1
|
Spees WM, Sukstanskii AL, Bretthorst GL, Neil JJ, Ackerman JJH. Rat Brain Global Ischemia-Induced Diffusion Changes Revisited: Biophysical Modeling of the Water and NAA MR "Diffusion Signal". Magn Reson Med 2022; 88:1333-1346. [PMID: 35452137 DOI: 10.1002/mrm.29262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To assess changes in intracellular diffusion as a mechanism for the reduction in water ADC that accompanies brain injury. Using NAA as a marker of neuronal cytoplasmic diffusion, NAA diffusion was measured before and after global ischemia (immediately postmortem) in the female Sprague-Dawley rat. METHODS Diffusion-weighted PRESS spectra, with diffusion encoding in a single direction, were acquired from large voxels of rat brain gray matter in vivo and postischemia employing either pairs of pulsed half-sine-shaped gradients (in vivo and postischemia, bmax = 19 ms/μm2 ) or sinusoidal oscillating gradients (in vivo only) with frequencies of 99.2-250 Hz. A 2D randomly oriented cylinder (neurite) model gave estimates of longitudinal and transverse diffusivities (DL and DT , respectively). In this model, DL represents the "free" diffusivity of NAA, whereas DT reflects highly restricted diffusion. Using oscillating gradients, the frequency dependence of DT [DT (ω)] gave estimates of the cylinder (axon/dendrite) radius. RESULTS A 10% decrease in DL,NAA followed global ischemia, dropping from 0.391 ± 0.012 μm2 /ms to 0.350 ± 0.009 μm2 /ms. Modeling DT,NAA (ω) provided an estimate of the neurite radius of 1.0 ± 0.6 μm. CONCLUSION Whereas the increase in apparent intraneuronal viscosity suggested by changes in DL,NAA may contribute to the overall reduction in water ADC associated with brain injury, it is not sufficient to be the sole explanation. Estimates of neurite radius based on DT (ω) were consistent with literature values.
Collapse
Affiliation(s)
- William M Spees
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Alex L Sukstanskii
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - G Larry Bretthorst
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey J Neil
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph J H Ackerman
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Chemistry, Washington University, St. Louis, Missouri.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.,Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Correlation Tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage 2021; 247:118833. [PMID: 34929382 DOI: 10.1016/j.neuroimage.2021.118833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.
Collapse
|
3
|
Archer BJ, Mack JJ, Acosta S, Nakasone R, Dahoud F, Youssef K, Goldstein A, Goldsman A, Held MC, Wiese M, Blumich B, Wessling M, Emondts M, Klankermayer J, Iruela-Arispe ML, Bouchard LS. Mapping Cell Viability Quantitatively and Independently From Cell Density in 3D Gels Noninvasively. IEEE Trans Biomed Eng 2021; 68:2940-2947. [PMID: 33531296 PMCID: PMC8326301 DOI: 10.1109/tbme.2021.3056526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In biomanufacturing there is a need for quantitative methods to map cell viability and density inside 3D bioreactors to assess health and proliferation over time. Recently, noninvasive MRI readouts of cell density have been achieved. However, the ratio of live to dead cells was not varied. Herein we present an approach for measuring the viability of cells embedded in a hydrogel independently from cell density to map cell number and health. METHODS Independent quantification of cell viability and density was achieved by calibrating the 1H magnetization transfer- (MT) and diffusion-weighted NMR signals to samples of known cell density and viability using a multivariate approach. Maps of cell viability and density were generated by weighting NMR images by these parameters post-calibration. RESULTS Using this method, the limits of detection (LODs) of total cell density and viable cell density were found to be 3.88 ×108 cells · mL -1· Hz -1/2 and 2.36 ×109 viable cells · mL -1· Hz -1/2 respectively. CONCLUSION This mapping technique provides a noninvasive means of visualizing cell viability and number density within optically opaque bioreactors. SIGNIFICANCE We anticipate that such nondestructive readouts will provide valuable feedback for monitoring and controlling cell populations in bioreactors.
Collapse
|
4
|
Li X, Bai Y, Liao Y, Xin SX. Assessment of the effects of mimicking tissue microstructural properties on apparent diffusion coefficient and apparent exchange rate in diffusion MRI via a series of specially designed phantoms. Magn Reson Med 2021; 87:292-301. [PMID: 34435698 DOI: 10.1002/mrm.28990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Diffusion MRI provides a valuable tool for imaging tissue microstructure. However, due to the lack of related experimental methods and specially designed phantoms, no experimental study has been conducted yet to quantitatively assess the effects of membrane permeability, intracellular volume fraction (IVF), and intracellular diffusivity on the apparent diffusion coefficient (ADC) obtained from diffusion weighted imaging (DWI), and the effects of membrane permeability on the apparent exchange rate (AXR) obtained from filter exchange imaging (FEXI). METHODS A series of phantoms with three adjustable parameters was designed to mimic tissue microstructural properties including membrane permeability, IVF, and intracellular diffusivity. Quantitative experiments were conducted to assess the effects of these properties on ADC and AXR. DWI scans were performed to obtain axial and radial ADC values. FEXI scans were performed to obtain AXR values. RESULTS Axial ADC values range from 1.148 μm2 /ms to 2.157 μm2 /ms, and radial ADC values range from 0.904 μm2 /ms to 2.067 μm2 /ms. Radial ADC decreased with a decrease in fiber permeability. Decreased axial and radial ADC values with increased intra-fiber volume fraction, and increased polyvinylpyrrolidone (PVP) concentration of the intra-fiber space were observed. AXR values range from 2.1 s-1 to 4.9 s-1 . AXR increases with fiber permeability. CONCLUSION The proposed phantoms can quantitatively evaluate the effects of mimicking tissue microstructural properties on ADC and AXR. This new phantom design provides a potential method for further understanding the biophysical mechanisms underlying the change in ADC and diffusion exchange.
Collapse
Affiliation(s)
- Xiaodong Li
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yafei Bai
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yupeng Liao
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Obenaus A, Badaut J. Role of the noninvasive imaging techniques in monitoring and understanding the evolution of brain edema. J Neurosci Res 2021; 100:1191-1200. [PMID: 34048088 DOI: 10.1002/jnr.24837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
Human brain injury elicits accumulation of water within the brain due to a variety of pathophysiological processes. As our understanding of edema emerged two temporally (and cellular) distinct processes were identified, cytotoxic and vasogenic edema. The emergence of both types of edema is reflected by the temporal evolution and is influenced by the underlying pathology (type and extent). However, this two-edema compartment model does not adequately describe the transition between cytotoxic and vasogenic edema. Hence, a third category has been proposed, termed ionic edema, that is observed in the transition between cytotoxic and vasogenic edema. Magnetic resonance neuroimaging of edema today primarily utilizes T2-weighted (T2WI) and diffusion-weighted imaging (DWI). Clinical diagnostics and translational science studies have clearly demonstrated the temporal ability of both T2WI and DWI to monitor edema content and evolution. DWI measures water mobility within the brain reflecting cytotoxic edema. T2WI at later time points when vasogenic edema develops visualizes increased water content in the brain. Clinically relevant imaging modalities, including ultrasound and positron emission tomography, are not typically used to assess edema. In sum, edema imaging is an important cornerstone of clinical diagnostics and translational studies and can guide effective therapeutics manage edema and improve patient outcomes.
Collapse
Affiliation(s)
- Andre Obenaus
- Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Jérôme Badaut
- Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.,CNRS UMR5287, INCIA, University of Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Novikov DS. The present and the future of microstructure MRI: From a paradigm shift to normal science. J Neurosci Methods 2020; 351:108947. [PMID: 33096152 DOI: 10.1016/j.jneumeth.2020.108947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022]
Abstract
The aspiration of imaging tissue microstructure with MRI is to uncover micrometer-scale tissue features within millimeter-scale imaging voxels, in vivo. This kind of super-resolution has fueled a paradigm shift within the biomedical imaging community. However, what feels like an ongoing revolution in MRI, has been conceptually experienced in physics decades ago; from this point of view, our current developments can be seen as Thomas Kuhn's "normal science" stage of progress. While the concept of model-based quantification below the nominal imaging resolution is not new, its possibilities in neuroscience and neuroradiology are only beginning to be widely appreciated. This disconnect calls for communicating the progress of tissue microstructure MR imaging to its potential users. Here, a number of recent research developments are outlined in terms of the overarching concept of coarse-graining the tissue structure over an increasing diffusion length. A variety of diffusion models and phenomena are summarized on the phase diagram of diffusion MRI, with the unresolved problems and future directions corresponding to its unexplored domains.
Collapse
Affiliation(s)
- Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Soria FN, Miguelez C, Peñagarikano O, Tønnesen J. Current Techniques for Investigating the Brain Extracellular Space. Front Neurosci 2020; 14:570750. [PMID: 33177979 PMCID: PMC7591815 DOI: 10.3389/fnins.2020.570750] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
The brain extracellular space (ECS) is a continuous reticular compartment that lies between the cells of the brain. It is vast in extent relative to its resident cells, yet, at the same time the nano- to micrometer dimensions of its channels and reservoirs are commonly finer than the smallest cellular structures. Our conventional view of this compartment as largely static and of secondary importance for brain function is rapidly changing, and its active dynamic roles in signaling and metabolite clearance have come to the fore. It is further emerging that ECS microarchitecture is highly heterogeneous and dynamic and that ECS geometry and diffusional properties directly modulate local diffusional transport, down to the nanoscale around individual synapses. The ECS can therefore be considered an extremely complex and diverse compartment, where numerous physiological events are unfolding in parallel on spatial and temporal scales that span orders of magnitude, from milliseconds to hours, and from nanometers to centimeters. To further understand the physiological roles of the ECS and identify new ones, researchers can choose from a wide array of experimental techniques, which differ greatly in their applicability to a given sample and the type of data they produce. Here, we aim to provide a basic introduction to the available experimental techniques that have been applied to address the brain ECS, highlighting their main characteristics. We include current gold-standard techniques, as well as emerging cutting-edge modalities based on recent super-resolution microscopy. It is clear that each technique comes with unique strengths and limitations and that no single experimental method can unravel the unknown physiological roles of the brain ECS on its own.
Collapse
Affiliation(s)
- Federico N. Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
8
|
Jelescu IO, Palombo M, Bagnato F, Schilling KG. Challenges for biophysical modeling of microstructure. J Neurosci Methods 2020; 344:108861. [PMID: 32692999 PMCID: PMC10163379 DOI: 10.1016/j.jneumeth.2020.108861] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.
Collapse
|
9
|
Liu CB, Yang DG, Zhang X, Zhang WH, Li DP, Zhang C, Qin C, Du LJ, Li J, Gao F, Zhang J, Zuo ZT, Yang ML, Li JJ. Degeneration of white matter and gray matter revealed by diffusion tensor imaging and pathological mechanism after spinal cord injury in canine. CNS Neurosci Ther 2018; 25:261-272. [PMID: 30076687 DOI: 10.1111/cns.13044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
AIM Exploration of the mechanism of spinal cord degeneration may be the key to treatment of spinal cord injury (SCI). This study aimed to investigate the degeneration of white matter and gray matter and pathological mechanism in canine after SCI. METHODS Diffusion tensor imaging (DTI) was performed on canine models with normal (n = 5) and injured (n = 7) spinal cords using a 3.0T MRI scanner at precontusion and 3 hours, 24 hours, 6 weeks, and 12 weeks postcontusion. The tissue sections were stained using H&E and immunohistochemistry. RESULTS For white matter, fractional anisotropy (FA) values significantly decreased in lesion epicenter, caudal segment 1 cm away from epicenter, and caudal segment 2 cm away from epicenter (P = 0.003, P = 0.004, and P = 0.013, respectively) after SCI. Apparent diffusion coefficient (ADC) values were initially decreased and then increased in lesion epicenter and caudal segment 1 cm away from epicenter (P < 0.001 and P = 0.010, respectively). There are no significant changes in FA and ADC values in rostral segments (P > 0.05). For gray matter, ADC values decreased initially and then increased in lesion epicenter (P < 0.001), and overall trend decreased in caudal segment 1 cm away from epicenter (P = 0.039). FA values did not change significantly (P > 0.05). Pathological examination confirmed the dynamic changes of DTI parameters. CONCLUSION Diffusion tensor imaging is more sensitive to degeneration of white matter than gray matter, and the white matter degeneration may be not symmetrical which meant the caudal degradation appeared to be more severe than the rostral one.
Collapse
Affiliation(s)
- Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - De-Gang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chuan Qin
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zhen-Tao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
10
|
Kunz N, da Silva AR, Jelescu IO. Intra- and extra-axonal axial diffusivities in the white matter: Which one is faster? Neuroimage 2018; 181:314-322. [PMID: 30005917 DOI: 10.1016/j.neuroimage.2018.07.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022] Open
Abstract
A two-compartment model of diffusion in white matter, which accounts for intra- and extra-axonal spaces, is associated with two plausible mathematical scenarios: either the intra-axonal axial diffusivity Da,‖ is higher than the extra-axonal De,‖ (Branch 1), or the opposite, i.e. Da,‖ < De,‖ (Branch 2). This duality calls for an independent validation of compartment axial diffusivities, to determine which of the two cases holds. The aim of the present study was to use an intracerebroventricular injection of a gadolinium-based contrast agent to selectively reduce the extracellular water signal in the rat brain, and compare diffusion metrics in the genu of the corpus callosum before and after gadolinium infusion. The diffusion metrics considered were diffusion and kurtosis tensor metrics, as well as compartment-specific estimates of the WMTI-Watson two-compartment model. A strong decrease in genu T1 and T2 relaxation times post-Gd was observed (p < 0.001), as well as an increase of 48% in radial kurtosis (p < 0.05), which implies that the relative fraction of extracellular water signal was selectively decreased. This was further supported by a significant increase in intra-axonal water fraction as estimated from the two-compartment model, for both branches (p < 0.01 for Branch 1, p < 0.05 for Branch 2). However, pre-Gd estimates of axon dispersion in Branch 1 agreed better with literature than those of Branch 2. Furthermore, comparison of post-Gd changes in diffusivity and dispersion between data and simulations further supported Branch 1 as the biologically plausible solution, i.e. Da,‖ > De,‖. This result is fully consistent with other recent measurements of compartment axial diffusivities that used entirely different approaches, such as diffusion tensor encoding.
Collapse
Affiliation(s)
- Nicolas Kunz
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Analina R da Silva
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ileana O Jelescu
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Budde MD, Skinner NP. Diffusion MRI in acute nervous system injury. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:137-148. [PMID: 29773299 DOI: 10.1016/j.jmr.2018.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Diffusion weighted magnetic resonance imaging (DWI) and related techniques such as diffusion tensor imaging (DTI) are uniquely sensitive to the microstructure of the brain and spinal cord. In the acute aftermath of nervous system injury, for example, DWI reveals changes caused by injury that remains invisible on other MRI contrasts such as T2-weighted imaging. This ability has led to a demonstrated clinical utility in cerebral ischemia. However, despite strong promise in preclinical models and research settings, DWI has not been as readily adopted for other acute injuries such as traumatic spinal cord, brain, or peripheral nerve injury. Furthermore, the precise biophysical mechanisms that underlie DWI and DTI changes are not fully understood. In this report, we review the DWI and DTI changes that occur in acute neurological injury of cerebral ischemia, spinal cord injury, traumatic brain injury, and peripheral nerve injury. Their associations with the underlying biology are examined with an emphasis on the role of acute axon and dendrite beading. Lastly, emerging DWI techniques to overcome the limitations of DTI are discussed as these may offer the needed improvements to translate to clinical settings.
Collapse
Affiliation(s)
- Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Nathan P Skinner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Gilles A, Nagel AM, Madelin G. Multipulse sodium magnetic resonance imaging for multicompartment quantification: Proof-of-concept. Sci Rep 2017; 7:17435. [PMID: 29234043 PMCID: PMC5727256 DOI: 10.1038/s41598-017-17582-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
We present a feasibility study of sodium quantification in a multicompartment model of the brain using sodium (23Na) magnetic resonance imaging. The proposed method is based on a multipulse sequence acquisition and simulation at 7 T, which allows to differentiate the 23Na signals emanating from three compartments in human brain in vivo: intracellular (compartment 1), extracellular (compartment 2), and cerebrospinal fluid (compartment 3). The intracellular sodium concentration C1 and the volume fractions α1, α2, and α3 of all respective three brain compartments can be estimated. Simulations of the sodium spin 3/2 dynamics during a 15-pulse sequence were used to optimize the acquisition sequence by minimizing the correlation between the signal evolutions from the three compartments. The method was first tested on a three-compartment phantom as proof-of-concept. Average values of the 23Na quantifications in four healthy volunteer brains were α1 = 0.54 ± 0.01, α2 = 0.23 ± 0.01, α3 = 1.03 ± 0.01, and C1 = 23 ± 3 mM, which are comparable to the expected physiological values \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{1}}}^{{\boldsymbol{theory}}}$$\end{document}α1theory ∼ 0.6, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{2}}}^{{\boldsymbol{theory}}}$$\end{document}α2theory ∼ 0.2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{\alpha }}}_{{\bf{3}}}^{{\boldsymbol{theory}}}$$\end{document}α3theory ∼ 1, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\boldsymbol{C}}}_{{\bf{1}}}^{{\boldsymbol{theory}}}$$\end{document}C1theory ∼ 10–30 mM. The proposed method may allow a quantitative assessment of the metabolic role of sodium ions in cellular processes and their malfunctions in brain in vivo.
Collapse
Affiliation(s)
- Alina Gilles
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Guillaume Madelin
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
13
|
Jelescu IO, Budde MD. Design and validation of diffusion MRI models of white matter. FRONTIERS IN PHYSICS 2017; 28:61. [PMID: 29755979 PMCID: PMC5947881 DOI: 10.3389/fphy.2017.00061] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the "biological accuracy" of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Collapse
Affiliation(s)
- Ileana O Jelescu
- Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthew D Budde
- Zablocki VA Medical Center, Dept. of Neurosurgery, Medical College Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
Yang DM, Huettner JE, Bretthorst GL, Neil JJ, Garbow JR, Ackerman JJH. Intracellular water preexchange lifetime in neurons and astrocytes. Magn Reson Med 2017; 79:1616-1627. [PMID: 28675497 DOI: 10.1002/mrm.26781] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/17/2017] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the intracellular water preexchange lifetime, τi , the "average residence time" of water, in the intracellular milieu of neurons and astrocytes. The preexchange lifetime is important for modeling a variety of MR data sets, including relaxation, diffusion-sensitive, and dynamic contrast-enhanced data sets. METHODS Herein, τi in neurons and astrocytes is determined in a microbead-adherent, cultured cell system. In concert with thin-slice selection, rapid flow of extracellular media suppresses extracellular signal, allowing determination of the transcytolemmal-exchange-dominated, intracellular T1 . With this knowledge, and that of the intracellular T1 in the absence of exchange, τi can be derived. RESULTS Under normal culture conditions, τi for neurons is 0.75 ± 0.05 s versus 0.57 ± 0.03 s for astrocytes. Both neuronal and astrocytic τi s decrease within 30 min after the onset of oxygen-glucose deprivation, with the astrocytic τi showing a substantially greater decrease than the neuronal τi . CONCLUSIONS Given an approximate intra- to extracellular volume ratio of 4:1 in the brain, these data imply that, under normal physiological conditions, an MR experimental characteristic time of less than 0.012 s is required for a nonexchanging, two-compartment (intra- and extracellular) model to be valid for MR studies. This characteristic time shortens significantly (i.e., 0.004 s) under injury conditions. Magn Reson Med 79:1616-1627, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Donghan M Yang
- Department of Chemistry, Washington University, St. Louis, Missouri, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - G Larry Bretthorst
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University, St. Louis, Missouri, USA.,Department of Pediatrics, Washington University, St. Louis, Missouri, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Joel R Garbow
- Department of Radiology, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Chemistry, Washington University, St. Louis, Missouri, USA.,Department of Radiology, Washington University, St. Louis, Missouri, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri, USA.,Department of Internal Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Shazeeb MS, Sotak CH. Limitations in biexponential fitting of NMR inversion-recovery curves. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 276:14-21. [PMID: 28088651 DOI: 10.1016/j.jmr.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
NMR relaxation agents have long been employed as contrast agents in MRI. In many cases, the contrast agent is confined to either (i) the vascular and/or extracellular compartment (EC), as is the case with gadolinium(III)-based agents, or (ii) the intracellular compartment (IC), as is the case with manganese(II) ions. The compartmentalization of contrast agents often results in tissue-water 1H relaxation profiles that are well modeled as biexponential. It has long been recognized that water exchange between compartments modifies the biexponential relaxation parameters (amplitudes and rate constants) from those that would be found in the absence of exchange. Nevertheless, interpretation in terms of an "apparent" two-compartment biophysical model, apparent EC vs. apparent IC, can provide insight into tissue structure and function, and changes therein, in the face of physiologic challenge. The accuracy of modeling biexponential data is highly dependent upon the amplitudes, rate constants, and signal-to-noise characterizing the data. Herein, simulated (in silico) inversion-recovery relaxation data are modeled by standard, nonlinear-least-squares analysis and the error in parameter values assessed for a range of amplitudes and rate constants characteristic of in vivo systems following administration of contrast agent. The findings provide guidance for laboratories seeking to exploit contrast-agent-driven, biexponential relaxation to differentiate MRI-based compartmental properties, including the apparent diffusion coefficient.
Collapse
Affiliation(s)
- Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States.
| | - Christopher H Sotak
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States; Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, United States
| |
Collapse
|
16
|
Knight MJ, McGarry BL, Rogers HJ, Jokivarsi KT, Gröhn OHJ, Kauppinen RA. A spatiotemporal theory for MRI T2 relaxation time and apparent diffusion coefficient in the brain during acute ischaemia: Application and validation in a rat acute stroke model. J Cereb Blood Flow Metab 2016; 36:1232-43. [PMID: 26661188 PMCID: PMC4929697 DOI: 10.1177/0271678x15608394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study is to present a mathematical model which can describe the spatiotemporal progression of cerebral ischaemia and predict magnetic resonance observables including the apparent diffusion coefficient (ADC) of water and transverse relaxation time T2 This is motivated by the sensitivity of the ADC to the location of cerebral ischaemia and T2 to its time-course, and that it has thus far proven challenging to relate observations of changes in these MR parameters to stroke timing, which is of considerable importance in making treatment choices in clinics. Our mathematical model, called the cytotoxic oedema/dissociation (CED) model, is based on the transit of water from the extra- to the intra-cellular environment (cytotoxic oedema) and concomitant degradation of supramacromolecular and macromolecular structures (such as microtubules and the cytoskeleton). It explains experimental observations of ADC and T2, as well as identifying the rate of spread of effects of ischaemia through a tissue as a dominant system parameter. The model brings the direct extraction of the timing of ischaemic stroke from quantitative MRI closer to reality, as well as providing insight on ischaemia pathology by imaging in general. We anticipate that this may improve patient access to thrombolytic treatment as a future application.
Collapse
Affiliation(s)
- Michael J Knight
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Bryony L McGarry
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Harriet J Rogers
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Olli H J Gröhn
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Yeh FC, Liu L, Hitchens TK, Wu YL. Mapping immune cell infiltration using restricted diffusion MRI. Magn Reson Med 2016; 77:603-612. [PMID: 26843524 DOI: 10.1002/mrm.26143] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. THEORY AND METHODS An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. RESULTS Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. CONCLUSION RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Li Liu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yijen L Wu
- Rangos Research Center Animal Imaging Core, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Jelescu IO, Veraart J, Fieremans E, Novikov DS. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR IN BIOMEDICINE 2016; 29:33-47. [PMID: 26615981 PMCID: PMC4920129 DOI: 10.1002/nbm.3450] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 05/05/2023]
Abstract
The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-compartment models are a common approach to interpret water diffusion in the brain in vivo, the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision. So far, this has been alleviated by fixing some of the model parameters to a priori values, for improved precision at the expense of accuracy. Here we use a representative two-compartment model to show that fitting fails to determine the five model parameters from over 60 measurement points. For the first time, we identify the reasons for this poor performance. The first reason is the existence of two local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they both lie within biophysically plausible ranges. We show that, at realistic signal-to-noise ratio values, choosing between the two minima based on the associated objective function values is essentially impossible. Second, there is an ensemble of very low objective function values around each of these minima in the form of a pipe. The existence of such a direction in parameter space, along which the objective function profile is very flat, explains the bias and large uncertainty in parameter estimation, and the spurious parameter correlations: in the presence of noise, the minimum can be randomly displaced by a very large amount along each pipe. Our results suggest that the biophysical interpretation of dMRI model parameters crucially depends on establishing which of the minima is closer to the biophysical reality and the size of the uncertainty associated with each parameter.
Collapse
Affiliation(s)
- Ileana O. Jelescu
- Correspondence to: I.O. Jelescu, Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
19
|
Li H, Jiang X, Wang F, Xu J, Gore JC. Structural information revealed by the dispersion of ADC with frequency. Magn Reson Imaging 2015; 33:1083-1090. [PMID: 26117695 DOI: 10.1016/j.mri.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/20/2015] [Indexed: 01/18/2023]
Abstract
Diffusion MRI provides a non-invasive means to characterize tissue microstructure at varying length scales. Temporal diffusion spectra reveal how the apparent diffusion coefficient (ADC) varies with frequency. When measured using oscillating gradient spin echo sequences, the manner in which ADC disperses with gradient frequency (which is related to the reciprocal of diffusion time) provides information on the characteristic dimensions of restricting structures within the medium. For example, the dispersion of ADC with oscillating gradient frequency (ΔfADC) has been shown to correlate with axon sizes in white matter and provide novel tissue contrast in images of mouse hippocampus and cerebellum. However, despite increasing interest in applying frequency-dependent ADC to derive novel information on tissue, the interpretations of ADC spectra are not always clear. In this study, the relation between ADC spectra and restricting dimensions are further elucidated and used to derive novel image contrast related to the sizes of intrinsic microstructures.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
20
|
Li H, Zu Z, Zaiss M, Khan IS, Singer R, Gochberg DF, Bachert P, Gore JC, Xu J. Imaging of amide proton transfer and nuclear Overhauser enhancement in ischemic stroke with corrections for competing effects. NMR IN BIOMEDICINE 2015; 28:200-9. [PMID: 25483870 PMCID: PMC4303585 DOI: 10.1002/nbm.3243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) potentially provides the ability to detect small solute pools through indirect measurements of attenuated water signals. However, CEST effects may be diluted by various competing effects, such as non-specific magnetization transfer (MT) and asymmetric MT effects, water longitudinal relaxation (T1 ) and direct water saturation (radiofrequency spillover). In the current study, CEST images were acquired in rats following ischemic stroke and analyzed by comparing the reciprocals of the CEST signals at three different saturation offsets. This combined approach corrects the above competing effects and provides a more robust signal metric sensitive specifically to the proton exchange rate constant. The corrected amide proton transfer (APT) data show greater differences between the ischemic and contralateral (non-ischemic) hemispheres. By contrast, corrected nuclear Overhauser enhancements (NOEs) around -3.5 ppm from water change over time in both hemispheres, indicating whole-brain changes that have not been reported previously. This study may help us to better understand the contrast mechanisms of APT and NOE imaging in ischemic stroke, and may also establish a framework for future stroke measurements using CEST imaging with spillover, MT and T1 corrections.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Imad S. Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Robert Singer
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Bachert
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Corresponding author: Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA. Tel.: + 1 615 322 8359; Fax: + 1 615 322 0734. (J. Xu)
| |
Collapse
|
21
|
Urokinase-type plasminogen activator promotes dendritic spine recovery and improves neurological outcome following ischemic stroke. J Neurosci 2015; 34:14219-32. [PMID: 25339736 DOI: 10.1523/jneurosci.5309-13.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine proteinase that plays a central role in tissue remodeling via binding to the urokinase plasminogen activator receptor (uPAR). We report that cerebral cortical neurons release uPA during the recovery phase from ischemic stroke in vivo or hypoxia in vitro. Although uPA does not have an effect on ischemia- or hypoxia-induced neuronal death, genetic deficiency of uPA (uPA(-/-)) or uPAR (uPAR(-/-)) abrogates functional recovery after AIS. Treatment with recombinant uPA after ischemic stroke induces neurological recovery in wild-type and uPA(-/-) but not in uPAR(-/-) mice. Diffusion tensor imaging studies indicate that uPA(-/-) mice have increased water diffusivity and decreased anisotropy associated with impaired dendritic spine recovery and decreased length of distal neurites in the peri-infarct cortex. We found that the excitotoxic injury induces the clustering of uPAR in dendritic varicosities, and that the binding of uPA to uPAR promotes the reorganization of the actin cytoskeleton and re-emergence of dendritic filopodia from uPAR-enriched varicosities. This effect is independent of uPA's proteolytic properties and instead is mediated by Rac-regulated profilin expression and cofilin phosphorylation. Our data indicate that binding of uPA to uPAR promotes dendritic spine recovery and improves functional outcome following AIS.
Collapse
|
22
|
A macroscopic view of microstructure: Using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience 2014; 276:14-28. [DOI: 10.1016/j.neuroscience.2013.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
|
23
|
Jelescu IO, Ciobanu L, Geffroy F, Marquet P, Le Bihan D. Effects of hypotonic stress and ouabain on the apparent diffusion coefficient of water at cellular and tissue levels in Aplysia. NMR IN BIOMEDICINE 2014; 27:280-290. [PMID: 24403001 DOI: 10.1002/nbm.3061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/03/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels. A three-dimensional diffusion prepared fast imaging with steady-state free precession sequence for MR microscopy was implemented on a 17.2 T imaging system and used to investigate the effect of two biological challenges known to cause cell swelling, exposure to a hypotonic solution or to ouabain, on Aplysia nervous tissue. The ADC was measured inside isolated neuronal soma and in the region of cell bodies of the buccal ganglia. Both challenges resulted in an ADC increase inside isolated neuronal soma (+31 ± 24% and +30 ± 11%, respectively) and an ADC decrease at tissue level in the buccal ganglia (-12 ± 5% and -18 ± 8%, respectively). A scenario involving a layer of water molecules bound to the inflating cell membrane surface is proposed to reconcile this apparent discrepancy.
Collapse
Affiliation(s)
- Ileana Ozana Jelescu
- NeuroSpin, Commissariat à l'Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
24
|
Marques P, Soares JM, Alves V, Sousa N. BrainCAT - a tool for automated and combined functional magnetic resonance imaging and diffusion tensor imaging brain connectivity analysis. Front Hum Neurosci 2013; 7:794. [PMID: 24319419 PMCID: PMC3836207 DOI: 10.3389/fnhum.2013.00794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/31/2013] [Indexed: 01/03/2023] Open
Abstract
Multimodal neuroimaging studies have recently become a trend in the neuroimaging field and are certainly a standard for the future. Brain connectivity studies combining functional activation patterns using resting-state or task-related functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) tractography have growing popularity. However, there is a scarcity of solutions to perform optimized, intuitive, and consistent multimodal fMRI/DTI studies. Here we propose a new tool, brain connectivity analysis tool (BrainCAT), for an automated and standard multimodal analysis of combined fMRI/DTI data, using freely available tools. With a friendly graphical user interface, BrainCAT aims to make data processing easier and faster, implementing a fully automated data processing pipeline and minimizing the need for user intervention, which hopefully will expand the use of combined fMRI/DTI studies. Its validity was tested in an aging study of the default mode network (DMN) white matter connectivity. The results evidenced the cingulum bundle as the structural connector of the precuneus/posterior cingulate cortex and the medial frontal cortex, regions of the DMN. Moreover, mean fractional anisotropy (FA) values along the cingulum extracted with BrainCAT showed a strong correlation with FA values from the manual selection of the same bundle. Taken together, these results provide evidence that BrainCAT is suitable for these analyses.
Collapse
Affiliation(s)
- Paulo Marques
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | | | | | | |
Collapse
|
25
|
Jirjis MB, Kurpad SN, Schmit BD. Ex vivo diffusion tensor imaging of spinal cord injury in rats of varying degrees of severity. J Neurotrauma 2013; 30:1577-86. [PMID: 23782233 DOI: 10.1089/neu.2013.2897] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to characterize magnetic resonance diffusion tensor imaging (DTI) in proximal regions of the spinal cord following a thoracic spinal cord injury (SCI). Sprague-Dawley rats (n=40) were administered a control, mild, moderate, or severe contusion injury at the T8 vertebral level. Six direction diffusion weighted images (DWIs) were collected ex vivo along the length of the spinal cord, with an echo/repetition time of 31.6 ms/14 sec and b=500 sec/mm². Diffusion metrics were correlated to hindlimb motor function. Significant differences were found for whole cord region of interest (ROI) drawings for fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusion coefficient (LD), and radial diffusion coefficient (RD) at each of the cervical levels (p<0.01). Motor function correlated with MD in the cervical segments of the spinal cord (r(2)=0.80). The diffusivity of water significantly decreased throughout "uninjured" portions of the spinal cord following a contusion injury (p<0.05). Diffusivity metrics were found to be altered following SCI in both white and gray matter regions. Injury severity was associated with diffusion changes over the entire length of the cord. This study demonstrates that DTI is sensitive to SCI in regions remote from injury, suggesting that the diffusion metrics may be used as a biomarker for severity of injury.
Collapse
Affiliation(s)
- Michael B Jirjis
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | |
Collapse
|
26
|
Li K, Han H, Zhu K, Lee K, Liu B, Zhou F, Fu Y, He Q. Real-time magnetic resonance imaging visualization and quantitative assessment of diffusion in the cerebral extracellular space of C6 glioma-bearing rats. Neurosci Lett 2013; 543:84-9. [DOI: 10.1016/j.neulet.2013.02.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/18/2013] [Accepted: 02/27/2013] [Indexed: 01/14/2023]
|
27
|
Lee CY, Bennett KM, Debbins JP. Sensitivities of statistical distribution model and diffusion kurtosis model in varying microstructural environments: a Monte Carlo study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 230:19-26. [PMID: 23428968 DOI: 10.1016/j.jmr.2013.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/12/2013] [Accepted: 01/19/2013] [Indexed: 06/01/2023]
Abstract
The aim of this study was to investigate the microstructural sensitivity of the statistical distribution and diffusion kurtosis (DKI) models of non-monoexponential signal attenuation in the brain using diffusion-weighted MRI (DWI). We first developed a simulation of 2-D water diffusion inside simulated tissue consisting of semi-permeable cells and a variable cell size. We simulated a DWI acquisition of the signal in a volume using a pulsed gradient spin echo (PGSE) pulse sequence, and fitted the models to the simulated DWI signals using b-values up to 2500 s/mm(2). For comparison, we calculated the apparent diffusion coefficient (ADC) of the monoexponential model (b-value=1000 s/mm(2)). In separate experiments, we varied the cell size (5-10-15 μm), cell volume fraction (0.50-0.65-0.80), and membrane permeability (0.001-0.01-0.1mm/s) to study how the fitted parameters tracked simulated microstructural changes. The ADC was sensitive to all the simulated microstructural changes except the decrease in membrane permeability. The ADC increased with larger cell size, smaller cell volume fraction, and larger membrane permeability. The σstat of the statistical distribution model increased exclusively with a decrease in cell volume fraction. The Kapp of the DKI model was exclusively increased with decreased cell size and decreased with increasing membrane permeability. These results suggest that the non-monoexponential models of water diffusion have different, specific microstructural sensitivity, and a combination of the models may give insights into the microstructural underpinning of tissue pathology.
Collapse
Affiliation(s)
- Chu-Yu Lee
- Keller Center for Imaging Innovation, Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | | |
Collapse
|
28
|
Schilling F, Düwel S, Köllisch U, Durst M, Schulte RF, Glaser SJ, Haase A, Otto AM, Menzel MI. Diffusion of hyperpolarized (13) C-metabolites in tumor cell spheroids using real-time NMR spectroscopy. NMR IN BIOMEDICINE 2013; 26:557-68. [PMID: 23233311 DOI: 10.1002/nbm.2892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 05/14/2023]
Abstract
The detection of tumors noninvasively, the characterization of their progression by defined markers and the monitoring of response to treatment are goals of medical imaging techniques. In this article, a method which measures the apparent diffusion coefficients (ADCs) of metabolites using hyperpolarized (13) C diffusion-weighted spectroscopy is presented. A pulse sequence based on the pulsed gradient spin echo (PGSE) was developed that encodes both kinetics and diffusion information. In experiments with MCF-7 human breast cancer cells, we detected an ADC of intracellularly produced lactate of 1.06 ± 0.15 µm(2) /ms, which is about one-half of the value measured with pyruvate in extracellular culture medium. When monitoring tumor cell spheroids during progressive membrane permeabilization with Triton X-100, the ratio of lactate ADC to pyruvate ADC increases as the fraction of dead cells increases. Therefore, (13) C ADC detection can yield sensitive information on changes in membrane permeability and subsequent cell death. Our results suggest that both metabolic label exchange and (13) C ADCs can be acquired simultaneously, and may potentially serve as noninvasive biomarkers for pathological changes in tumor cells.
Collapse
Affiliation(s)
- Franz Schilling
- Institute of Medical Engineering, Technische Universität München, Garching, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2013; 26:345-70. [PMID: 23443883 PMCID: PMC3728433 DOI: 10.1007/s10334-013-0371-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 12/27/2022]
Abstract
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Collapse
|
30
|
Jeon T, Mishra V, Uh J, Weiner M, Hatanpaa KJ, White CL, Zhao YD, Lu H, Diaz-Arrastia R, Huang H. Regional changes of cortical mean diffusivities with aging after correction of partial volume effects. Neuroimage 2012; 62:1705-16. [PMID: 22683383 PMCID: PMC3574164 DOI: 10.1016/j.neuroimage.2012.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022] Open
Abstract
Accurately measuring the cortical mean diffusivity (MD) derived from diffusion tensor imaging (DTI) at the comprehensive lobe, gyral and voxel level of young, elderly healthy brains and those with Alzheimer's disease (AD) may provide insights on heterogeneous cortical microstructural changes caused by aging and AD. Due to partial volume effects (PVE), the measurement of cortical MD is overestimated with contamination of cerebrospinal fluid (CSF). The bias is especially severe for aging and AD brains because of significant cortical thinning of these brains. In this study, we aimed to quantitatively characterize the unbiased regional cortical MD changes due to aging and AD and delineate the effects of cortical thinning of elderly healthy and AD groups on MD measurements. DTI and T1-weighted images of 14 young, 15 elderly healthy subjects and 17 AD patients were acquired. With the parcellated cortical gyri and lobes from T1 weighted image transformed to DTI, regional cortical MD of all subjects before and after PVE correction were measured. CSF contamination model was used to correct bias of MD caused by PVE. Compared to cortical MD of young group, significant increases of corrected MD for elderly healthy and AD groups were found only in frontal and limbic regions, respectively, while there were significant increases of uncorrected MD all over the cortex. Uncorrected MD are significantly higher in limbic and temporal gyri in AD group, compared to those in elderly healthy group but higher MD only remained in limbic gyri after PVE correction. Cortical thickness was also measured for all groups. The correlation slopes between cortical MD and thickness for elderly healthy and AD groups were significantly decreased after PVE correction compared to before correction while no significant change of correlation slope was detected for young group. It suggests that the cortical thinning in elderly healthy and AD groups is a significant contributor to the bias of uncorrected cortical MD measurement. The established comprehensive unbiased cortical MD profiles of young, elderly healthy subjects and AD patients at the lobe, gyral and voxel level may serve as clinical references for cortical microstructure.
Collapse
Affiliation(s)
- Tina Jeon
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Virendra Mishra
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Jinsoo Uh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
| | - Myron Weiner
- Department of Psychiatry, University of Texas Southwestern Medical Center, USA
- Department of Neurology, University of Texas Southwestern Medical Center, USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, USA
| | - Yan D. Zhao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
- Department of Radiology, University of Texas Southwestern Medical Center, USA
| | - Ramon Diaz-Arrastia
- Department of Psychiatry, University of Texas Southwestern Medical Center, USA
- Department of Neurology, University of Texas Southwestern Medical Center, USA
| | - Hao Huang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, USA
- Department of Radiology, University of Texas Southwestern Medical Center, USA
| |
Collapse
|
31
|
Goebell E, Fiehler J, Siemonsen S, Vaeterlein O, Heese O, Hagel C, Ding XQ, Buhk JH, Groth M, Kucinski T. Macromolecule content influences proton diffusibility in gliomas. Eur Radiol 2011; 21:2626-32. [DOI: 10.1007/s00330-011-2206-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/29/2011] [Accepted: 06/14/2011] [Indexed: 02/03/2023]
|
32
|
Bell LK, Ainsworth NL, Lee SH, Griffiths JR. MRI & MRS assessment of the role of the tumour microenvironment in response to therapy. NMR IN BIOMEDICINE 2011; 24:612-35. [PMID: 21567513 DOI: 10.1002/nbm.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 05/30/2023]
Abstract
MRI and MRS techniques are being applied to the characterisation of various aspects of the tumour microenvironment and to the assessment of tumour response to therapy. For example, kinetic parameters describing tumour blood vessel flow and permeability can be derived from dynamic contrast-enhanced MRI data and have been correlated with a positive tumour response to antivascular therapies. The ongoing development and validation of noninvasive, high-resolution anatomical/molecular MR techniques will equip us with the means to detect specific tumour biomarkers early on, and then to monitor the efficacy of cancer treatments efficiently and reliably, all within a clinically relevant time frame. Reliable tumour microenvironment imaging biomarkers will provide obvious advantages by enabling tumour-specific treatment tailoring and potentially improving patient outcome. However, for routine clinical application across many disease types, such imaging biomarkers must be quantitative, robust, reproducible, sufficiently sensitive and cost-effective. These characteristics are all difficult to achieve in practice, but image biomarker development and validation have been greatly facilitated by an increasing number of pertinent preclinical in vivo cancer models. Emphasis must now be placed on discovering whether the preclinical results translate into an improvement in patient care and, therefore, overall survival.
Collapse
Affiliation(s)
- Leanne K Bell
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
| | | | | | | |
Collapse
|
33
|
Jensen JH, Falangola MF, Hu C, Tabesh A, Rapalino O, Lo C, Helpern JA. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR IN BIOMEDICINE 2011; 24:452-7. [PMID: 20960579 PMCID: PMC3549661 DOI: 10.1002/nbm.1610] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/18/2010] [Accepted: 07/27/2010] [Indexed: 05/06/2023]
Abstract
By application of the MRI method of diffusional kurtosis imaging, a substantially increased diffusional kurtosis was observed within the cerebral ischemic lesions of three stroke subjects, 13-26 h following the onset of symptoms. This increase is interpreted as probably reflecting a higher degree of diffusional heterogeneity in the lesions when compared with normal-appearing contralateral tissue. In addition, for two of the subjects with white matter infarcts, the increase had a strong fiber tract orientational dependence. It is proposed that this effect is consistent with a large drop in the intra-axonal diffusivity, possibly related to either axonal varicosities or alterations associated with the endoplasmic reticulum.
Collapse
Affiliation(s)
- Jens H Jensen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016-3295, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Harkins KD, Galons JP, Divijak JL, Trouard TP. Changes in intracellular water diffusion and energetic metabolism in response to ischemia in perfused C6 rat glioma cells. Magn Reson Med 2011; 66:859-67. [PMID: 21446036 DOI: 10.1002/mrm.22866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/11/2011] [Indexed: 11/09/2022]
Abstract
This work reports results of experiments in hollow-fiber bioreactor C6 glioma cell cultures where the apparent diffusion coefficient (ADC) of intracellular water (iADC) was measured at diffusion times between 0.83 and 40 ms. The experiments were carried out before and after the onset of permanent ischemia. The changes in iADC following ischemia were dependent on the diffusion time employed in the experiment. An ischemia-induced decrease in the iADC was measured at short diffusion times, while at long diffusion times the iADC increased. Decreases in the iADC measured at short diffusion times are interpreted to be a result of a decrease in the intrinsic diffusivity of intracellular water due to energy failure. Increases in iADC measured at long diffusion times, are interpreted to result from cell swelling.
Collapse
Affiliation(s)
- Kevin D Harkins
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
35
|
Cell death/proliferation and alterations in glial morphology contribute to changes in diffusivity in the rat hippocampus after hypoxia-ischemia. J Cereb Blood Flow Metab 2011; 31:894-907. [PMID: 20877389 PMCID: PMC3063622 DOI: 10.1038/jcbfm.2010.168] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To understand the structural alterations that underlie early and late changes in hippocampal diffusivity after hypoxia/ischemia (H/I), the changes in apparent diffusion coefficient of water (ADC(W)) were studied in 8-week-old rats after H/I using diffusion-weighted magnetic resonance imaging (DW-MRI). In the hippocampal CA1 region, ADC(W) analyses were performed during 6 months of reperfusion and compared with alterations in cell number/cell-type composition, glial morphology, and extracellular space (ECS) diffusion parameters obtained by the real-time iontophoretic method. In the early phases of reperfusion (1 to 3 days) neuronal cell death, glial proliferation, and developing gliosis were accompanied by an ADC(W) decrease and tortuosity increase. Interestingly, ECS volume fraction was decreased only first day after H/I. In the late phases of reperfusion (starting 1 month after H/I), when the CA1 region consisted mainly of microglia, astrocytes, and NG2-glia with markedly altered morphology, ADC(W), ECS volume fraction and tortuosity were increased. Three-dimensional confocal morphometry revealed enlarged astrocytes and shrunken NG2-glia, and in both the contribution of cell soma/processes to total cell volume was markedly increased/decreased. In summary, the ADC(W) increase in the CA1 region underlain by altered cellular composition and glial morphology suggests that considerable changes in extracellular signal transmission might occur in the late phases of reperfusion after H/I.
Collapse
|
36
|
Kato T, Kojima Y, Kamisawa H, Takeuchi M, Mizuno K, Sasaki S, Kohri K, Hayashi Y. Findings of fat-suppressed T2-weighted and diffusion-weighted magnetic resonance imaging in the diagnosis of non-palpable testes. BJU Int 2010; 107:290-4. [DOI: 10.1111/j.1464-410x.2010.09513.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Sullivan EV, Rohlfing T, Pfefferbaum A. Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 2010; 35:233-56. [PMID: 20446131 DOI: 10.1080/87565641003689556] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a review of neuroimaging studies of normal adult aging conducted with diffusion tensor imaging (DTI) and data from one of the first longitudinal studies using DTI to study normal aging. To date, virtually all DTI studies of normal adult aging have been cross-sectional and have identified several patterns of white matter microstructural sparing and compromise that differentiate regional effects, fiber type, and diffusivity characteristics: (1) fractional anisotropy (FA) is lower and mean diffusivity is higher in older than younger adults, (2) aging is characterized by an anterior-to-posterior gradient of greater-to-lesser compromise also seen in superior-to-inferior fiber systems, and (3) association fibers connecting cortical sites appear to be more vulnerable to aging than projection fibers. The results of this longitudinal study of the macrostructure and microstructure of the corpus callosum yielded a consistent pattern of differences between healthy, young (20s to 30s) and elderly (60s to 70s) men and women without change over 2 years. We then divided the fibers of the corpus callosum into the midsagittal strip and the lateral distal fibers in an attempt to identify the locus of the age-related differences. The results indicated that, on average, mean values of FA and longitudinal diffusivity (lambdaL) were lower in the distal than midsagittal fibers in both groups, but the age effects and the anterior-to-posterior gradients were more pronounced for the distal than midsagittal fibers and extended more posteriorly in the distal than midsagittal fibers. Despite lack of evidence for callosal aging over 2 years, ventricular enlargement occurred and was disproportionately greater in the elderly relative to the young group, being 8.2% in the elderly but only 1.2% in the young group. Thus, different brain regions can express different rates of change with aging. Our longitudinal DTI data indicate that normal aging is associated with declining FA and increasing diffusivity in both lambdaL (longitudinal diffusivity) and lambdaT (transverse diffusivity), perhaps defining the normal ontological condition rather than a pathological one, which can be marked by low FA and low diffusivity.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5723, USA.
| | | | | |
Collapse
|
38
|
Ackerman JJH, Neil JJ. The use of MR-detectable reporter molecules and ions to evaluate diffusion in normal and ischemic brain. NMR IN BIOMEDICINE 2010; 23:725-33. [PMID: 20669147 PMCID: PMC3080095 DOI: 10.1002/nbm.1530] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a result of the technical challenges associated with distinguishing the MR signals arising from intracellular and extracellular water, a variety of endogenous and exogenous MR-detectable molecules and ions have been employed as compartment-specific reporters of water motion. Although these reporter molecules and ions do not have the same apparent diffusion coefficients (ADCs) as water, their ADCs are assumed to be directly related to the ADC of the water in which they are solvated. This approach has been used to probe motion in the intra- and extracellular space of cultured cells and intact tissue. Despite potential interpretative challenges with the use of reporter molecules or ions and the wide variety used, the following conclusions are consistent considering all studies: (i) the apparent free diffusive motion in the intracellular space is approximately one-half of that in dilute aqueous solution; (ii) ADCs for intracellular and extracellular water are similar; (iii) the intracellular ADC decreases in association with brain injury. These findings provide support for the hypothesis that the overall brain water ADC decrease that accompanies brain injury is driven primarily by a decrease in the ADC of intracellular water. We review the studies supporting these conclusions, and interpret them in the context of explaining the decrease in overall brain water ADC that accompanies brain injury.
Collapse
Affiliation(s)
- Joseph J H Ackerman
- Department of Chemistry, Campus Box 1134, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
39
|
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR IN BIOMEDICINE 2010; 23:698-710. [PMID: 20632416 PMCID: PMC2997680 DOI: 10.1002/nbm.1518] [Citation(s) in RCA: 896] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Quantification of non-Gaussianity for water diffusion in brain by means of diffusional kurtosis imaging (DKI) is reviewed. Diffusional non-Gaussianity is a consequence of tissue structure that creates diffusion barriers and compartments. The degree of non-Gaussianity is conveniently quantified by the diffusional kurtosis and derivative metrics, such as the mean, axial, and radial kurtoses. DKI is a diffusion-weighted MRI technique that allows the diffusional kurtosis to be estimated with clinical scanners using standard diffusion-weighted pulse sequences and relatively modest acquisition times. DKI is an extension of the widely used diffusion tensor imaging method, but requires the use of at least 3 b-values and 15 diffusion directions. This review discusses the underlying theory of DKI as well as practical considerations related to data acquisition and post-processing. It is argued that the diffusional kurtosis is sensitive to diffusional heterogeneity and suggested that DKI may be useful for investigating ischemic stroke and neuropathologies, such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Jens H Jensen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016-3295, USA.
| | | |
Collapse
|
40
|
Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci U S A 2010; 107:14472-7. [PMID: 20660718 DOI: 10.1073/pnas.1004841107] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diffusion-weighted MRI (DWI) is a sensitive and reliable marker of cerebral ischemia. Within minutes of an ischemic event in the brain, the microscopic motion of water molecules measured with DWI, termed the apparent diffusion coefficient (ADC), decreases within the infarcted region. However, although the change is related to cell swelling, the precise pathological mechanism remains elusive. We show that focal enlargement and constriction, or beading, in axons and dendrites are sufficient to substantially decrease ADC. We first derived a biophysical model of neurite beading, and we show that the beaded morphology allows a larger volume to be encompassed within an equivalent surface area and is, therefore, a consequence of osmotic imbalance after ischemia. The DWI experiment simulated within the model revealed that intracellular ADC decreased by 79% in beaded neurites compared with the unbeaded form. To validate the model experimentally, excised rat sciatic nerves were subjected to stretching, which induced beading but did not cause a bulk shift of water into the axon (i.e., swelling). Beading-induced changes in cell-membrane morphology were sufficient to significantly hinder water mobility and thereby decrease ADC, and the experimental measurements were in excellent agreement with the simulated values. This is a demonstration that neurite beading accurately captures the diffusion changes measured in vivo. The results significantly advance the specificity of DWI in ischemia and other acute neurological injuries and will greatly aid the development of treatment strategies to monitor and repair damaged brain in both clinical and experimental settings.
Collapse
|
41
|
Harkins KD, Galons JP, Secomb TW, Trouard TP. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn Reson Med 2010; 62:1414-22. [PMID: 19785014 DOI: 10.1002/mrm.22155] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apparent diffusion coefficient (ADC), as measured by diffusion-weighted MRI, has proven useful in the diagnosis and evaluation of ischemic stroke. The ADC of tissue water is reduced by 30-50% following ischemia and provides excellent contrast between normal and affected tissue. Despite its clinical utility, there is no consensus on the biophysical mechanism underlying the reduction in ADC. In this work, a numerical simulation of water diffusion is used to predict the effects of cellular tissue properties on experimentally measured ADC. The model indicates that the biophysical mechanisms responsible for changes in ADC postischemia depend upon the time over which diffusion is measured. At short diffusion times, the ADC is dependent upon the intrinsic intracellular diffusivity, while at longer, clinically relevant diffusion times, the ADC is highly dependent upon the cell volume fraction. The model also predicts that at clinically relevant diffusion times, the 30-50% drop in ADC after ischemia can be accounted for by cell swelling alone when intracellular T(2) is allowed to be shorter than extracellular T(2).
Collapse
Affiliation(s)
- Kevin D Harkins
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
42
|
Tamura H, Kurihara N, Machida Y, Nishino A, Shimosegawa E. How does water diffusion in human white matter change following ischemic stroke? Magn Reson Med Sci 2010; 8:121-34. [PMID: 19783875 DOI: 10.2463/mrms.8.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Temporal evolution of the water apparent diffusion coefficients (ADC) parallel (ADC parallel) and perpendicular (ADC perpendicular) to the human white matter tract following ischemia has not been investigated systematically. We attempted to quantify the evolution of ADC parallel and ADC perpendicular and examine whether it can be interpreted by a model of ischemic edema. METHODS We retrospectively selected 53 patients with ischemic lesions involving the posterior limb of the internal capsule (PLIC) and placed regions of interest in the right and left PLIC on ADC maps. We performed regression analysis of lesion-to-contralateral ratios of ADC parallel and ADC perpendicular against the time (t = 1-1600 h) from onset. We then fitted the estimated time courses of ADC parallel and ADC perpendicular obtained from the analysis to a model of nerve tissue composed of cylinders (axons) and spheres corresponding to isotropic structures, particularly focal cytoplasmic swellings of glial cells and axons seen in ischemic white matter. RESULTS The evolution of ADC perpendicular and ADC parallel differed. The estimated time course of ADC parallel in microm(2)*ms(-1) was 0.64 + 0.88 exp (-0.24t) for 1 < t < 54 h and 0.00059t + 0.61 for t >or= 54 h (contralateral normal value, 1.52). That of ADC perpendicular was 0.19-0.063 exp (-0.24t) for 1 < t < 54 h and 0.00040t + 0.17 for t >or=54 h (normal value 0.22). The model fitted to these values showed that the volume of the cylinders decreased, that of the spheres increased, and extracellular volume changed little from one hour to approximately one day after stroke onset. CONCLUSION In the human PLIC, ADC parallel continued to decrease from one hour to a few days after stroke onset, and ADC perpendicular tended to increase. The temporal evolution could be interpreted by progression of the focal cytoplasmic swelling of glial cells and axons previously observed in animal studies.
Collapse
Affiliation(s)
- Hajime Tamura
- Department of Noninvasive Diagnostic Imaging, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan.
| | | | | | | | | |
Collapse
|
43
|
Glaser N. Cerebral injury and cerebral edema in children with diabetic ketoacidosis: could cerebral ischemia and reperfusion injury be involved? Pediatr Diabetes 2009; 10:534-41. [PMID: 19821944 DOI: 10.1111/j.1399-5448.2009.00511.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
44
|
Imaging in Acute Stroke – a Personal View*. Clin Neuroradiol 2009; 19:20-30. [DOI: 10.1007/s00062-009-8030-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 10/26/2008] [Indexed: 11/27/2022]
|
45
|
Kimelberg HK. Volume activated anion channel and astrocytic cellular edema in traumatic brain injury and stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 559:157-67. [PMID: 18727237 DOI: 10.1007/0-387-23752-6_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Harold K Kimelberg
- Neural and Vascular Biology Theme, Ordway Research Institute, 150 New Scotland Avenue., Albany, NY 12208, USA.
| |
Collapse
|
46
|
Farrell JAD, Smith SA, Gordon-Lipkin EM, Reich DS, Calabresi PA, van Zijl PCM. High b-value q-space diffusion-weighted MRI of the human cervical spinal cord in vivo: feasibility and application to multiple sclerosis. Magn Reson Med 2008; 59:1079-89. [PMID: 18429023 DOI: 10.1002/mrm.21563] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Q-space analysis is an alternative analysis technique for diffusion-weighted imaging (DWI) data in which the probability density function (PDF) for molecular diffusion is estimated without the need to assume a Gaussian shape. Although used in the human brain, q-space DWI has not yet been applied to study the human spinal cord in vivo. Here we demonstrate the feasibility of performing q-space imaging in the cervical spinal cord of eight healthy volunteers and four patients with multiple sclerosis. The PDF was computed and water displacement and zero-displacement probability maps were calculated from the width and height of the PDF, respectively. In the dorsal column white matter, q-space contrasts showed a significant (P < 0.01) increase in the width and a decrease in the height of the PDF in lesions, the result of increased diffusion. These q-space contrasts, which are sensitive to the slow diffusion component, exhibited improved detection of abnormal diffusion compared to perpendicular apparent diffusion constant measurements. The conspicuity of lesions compared favorably with magnetization transfer (MT)-weighted images and quantitative CSF-normalized MT measurements. Thus, q-space DWI can be used to study water diffusion in the human spinal cord in vivo and is well suited to assess white matter damage.
Collapse
Affiliation(s)
- Jonathan A D Farrell
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
47
|
Trouard TP, Harkins KD, Divijak JL, Gillies RJ, Galons JP. Ischemia-induced changes of intracellular water diffusion in rat glioma cell cultures. Magn Reson Med 2008; 60:258-64. [PMID: 18666112 PMCID: PMC10029360 DOI: 10.1002/mrm.21616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diffusion-weighted MRI is commonly used in the diagnosis and evaluation of ischemic stroke because of the rapid decrease observed in the apparent diffusion coefficient (ADC) of tissue water following ischemia. Although this observation has been clinically useful for many years, the biophysical mechanisms underlying the reduction of tissue ADC are still unknown. To help elucidate these mechanisms, we have employed a novel three-dimensional (3D) hollow-fiber bioreactor (HFBR) perfused cell culture system that enables cells to be grown to high density and studied via MRI and MRS. By infusing contrast media into the HFBR, signals from intracellular water and extracellular water are spectroscopically resolved and can be investigated individually. Diffusion measurements carried out on C6 glioma HFBR cell cultures indicate that ischemia-induced cellular swelling results in an increase in the ADC of intracellular water from 0.35 microm(2)/ms to approximately 0.5 microm(2)/ms (diffusion time = 25 ms).
Collapse
Affiliation(s)
- Theodore P Trouard
- Biomedical Engineering Program, University of Arizona, Tucson, Arizona 85721-0240, USA.
| | | | | | | | | |
Collapse
|
48
|
Chen J, Wang Q, Zhang H, Yang X, Wang J, Berkowitz BA, Wickline SA, Song SK. In vivo quantification of T1, T2, and apparent diffusion coefficient in the mouse retina at 11.74T. Magn Reson Med 2008; 59:731-8. [PMID: 18383302 DOI: 10.1002/mrm.21570] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MRI has recently been used for noninvasive examination of retinal structure and function in rats and cats. However, the advantages of quantitative high-resolution MRI of retina from mice have not yet been explored. In the present study, T(1) and T(2) relaxation time constants and the directional apparent diffusion coefficient (ADC) in the retina of C57/BL6 mice were measured. Three MR-detected retina layers and a MR-detected choroid layer were observed on both T(1)- and T(2)-weighted images at an image resolution of 47 x 47 x 400 microm(3). The significantly higher ADC parallel to than that perpendicular to the optic nerve in the MR-detected outer retina layer at the central retina reflects the known cellular organization of the photoreceptor cells. This study establishes, for the first time, normative metrics of T(1), T(2), and ADC of the mouse retina. These MR parameters are expected to be useful in future evaluation of developmental and pathological alterations of retinal cell layers in mice.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Medicine, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Komoroski RA, Pearce JM. Estimating intracellular lithium in brain in vivo by localized7Li magnetic resonance spectroscopy. Magn Reson Med 2008; 60:21-6. [DOI: 10.1002/mrm.21613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Babsky AM, Topper S, Zhang H, Gao Y, James JR, Hekmatyar SK, Bansal N. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn Reson Med 2008; 59:485-91. [PMID: 18306401 DOI: 10.1002/mrm.21568] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanism of water and sodium apparent diffusion coefficient (ADC) changes in rat skeletal muscle during global ischemia was examined by in vivo 1H and 23Na magnetic resonance spectroscopy (MRS). The ADCs of Na+ and water are expected to have similar characteristics because sodium is present as an aqua-cation in tissue. The shift reagent, TmDOTP5(-), was used to separate intra- and extracellular sodium (Na+i and Na+e, respectively) signals. Water, total tissue sodium (Na+t), Na+i, and Na+e ADCs were measured before and 1, 2, 3, and 4 hr after ischemia. Contrary to the general perception, Na+i and Na+e ADCs were identical before ischemia. Thus, ischemia-induced changes in Na+e ADC cannot be explained by a simple change in the size of relative intracellular or extracellular space. Na+t and Na+e ADCs decreased after 2-4 hr of ischemia, while water and Na+i ADC remained unchanged. The correlation between Na+t and Na+e ADCs was observed because of high Na+e concentration. Similarly, the correlation between water and Na+i ADCs was observed because cells occupy 80% of the tissue space in the skeletal muscle. Ischemia also caused an increase in the Na+i and an equal decrease in Na+e signal intensity due to cessation of Na+/K+-ATPase function.
Collapse
Affiliation(s)
- Andriy M Babsky
- Department of Radiology, Indiana University, Indianapolis, Indiana 46202-5181, USA.
| | | | | | | | | | | | | |
Collapse
|