PGF2α (or combined of 17α20βP) was more potent in inducing
ovulation of the longchin goby.
Collapse
Affiliation(s)
- Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Da Som Lee
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
16
|
Houbrechts AM, Van Houcke J, Darras VM. Disruption of deiodinase type 2 in zebrafish disturbs male and female reproduction. J Endocrinol 2019; 241:JOE-18-0549.R3. [PMID: 30817317 DOI: 10.1530/joe-18-0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2019] [Indexed: 01/28/2023]
Abstract
Thyroid hormones are crucial mediators of many aspects of vertebrate life, including reproduction. The key player is the biologically active 3,5,3'-triiodothyronine (T3), whose local bio-availability is strictly regulated by deiodinase enzymes. Deiodinase type 2 (Dio2) is present in many tissues and is the main enzyme for local T3 production. To unravel its role in different physiological processes, we generated a mutant zebrafish line, completely lacking Dio2 activity. Here we focus on the reproductive phenotype studied at the level of offspring production, gametogenesis, functioning of the hypothalamic-pituitary-gonadal axis and sex steroid production. Homozygous Dio2-deficient zebrafish were hypothyroid, displayed a delay in sexual maturity, and the duration of their reproductive period was substantially shortened. Fecundity and fertilization were also severely reduced. Gamete counts pointed to a delay in oogenesis at onset of sexual maturity and later on to an accumulation of oocytes in mutant ovaries due to inhibition of ovulation. Analysis of spermatogenesis showed a strongly decreased number of spermatogonia A at onset of sexual maturity. Investigation of the hypothalamic-pituitary-gonadal axis revealed that dysregulation was largely confined to the gonads with significant upregulation of igf3, and a strong decrease in sex steroid production concomitant with alterations in gene expression in steroidogenesis/steroid signaling pathways. Rescue of the phenotype by T3 supplementation starting at 4 weeks resulted in normalization of reproductive activity in both sexes. The combined results show that reproductive function in mutants is severely hampered in both sexes, thereby linking the loss of Dio2 activity and the resulting hypothyroidism to reproductive dysfunction.
Collapse
Affiliation(s)
- Anne M Houbrechts
- A Houbrechts, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Jolien Van Houcke
- J Van houcke, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| | - Veerle M Darras
- V Darras, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Zhai G, Shu T, Xia Y, Lu Y, Shang G, Jin X, He J, Nie P, Yin Z. Characterization of Sexual Trait Development in cyp17a1-Deficient Zebrafish. Endocrinology 2018; 159:3549-3562. [PMID: 30202919 DOI: 10.1210/en.2018-00551] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 (Cyp)17A1 has both 17α-hydroxylase and 17,20-lyase activities, which are involved in the steroidogenic pathway that produces androgens and estrogens. Previously, a phenotype of all-male cyp17a1-deficient zebrafish generated by transcription activatorlike effector nuclease has been reported. In the current study, the mechanisms relating to Cyp17a1 that are involved in the development of sexual traits, especially gonadal differentiation and testicular development, were characterized. We found that the cyp17a1-deficient fish at 3 months postfertilization (mpf) were all fertile males with normal testis and spermatogenesis but compromised male-typical mating behaviors and secondary sex characters (SSCs), including breeding tubercles, body pigmentation, and anal fin coloration. These results demonstrate that spermatogenesis and testicular development are not as susceptible to androgen deficiency compared with the formation of male-typical SSCs and mating behaviors in zebrafish. The differentiation of the juvenile ovary into the mature ovary failed during the critical sexual differentiation stage. This all-male phenotype of the cyp17a1-deficient fish could be restored with testosterone or estradiol treatment. For testicular development in cyp17a1-deficient fish, a gradually increasing number of spermatozoa and testis hypertrophy from 3 to 6 mpf were observed, accompanied by constitutively upregulated pituitary gonadotropin FSH subunit β (fshβ). The hypertrophic testis and enhanced spermatogenesis in the cyp17a1-deficient fish at 6 mpf could be effectively rescued by fshβ depletion. These results confirm that adequate estrogen is essential for maintaining ovarian differentiation, and they provide new insight into the role of FSHβ in male testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuguo Xia
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guohui Shang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
18
|
Tang H, Wang L, Chen Y, He J, Qu L, Guo Y, Liu Y, Liu X, Lin H. Ovulation is associated with the LH-dependent induction of pla2g4aa in zebrafish. Mol Cell Endocrinol 2018; 473:53-60. [PMID: 29326060 DOI: 10.1016/j.mce.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/17/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023]
Abstract
The effects of the preovulatory luteinizing hormone (LH) surge on the ovulatory process are mediated by prostaglandins (PGs), the synthesis of which involves prostaglandin synthetase and cytosolic phospholipase A2 (cPLA2). In our previous study, we systematically investigated the function of prostaglandin endoperoxide synthase (ptgs) genes on ovulation in zebrafish. However, the role of cPLA2 in ovulation was not determined in zebrafish. In this study, we investigated the function of cpla2α in PGs production and ovulation in periovulatory follicles. Our data showed that the expression of pla2g4aa increased during zebrafish folliculogenesis and the follicular layer was the primary region with expression of pla2g4aa. In addition, the expression of pla2g4aa was regulated by LH in vitro and in vivo. Furthermore, injection of AACOCF3, a specific inhibitor of cPLA2, significantly reduced ovarian PGs level and blocked hCG-induced ovulation. Collectively, these findings suggest that pla2g4aa is related to the ovulation process in zebrafish.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianan He
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ling Qu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
19
|
Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus. Heredity (Edinb) 2018; 122:341-353. [PMID: 30082919 DOI: 10.1038/s41437-018-0131-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022] Open
Abstract
Effective farming of tilapia requires all-male culture, characterized by uniformity and high growth rate. Males of O. aureus (Oa) and females of O. niloticus (On) produce all-male offspring, but there is a behavioral reproductive barrier between the two species that prevents mass production. In crosses between Oa and On broodstocks, few hybrid females are attracted to the Oa male nests (denoted responders), and if they harbor the On alleles for the sex determination (SD) sites on linkage groups (LGs) 1, 3, and 23, all-male progeny are produced. Yet, without controlling for the alleles underlying SD, the parental stocks gradually lose their capability for all-male production. Hypothesizing that marker-assisted selection for female responders would allow production of sustainable broodstocks, we applied genotyping-by-sequencing to generate 4983 informative SNPs from 13 responding and 28 non-responding females from two full-sib families. Accounting for multiple comparisons in a genome-wide association study, seven SNPs met a false discovery rate of 0.061. Lowest nominal probabilities were on LGs 9 and 14, for which microsatellite DNA markers were designed within the candidate genes PTGDSL and CASRL, respectively. By increasing the sample size to 22 responders and 47 non-responders and by genotyping additional established microsatellites, we confirmed the association of these LGs with female responsiveness. The combined effects of microsatellites GM171 and CARSL-LOC100690618 on LGs 9 and 14 explained 37% of the phenotypic variance of reproductive interaction (p < 0.0001). Based on these findings, we propose a strategy for mass production of all-male tilapia hybrids through selection for genomic loci affecting SD and female responsiveness.
Collapse
|
20
|
Takahashi T, Hagiwara A, Ogiwara K. Prostaglandins in teleost ovulation: A review of the roles with a view to comparison with prostaglandins in mammalian ovulation. Mol Cell Endocrinol 2018; 461:236-247. [PMID: 28919301 DOI: 10.1016/j.mce.2017.09.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Prostaglandins are well known to be central regulators of vertebrate ovulation. Studies addressing the role of prostaglandins in mammalian ovulation have established that they are involved in the processes of oocyte maturation and cumulus oocyte complex expansion. In contrast, despite the first indication of the role of prostaglandins in teleost ovulation appearing 40 years ago, the mechanistic background of their role has long been unknown. However, studies conducted on medaka over the past decade have provided valuable information. Emerging evidence indicates an indispensable role of prostaglandin E2 and its receptor subtype Ptger4b in the process of follicle rupture. In this review, we summarize studies addressing the role of prostaglandins in teleost ovulation and describe recent advances. To help understand differences from and similarities to ovulation in mammalian species, the findings on the roles of prostaglandins in mammalian ovulation are discussed in parallel.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
21
|
Liu DT, Carter NJ, Wu XJ, Hong WS, Chen SX, Zhu Y. Progestin and Nuclear Progestin Receptor Are Essential for Upregulation of Metalloproteinase in Zebrafish Preovulatory Follicles. Front Endocrinol (Lausanne) 2018; 9:517. [PMID: 30279677 PMCID: PMC6153345 DOI: 10.3389/fendo.2018.00517] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022] Open
Abstract
Ovulation requires proteinases to promote the rupture of ovarian follicles. However, the identity of these proteinases remains unclear. In our previous studies using RNA-seq analysis of differential expressed genes, we found significant down-regulation of five metalloproteinases: adam8b (a disintegrin and metalloproteinase domain 8b), adamts8a (a disintegrin and metalloproteinase with thrombospondin motif 8a), adamts9, mmp2 (matrix metalloproteinase 2), and mmp9 in the nuclear progestin receptor knockout (pgr -/-) zebrafish that have failed to ovulate. We hypothesize that these metalloproteinases are responsible for ovulation and are regulated by progestin and Pgr. In this study, we first determined the expression of these five metalloproteinases and adamts1 in preovulatory follicles at different times within the spawning cycle in pgr -/- and wildtype (wt) zebrafish and under varying hormonal treatments. We found that transcripts of adam8b, adamts1, adamts9, and mmp9 increased drastically in the preovulatory follicular cells of wt female zebrafish, while changes of adamts8a and mmp2 were not significant. This increase of adam8b, adamts9, and mmp9 was significantly reduced in pgr -/-, whereas expression of adamts1 was not affected in pgr -/- zebrafish. Among upregulated metalloproteinases, adamts9 mRNA was found to be expressed specifically in follicular cells. Strong immunostaining of Adamts9 protein was observed in the follicular cells of wt fish, and this expression was reduced drastically in pgr -/-. Interestingly, about an hour prior to the increase of metalloproteinases in wt fish, both Pgr transcript and protein increased transiently in preovulatory follicular cells. The results from in vitro experiments showed that adamts9 expression markedly increased in a dose, time and Pgr-dependent manner when preovulatory follicles were exposed to a progestin, 17α,20β-dihydroxy-4-pregnen-3-one (DHP). Taken together, our results provide the first evidence that upregulation of adamts9 occurs specifically in preovulatory follicular cells of zebrafish prior to ovulation. Progestin and its receptor (Pgr) are essential for the upregulation of metalloproteinases.
Collapse
Affiliation(s)
- Dong Teng Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Nichole J. Carter
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Xin Jun Wu
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- *Correspondence: Shi Xi Chen
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Biology, East Carolina University, Greenville, NC, United States
- Yong Zhu
| |
Collapse
|
22
|
Norberg B, Kleppe L, Andersson E, Thorsen A, Rosenlund G, Hamre K. Effects of dietary arachidonic acid on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Gen Comp Endocrinol 2017; 250:21-35. [PMID: 28576420 DOI: 10.1016/j.ygcen.2017.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/08/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023]
Abstract
The present study was designed to investigate potential effects of arachidonic acid (ARA) on the reproductive physiology of female Atlantic cod (Gadus morhua L.). Two-year old Atlantic cod of both sexes were equally distributed into eight sea cages after completion of their first spawning in May 2005. Four experimental groups were established and fed diets with different levels of ARA corresponding to 0.5, 1, 2 and 4% of total fatty acid. Ovarian growth and development was documented every month. Fatty acid composition was analysed in ovaries, liver and plasma at the beginning of the experiment, one month prior to spawning, and in spent fish, one month after spawning was completed. Plasma concentrations of estradiol-17β, testosterone and vitellogenin, and ovarian gene transcript levels of steroidogenic acute regulatory protein (star), P450aromatase (cyp19a1a) and 20β-hydroxy steroid dehydrogenase (20bhsd/cbr1) were monitored every month in fish fed the experimental diets and related to oocyte stage. Potential fecundity was calculated based on ovarian samples taken one month before onset of spawning. Ovarian and plasma ARA levels were highly correlated to dietary ARA levels. There was a net accumulation of ARA compared to other essential fatty acids in ovarian tissue that was reflected in a decrease in EPA:ARA ratio. Plasma concentrations of vitellogenin, estradiol-17β and testosterone and key gene transcript levels were affected by dietary ARA and stage of maturation. The results show that ARA has a significant influence on the reproductive physiology of female Atlantic cod.
Collapse
Affiliation(s)
- Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, N-5392 Storebø, Norway.
| | - Lene Kleppe
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Eva Andersson
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | - Anders Thorsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
| | | | - Kristin Hamre
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|
23
|
Tang H, Liu Y, Li J, Li G, Chen Y, Yin Y, Guo Y, Cheng CHK, Liu X, Lin H. LH signaling induced ptgs2a expression is required for ovulation in zebrafish. Mol Cell Endocrinol 2017; 447:125-133. [PMID: 28254490 DOI: 10.1016/j.mce.2017.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 11/30/2022]
Abstract
It is well known that ovulation is induced by luteinizing hormone (LH) surge. However, the down-stream factors that mediating LH surge induced ovulation are less clear. The cyclooxygenases (also known as PTGS) as key enzymes for prostaglandins synthesis appear to be important for ovulation in mammals, but their functional roles and molecular mechanism in regulation of fish ovulation are largely unexplored. In this study, we have systematically investigated the expression, regulation and functional roles of cox genes during zebrafish ovulation. Three types of cox genes including ptgs1, ptgs2a and ptgs2b have been identified in zebrafish. The ptgs2a was dominantly expressed in the ovary with a maximal level at the maturation stage of the follicles. In addition, the ptgs2a expression is up-regulated by LH signaling in vitro and in vivo. Moreover, co-injection of a selective Ptgs2 inhibitor and non-selective Ptgs inhibitor with hCG could significantly block the stimulatory effect of hCG induced ovulation in vivo. Collectively, our findings indicate that LH signaling induced ptgs2a expression is required for ovulation in zebrafish.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jianzhen Li
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gaofei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yike Yin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences Core Laboratory, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, China
| |
Collapse
|
24
|
Skoblina MN, Minin AA. Hormone-induced in vitro maturation and ovulation of Danio rerio oocytes and production of eggs capable of fertilization and futher development. Russ J Dev Biol 2016. [DOI: 10.1134/s106236041605009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Fatty Acid Composition of Tropical Fish Depends on Reservoir Trophic Status and Fish Feeding Habit. Lipids 2016; 51:1193-1206. [DOI: 10.1007/s11745-016-4196-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/27/2016] [Indexed: 11/26/2022]
|
26
|
Bosker T, Munkittrick KR, Lister A, MacLatchy DL. Mummichog (Fundulus heteroclitus) continue to successfully produce eggs after exposure to high levels of 17α-ethinylestradiol. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1107-1112. [PMID: 27089445 DOI: 10.1002/etc.3239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/14/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
17α-Ethinylestradiol (EE2) is a potent estrogen used in birth-control pills. Previous laboratory and field studies have shown negative impacts in a variety of fish species after exposure to low levels of EE2, most notably a nearly complete shutdown of egg production. The present study demonstrates that mummichog (Fundulus heteroclitus), a small-bodied estuarine species, is able to continue to produce eggs after exposure for 28 d to 100 ng of EE2/L. No effect of EE2 on egg production was observed, whereas a >35-fold increase in vitellogenin (vtg 1) gene expression in males was found. The lack of response in egg production in fish exposed to high levels of EE2 warrants further investigations on species-specific responses to estrogens and endocrine disruptors in general.
Collapse
Affiliation(s)
- Thijs Bosker
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R Munkittrick
- Department of Biology and Canadian Rivers Institute, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Andrea Lister
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Deborah L MacLatchy
- Department of Biology and Institute for Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
27
|
Wargelius A, Furmanek T, Montfort J, Le Cam A, Kleppe L, Juanchich A, Edvardsen RB, Taranger GL, Bobe J. A comparison between egg trancriptomes of cod and salmon reveals species-specific traits in eggs for each species. Mol Reprod Dev 2015; 82:397-404. [PMID: 25908546 DOI: 10.1002/mrd.22487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Fish in use in aquaculture display large variation in gamete biology. To reach better understanding around this issue, this study aims at identifying if species specific "egg life history traits" can be hidden in the unfertilized egg. This was done by investigating egg transcriptome differences between Atlantic salmon and Atlantic cod. Salmon and cod eggs were selected due to their largely differencing phenotypes. An oligo microarray analysis was performed on ovulated eggs from cod (n = 8) and salmon (n = 7). The arrays were normalized to a similar spectrum for both arrays. Both arrays were re-annotated with SWISS-Prot and KEGG genes to retrieve an official gene symbol and an orthologous KEGG annotation, in salmon and cod arrays this represented 14,009 and 7,437 genes respectively. The probe linked to the highest gene expression for that particular KEGG annotation was used to compare expression between species. Differential expression was calculated for genes that had an annotation with score >300, resulting in a total of 2,457 KEGG annotations (genes) being differently expressed between the species (FD > 2). This analysis revealed that immune, signal transduction and excretory related pathways were overrepresented in salmon compared to cod. The most overrepresented pathways in cod were related to regulation of genetic information processing and metabolism. To conclude this analysis clearly point at some distinct transcriptome repertoires for cod and salmon and that these differences may explain some of the species-specific biological features for salmon and cod eggs.
Collapse
Affiliation(s)
| | | | | | | | - Lene Kleppe
- Institute of Marine Research, Bergen, Norway
| | - Amelie Juanchich
- Institute of Marine Research, Bergen, Norway.,INRA, Campus de Beaulieu, Rennes, France
| | | | | | | |
Collapse
|
28
|
Van Der Kraak G, Matsumoto J, Kim M, Hosmer AJ. Atrazine and its degradates have little effect on the corticosteroid stress response in the zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2015; 170:1-7. [PMID: 25625437 DOI: 10.1016/j.cbpc.2015.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 11/29/2022]
Abstract
The present study examined the effects of atrazine on basal and forced swimming induced changes in whole body cortisol content in adult zebrafish. Zebrafish were exposed to graded concentrations of atrazine or the atrazine degradates deisopropylatrazine (DIA), deethylatrazine (DEA) and diamino-s-chlorotriazine (DACT) for up to 10 days. Some fish were sampled for the measurement of whole body cortisol levels under basal conditions while others were sampled after being subjected to a 20 min swimming challenge in order to quantify stress induced cortisol levels. In one experiment, zebrafish were subjected to two bouts of forced swimming 3h apart to test whether prior atrazine exposure affects the ability of the fish to respond appropriately to a repeated stressor. The results demonstrated that controls not exposed to atrazine and zebrafish exposed to atrazine or the atrazine degradates at nominal concentrations of up to 100 μg/L consistently exhibited increased whole body cortisol content in response to the swimming challenge. Separate analyses revealed few changes in basal or stress induced cortisol levels following atrazine exposure. Overall, these data suggest that atrazine and some of its degradates at the concentrations tested have minimal effects on the cortisol mediated stress response in the zebrafish.
Collapse
Affiliation(s)
- Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Jacquie Matsumoto
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
29
|
Knight OM, Van Der Kraak G. The role of eicosanoids in 17α, 20β-dihydroxy-4-pregnen-3-one-induced ovulation and spawning in Danio rerio. Gen Comp Endocrinol 2015; 213:50-8. [PMID: 25573385 DOI: 10.1016/j.ygcen.2014.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022]
Abstract
This study employed a hormone bioassay to characterize the eicosanoids involved in zebrafish ovulation and spawning, in particular the prostaglandin (PG) products of cyclooxygenase (COX) metabolism and the leukotriene (LT) products of lipoxygenase (LOX) metabolism. Exposure to the teleost progestogen 17α, 20β-dihydroxy-4-pregnen-3-one (17,20βP) induced ovulation, but not spawning, in solitary females and both ovulation and spawning in male-female pairs. Transcription of the eicosanoid-synthesizing enzymes cytosolic phospholipase A2 (cPLA(2)) and COX-2 increased and LTC(4) synthase decreased in peri-ovulatory ovaries of 17,20βP-exposed fish. Ovarian PGF(2α) levels increased post-spawning in 17,20βP-exposed fish, but there was no difference in LTB(4) or LTC(4). Pre-exposure to cPLA(2) or LOX inhibitors reduced 17,20βP-induced ovulation rates, while a COX inhibitor had no effect on ovulation or spawning. Collectively, these findings suggest that eicosanoids, in particular LOX metabolites, mediate 17,20βP-induced ovulation in zebrafish. COX metabolites also appear to be involved in ovulation and spawning but their role remains undefined.
Collapse
Affiliation(s)
- Olivia M Knight
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
30
|
Zhao Y, Xie L, Yan Y. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system. CHEMOSPHERE 2015; 120:115-122. [PMID: 25014902 DOI: 10.1016/j.chemosphere.2014.06.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/07/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
31
|
Parker WJ, Pileggi V, Seto P, Chen X, Ogunlaja M, Van Der Kraak G, Parrott J. Impact of activated sludge configuration and operating conditions on in vitro and in vivo responses and trace organic compound removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:360-369. [PMID: 24867701 DOI: 10.1016/j.scitotenv.2014.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
This study tested municipal sewage effluents generated at the pilot scale using conventional activated sludge (CAS), nitrifying activated sludge (CAS-N) and biological nutrient removal (BNR) in terms of the removal of trace organic compounds (TrOCs) and final effluent quality as indicated by yeast estrogenicity screening (YES), short term zebrafish reproduction and fathead minnow life-cycle tests. Under cold weather conditions (extended SRTs), the BNR configuration reduced the concentrations of the largest number of TrOCs while under warm weather conditions (reduced SRTs) the CAS-N was most effective. By comparison, YES test results indicated statistically lower responses in the BNR effluent in the warm weather tests and no difference between the effluents of CAS-N and BNR in the cold weather tests. Short term tests with adult zebrafish revealed no impact of the BNR and CAS-N effluents on egg production. By contrast egg production and gene expression in the CAS-exposed zebrafish were substantially less than that of control exposures and were similar to that of exposures to ammonia at similar concentrations as the CAS exposures. In fathead minnow life-cycle tests, exposures to CAS effluent (70-50% v/v) resulted in considerable mortality, reduced growth and reduced egg production that was likely due to the elevated ammonia concentrations. The CAS-N effluent (100% v/v) also resulted in some mortality and reduced growth and egg production in the fathead minnows. By contrast, the BNR effluent (100% v/v) had no effect on mortality, growth or egg production. The results suggest that enhancements to wastewater treatment plants that are associated with improved nitrogen removal can result in enhanced removal of TrOCs and can reduce the harmful effects of the effluents on aquatic biota.
Collapse
Affiliation(s)
- W J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - V Pileggi
- Standards Development Branch, Ontario Ministry of the Environment, 40 St. Clair Ave West, Toronto, Ontario M4V 1M2, Canada.
| | - P Seto
- Water Science and Technology Directorate, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada.
| | - X Chen
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - M Ogunlaja
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada.
| | - J Parrott
- National Water Research Institute, Water Science and Technology Directorate, Canada Center for Inland Waters, Environment Canada, 867 Lakeshore Road, Burlington, Ontario L7R 4A6, Canada.
| |
Collapse
|
32
|
Pradhan A, Olsson PE. Juvenile ovary to testis transition in zebrafish involves inhibition of ptges. Biol Reprod 2014; 91:33. [PMID: 24920039 DOI: 10.1095/biolreprod.114.119016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The sex differentiation mechanisms in zebrafish (Danio rerio) remains elusive, partly because of the absence of sex chromosomes but also because the process appears to depend on the synchrony of multiple genes and possibly environmental factors. Zebrafish gonadal development is initiated through the development of immature oocytes. Depending on multiple signaling cues, in about half of the individuals, the juvenile ovaries degenerate or undergo apoptosis to initiate testes development while the other half maintains the oogenic pathway. We have previously shown that activation of NFκB and prostaglandin synthase 2 (ptgs2) results in female-biased sex ratios. Prostaglandin synthase and prostaglandins are involved in multiple physiological functions, including cell survival and apoptosis. In the present study, we show that inhibition of ptgs2 by meloxicam results in male-biased sex ratios. On further evaluation, we observed that exposure with the prostaglandin D2 (PGD2) analogue BW-245C induced SRY-box containing gene 9a (sox9a) and resulted in male-biased sex ratios. On the other hand, prostaglandin E2 (PGE2) treatment resulted in female-biased sex ratios and involved activation of NFκB and the β-catenin pathway as well as inhibition of sox9. Exposure to the β-catenin inhibitor PNU-74654 resulted in up-regulation of ptgds and male-biased sex ratios, further confirming the involvement of β-catenin in the female differentiation pathway. In this study, we show that PGD2 and PGE2 can program the gonads to either the testis or the ovary differentiation pathways, indicating that prostaglandins are involved in the regulation of zebrafish gonadal differentiation.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
Hagiwara A, Ogiwara K, Katsu Y, Takahashi T. Luteinizing Hormone-Induced Expression of Ptger4b, a Prostaglandin E2 Receptor Indispensable for Ovulation of the Medaka Oryzias latipes, Is Regulated by a Genomic Mechanism Involving Nuclear Progestin Receptor1. Biol Reprod 2014; 90:126. [DOI: 10.1095/biolreprod.113.115485] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
34
|
Joy KP, Singh V. Functional interactions between vasotocin and prostaglandins during final oocyte maturation and ovulation in the catfish Heteropneustes fossilis. Gen Comp Endocrinol 2013; 186:126-35. [PMID: 23510856 DOI: 10.1016/j.ygcen.2013.02.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/13/2013] [Accepted: 02/24/2013] [Indexed: 11/30/2022]
Abstract
Functional interactions between vasotocin (VT) and prostaglandins (PGs) in the regulation of final oocyte maturation (FOM) and ovulation were investigated in the catfish Heteropneustes fossilis. Incubation of post-vitellogenic follicles with VT resulted in significant increases of both PGF2α and PGE2 at 8 and 16h intervals. The rise was higher at 16h except in the 1000nM VT group, in which the PG levels decreased compared to the 100nM group (biphasic effect). VT was more effective to increase the PG levels in comparison to hCG or IT. The co-incubation of the follicles with both hCG (20IU/ml) and VT (100nM) increased significantly PGF2α level at 8h, higher than that elicited by each when incubated alone. Pre-incubation of the follicles with V1 receptor antagonist, alone or in co-incubation with VT, significantly inhibited the VT-stimulated PGF2α and PGE2 levels. Under similar conditions, V2 receptor antagonist did not affect the PGE2 levels. Both VT (100nM) and PGs stimulated FOM (germinal vesicle breakdown) and ovulation in a dose- and duration dependent manner, PGF2α was more effective. Incubation of postvitellogenic follicles with indomethacin (a non selective cyclooxygenase inhibitor) per se did not affect FOM and ovulation but significantly decreased VT and PG effects upon pre-incubation. The results suggest that the VT stimulation of PGs may be mediated mainly through the V1 receptor though the involvement of V2 receptor cannot be excluded. The article also discussed the positive interplay of gonadotropin, maturation-inducing steroid, VT and PG during FOM and ovulation.
Collapse
Affiliation(s)
- K P Joy
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|
35
|
Takahashi T, Fujimori C, Hagiwara A, Ogiwara K. Recent Advances in the Understanding of Teleost Medaka Ovulation: The Roles of Proteases and Prostaglandins. Zoolog Sci 2013; 30:239-47. [DOI: 10.2108/zsj.30.239] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Morthorst JE, Lister A, Bjerregaard P, Van Der Kraak G. Ibuprofen reduces zebrafish PGE(2) levels but steroid hormone levels and reproductive parameters are not affected. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:251-7. [PMID: 23247296 DOI: 10.1016/j.cbpc.2012.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023]
Abstract
Prostaglandins are important regulators of reproductive function in fish. Analgesics like aspirin and ibuprofen are prostaglandin inhibitors and have been detected in freshwater systems at ng/L-μg/L levels. We investigated whether ibuprofen would affect prostaglandin and sex steroid hormone levels in adult zebrafish (Danio rerio) and if expression levels of genes involved in steroidogenesis and prostaglandin synthesis were affected. Zebrafish were exposed to moderate concentrations of ibuprofen (21, 201 or 506 μg/L) for 7 days in a semi-static test system. Ibuprofen concentrations were close to nominal levels and decreased by a maximum of 12-13% over 24 h. Prostaglandin E(2) (PGE(2)) levels in whole body homogenates of males and ovaries of females decreased in a monotonic dose-response relationship whereas male 11-ketotestosterone levels and ovarian 17β-estradiol levels remained unchanged. Ibuprofen did not have an influence on vitellogenin levels, female gonadosomatic index or cumulative egg production and no dose-response relationship in ovarian and testicular expression levels of the investigated genes was observed. This study shows that ibuprofen reduces PGE(2) levels in male and female zebrafish but has no consistent effects on other investigated reproductive parameters.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | |
Collapse
|
37
|
The administration of exogenous prostaglandin may improve ovulation in pacu (Piaractus mesopotamicus). Theriogenology 2012; 78:2087-94. [DOI: 10.1016/j.theriogenology.2012.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
|
38
|
Hainfellner P, Souza TGD, Moreira RG, Nakaghi LSO, Batlouni SR. Gonadal steroids levels and vitellogenesis in the formation of oocytes in Prochilodus lineatus (Valenciennes) (Teleostei: Characiformes). NEOTROPICAL ICHTHYOLOGY 2012. [DOI: 10.1590/s1679-62252012005000021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of this study was to obtain information about the possible mechanisms related to poor reproductive performance in tropical rheophilic fish. To that effect, cages (Cs) and earthen ponds (EPs) were used as experimental systems to provide unsuitable and suitable conditions, respectively, for curimbatá (Prochilodus lineatus) breeders. Fish were maintained under experimental conditions for 18 months, and during this period females were randomly sampled every two months for biometric analysis (n=30), blood (n=5/sampling) and ovary (n=5/sampling). After this period EPs females (EPFs) and Cs females (CFs) were submitted to the induced breeding experiments. The results showed that rearing curimbatá for such long time in a cage at this stocking density, reduces its growth, plasma E2 levels and vitellogenesis. During vitellogenesis, the mean plasma estradiollevels of CFs were three times lower than those of EPFs (P<0.01). CFs presented poorer results than EPFs for all the examined parameters of reproductive performance. Taken together these data showed that the reduced estradiol levels during vitellogenesis (and the consequently less intense transition from the previtellogenic to vitellogenic phase) and reduced amounts of yolk are mechanisms associated with the formation of low quality oocytes and shortened and delayed breeding season in this species. Moreover, our data showed that the onset of vitellogenesis (six months before the spawning season) must be considered as a key period related to the formation of oocytes of good quality, and adequate management should be provided throughout the year.
Collapse
|
39
|
Fujimori C, Ogiwara K, Hagiwara A, Takahashi T. New evidence for the involvement of prostaglandin receptor EP4b in ovulation of the medaka, Oryzias latipes. Mol Cell Endocrinol 2012; 362:76-84. [PMID: 22659410 DOI: 10.1016/j.mce.2012.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 04/19/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022]
Abstract
A cDNA for a prostaglandin E(2) (PGE(2)) receptor subtype 4, EP4b (Ptger4b), was cloned from the medaka ovary. The effect of PGE(2) was examined using COS-7 cells expressing the recombinant Ptger4b protein. An increase in intracellular cAMP levels was observed when the cells were incubated with PGE(2), but the increase in cAMP levels was nullified by the addition of the EP4 antagonist GW627368X. The expression of ptger4b mRNA was drastically induced by the addition of pregnant mare serum gonadotropin to the in vitro culture of large preovulatory follicles. In in vitro ovulation studies of the effect of GW627368X addition on follicle ovulation, the critical timing of the PGE(2)/Ptger4b interaction was suggested to be between -1 and 0 h of ovulation. These results further substantiate that PGE(2)/Ptger4b signaling is involved in follicle rupture during ovulation in the medaka ovary.
Collapse
Affiliation(s)
- Chika Fujimori
- Laboratory of Reproductive and Developmental Biology, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
40
|
Kwok AHY, Wang Y, Leung FC. Molecular characterization of prostaglandin F receptor (FP) and E receptor subtype 1 (EP₁) in zebrafish. Gen Comp Endocrinol 2012; 178:216-26. [PMID: 22617193 DOI: 10.1016/j.ygcen.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/29/2012] [Accepted: 05/10/2012] [Indexed: 11/21/2022]
Abstract
Prostaglandins E (PGE) and F (PGF) mediate diverse physiological functions via their cell surface receptors - prostaglandin E receptor (EP) subtypes 1, 2, 3 and 4 (EP(1); EP(2); EP(3); EP(4)) and F receptor (FP). In teleost fishes, PGE was implicated in gill epithelium ion transport, while both PGE and PGF were involved in oocyte maturation, follicular rupture and coordination of reproductive behaviors. However, little is known about the mechanisms behind their actions. In present study, we first identified the full-length ORF cDNA clones of three zebrafish prostaglandin E receptor subtype 1 (zEP(1)) isoforms - zEP(1a), zEP(1b) and zEP(1c) - and FP (zFP) from adult ovary. RT-PCR showed that zEP(1a), zEP(1b) and zFP are widely expressed in adult tissues, while zEP(1c) mRNA expression is mainly confined in brain and kidney. Using a pGL3-NFAT-RE luciferase reporter system, both zEP(1a) and zEP(1b) expressed in DF-1 cells were shown to be activated by PGE(2) potently while zEP(1c) and zFP were activated by PGF(2a) effectively, suggesting that the four receptors are functionally coupled to intracellular Ca(2+)-signaling pathway. Furthermore, EP1a and EP1b, but not EP1c were suggested to couple to cAMP-PKA signaling pathway using a pGL3-CRE luciferase reporter assay. Although zEP(1c) might originate as a paralog to zEP(1a) and zEP(1b), its functional coupling to PGF(2α) instead of PGE(2) suggested that zEP(1) isoforms might have sub-functionalized in their ligand binding and G protein coupling specificity, in addition to differential tissue distribution. Characterization of these receptors undoubtedly furthered our understanding on the diverse yet highly target-specific responses of prostaglandins in teleosts.
Collapse
Affiliation(s)
- Amy H Y Kwok
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | | |
Collapse
|
41
|
Chourasia TK, Joy KP. Role of catecholestrogens on ovarian prostaglandin secretion in vitro in the catfish Heteropneustes fossilis and possible mechanism of regulation. Gen Comp Endocrinol 2012; 177:128-42. [PMID: 22429727 DOI: 10.1016/j.ygcen.2012.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/23/2012] [Accepted: 03/01/2012] [Indexed: 11/28/2022]
Abstract
Seasonal, periovulatory and 2-hydroxyestradiol-17β (2-OHE(2))-induced changes on ovarian prostaglandin (PG) E(2) and F(2α) were investigated under in vivo or in vitro in the female catfish Heteropneustes fossilis. Both PGE(2) and PGF(2α) increased significantly during ovarian recrudescence with the peak levels in spawning phase. The PGs showed periovulatory changes with the peak levels at 16 h after the hCG treatment. Incubation of postvitellogenic ovary fragments with estradiol-17β (E(2)), 2-OHE(2) or 2-methoxyE(2) produced concentration-dependent increases in PG levels; 2-OHE(2) was more effective. In order to identify the receptor mechanism involved in the 2-OHE(2)-induced PG stimulation, the ovarian pieces were incubated with phentolamine (an α-adrenergic antagonist), propranolol (a β-adrenergic antagonist) or tamoxifen (an estrogen receptor blocker) alone or in combination with 2-OHE(2). The incubation of the tissues with the receptor blockers alone did not produce any significant effect on basal PG levels. However, co- and pre-incubation of the tissues with the blockers resulted in inhibition of the stimulatory effect of 2-OHE(2) on the PGs. Phentolamine was more effective than propranolol. The signal transduction pathway(s) involved in the 2-OHE(2)-induced PG secretion was investigated. The incubation of the ovarian pieces with 3-isobutyl-1-methylxanthine (IBMX, a phosphodiesterase inhibitor), chelerythrine (a protein kinase C inhibitor) and PD098059 (a mitogen-activated protein kinase inhibitor) significantly lowered the basal secretion of PGF(2α) and PGE(2). In contrast, H89 (a protein kinase A inhibitor) increased the basal secretion of PGs at 1 and 5 μM concentration and decreased it at 10 μM concentration. The co- or pre-incubation with IBMX, H89, chelerythrine and PD098059 significantly inhibited the stimulatory effect of 2-OHE(2) on PGF(2α) and PGE(2) levels. The inhibition was higher in the pre-incubation groups. Chelerythrine was the most effective followed by PD098059, IBMX and H89. The results suggest that 2-OHE(2) may employ both adrenergic and estrogen receptors, or a novel receptor mechanism having properties of both adrenergic and estrogen receptors.
Collapse
Affiliation(s)
- T K Chourasia
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi-221005, India
| | | |
Collapse
|
42
|
Hainfellner P, De Souza T, Muñoz M, Freitas GA, Batlouni S. Spawning failure in Brycon amazonicus may be associated with ovulation and not with final oocyte maturation. ARQ BRAS MED VET ZOO 2012. [DOI: 10.1590/s0102-09352012000200038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
DeQuattro ZA, Peissig EJ, Antkiewicz DS, Lundgren EJ, Hedman CJ, Hemming JDC, Barry TP. Effects of progesterone on reproduction and embryonic development in the fathead minnow (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:851-6. [PMID: 22374535 DOI: 10.1002/etc.1754] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/16/2011] [Accepted: 11/22/2011] [Indexed: 05/14/2023]
Abstract
High concentrations (375 ng/L) of the steroid hormone progesterone (P4) were measured in snowmelt runoff associated with large livestock-feeding operations in Wisconsin. To gain insight into the potential endocrine-disrupting effects of P4 in fish, experiments were conducted to evaluate the effects of short-term exposure to environmentally relevant concentrations of P4 on reproduction and embryonic development in the fathead minnow (Pimephales promelas). For the reproduction assay, groups of reproductively mature fish were exposed for 21 d to nominal concentrations of 0, 10, 100, and 1,000 ng/L P4 in a flow-through system, and various key reproductive endpoints (e.g., egg number, fertilization success) were quantified throughout the exposure period. The embryonic development assay consisted of incubating fathead minnow eggs in static culture to quantify the effects of P4 on early development and hatching success. Progesterone caused dose-dependent decreases in fecundity and fertility and significantly reduced gonadosomatic index and vitellogenin gene expression in females. There were no effects of P4 on early embryonic development or hatching success. Progesterone may be a significant endocrine-disrupting chemical in fish.
Collapse
Affiliation(s)
- Zachary A DeQuattro
- Department of Zoology, Russell Laboratories, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
LaLone CA, Villeneuve DL, Olmstead AW, Medlock EK, Kahl MD, Jensen KM, Durhan EJ, Makynen EA, Blanksma CA, Cavallin JE, Thomas LM, Seidl SM, Skolness SY, Wehmas LC, Johnson RD, Ankley GT. Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:611-22. [PMID: 22189798 DOI: 10.1002/etc.1729] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 05/07/2023]
Abstract
Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo-larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo-larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development.
Collapse
Affiliation(s)
- Carlie A LaLone
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stacey NE, Van Der Kraak GJ, Olsén KH. Male primer endocrine responses to preovulatory female cyprinids under natural conditions in Sweden. JOURNAL OF FISH BIOLOGY 2012; 80:147-165. [PMID: 22220895 DOI: 10.1111/j.1095-8649.2011.03162.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigated two related aspects of male-female reproductive interactions in the family Cyprinidae: (1) whether ovulating female rudd Scardinius erythrophthalmus (subfamily Leuciscinae) induce endocrine and gonadal priming responses in conspecific males, a phenomenon which has been described only in species from the subfamily Cyprininae such as goldfish, Carassius auratus, crucian carp Carassius carassius and common carp, Cyprinus carpio and (2) whether the stimuli mediating these responses are species-specific. Field studies of three sympatric European cyprinids, two leuciscins (S. erythrophthalmus and white bream Blicca bjoerkna) and one cyprinin (C. carassius), were conducted on fishes captured in Sweden in the spawning season and held in net pens under natural conditions. As previously reported in C. carassius, male S. erythrophthalmus increased milt (sperm and seminal fluid) volume and plasma concentrations of the sperm maturation hormone 4-pregnen-17,20β-diol-3-one (17,20β-P) when they were held with female S. erythrophthalmus induced to ovulate by injection of Ovaprim (GnRH analogue plus dopamine antagonist). Male S. erythrophthalmus had larger milt volumes than male C. carassius prior to and following exposure to ovulatory conspecifics, but exhibited a smaller proportional milt increase in response to stimulation, suggesting species differences in sperm allocation at spawning. The presence of female S. erythrophthalmus and B. bjoerkna did not affect milt volumes of C. carassius under two experimental conditions: (1) ovulating S. erythrophthalmus and B. bjoerkna did not increase the milt volumes of C. carassius and (2) S. erythrophthalmus and B. bjoerkna did not interfere with the milt volume increase induced in male C. carassius by ovulating conspecifics. These results suggest that, as in C. auratus, C. carassius and C. carpio (subfamily Cyprininae), female S. erythrophthalmus (subfamily Leuciscinae) release a preovulatory pheromone that exerts priming effects on male hormones and sperm allocation. The findings also indicate that C. carassius discriminate between the reproductive odours of conspecifics and heterospecifics.
Collapse
Affiliation(s)
- N E Stacey
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada.
| | | | | |
Collapse
|
46
|
Abstract
Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds.
Collapse
Affiliation(s)
- Daniel A Gorelick
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
47
|
Parillo F, Catone G, Boiti C, Zerani M. Immunopresence and enzymatic activity of nitric oxide synthases, cyclooxygenases and PGE2-9-ketoreductase and in vitro production of PGF2α, PGE2 and testosterone in the testis of adult and prepubertal alpaca (Lama pacos). Gen Comp Endocrinol 2011; 171:381-8. [PMID: 21377467 DOI: 10.1016/j.ygcen.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/11/2011] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
This study presents the first evidence for differences in COXs, PGE2-9-ketoreductase and NOSs immunopresence and enzyme activity, and prostaglandin and testosterone production between the testes of adult and prepubertal alpacas. The prepubertal testis immunohistochemical data revealed that COX1 was expressed in spermatogonia and endothelial cells whereas COX2 was present only in the stromal cells. In adult animals, COX2 immunosignals were evidenced in germ cells, as well as both COX1 and -2 in Leydig and Sertoli cells. In adult testes, the spermatogonia, spermatocytes and round spermatids had expression of e- and n-NOS only, whereas elongated spermatids exhibited immunopositivity for i- and e-NOS and Sertoli cells expressed only n-NOS. In prepubertal alpacas, i-NOS was localized in spermatogonia, e-NOS in Sertoli cells and all three NOS isoforms in Leydig cells. PGE2-9-ketoreductase immunopresence was observed in spermatogonia nuclei and cytoplasm of prepubertal testis whereas they were localized in spermatid acrosomal vesicle of adult. The enzymatic data indicated that COX1 activity was higher than COX2 in adult alpaca testis whereas the activity of COX2 was greater than that of COX1 in prepubertal animals. Total NOS and PGE2-9-ketoreductase activities were more extensive in adult alpacas. In vitro hormone production results showed that prepubertal testes released lower amounts of testosterone and PGF2α while PGE2 synthesis was six times more elevated than in in vitro incubated adult testes. Taken together, the data on COX2, i-NOS and PGE2 led us to hypothesize that development in prepubertal male reproductive tissues utilizes a mechanism similar to that of inflammation.
Collapse
Affiliation(s)
- Francesco Parillo
- Scuola di Scienze mediche veterinarie, Università di Camerino, Italy
| | | | | | | |
Collapse
|
48
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
49
|
Fujimori C, Ogiwara K, Hagiwara A, Rajapakse S, Kimura A, Takahashi T. Expression of cyclooxygenase-2 and prostaglandin receptor EP4b mRNA in the ovary of the medaka fish, Oryzias latipes: possible involvement in ovulation. Mol Cell Endocrinol 2011; 332:67-77. [PMID: 20932877 DOI: 10.1016/j.mce.2010.09.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/18/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
In vitro ovulation of mature medaka ovarian follicles was inhibited by inhibitors of cyclooxygenase (COX) or by an antagonist of the prostaglandin E(2) receptor (EP). Of the three medaka COX genes, ptgs2 was most dominantly expressed in the fish ovary. The ptgs2 transcript was detected in all sizes of growing follicles. In a 24-h spawning cycle, large-sized follicles contained ptgs2 mRNA at a fairly constant level. The levels of COX enzyme activity and prostaglandin E(2) were also constant in the large-sized follicles during the spawning cycle. The expression of prostaglandin E(2) receptor EP4b (ptger4b) mRNA was drastically upregulated in the large-sized follicles as the ovulation time approached. The current results indicate that prostaglandin E(2), which might be produced by COX-2, is involved in the ovulation of medaka, and that EP4b is likely the receptor responsible for exerting the action of prostaglandin E(2) in the process.
Collapse
Affiliation(s)
- Chika Fujimori
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Nelson SN, Van Der Kraak G. The role of the insulin-like growth factor (IGF) system in zebrafish (Danio rerio) ovarian development. Gen Comp Endocrinol 2010; 168:103-10. [PMID: 20447401 DOI: 10.1016/j.ygcen.2010.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/18/2010] [Accepted: 04/20/2010] [Indexed: 12/14/2022]
Abstract
The presence of an ovarian IGF system in teleosts suggests a distinct role in reproductive physiology. This study investigates the role of the ovarian IGF system in oocyte maturation, the acquisition of maturational competence and steroidogenesis in the zebrafish (Danio rerio). Recombinant human IGF-I and IGF-II stimulated germinal vesicle breakdown (GVBD) in early vitellogenic (EV; 0.35-0.44 mm), midvitellogenic (MV; 0.45-0.56 mm) and full grown (FG; 0.57-0.65 mm) follicles incubated in vitro. By comparison, the maturation inducing steroid 17alpha,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) only induced GVBD in MV and FG follicles. Collectively these studies suggest that IGF is involved in oocyte maturation and that follicles become responsive to IGFs at an earlier stage compared to 17,20beta-P. IGF-I also increased the responsiveness of the follicle to 17,20beta-P, suggesting a role in promoting maturational competence. IGF-I alone and in combination with human chorionic gonadotropin (hCG) stimulated the production of 17,20beta-P by ovarian follicles incubated in vitro. However, IGF-I had no effect on the production of 17beta-estradiol (E(2)) or the expression of genes involved in steroidogenesis (20beta-hydroxysteroid dehydrogenase; 20beta-HSD and P450c17-II). These results provide evidence that the IGF system plays an important role in the promotion of oocyte maturation and ovarian development in the zebrafish.
Collapse
Affiliation(s)
- Sharon N Nelson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|