1
|
Mustafa M, Zulkarnain NIH, Sadeghi‐Tarakameh A, Grant A, Darrow D, Ozutemiz C, Eryaman Y. On the RF safety of titanium mesh head implants in 7 T MRI systems: an investigation. Magn Reson Med 2025; 94:414-423. [PMID: 40007209 PMCID: PMC12021313 DOI: 10.1002/mrm.30477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/19/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Patients undergoing craniofacial surgery for skull reconstruction may have titanium mesh implants. The safety risks related to 7 T MRI with these patients are not well understood. This study investigates the RF heating of titanium mesh head implants at 7 T. METHODS A simulation model for a 7 T birdcage head coil was developed and validated againstB 1 + $$ \left|{B}_1^{+}\right| $$ , 1 g-averaged specific absorption rate (SAR), and temperature measurements in the presence of a titanium mesh. Various mesh sizes and shapes at different angular positions were simulated to determine the worst-case scenario in a spherical phantom in addition to the effect of rounding the mesh edges. Full-wave electromagnetic and bioheat thermal simulations were conducted on anatomical human models. RESULTS Preliminary results indicate an increase in the local SAR near the meshes depending on the shape, size, and location. The maximum absolute temperatures in the head were, on average, around 38.2°C after 15 min of RF power exposure, corresponding to 3.2 W/kg whole-head SAR without a titanium mesh implant. The maximum absolute temperatures did not significantly change after introducing the titanium mesh implants, and the highest temperature was 38.4°C, observed near the cerebellum and the facial muscles. The maximum local increase in temperature was observed at the vicinity of the mesh as 2.8°C. Finally, it was shown that large mesh implants can negatively impactB 1 + $$ \left|{B}_1^{+}\right| $$ field. CONCLUSIONS Small rounded titanium mesh head implants can be generally safe for 7 T MRI scans under the standard guidelines. Avoiding sharp corners and edges may reduce the chances of RF safety risks.
Collapse
Affiliation(s)
- Mazin Mustafa
- Center for Magnetic Resonance ResearchUniversity of Minnesota at Twin CitiesMinneapolisMinnesotaUSA
| | | | | | - Andrea Grant
- Center for Magnetic Resonance ResearchUniversity of Minnesota at Twin CitiesMinneapolisMinnesotaUSA
| | - David Darrow
- Neurosurgery DepartmentUniversity of Minnesota at Twin CitiesMinneapolisMinnesotaUSA
| | - Can Ozutemiz
- Department of RadiologyUniversity of Minnesota at Twin CitiesMinneapolisMinnesotaUSA
| | - Yigitcan Eryaman
- Center for Magnetic Resonance ResearchUniversity of Minnesota at Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Nada A, Cousins JP, Rivera A, Carr SB, Jones J, Minor C, Hetherington HP, Kim JH, Pan JW. Imaging the Internal Auditory Canal with an 8 × 2 Transceiver Array Head Coil at 7T. AJNR Am J Neuroradiol 2025; 46:852-858. [PMID: 40147834 PMCID: PMC11979838 DOI: 10.3174/ajnr.a8569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/07/2024] [Indexed: 03/29/2025]
Abstract
7T neuroimaging has known problems with B1 + strength, homogeneity and B0 susceptibility that make imaging in the inferior brain regions difficult. We investigated the utility of a decoupled 8 × 2 transceiver coil and shim insert to image the internal auditory canal (IAC) and inferior brain in comparison to the standard Nova 8/32 coil. B1 +, B0, and the T2 sampling perfection with application-optimized contrasts by using flip angle evolution sequence (SPACE) were compared by using research and standard methods in n = 8 healthy adults by using a Terra system. A T2 TSE was also acquired, and 2 neuroradiologists evaluated structures in and around the IAC, blinded to the acquisition, by using a 5-point Likert scale. The Nova 8/32 coil gave lower B1 + inferiorly compared with the whole brain while the transceiver maintained similar B1 + throughout. SPACE images showed that the transceiver performed significantly better, e.g., the transceiver scored 4.0 ± 0.8 in the left IAC, compared with 2.5 ± 0.8 with the Nova 8/32. With T2-weighted imaging that places a premium on refocusing pulses, these results show that with improved B1 + performance inferiorly, good visualization of the structure of the IAC and inferior brain regions is possible at 7T.
Collapse
Affiliation(s)
- A Nada
- From the Washington University in St. Louis (A.N.), School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - J P Cousins
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - A Rivera
- Department of Otolaryngology (A.R.), University of Missouri, Columbia, Missouri
| | - S B Carr
- Department of Neurosurgery (S.B.C.), University of Missouri, Columbia, Missouri
| | - J Jones
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - C Minor
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | | | - J H Kim
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| | - J W Pan
- Department of Radiology (J.P.C., J.J., C.M., J.H.K., J.W.P.), University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Boğa Ç, Henning A. Bilateral orthogonality generative acquisitions method for homogeneous T 2 * images using parallel transmission at 7 T. Magn Reson Med 2025; 93:1043-1058. [PMID: 39375826 DOI: 10.1002/mrm.30329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE The novel bilateral orthogonality generative acquisitions method has been developed for homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images without the effects of transmit field inhomogeneity using a parallel-transmission (pTx) system at 7 T. THEORY AND METHODS A new method has been introduced using four low-angle gradient-echo (GRE) acquisitions to obtain homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast by removing the effects of transmit field inhomogeneity in the pTx system. First, two input images are obtained in circularly polarized mode and another mode in which the first transmit channel or channel group have an additional transmit phase of π. The last two acquisitions are single-channel acquisitions for a dual-channel system or single-channel group acquisitions for more than two channels. The introduced method is demonstrated in dual-channel and eight-channel pTx systems using phantom and whole-brain in vivo experiments. Noise performance of the proposed method is also tested against the ratio of two GRE acquisitions and the TIAMO (time-interleaved acquisitions of modes) method. RESULTS Th new method results in more homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ contrast in the final images than the compared methods, particularly in the low-intensity regions of circularly polarized-mode images for the images obtained via ratio of the two GRE acquisitions. CONCLUSION The introduced method is easy to implement, robust, and provides homogeneousT 2 * $$ {\mathrm{T}}_2^{\ast } $$ images of the whole brain using pTx systems with any number of channels, compared with the ratio of the two GRE images and the TIAMO method.
Collapse
Affiliation(s)
- Çelik Boğa
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anke Henning
- UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2025; 93:1238-1255. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Soon SH, Li X, Waks M, Zhu XH, Wiesner HM, Gandji NP, Yang QX, Lanagan MT, Chen W. Large improvement in RF magnetic fields and imaging SNR with whole-head high-permittivity slurry helmet for human-brain MRI applications at 7 T. Magn Reson Med 2025; 93:1205-1219. [PMID: 39449244 DOI: 10.1002/mrm.30350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To optimize the design and demonstrate the integration of a helmet-shaped container filled with a high-permittivity material (HPM) slurry with RF head coil arrays to improve RF coil sensitivity and SNR for human-brain proton MRI. METHODS RF reception magnetic fields (B 1 - $$ {\mathrm{B}}_1^{-} $$ ) of a 32-channel receive-only coil array with various geometries and permittivity values of HPM slurry helmet are calculated with electromagnetic simulation at 7 T. A 16-channel transmit-only coil array, a 32-channel receive-only coil array, and a 2-piece HPM slurry helmet were constructed and assembled. RF transmission magnetic field (B 1 + $$ {\mathrm{B}}_1^{+} $$ ),B 1 - $$ {\mathrm{B}}_1^{-} $$ , and MRI SNR maps from the entire human brain were measured and compared. RESULTS Simulations showed that averagedB 1 - $$ {\mathrm{B}}_1^{-} $$ improvement with the HPM slurry helmet increased from 57% to 87% as the relative permittivity (εr) of HPM slurry increased from 110 to 210. In vivo experiments showed that the averageB 1 + $$ {\mathrm{B}}_1^{+} $$ improvement over the human brain was 14.5% with the two-piece HPM slurry (εr ≈ 170) helmet, and the averageB 1 - $$ {\mathrm{B}}_1^{-} $$ and SNR were improved 63% and 34%, respectively, because the MRI noise level was increased by the lossy HPM. CONCLUSION The RF coil sensitivity and MRI SNR were largely improved with the two-piece HPM slurry helmet demonstrated by both electromagnetic simulations and in vivo human head experiments at 7 T. The findings demonstrate that incorporating an easily producible HPM slurry helmet into the RF coil array significantly enhances human-brain MRI SNR homogeneity and quality at ultrahigh field. Greater SNR improvement is anticipated using the less lossy HPM and optimal design.
Collapse
Affiliation(s)
- Soo Han Soon
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xin Li
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Matt Waks
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hannes M Wiesner
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Navid P Gandji
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Qing X Yang
- Center for NMR Research, Department of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, Pennsylvania State University, State College, Pennsylvania, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Güler S, Povaz̆an M, Zhurbenko V, Zivkovic I. An 8Tx/32Rx head-neck coil at 7T by combining 2Tx/32Rx Nova coil with 6Tx shielded coaxial cable elements. Magn Reson Med 2025; 93:864-872. [PMID: 39415491 PMCID: PMC11604854 DOI: 10.1002/mrm.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Standard head coils used at 7T MRI suffer from high signal loss at lower brain regions and neck. This study aimed to increase the field of view (FOV) of a birdcage coil to image the lower brain regions and neck with a straightforward approach of using add-on transmit shielded coaxial cable coil (SCC) elements. METHODS A new head-neck coil was modeled as a combination of the 2Tx/32Rx Nova head coil and 6Tx SCC elements. The add-on transmit SCC elements have been produced. The full wave electromagnetic simulations were performed to analyze the coil geometry and estimate the local specific absorption ratio (SAR). TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field maps and structural images were acquired in a phantom and in vivo on a 7T scanner. RESULTS The computed SAR histogram revealed a peakSAR 10 g $$ {\mathrm{SAR}}_{10g} $$ of 4.08 W/kg. The simulated and measuredB 1 + $$ {\mathrm{B}}_1^{+} $$ maps are in good agreement. The manufactured coil's S-parameters are below- $$ - $$ 10 dB. TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field measurements on a subject presented the increase in the FOV. The T1-weighted structural images of three subjects acquired with the head-neck coil showed increased coverage compared to the head coil only. CONCLUSION Combining the 2Tx/32Rx Nova head coil and 6Tx SCC elements allowed imaging of the whole brain with an increased FOV down to the C4 spine. The coil stayed fully functional when different subjects were scanned. We conclude that the SCC transmit-only coils are a robust adjunct to conventional coil designs and can meaningfully enhance and expand their field of view.
Collapse
Affiliation(s)
- Sadri Güler
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health TechTechnical University of DenmarkKgs. LyngbyDenmark
| | - Michal Povaz̆an
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
| | - Vitaliy Zhurbenko
- Department of Space Research and TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - Irena Zivkovic
- Electrical Engineering DepartmentTechnical University of EindhovenEindhovenThe Netherlands
| |
Collapse
|
7
|
Cui J, Hollingsworth NA, Wright SM. A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. IEEE Rev Biomed Eng 2025; 18:388-400. [PMID: 38194402 DOI: 10.1109/rbme.2024.3351713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
Collapse
|
8
|
Lutz M, Aigner CS, Flassbeck S, Krueger F, Gatefait CGF, Kolbitsch C, Silemek B, Seifert F, Schaeffter T, Schmitter S. B1-MRF: Large dynamic range MRF-based absolute B 1 + mapping in the human body at 7T. Magn Reson Med 2024; 92:2473-2490. [PMID: 39133639 DOI: 10.1002/mrm.30242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/21/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE This study aims to map the transmit magnetic field (B 1 + $$ {B}_1^{+} $$ ) in the human body at 7T using MR fingerprinting (MRF), with a focus on achieving high accuracy and precision across a large dynamic range, particularly at low flip angles (FAs). METHODS A FLASH-based MRF sequence (B1-MRF) with highB 1 + $$ {B}_1^{+} $$ sensitivity was developed. Phantom and in vivo abdominal imaging were performed at 7T, and the results were compared with established reference methods, including a slow but precise preparation-based method (PEX), saturated TurboFLASH (satTFL), actual flip angle imaging (AFI) and Bloch-Siegert shift (BSS). RESULTS The MRF signal curve was highly sensitive toB 1 + $$ {B}_1^{+} $$ , while T1 sensitivity was comparatively low. The phantom experiment showed good agreement ofB 1 + $$ {B}_1^{+} $$ to PEX for a T1 range of 204-1691 ms evaluated at FAs from 0° to 70°. Compared to the references, a dynamic range increase larger than a factor of two was determined experimentally. In vivo liver scans showed a strong correlation between B1-MRF, satTFL, and RPE-AFI in a low body mass index (BMI) subject (18.1 kg/m2). However, in larger BMI subjects (≥25.5 kg/m2), inconsistencies were observed in lowB 1 + $$ {B}_1^{+} $$ regions for satTFL and RPE-AFI, while B1-MRF still provided consistent results in these regions. CONCLUSION B1-MRF provides accurate and preciseB 1 + $$ {B}_1^{+} $$ maps over a wide range of FAs, surpassing the capabilities of existing methods in the FA range < 60°. Its enhanced sensitivity at low FAs is advantageous for various applications requiring preciseB 1 + $$ {B}_1^{+} $$ estimates, potentially advancing the frontiers of ultra-high field (UHF) body imaging at 7T and beyond.
Collapse
Affiliation(s)
- Max Lutz
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | - Sebastian Flassbeck
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Felix Krueger
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | | | | | - Berk Silemek
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Frankini A, Verma G, Seifert AC, Delman BN, Subramaniam V, Balchandani P, Alipour A. Improvement of MRS at ultra-high field using a wireless RF array. NMR IN BIOMEDICINE 2024; 37:e5224. [PMID: 39082385 DOI: 10.1002/nbm.5224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 11/15/2024]
Abstract
We aim to assess a straightforward technique to enhance spectral quality in the brain, particularly in the cerebellum, during 7 T MRI scans. This is achieved through a wireless RF array insert designed to mitigate signal dropouts caused by the limited transmit field efficiency in the inferior part of the brain. We recently developed a wireless RF array to improve MRI and 1H-MRS at 7 T by augmenting signal via inductive coupling between the wireless RF array and the MRI coil. In vivo experiments on a Siemens 7 T whole-body human scanner with a Nova 1Tx/32Rx head coil quantified the impact of the dorsal cervical array in improving signal in the posterior fossa, including the cerebellum, where the transmit efficiency of the coil is inherently low. The 1H-MRS experimental protocol consisted of paired acquisition of data sets, both with and without the RF array, using the semi-LASER and SASSI sequences. The overall results indicate that the localized 1H-MRS is improved significantly in the presence of the array. Comparison of in vivo 1H-MRS plots in the presence versus absence of the array demonstrated an average SNR enhancement of a factor of 2.2. LCModel analysis reported reduced Cramér-Rao lower bounds, indicating more confident fits. This wireless RF array can significantly increase detection sensitivity. It may reduce the RF transmission power and data acquisition time for 1H-MRS and MRI applications, specifically at 7 T, where 1H-MRS requires a high-power RF pulse. The array could provide a cost-effective and efficient solution to improve detection sensitivity for human 1H-MRS and MRI in the regions with lower transmit efficiency.
Collapse
Affiliation(s)
- Andrew Frankini
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gaurav Verma
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alan C Seifert
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Varun Subramaniam
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Priti Balchandani
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Akbar Alipour
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Sun Y, Wang M, Du J, Wang W, Yang G, Wang W, Ren Q. 16-channel sleeve antenna array based on passive decoupling method at 14 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 369:107796. [PMID: 39577232 DOI: 10.1016/j.jmr.2024.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array's RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance.
Collapse
Affiliation(s)
- Youheng Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Miutian Wang
- School of Electronics, Peking University, Beijing, 100871, China.
| | - Jianjun Du
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Wentao Wang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Gang Yang
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Weimin Wang
- School of Electronics, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Subramaniam V, Frankini A, Al Qadi A, Herb MT, Verma G, Delman BN, Balchandani P, Alipour A. Radiofrequency Enhancer to Recover Signal Dropouts in 7 Tesla Diffusion MRI. SENSORS (BASEL, SWITZERLAND) 2024; 24:6981. [PMID: 39517878 PMCID: PMC11548241 DOI: 10.3390/s24216981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) allows for a non-invasive visualization and quantitative assessment of white matter architecture in the brain by characterizing restrictions on the random motion of water molecules. Ultra-high field MRI scanners, such as those operating at 7 Tesla (7T) or higher, can boost the signal-to-noise ratio (SNR) to improve dMRI compared with what is attainable at conventional field strengths such as 3T or 1.5T. However, wavelength effects at 7T cause reduced transmit magnetic field efficiency in the human brain, mainly in the posterior fossa, manifesting as signal dropouts in this region. Recently, we reported a simple approach of using a wireless radiofrequency (RF) surface array to improve transmit efficiency and signal sensitivity at 7T. In this study, we demonstrate the feasibility and effectiveness of the RF enhancer in improving in vivo dMRI at 7T. The electromagnetic simulation results demonstrated a 2.1-fold increase in transmit efficiency with the use of the RF enhancer. The experimental results similarly showed a 1.9-fold improvement in transmit efficiency and a 1.4-fold increase in normalized SNR. These improvements effectively mitigated signal dropouts in regions with inherently lower SNR, such as the cerebellum, resulting in a better depiction of principal fiber orientations and an enhanced visualization of extended tracts.
Collapse
Affiliation(s)
- Varun Subramaniam
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Andrew Frankini
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Ameen Al Qadi
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Mackenzie T. Herb
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Gaurav Verma
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Bradley N. Delman
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| | - Priti Balchandani
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Akbar Alipour
- Department of Diagnostic, Molecular and Interventional Radiology, BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (V.S.)
| |
Collapse
|
13
|
Diniz E, Santini T, Helmet K, Aizenstein HJ, Ibrahim TS. Cross-modality image translation of 3 Tesla Magnetic Resonance Imaging to 7 Tesla using Generative Adversarial Networks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315609. [PMID: 39484249 PMCID: PMC11527090 DOI: 10.1101/2024.10.16.24315609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The rapid advancements in magnetic resonance imaging (MRI) technology have precipitated a new paradigm wherein cross-modality data translation across diverse imaging platforms, field strengths, and different sites is increasingly challenging. This issue is particularly accentuated when transitioning from 3 Tesla (3T) to 7 Tesla (7T) MRI systems. This study proposes a novel solution to these challenges using generative adversarial networks (GANs)-specifically, the CycleGAN architecture-to create synthetic 7T images from 3T data. Employing a dataset of 1112 and 490 unpaired 3T and 7T MR images, respectively, we trained a 2-dimensional (2D) CycleGAN model, evaluating its performance on a paired dataset of 22 participants scanned at 3T and 7T. Independent testing on 22 distinct participants affirmed the model's proficiency in accurately predicting various tissue types, encompassing cerebral spinal fluid, gray matter, and white matter. Our approach provides a reliable and efficient methodology for synthesizing 7T images, achieving a median Dice of 6.82%,7,63%, and 4.85% for Cerebral Spinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), respectively, in the testing dataset, thereby significantly aiding in harmonizing heterogeneous datasets. Furthermore, it delineates the potential of GANs in amplifying the contrast-to-noise ratio (CNR) from 3T, potentially enhancing the diagnostic capability of the images. While acknowledging the risk of model overfitting, our research underscores a promising progression towards harnessing the benefits of 7T MR systems in research investigations while preserving compatibility with existent 3T MR data. This work was previously presented at the ISMRM 2021 conference (Diniz, Helmet, Santini, Aizenstein, & Ibrahim, 2021).
Collapse
Affiliation(s)
- Eduardo Diniz
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pennsylvania, United States
| | - Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| | - Karim Helmet
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
- Department of Psychiatry, University of Pittsburgh, Pennsylvania, United States
| | - Howard J. Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
- Department of Psychiatry, University of Pittsburgh, Pennsylvania, United States
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States
| |
Collapse
|
14
|
Triolo E, Khegai O, McGarry M, Lam T, Veraart J, Alipour A, Balchandani P, Kurt M. Characterizing brain mechanics through 7 tesla magnetic resonance elastography. Phys Med Biol 2024; 69:205011. [PMID: 39321962 DOI: 10.1088/1361-6560/ad7fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko-Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer's disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,in vivo.
Collapse
Affiliation(s)
- Emily Triolo
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Oleksandr Khegai
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Tyson Lam
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Jelle Veraart
- Center for Biomedical Imaging, Department Radiology, New York University Grossman School of Medicine, New York City, NY, United States of America
| | - Akbar Alipour
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Mehmet Kurt
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| |
Collapse
|
15
|
Pohmann R, Avdievich NI, Scheffler K. Signal-to-noise ratio versus field strength for small surface coils. NMR IN BIOMEDICINE 2024; 37:e5168. [PMID: 38716493 DOI: 10.1002/nbm.5168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 10/12/2024]
Abstract
The increasing signal-to-noise ratio (SNR) is the main reason to use ultrahigh field MRI. Here, we investigate the dependence of the SNR on the magnetic field strength, especially for small animal applications, where small surface coils are used and coil noise cannot be ignored. Measurements were performed at five field strengths from 3 to 14.1 T, using 2.2-cm surface coils with an identical coil design for transmit and receive on two water samples with and without salt. SNR was measured in a series of spoiled gradient echo images with varying flip angle and corrected for saturation based on a series of flip angle and T1 measurements. Furthermore, the noise figure of the receive chain was determined and eliminated to remove instrument dependence. Finally, the coil sensitivity was determined based on the principle of reciprocity to obtain a measure for ultimate SNR. Before coil sensitivity correction, the SNR increase in nonconductive samples is highly supralinear with B0 1.6-2.7, depending on distance to the coil, while in the conductive sample, the growth is smaller, being around linear close to the surface coil and increasing up to a B0 2.0 dependence when moving away from the coil. After sensitivity correction, the SNR increase is independent of loading with B0 2.1. This study confirms the supralinear increase of SNR with increasing field strengths. Compared with most human measurements with larger coil sizes, smaller surface coils, as mainly used in animal studies, have a higher contribution of coil noise and thus a different behavior of SNR at high fields.
Collapse
Affiliation(s)
- Rolf Pohmann
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikolai I Avdievich
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Drago JM, Guerin B, Stockmann JP, Wald LL. Multiphoton parallel transmission (MP-pTx): Pulse design methods and numerical validation. Magn Reson Med 2024; 92:1376-1391. [PMID: 38899391 PMCID: PMC11262987 DOI: 10.1002/mrm.30116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillatingz $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realisticB 1 + $$ {\mathrm{B}}_1^{+} $$ andΔ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.
Collapse
Affiliation(s)
- John M. Drago
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bastien Guerin
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason P. Stockmann
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Lawrence L. Wald
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Li X, Zhu XH, Chen W. A Quantitative Comparison of 31P Magnetic Resonance Spectroscopy RF Coil Sensitivity and SNR between 7T and 10.5T Human MRI Scanners Using a Loop-Dipole 31P- 1H Probe. SENSORS (BASEL, SWITZERLAND) 2024; 24:5793. [PMID: 39275704 PMCID: PMC11398117 DOI: 10.3390/s24175793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio (SNR) 31P MRS/MRSI results owing to low phosphorus metabolites concentration and low phosphorous gyromagnetic ratio (γ). Many works have demonstrated that ultrahigh field (UHF) could significantly improve the 31P-MRS SNR. However, there is a lack of studies of the 31P MRSI SNR in the 10.5 Tesla (T) human scanner. In this study, we designed and constructed a novel 31P-1H dual-frequency loop-dipole probe that can operate at both 7T and 10.5T for a quantitative comparison of 31P MRSI SNR between the two magnetic fields, taking into account the RF coil B1 fields (RF coil receive and transmit fields) and relaxation times. We found that the SNR of the 31P MRS signal is 1.5 times higher at 10.5T as compared to 7T, and the power dependence of SNR on magnetic field strength (B0) is 1.9.
Collapse
Affiliation(s)
| | | | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA; (X.L.); (X.-H.Z.)
| |
Collapse
|
18
|
Zhang M, Ding B, Dragonu I, Liebig P, Rodgers CT. Dynamic parallel transmit diffusion MRI at 7T. Magn Reson Imaging 2024; 111:35-46. [PMID: 38547935 DOI: 10.1016/j.mri.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Diffusion MRI (dMRI) is inherently limited by SNR. Scanning at 7 T increases intrinsic SNR but 7 T MRI scans suffer from regions of signal dropout, especially in the temporal lobes and cerebellum. We applied dynamic parallel transmit (pTx) to allow whole-brain 7 T dMRI and compared with circularly polarized (CP) pulses in 6 subjects. Subject-specific 2-spoke dynamic pTx pulses were designed offline for 8 slabs covering the brain. We used vendor-provided B0 and B1+ mapping. Spokes positions were set using the Fourier difference approach, and RF coefficients optimized with a Jacobi-matrix high-flip-angle optimizer. Diffusion data were analyzed with FSL. Comparing whole-brain averages for pTx against CP scans: mean flip angle error improved by 15% for excitation (2-spoke-VERSE 15.7° vs CP 18.4°, P = 0.012) and improved by 14% for refocusing (2-spoke-VERSE 39.7° vs CP 46.2°, P = 0.008). Computed spin-echo signal standard deviation improved by 14% (2-spoke-VERSE 0.185 vs 0.214 CP, P = 0.025). Temporal SNR increased by 5.4% (2-spoke-VERSE 8.47 vs CP 8.04, P = 0.004) especially in the inferior temporal lobes. Diffusion fitting uncertainty decreased by 6.2% for first fibers (2-spoke VERSE 0.0655 vs CP 0.0703, P < 0.001) and 1.3% for second fibers (2-spoke VERSE 0.139 vs CP 0.141, P = 0.01). In conclusion, dynamic parallel transmit improves the uniformity of 7 T diffusion-weighted imaging. In future, less restrictive SAR limits for parallel transmit scans are expected to allow further improvements.
Collapse
Affiliation(s)
- Minghao Zhang
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom.
| | - Belinda Ding
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom; Siemens Healthcare Ltd, Frimley, United Kingdom
| | | | | | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
19
|
Yazdanbakhsh P, Couch M, Gilbert KM, Der Hovagimian J, Rudko DA, Hoge RD. An 8-Channel Transceiver Coil for Carotid Artery Imaging at 7T Using an Optimized Shield Design. IEEE Trans Biomed Eng 2024; 71:2537-2544. [PMID: 38512743 DOI: 10.1109/tbme.2024.3379980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
OBJECTIVE To design and fabricate a transmit/receive (T/R) radiofrequency (RF) coil array for MRI of the carotid arteries at 7T with optimal shielding to improve transmit performance in parallel transmit (pTx) mode. METHODS The carotid coil included 8 total RF elements, with left and right subarrays, each consisting of 4 overlapping loops with RF shields. Electromagnetic (EM) simulations were performed to optimize and improve the transmit performance of the array by determining the optimal distance between the RF shield and each subarray. EM simulations were further used to calculate local specific absorption rate (SAR) matrices. Based on the SAR matrices, virtual observation points (VOPs) were applied to ensure safety during parallel transmission. The efficacy of the coil design was evaluated by measuring coil performance metrics when imaging a phantom and by acquiring in-vivo images. RESULTS The optimal distance between the RF shield and each subarray was determined to be 45 mm. This resulted in a maximum B1+ efficiency of 1.23 μT/ √W in the carotid arteries and a peak, 10-g-average SAR per Watt of 0.86 kg-1 when transmitting in the nominal CP+ mode. Optimizing the RF shield resulted in up to 37% improvement in B1+ efficiency and 14% improvement in SAR efficiency compared to an unshielded design. CONCLUSION AND SIGNIFICANCE Optimizing the distance between the RF shield and coil array provided significant improvement in the transmit characteristics of the bilateral carotid coil. The bilateral coil topology provides a compelling platform for imaging the carotid arteries with high field MRI.
Collapse
|
20
|
Faes LK, Lage-Castellanos A, Valente G, Yu Z, Cloos MA, Vizioli L, Moeller S, Yacoub E, De Martino F. Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-18. [PMID: 39810817 PMCID: PMC11726685 DOI: 10.1162/imag_a_00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 01/16/2025]
Abstract
Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise-the dominant contributing noise component in high-resolution fMRI. NOise Reduction with DIstribution Corrected Principal Component Analysis (NORDIC PCA) is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. While investigating auditory functional responses poses unique challenges, we anticipated NORDIC to have a positive impact on the data on the basis of previous applications. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we did observe a reduction in the average response amplitude (percent signal change) within regions of interest, which may suggest that a portion of the signal of interest, which could not be distinguished from general i.i.d. noise, was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high-resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
Collapse
Affiliation(s)
- Lonike K. Faes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana City, Cuba
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zidan Yu
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
- MRI Research Center, University of Hawaii, Honolulu, HI, United States
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Luca Vizioli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
21
|
Yang H, Wang G, Li Z, Li H, Zheng J, Hu Y, Cao X, Liao C, Ye H, Tian Q. Artificial intelligence for neuro MRI acquisition: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:383-396. [PMID: 38922525 DOI: 10.1007/s10334-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECT To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Collapse
Affiliation(s)
- Hongjia Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Haoxiang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jialan Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Huihui Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Cap V, Rocha dos Santos VR, Repnin K, Červený D, Laistler E, Meyerspeer M, Frass-Kriegl R. Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle. SENSORS (BASEL, SWITZERLAND) 2024; 24:3309. [PMID: 38894105 PMCID: PMC11174775 DOI: 10.3390/s24113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.
Collapse
Affiliation(s)
- Veronika Cap
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Vasco Rafael Rocha dos Santos
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Kostiantyn Repnin
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - David Červený
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Elmar Laistler
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Roberta Frass-Kriegl
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Jiang Z, Sun W, Xu D, Mei H, Yuan J, Song X, Ma C, Xu H. The feasibility of half-dose contrast-enhanced scanning of brain tumours at 5.0 T: a preliminary study. BMC Med Imaging 2024; 24:88. [PMID: 38615005 PMCID: PMC11016225 DOI: 10.1186/s12880-024-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
PURPOSE This study investigated and compared the effects of Gd enhancement on brain tumours with a half-dose of contrast medium at 5.0 T and with a full dose at 3.0 T. METHODS Twelve subjects diagnosed with brain tumours were included in this study and underwent MRI after contrast agent injection at 3.0 T (full dose) or 5.0 T (half dose) with a 3D T1-weighted gradient echo sequence. The postcontrast images were compared by two independent neuroradiologists in terms of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and subjective image quality score on a ten-point Likert scale. Quantitative indices and subjective quality ratings were compared with paired Student's t tests, and interreader agreement was assessed with the intraclass correlation coefficient (ICC). RESULTS A total of 16 enhanced tumour lesions were detected. The SNR was significantly greater at 5.0 T than at 3.0 T in grey matter, white matter and enhanced lesions (p < 0.001). The CNR was also significantly greater at 5.0 T than at 3.0 T for grey matter/tumour lesions, white matter/tumour lesions, and grey matter/white matter (p < 0.001). Subjective evaluation revealed that the internal structure and outline of the tumour lesions were more clearly displayed with a half-dose at 5.0 T (Likert scale 8.1 ± 0.3 at 3.0 T, 8.9 ± 0.3 at 5.0 T, p < 0.001), and the effects of enhancement in the lesions were comparable to those with a full dose at 3.0 T (7.8 ± 0.3 at 3.0 T, 8.7 ± 0.4 at 5.0 T, p < 0.001). All subjective scores were good to excellent at both 5.0 T and 3.0 T. CONCLUSION Both quantitative and subjective evaluation parameters suggested that half-dose enhanced scanning via 5.0 T MRI might be feasible for meeting clinical diagnostic requirements, as the image quality remains optimal. Enhanced scanning at 5.0 T with a half-dose of contrast agents might benefit patients with conditions that require less intravenous contrast agent, such as renal dysfunction.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Imaging Department, Shenzhen Ban'an Traditional Chinese Medicine Hospital Group, Shenzhen, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Xiaopeng Song
- United Imaging Healthcare, Shanghai, China
- Wuhan Zhongke Industrial Research Institute, Wuhan, Hubei, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
Wu CY, Jin J, Dixon C, Maillet D, Barth M, Cloos MA. Velocity selective spin labeling using parallel transmission. Magn Reson Med 2024; 91:1576-1585. [PMID: 38044841 DOI: 10.1002/mrm.29955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE Ultra-high field (UHF) provides improved SNR which greatly benefits SNR starved imaging techniques such as perfusion imaging. However, transmit field (B1 + ) inhomogeneities commonly observed at UHF hinders the excitation uniformity. Here we show how replacing standard excitation pulses with parallel transmit pulses can improve efficiency of velocity selective labeling. METHODS The standard tip-down and tip-up excitation pulses found in a velocity selective preparation module were replaced with tailored non-selective kT -points pulse solutions. Bloch simulations and experimental validation on a custom-built flow phantom and in vivo was performed to evaluate different pulse configurations in circularly polarized mode (CP-mode) and parallel transmit (pTx) mode. RESULTS Tailored pTx pulses significantly improved velocity selective labeling fidelity and signal uniformity. The transverse magnetization normalized RMS error was reduced from 0.489 to 0.047 when compared to standard rectangular pulses played in CP-mode. Simulations showed that manipulation of time symmetry in the tailored pTx pulses is vital in minimizing residual magnetization. In addition, in vivo experiments achieved a 44% lower RF power output and a shorter pulse duration when compared to using adiabatic pulses in CP-mode. CONCLUSION Using tailored pTx pulses for excitation within a velocity selective labeling preparation mitigated transmit field artifacts and improved SNR and contrast fidelity. The improvement in labeling efficiency highlights the potential of using pTx to improve robustness and accessibility of flow-based sequences such as velocity selective spin labeling at ultra-high field.
Collapse
Affiliation(s)
- Chia-Yin Wu
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Carl Dixon
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Donald Maillet
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
- School of Electrical Engineering and Computer Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
25
|
Maurya SK, Schmidt R. A Metamaterial-like Structure Design Using Non-uniformly Distributed Dielectric and Conducting Strips to Boost the RF Field Distribution in 7 T MRI. SENSORS (BASEL, SWITZERLAND) 2024; 24:2250. [PMID: 38610461 PMCID: PMC11014008 DOI: 10.3390/s24072250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Metamaterial-based designs in ultra-high field (≥7 T) MRI have the promise of increasing the local magnetic resonance imaging (MRI) signal and potentially even the global efficiency of both the radiofrequency (RF) transmit and receive resonators. A recently proposed metamaterial-like structure-comprised of a high-permittivity dielectric material and a set of evenly distributed copper strips-indeed resulted in a local increase in RF transmission. Here, we demonstrate that non-uniform designs of this metamaterial-like structure can be used to boost the ultimate RF field distribution. A non-uniform dielectric distribution can yield longer electric dipoles, thus extending the RF transmit field coverage. A non-uniform distribution of conducting strips enables the tailoring of the local electric field hot spots, where a concave distribution resulted in lower power deposition. Simulations of the brain and calf regions using our new metamaterial-like design, which combines non-uniform distributions of both the dielectric and conducting strips, revealed a 1.4-fold increase in the RF field coverage compared to the uniform distribution, and a 1.5-2-fold increase in the transmit efficiency compared to the standard surface-coil.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rita Schmidt
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel;
- The Azrieli National Institute for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Solomakha GA, Bosch D, Glang F, Scheffler K, Avdievich NI. Evaluation of coaxial dipole antennas as transceiver elements of human head array for ultra-high field MRI at 9.4T. Magn Reson Med 2024; 91:1268-1280. [PMID: 38009927 DOI: 10.1002/mrm.29941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE The aim of this work is to evaluate a new eight-channel transceiver (TxRx) coaxial dipole array for imaging of the human head at 9.4T developed to improve specific absorption rate (SAR) performance, and provide for a more compact and robust alternative to the state-of-the art dipole arrays. METHODS First, the geometry of a single coaxial element was optimized to minimize peak SAR and sensitivity to the load variation. Next, a multi-tissue voxel model was used to numerically simulate a TxRx array coil that consisted of eight coaxial dipoles with the optimal configuration. Finally, we compared the developed array to other human head dipole arrays. Results of numerical simulations were verified on a bench and in the scanner including in vivo measurements on a healthy volunteer. RESULTS The developed eight-element coaxial dipole TxRx array coil showed up to 1.1times higher SAR-efficiency than a similar in geometry folded-end and fractionated dipole array while maintaining whole brain coverage and low sensitivity of the resonance frequency to variation in the head size. CONCLUSION As a proof of concept, we developed and constructed a prototype of a 9.4T (400 MHz) human head array consisting of eight TxRx coaxial dipoles. The developed array improved SAR-efficiency and provided for a more compact and robust alternative to the folded-end dipole design. To the best of our knowledge, this is the first example of using coaxial dipoles for human head MRI at ultra-high field.
Collapse
Affiliation(s)
- G A Solomakha
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - D Bosch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - F Glang
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
27
|
Akram MSH, Levin CS, Nishikido F, Takyu S, Obata T, Yamaya T. Study on the radiofrequency transparency of partial-ring oval-shaped prototype PET inserts in a 3 T clinical MRI system. Radiol Phys Technol 2024; 17:60-70. [PMID: 37874462 DOI: 10.1007/s12194-023-00747-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
The purpose of this study is to evaluate the RF field responses of partial-ring RF-shielded oval-shaped positron emission tomography (PET) inserts that are used in combination with an MRI body RF coil. Partial-ring PET insert is particularly suitable for interventional investigation (e.g., trimodal PET/MRI/ultrasound imaging) and intraoperative (e.g., robotic surgery) PET/MRI studies. In this study, we used electrically floating Faraday RF shield cages to construct different partial-ring configurations of oval and cylindrical PET inserts and performed experiments on the RF field, spin echo and gradient echo images for a homogeneous phantom in a 3 T clinical MRI system. For each geometry, partial-ring configurations were studied by removing an opposing pair or a single shield cage from different positions of the PET ring. Compared to the MRI-only case, reduction in mean RF homogeneity, flip angle, and SNR for the detector opening in the first and third quadrants was approximately 13%, 15%, and 43%, respectively, whereas the values were 8%, 23%, and 48%, respectively, for the detector openings in the second and fourth quadrants. The RF field distribution also varied for different partial-ring configurations. It can be concluded that the field penetration was high for the detector openings in the first and third quadrants of both the inserts.
Collapse
Affiliation(s)
- Md Shahadat Hossain Akram
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan.
| | - Craig S Levin
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5128, USA
| | - Fumihiko Nishikido
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Sodai Takyu
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Takayuki Obata
- Department of Applied MRI Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
28
|
Tyshchenko I, Lévy S, Jin J, Tahayori B, Blunck Y, Johnston LA. What can we gain from subpopulation universal pulses? A simulation-based study. Magn Reson Med 2024; 91:570-582. [PMID: 37849035 DOI: 10.1002/mrm.29884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE The aim of the study was to explore a novel methodology for designing universal pulses (UPs) that balances the benefits of a calibration-free approach with subject-specific online pulse design. METHODS The proposed method involves segmenting the population into subpopulations with variability in anatomical shapes and positions reduced to 75%, 50%, and 25% of their original values while keeping the mean values unchanged. An additional 25% extreme case with a large volume of interest and shifted position was included. For each group, a 5kT-points universal inversion pulse was designed and assessed by the normalized root mean square error (NRMSE) on the target longitudinal magnetization profile. The performance was compared to the conventional one-size-fits-all approach. A total of 132 electromagnetic simulations were executed to generate representative anatomies and specific absorption rate (SAR) distributions in a three-dimensional parameter space comprised of head breadth, head length, and Y-shift. The 99.9th percentile on the peak local SAR distribution was utilized to establish an intersubject variability safety margin. RESULTS UPs designed for subpopulations with decreased head shape and position variability reduced the anatomical safety margin by up to 20%. Furthermore, when a head was significantly different to the average case, the proposed approach improved the inversion homogeneity by up to 24%, compared to the conventional one-size-fits-all approach. CONCLUSION Subpopulation UPs present an opportunity to improve theB 1 + $$ {\mathrm{B}}_1^{+} $$ homogeneity and reduce anatomical SAR safety margins at 7T without additional acquisition time for calibration.
Collapse
Affiliation(s)
- Igor Tyshchenko
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon Lévy
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Australia
| | - Jin Jin
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Australia
| | - Bahman Tahayori
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Yasmin Blunck
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| | - Leigh A Johnston
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Faes LK, Lage-Castellanos A, Valente G, Yu Z, Cloos MA, Vizioli L, Moeller S, Yacoub E, De Martino F. Evaluating the effect of denoising submillimeter auditory fMRI data with NORDIC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577070. [PMID: 38328173 PMCID: PMC10849717 DOI: 10.1101/2024.01.24.577070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise - the dominant contributing noise component in high resolution fMRI. NORDIC PCA is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. As investigating auditory functional responses poses unique challenges, we anticipated that the benefit of this technique would be especially pronounced. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we also observed a reduction in the average response amplitude (percent signal), which may suggest that a small amount of signal was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.
Collapse
Affiliation(s)
- Lonike K. Faes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
- Department of Neuroinformatics, Cuban Neuroscience Center, Havana City 11600, Cuba
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Zidan Yu
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- MRI Research Center, University of Hawaii, United States
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia 4066, Australia
| | - Luca Vizioli
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
30
|
Doran E, Naim I, Bowtell R, Gowland PA, Glover PM, Bawden S. The impact of variations in subject geometry, respiration and coil repositioning on the specific absorption rate in parallel transmit abdominal imaging at 7 T. NMR IN BIOMEDICINE 2024; 37:e5032. [PMID: 37654051 DOI: 10.1002/nbm.5032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.
Collapse
Affiliation(s)
- Emma Doran
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Department of Clinical Physics and Bioengineering, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Iyad Naim
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
31
|
Alipour A, Seifert AC, Delman BN, Hof PR, Fayad ZA, Balchandani P. Enhancing the brain MRI at ultra-high field systems using a meta-array structure. Med Phys 2023; 50:7606-7618. [PMID: 37874014 DOI: 10.1002/mp.16801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/28/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The main advantage of ultra-high field (UHF) magnetic resonance neuroimaging is theincreased signal-to-noise ratio (SNR) compared with lower field strength imaging. However, the wavelength effect associated with UHF MRI results in radiofrequency (RF) inhomogeneity, compromising whole brain coverage for many commercial coils. Approaches to resolving this issue of transmit field inhomogeneity include the design of parallel transmit systems (PTx), RF pulse design, and applying passive RF shimming such as high dielectric materials. However, these methods have some drawbacks such as unstable material parameters of dielectric pads, high-cost, and complexity of PTx systems. Metasurfaces are artificial structures with a unique platform that can control the propagation of the electromagnetic (EM) waves, and they are very promising for engineering EM device. Implementation of meta-arrays enhancing MRI has been explored previously in several studies. PURPOSE The aim of this study was to assess the effect of new meta-array technology on enhancing the brain MRI at 7T. A meta-array based on a hybrid structure consisting of an array of broadside-coupled split-ring resonators and high-permittivity materials was designed to work at the Larmor frequency of a 7 Tesla (7T) MRI scanner. When placed behind the head and neck, this construct improves the SNR in the region of the cerebellum,brainstem and the inferior aspect of the temporal lobes. METHODS Numerical electromagnetic simulations were performed to optimize the meta-array design parameters and determine the RF circuit configuration. The resultant transmit-efficiency and signal sensitivity improvements were experimentally analyzed in phantoms followed by healthy volunteers using a 7T whole-body MRI scanner equipped with a standard one-channel transmit, 32-channel receive head coil. Efficacy was evaluated through acquisition with and without the meta-array using two basic sequences: gradient-recalled-echo (GRE) and turbo-spin-echo (TSE). RESULTS Experimental phantom analysis confirmed two-fold improvement in the transmit efficiency and 1.4-fold improvement in the signal sensitivity in the target region. In vivo GRE and TSE images with the meta-array in place showed enhanced visualization in inferior regions of the brain, especially of the cerebellum, brainstem, and cervical spinal cord. CONCLUSION Addition of the meta-array to commonly used MRI coils can enhance SNR to extend the anatomical coverage of the coil and improve overall MRI coil performance. This enhancement in SNR can be leveraged to obtain a higher resolution image over the same time slot or faster acquisition can be achieved with same resolution. Using this technique could improve the performance of existing commercial coils at 7T for whole brain and other applications.
Collapse
Affiliation(s)
- Akbar Alipour
- BioMedical Engineering and Imaging Institute and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Alan C Seifert
- BioMedical Engineering and Imaging Institute and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Patrick R Hof
- The Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
32
|
Feinberg DA, Beckett AJS, Vu AT, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald LL, Polimeni JR, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods 2023; 20:2048-2057. [PMID: 38012321 PMCID: PMC10703687 DOI: 10.1038/s41592-023-02068-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
Collapse
Affiliation(s)
- David A Feinberg
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Alexander J S Beckett
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - An T Vu
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, CA, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Suhyung Park
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Computer Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Chunlei Liu
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Jonathan R Polimeni
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- BARNLabs, Muenzkirchen, Austria
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mathias Davids
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Paul Bell
- Siemens Medical Solutions, Malvern, PA, USA
| | | | | | | | | | | | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
- MR CoilTech Limited, Glasgow, UK
| | | |
Collapse
|
33
|
Woo MK, DelaBarre L, Waks M, Lagore R, Kim J, Jungst S, Eryaman Y, Ugurbil K, Adriany G. A 32-Channel Sleeve Antenna Receiver Array for Human Head MRI Applications at 10.5 T. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2643-2652. [PMID: 37030782 DOI: 10.1109/tmi.2023.3261922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
For human brain magnetic resonance imaging (MRI), high channel count ( ≥ 32 ) radiofrequency receiver coil arrays are utilized to achieve maximum signal-to-noise ratio (SNR) and to accelerate parallel imaging techniques. With ultra-high field (UHF) MRI at 7 tesla (T) and higher, dipole antenna arrays have been shown to generate high SNR in the deep regions of the brain, however the array elements exhibit increased electromagnetic coupling with one another, making array construction more difficult with the increasing number of elements. Compared to a classical dipole antenna array, a sleeve antenna array incorporates the coaxial ground into the feed-point, resulting in a modified asymmetric antenna structure with improved intra-element decoupling. Here, we extended our previous 16-channel sleeve transceiver work and developed a 32-channel azimuthally arranged sleeve antenna receive-only array for 10.5 T human brain imaging. We experimentally compared the achievable SNR of the sleeve antenna array at 10.5 T to a more traditional 32-channel loop array bult onto a human head-shaped former. The results obtained with a head shaped phantom clearly demonstrated that peripheral intrinsic SNR can be significantly improved compared to a loop array with the same number of elements- except for the superior part of the phantom where sleeve antenna elements are not located.
Collapse
|
34
|
Du F, Li N, Yang X, Zhang B, Zhang X, Li Y. Design and construction of an 8-channel transceiver coil array for rat imaging at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107302. [PMID: 37116433 DOI: 10.1016/j.jmr.2022.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/27/2022] [Accepted: 09/11/2022] [Indexed: 05/29/2023]
Abstract
Ultra-high field (UHF) small animal magnetic resonance imaging (MRI) is a crucial tool permitting investigation of metabolic diseases and identification of imaging biomarkers suitable for clinical diagnosis and translation. Radiofrequency (RF) coils are critical components in enabling acquisition of high-quality rat abdomen MRI data. However, efficient RF coils with high-channel count, capable of sensitive and accelerated rat abdomen imaging at 9.4 T, are not available commercially. The SNR of the commonly-used 9.4 T birdcage coil is relatively weak, particularly in the peripheral area of the subject. In addition, the birdcage is not readily to perform parallel imaging due to unavailability of the required multiple channels. Consequently, the extended scanning duration may cause unnecessary hazards to the rat. In this work, an 8-channel transceiver coil array was designed and constructed to provide good image quality and large coverage for rat abdomen imaging at 9.4 T. The structure and the performance of the developed array was optimized and evaluated by numerical electromagnetic simulations and bench tests, respectively. The MR imaging experiments in phantoms and rat models were also performed on a Bruker 9.4 T preclinical MRI system to validate the feasibility of the proposed design. The coil array supports a one-dimensional acceleration factor up to R = 4, providing good parallel imaging capabilities. These results demonstrated that the proposed 8-channel transceiver coil array for rat imaging has the ability to obtain high spatial resolution of rat abdomen anatomical structure images at 9.4 T.
Collapse
Affiliation(s)
- Feng Du
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen 518055, Guang Dong, China
| | - Nan Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen 518055, Guang Dong, China
| | - Xing Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen 518055, Guang Dong, China
| | - Baogui Zhang
- State Key Laboratory of Brain and Cognitive Sciences, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, NY, United States., Buffalo, NY, United States
| | - Ye Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen 518055, Guang Dong, China.
| |
Collapse
|
35
|
Feizollah S, Tardif CL. High-resolution diffusion-weighted imaging at 7 Tesla: single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy. Neuroimage 2023; 274:120159. [PMID: 37150332 DOI: 10.1016/j.neuroimage.2023.120159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6-1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures.
Collapse
Affiliation(s)
- Sajjad Feizollah
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Duff Medical Building, 3775 Rue University, Suite 316, Montreal, QC, Canada.
| |
Collapse
|
36
|
Kopanoglu E. Actual patient position versus safety models: Specific Absorption Rate implications of initial head position for Ultrahigh Field Magnetic Resonance Imaging. NMR IN BIOMEDICINE 2023; 36:e4876. [PMID: 36385447 PMCID: PMC10802886 DOI: 10.1002/nbm.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Specific absorption rate (SAR) relates power absorption to tissue heating, and therefore is used as a safety constraint in magnetic resonance imaging (MRI). This study investigates the implications of initial head positioning on local and whole-head SAR. A virtual body model was simulated at 161 positions inside an eight-channel parallel-transmit (pTx) array. On-axis displacements and rotations of up to 20 mm/degrees and off-axis axial/coronal translations were investigated. Single-channel, radiofrequency (RF) shimming (i.e., single-spoke pTx) and multispoke pTx pulses were designed for seven axial, five coronal and five sagittal slices at each position (the slices were consistent across all positions). Whole-head and local SAR were calculated using safety models consisting of a single (centred) body position, multiple representative positions and all simulated body positions. Positional mismatches between safety models and actual positions cause SAR underestimation. For axial imaging, the actual peak local SAR was up to 4.2-fold higher for both single-channel and 5-spoke pTx, 3.5-fold higher for 3-/4-spoke pTx, and 2-fold higher for RF shimming and 2-spoke pTx, compared with that calculated using the centred body position. For sagittal and coronal imaging, the underestimation of peak local SAR was up to 5.2-fold and 3.8-fold, respectively. Using all body positions to estimate SAR prevented SAR underestimation but yielded up to 11-fold SAR overestimation for RF shimming. Local SAR of single-channel and pTx multispoke pulses showed considerable dependence on the initial patient position. RF shimming yielded much lower sensitivity to positional mismatches for axial imaging but not for sagittal and coronal imaging. This was deemed attributable to the higher degrees-of-freedom of control offered by the investigated coil array for axial imaging. Whole-head SAR is less sensitive to positional mismatches compared with local SAR. Nevertheless, whole-head SAR increased by up to 80% for sagittal imaging. Local and whole-head SAR were observed to be more sensitive to positional mismatches in the axial plane, because of larger variations in coil-tissue proximity. Using all possible body positions in the safety model may become substantially over-conservative and limit imaging performance, especially for the RF shimming mode for axial imaging.
Collapse
Affiliation(s)
- Emre Kopanoglu
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
37
|
Herrler J, Williams SN, Liebig P, Ding B, McElhinney P, Allwood-Spiers S, Meixner CR, Gunamony S, Maier A, Dörfler A, Gumbrecht R, Porter DA, Nagel AM. The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T. Magn Reson Med 2023; 89:1888-1900. [PMID: 36622945 DOI: 10.1002/mrm.29569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the effects of using different parallel-transmit (pTx) head coils and specific absorption rate (SAR) supervision strategies on pTx pulse design for ultrahigh-field MRI using a 3D-MPRAGE sequence. METHODS The PTx universal pulses (UPs) and fast online-customized (FOCUS) pulses were designed with pre-acquired data sets (B0 , B1 + maps, specific absorption rate [SAR] supervision data) from two different 8 transmit/32 receive head coils on two 7T whole-body MR systems. For one coil, the SAR supervision model consisted of per-channel RF power limits. In the other coil, SAR estimations were done with both per-channel RF power limits as well as virtual observation points (VOPs) derived from electromagnetic field (EMF) simulations using three virtual human body models at three different positions. All pulses were made for nonselective excitation and inversion and evaluated on 132 B0 , B1 + , and SAR supervision datasets obtained with one coil and 12 from the other. At both sites, 3 subjects were examined using MPRAGE sequences that used UP/FOCUS pulses generated for both coils. RESULTS For some subjects, the UPs underperformed when simulated on a different coil from which they were derived, whereas FOCUS pulses still showed acceptable performance in that case. FOCUS inversion pulses outperformed adiabatic pulses when scaled to the same local SAR level. For the self-built coil, the use of VOPs showed reliable overestimation compared with the ground-truth EMF simulations, predicting about 52% lower local SAR for inversion pulses compared with per-channel power limits. CONCLUSION FOCUS inversion pulses offer a low-SAR alternative to adiabatic pulses and benefit from using EMF-based VOPs for SAR estimation.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Siemens Healthcare, Erlangen, Germany
| | | | | | | | - Paul McElhinney
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | | | - Christian R Meixner
- Siemens Healthcare, Erlangen, Germany.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shajan Gunamony
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK.,MR CoilTech, Glasgow, UK
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - David A Porter
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
38
|
Harrevelt SD, Roos THM, Klomp DWJ, Steensma BR, Raaijmakers AJE. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. MAGMA (NEW YORK, N.Y.) 2023; 36:245-255. [PMID: 37000320 PMCID: PMC10140109 DOI: 10.1007/s10334-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. METHODS Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. RESULTS For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. DISCUSSION AND CONCLUSION For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.
Collapse
Affiliation(s)
- Seb D Harrevelt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Thomas H M Roos
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
39
|
Tao S, Zhou X, Lin C, Patel V, Westerhold EM, Middlebrooks EH. Optimization of MP2RAGE T1 mapping with radial view-ordering for deep brain stimulation targeting at 7 T MRI. Magn Reson Imaging 2023; 100:55-63. [PMID: 36924805 DOI: 10.1016/j.mri.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Deep brain stimulation (DBS) is an effective treatment of various neurological disorders. Due to higher intrinsic signal, 7 T MRI can potentially improve delineation of DBS targets. However, the severe RF transmit field (B1+) inhomogeneity at 7 T can compromise the image contrast of traditional single-contrast sequences for DBS targeting, leading to sub-optimal target visualization. The Magnetization Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE)-based T1 mapping provides an alternative to the traditional single-contrast techniques by allowing retrospective synthesis of images at arbitrary inversion times to aid in visualization of various DBS targets. With this approach, optimization of sequence parameters to create T1 maps with low noise and low quantification bias is critical, as these characteristics directly affect the noise and uniformity of the synthetic images. In this work, we perform sequence optimization for MP2RAGE-based T1 mapping using a radial view-ordering technique to improve image quality, and demonstrate the clinical utility of T1 mapping approach for DBS targeting. METHODS We first introduce a systematic sequence optimization framework for 7 T MP2RAGE T1 mapping by formulating it into a constrained, multi-dimensional optimization process considering the effect of B1+ inhomogeneity on image noise, T1 quantification bias, and image blurring. With this framework, we investigate the use of radial view-order approach for T1 mapping, in lieu of the conventional linear view-ordering. Bloch's equation-based simulations were performed to compare the T1 maps generated using different approaches. Images of healthy volunteer and patients were acquired on a clinical 7 T MRI scanner for validation and to demonstrate the utility of T1 mapping for DBS targeting. RESULTS Numerical experiments demonstrated that the proposed framework allowed optimization of image SNR in T1 maps while controlling the quantification bias and image blurring, therefore facilitating the selection of optimal sequence parameters for visualizing DBS targets. The optimized sequence using radial view-ordering offered 40-60% noise reduction compared to the linear view-ordering. The improvement of SNR was confirmed in the in vivo examples. Clinical images showed that the synthetic images generated from the optimized T1 maps allowed clear visualization of DBS targets. CONCLUSION We demonstrated the optimization of MP2RAGE T1 mapping with radial view-ordering technique for DBS targeting at 7 T and showed that the optimized sequence allows retrospective generation of synthetic inversion time images commonly utilized in DBS targeting, such as fast gray matter acquisition T1 inversion recovery (FGATIR) and edge-enhancing gradient echo (EDGE) sequences.
Collapse
Affiliation(s)
- Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
40
|
Park SE, Jeon YJ, Baek HM. Benefits of high-dielectric pad for neuroimaging study in 7-Tesla MRI. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
AbstractThis study aimed to evaluate whether the use of a high-dielectric pad is effective in increasing transmit and receive sensitivity in areas of low signal intensity in the human brain at high magnetic fields and assess its usefulness in neuroimaging studies. The novelty of this study lies in the first reported use of diffusion tensor imaging (DTI) results to evaluate the effect of the pad on neuroimaging. Six volunteers underwent MR scanning using a 7 T MR system. T1-weighted images (T1w) and diffusion-weighted images (DWI) were acquired to demonstrate the benefits of a high-dielectric pad made of barium titanate (BaTiO3). For all imaging experiments, two datasets were acquired per person, one with and one without a high-dielectric pad. Enhancement of signal sensitivity in neuroimaging has been analyzed by DTI study. Higher signal intensities and spatial contrast were demonstrated in the in T1w images acquired using high-dielectric pad than in those acquired without high-dielectric pad. Especially in DTI studies, increased quantitative anisotropy (QA) signals were observed in the corticospinal tract (CST), frontopontine tract (FPT), splenium of corpus callosum (SCC), fornix (FX), inferior fronto-occipital fasciculus (IFOF), cerebellum (CB), middle cerebellar peduncle (MCP), and body of corpus callosum (BCC) (FDR < 0.05). The signal differences accounted for an overall 20% increase. A high-dielectric pad is effective in enhancing signal intensity in human brain images acquired using 7 T MRI. Our results show that the use of such pad can increase the spatial resolution, tissue contrast, and signal intensity in neuroimaging studies. These findings suggest that high-dielectric pads may provide a relatively simple and low-cost method for spatiotemporal brain imaging studies.
Collapse
|
41
|
Perens J, Salinas CG, Roostalu U, Skytte JL, Gundlach C, Hecksher-Sørensen J, Dahl AB, Dyrby TB. Multimodal 3D Mouse Brain Atlas Framework with the Skull-Derived Coordinate System. Neuroinformatics 2023; 21:269-286. [PMID: 36809643 DOI: 10.1007/s12021-023-09623-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Magnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets. Consequently, there is an unmet need for tools that will facilitate fast and accurate translation of LSFM recorded brains to in vivo, non-distorted templates. In this study, we have developed a bidirectional multimodal atlas framework that includes brain templates based on both imaging modalities, region delineations from the Allen's Common Coordinate Framework, and a skull-derived stereotaxic coordinate system. The framework also provides algorithms for bidirectional transformation of results obtained using either MR or LSFM (iDISCO cleared) mouse brain imaging while the coordinate system enables users to easily assign in vivo coordinates across the different brain templates.
Collapse
Affiliation(s)
- Johanna Perens
- Gubra ApS, Hørsholm, Denmark.,Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | | | | | | | - Carsten Gundlach
- Neutrons and X-rays for Materials Physics, Department of Physics, Technical University Denmark, Kongens Lyngby, Denmark
| | | | - Anders Bjorholm Dahl
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark
| | - Tim B Dyrby
- Section for Visual Computing, Department of Applied Mathematics and Computer Science, Technical University Denmark, Kongens Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
42
|
Alkandari D, Bosshard JC, Huang CH, Wright SM. Multiple slot modules for high field magnetic resonance imaging array coils. Magn Reson Med 2023; 89:2485-2498. [PMID: 36763854 DOI: 10.1002/mrm.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16-bowtie slot volume coil arranged in eight independent dual-slot modules without the use of any decoupling circuits. METHODS Two electrically short "bowtie" slot antennas were used to form a "module." A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B 1 + P in $$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight-module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. RESULTS Bench tests indicate that worst-case coupling between modules did not exceed -14.5 dB. MR images demonstrate well-localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1 + homogeneity when compared with an eight-dipole coil. CONCLUSION Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi-channel transmit coils.
Collapse
Affiliation(s)
- Dheyaa Alkandari
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
| | - John C Bosshard
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chung-Huan Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
43
|
Kirby KM, Koons EK, Welker KM, Fagan AJ. Minimizing magnetic resonance image geometric distortion at 7 Tesla for frameless presurgical planning using skin-adhered fiducials. Med Phys 2023; 50:694-701. [PMID: 36301228 DOI: 10.1002/mp.16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND 7T MRI offers significant benefits to spatial and contrast resolution compared to lower field strengths. This superior image quality can help better delineate targets in stereotactic neurosurgical procedures; however, the potential for increased geometric distortions at 7T has impaired its widespread use for these applications. Image geometric distortions can be due to distortions of B0 arising from tissue magnetic susceptibility effects or inherent field inhomogeneities, and nonlinearity of the magnetic field gradients. PURPOSE The purpose of this study was to investigate the use of 7T MRI for neurosurgical frameless stereotactic navigation procedures. Image geometric distortions at the skin surface in 7T images were minimized and compared to results from clinical 3T frameless imaging protocols. METHODS A 3D-printed grid phantom filled with oil was designed to perform a fine calibration of the 7T imaging gradients, and an oil-filled head phantom with internal targets was used to determine ground truth (from computed tomography [CT]) positioning errors. Three volunteers and the head phantom were imaged consecutively at 3T and 7T. Ten skin-adhesive fiducial markers were placed on each subject's exposed skin surface at standard clinical placement locations for frameless procedures. Imaging sequences included MPRAGE (three bandwidths at 7T: 400, 690, and 1020 Hz/pixel, and one at 3T: 400 Hz/pixel), T2 SPACE, and T2 SPACE FLAIR acquisitions. An additional GRE field map was acquired on both scanners using a multi-echo GRE sequence. Custom Matlab code was used to perform additional distortion correction of the images using the unwrapped field maps. Fiducial localization was performed with 3D Slicer, with absolute fiducial positioning errors determined in phantom experiments following rigid registration to the CT images. For human experiments, 3T and 7T images were registered and relative differences in fiducial locations were compared using two-tailed paired t-tests. RESULTS Phantom measurements at 7T yielded gradient distance scaling errors of 1.1%, 2.2%, and 1.0% along the x-, y-, and z-axes, respectively. These system miscalibrations were traced back to phantom manufacturing deviations in the sphericity of the vendor's gradient calibration phantom. Correction factors along each gradient axis were applied, and afterward, geometric distortions of less than 1 mm were obtained in the 7T MR head phantom images for the 1020 Hz/pixel bandwidth MPRAGE sequence. For the human subjects, four fiducial locations were excluded from the analysis due to patient positioning differences. Differences between 3T and 7T MPRAGE with low/medium/high bandwidth were 2.2 /2.6/2.3 mm, respectively, before the correction, reducing to 1.6/1.3/1.0 mm after the correction (p < 0.001). T2 SPACE and T2 SPACE FLAIR yielded a similar pattern when the correction was applied, decreasing from 2.1 to 0.8 mm, and 2.6 to 1.0 mm, respectively. CONCLUSIONS 7T MRI can be used to perform frameless presurgical planning with skin-adhesive fiducials. Geometric distortions can be reduced to a clinically relevant level (errors < ∼1 mm) with no significant susceptibility-related distortions, by using high receiver bandwidth, ensuring gradients are properly calibrated, and placing skin fiducials in areas where distortions from patient positioning are minimal.
Collapse
Affiliation(s)
- Krystal M Kirby
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily K Koons
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Chung J, Jin T. Average saturation efficiency filter ASEF-CEST MRI of stroke rodents. Magn Reson Med 2023; 89:565-576. [PMID: 36300851 PMCID: PMC9757140 DOI: 10.1002/mrm.29463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The average saturation efficiency filter (ASEF) is a novel method of improving the specificity of CEST; however, there is a mismatch between the magnetization transfer (MT) effect under high-duty cycle and low-duty cycle pulse trains. We explore measures of mitigation and the sensitivity and potential of ASEF imaging in phantoms and stroke rats. METHODS Simulation and nicotinamide phantoms in denatured protein were used to investigate the effect of different average saturation powers and MT pool parameters on matching coefficients used for correction as well as the ASEF ratio signal and baseline. Then, in vivo studies were performed in stroke rodents to further investigate the sensitivity and fidelity of ASEF ratio spectra. RESULTS Simulation and studies of nicotinamide phantoms show that the matching coefficient needed to correct the baseline MT mismatch is strongly dependent on the average saturation power. In vivo studies in stroke rodents show that the matching coefficient required to correct the baseline MT mismatch is different for normal versus ischemic tissue. Thus, a baseline correction was performed to further suppress the residue MT mismatch. After correction of the mismatch, ASEF ratio achieved comparable contrast at 3.6 ppm between normal and ischemic tissue when compared to the apparent amide proton transfer (APT*) approach. Moreover, contrasts for 2.0 and 2.6 ppm were also ascertainable from the same spectra. CONCLUSION ASEF can improve the CEST signal specificity of slow exchange labile protons such as amide and guanidyl, with small loss to sensitivity. It has strong potential in the CEST imaging of various diseases.
Collapse
Affiliation(s)
- Julius Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
45
|
Ylä-Herttuala E, Vuorio T, Kettunen S, Laidinen S, Ylä-Herttuala S, Liimatainen T. Lymphatic insufficiency leads to distinct myocardial infarct content assessed by magnetic resonance T RAFFn, T 1ρ and T 2 relaxation times. Sci Rep 2023; 13:1579. [PMID: 36709358 PMCID: PMC9884273 DOI: 10.1038/s41598-023-28219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
The role of cardiac lymphatics in the pathogenesis of myocardial infarction (MI) is unclear. Lymphatic system regulates cardiac physiological processes such as edema and tissue fluid balance, which affect MI pathogenesis. Recently, MI and fibrosis have been assessed using endogenous contrast in magnetic resonance imaging (MRI) based on the relaxation along a fictitious field with rank n (RAFFn). We extended the RAFFn applications to evaluate the effects of lymphatic insufficiency on MI with comparison to longitudinal rotating frame (T1ρ) and T2 relaxation times. MI was induced in transgenic (TG) mice expressing soluble decoy VEGF receptor 3 that reduces lymphatic vessel formation and their wild-type (WT) control littermates for comparison. The RAFFn relaxation times with rank 2 (TRAFF2), and rank 4 (TRAFF4), T1ρ and T2 were acquired at time points 0, 3, 7, 21 and 42 days after the MI at 9.4 T. Infarct sizes were determined based on TRAFF2, TRAFF4, T1ρ and T2 relaxation time maps. The area of differences (AOD) was calculated based on the MI areas determined on T2 and TRAFF2, TRAFF4 or T1ρ relaxation time maps. Hematoxylin-eosin and Sirius red stained histology sections were prepared to confirm MI locations and sizes. MI was detected as increased TRAFF2, TRAFF4, T1ρ and T2 relaxation times. Infarct sizes were similar on all relaxation time maps during the experimental period. Significantly larger AOD values were found together with increased AOD values in the TG group compared to the WT group. Histology confirmed these findings. The lymphatic deficiency was found to increase cardiac edema in MI. The combination of TRAFF2 (or TRAFF4) and T2 characterizes MI and edema in the myocardium in both lymphatic insufficiency and normal mice without any contrast agents.
Collapse
Affiliation(s)
- Elias Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Clinical Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Taina Vuorio
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland. .,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
46
|
Kikken MWI, Steensma BR, van den Berg CAT, Raaijmakers AJE. Multi-echo MR thermometry in the upper leg at 7 T using near-harmonic 2D reconstruction for initialization. Magn Reson Med 2023; 89:2347-2360. [PMID: 36688273 DOI: 10.1002/mrm.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. METHODS The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. RESULTS Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. CONCLUSION The high precision shows promising potential for validation purposes and other RF safety applications.
Collapse
Affiliation(s)
- Mathijs W I Kikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
47
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
48
|
Kandala SK, Sohn SM. Design of standalone wireless impedance matching (SWIM) system for RF coils in MRI. Sci Rep 2022; 12:21604. [PMID: 36517622 PMCID: PMC9751108 DOI: 10.1038/s41598-022-26143-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The radio frequency (RF) power transfer efficiency of transmit coils and the signal-to-noise ratio (SNR) at the receive signal chain are directly dependent on the impedance matching condition presented by a loaded coil, tuned to the Larmor frequency. Sub-optimal impedance condition of receive coils significantly reduces coil sensitivity and image quality. In this study we propose a Standalone Wireless Impedance Matching (SWIM) system for RF coils to automatically compensate for the impedance mismatch caused by the loading effect at the target frequency. SWIM uses a built-in RF generator to produce a calibration signal, measure reflected power as feedback for loading change, and determine an optimal impedance. The matching network consists of a capacitor array with micro-electromechanical system (MEMS) RF switches to electronically cycle through different input impedance conditions. Along with automatic calibration, SWIM can also perform software detuning of RF receive coils. An Android mobile application was developed for real-time reflected power monitoring and controlling the SWIM system via Bluetooth. The SWIM system can automatically calibrate an RF coil in 3 s and the saline sample SNR was improved by 24% when compared to a loaded coil without retuning. Four different tomatoes were imaged to validate the performance of SWIM.
Collapse
Affiliation(s)
- Sri Kirthi Kandala
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, 85281, USA
| | - Sung-Min Sohn
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, 85281, USA.
| |
Collapse
|
49
|
Seo JH, Jo YS, Oh CH, Chung JY. A New Combination of Radio-Frequency Coil Configurations Using High-Permittivity Materials and Inductively Coupled Structures for Ultrahigh-Field Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:8968. [PMID: 36433565 PMCID: PMC9694602 DOI: 10.3390/s22228968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In ultrahigh-field (UHF) magnetic resonance imaging (MRI) system, the RF power required to excite the nuclei of the target object increases. As the strength of the main magnetic field (B0 field) increases, the improvement of the RF transmit field (B1+ field) efficiency and receive field (B1- field) sensitivity of radio-frequency (RF) coils is essential to reduce their specific absorption rate and power deposition in UHF MRI. To address these problems, we previously proposed a method to simultaneously improve the B1+ field efficiency and B1- field sensitivity of 16-leg bandpass birdcage RF coils (BP-BC RF coils) by combining a multichannel wireless RF element (MCWE) and segmented cylindrical high-permittivity material (scHPM) comprising 16 elements in 7.0 T MRI. In this work, we further improved the performance of transmit/receive RF coils. A new combination of RF coil with wireless element and HPM was proposed by comparing the BP-BC RF coil with the MCWE and the scHPM proposed in the previous study and the multichannel RF coils with a birdcage RF coil-type wireless element (BCWE) and the scHPM proposed in this study. The proposed 16-ch RF coils with the BCWE and scHPM provided excellent B1+ field efficiency and B1- field sensitivity improvement.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
| | - Young-Seung Jo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Chang-Hyun Oh
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| |
Collapse
|
50
|
Yetisir F, Poser BA, Grant PE, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control. Magn Reson Imaging 2022; 93:87-96. [PMID: 35940379 PMCID: PMC9789791 DOI: 10.1016/j.mri.2022.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE We develop and test a parallel transmit (pTx) pulse design framework to mitigate transmit field inhomogeneity with control of local specific absorption rate (SAR) in 2D rapid acquisition with relaxation enhancement (RARE) imaging at 7T. METHODS We design large flip angle RF pulses with explicit local SAR constraints by numerical simulation of the Bloch equations. Parallel computation and analytical expressions for the Jacobian and the Hessian matrices are employed to reduce pulse design time. The refocusing-excitation "spokes" pulse pairs are designed to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition using a combined magnitude least squares-least squares approach. RESULTS In a simulated dataset, the proposed approach reduced peak local SAR by up to 56% for the same level of refocusing uniformity error and reduced refocusing uniformity error by up to 59% (from 32% to 7%) for the same level of peak local SAR compared to the circularly polarized birdcage mode of the pTx array. Using explicit local SAR constraints also reduced peak local SAR by up to 46% compared to an RF peak power constrained design. The excitation and refocusing uniformity error were reduced from 20%-33% to 4%-6% in single slice phantom experiments. Phantom experiments demonstrated good agreement between the simulated excitation and refocusing uniformity profiles and experimental image shading. CONCLUSION PTx-designed excitation and refocusing CPMG pulse pairs can mitigate transmit field inhomogeneity in the 2D RARE sequence. Moreover, local SAR can be decreased significantly using pTx, potentially leading to better slice coverage, enabling larger flip angles or faster imaging.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA
| | - Lawrence L Wald
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|