1
|
Prognostic Value of Choline and Other Metabolites Measured Using 1H-Magnetic Resonance Spectroscopy in Gliomas: A Meta-Analysis and Systemic Review. Metabolites 2022; 12:metabo12121219. [PMID: 36557257 PMCID: PMC9788620 DOI: 10.3390/metabo12121219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most prevalent primary central nervous system malignant tumor, with high heterogeneity observed among different grades; therefore, non-invasive prediction of prognosis could improve the clinical management of patients with glioma. 1H-magnetic resonance spectroscopy (MRS) can estimate metabolite levels non-invasively. Multiple studies have investigated its prognostic value in gliomas; however, no consensus has been reached. PubMed and Embase databases were searched up to 20 October 2022 to identify studies investigating the prognostic value of metabolites using 1H-MRS in patients with glioma. Heterogeneity across studies was evaluated using the Q and I2 tests, and a fixed- or random-effects model was used to estimate the combined overall hazard ratio (HR). Funnel plots and Begg tests were used to assess publication bias. Higher choline levels were associated with shorter overall survival (HR = 2.69, 95% CI, 1.92−2.99; p < 0.001) and progression-free survival (HR = 2.20, 95% CI, 1.16−4.17; p = 0.02) in all patients; however, in pediatric gliomas, it showed no significant correlation with overall survival (HR = 1.60, 95% CI, 0.97−2.64; p = 0.06). The estimated choline level by 1H-MRS could be used to non-invasively predict the prognosis of patients with adult gliomas, and more studies are needed to evaluate the prognostic value of other metabolites.
Collapse
|
2
|
Liu J, Chu C, Zhang J, Bie C, Chen L, Aafreen S, Xu J, Kamson DO, van Zijl PCM, Walczak P, Janowski M, Liu G. Label-Free Assessment of Mannitol Accumulation Following Osmotic Blood-Brain Barrier Opening Using Chemical Exchange Saturation Transfer Magnetic Resonance Imaging. Pharmaceutics 2022; 14:pharmaceutics14112529. [PMID: 36432721 PMCID: PMC9695341 DOI: 10.3390/pharmaceutics14112529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Mannitol is a hyperosmolar agent for reducing intracranial pressure and inducing osmotic blood-brain barrier opening (OBBBO). There is a great clinical need for a non-invasive method to optimize the safety of mannitol dosing. The aim of this study was to develop a label-free Chemical Exchange Saturation Transfer (CEST)-based MRI approach for detecting intracranial accumulation of mannitol following OBBBO. METHODS In vitro MRI was conducted to measure the CEST properties of D-mannitol of different concentrations and pH. In vivo MRI and MRS measurements were conducted on Sprague-Dawley rats using a Biospec 11.7T horizontal MRI scanner. Rats were catheterized at the internal carotid artery (ICA) and randomly grouped to receive either 1 mL or 3 mL D-mannitol. CEST MR images were acquired before and at 20 min after the infusion. RESULTS In vitro MRI showed that mannitol has a strong, broad CEST contrast at around 0.8 ppm with a mM CEST MRI detectability. In vivo studies showed that CEST MRI could effectively detect mannitol in the brain. The low dose mannitol treatment led to OBBBO but no significant mannitol accumulation, whereas the high dose regimen resulted in both OBBBO and mannitol accumulation. The CEST MRI findings were consistent with 1H-MRS and Gd-enhanced MRI assessments. CONCLUSION We demonstrated that CEST MRI can be used for non-invasive, label-free detection of mannitol accumulation in the brain following BBBO treatment. This method may be useful as a rapid imaging tool to optimize the dosing of mannitol-based OBBBO and improve its safety and efficacy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Jia Zhang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Chongxue Bie
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Safiya Aafreen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- Correspondence: ; Tel.: +1-443-923-9500; Fax: +1-410-614-3147
| |
Collapse
|
3
|
Abstract
Metabolic reprogramming is an important characteristics of glioma, the most common form of malignant brain tumor. In this chapter, we aim to discuss some of the recently discovered metabolic alterations in glioma, including the dysregulated TCA cycle, amino acid, nucleotide, and lipid metabolism. We have also detailed some of the metabolomic applications in gliomas, particularly the analyses of body fluids and tissues of glioma patients. With new improvement of the technology, metabolomics will become a powerful tool to discover truly meaningful biomarkers for clinical applications in gliomas. Metabolomic studies of gliomas will also facilitate a better understanding of the molecular targets/pathways and the development of new therapeutic treatments for this devastating disease.
Collapse
|
4
|
Hu LS, Hawkins-Daarud A, Wang L, Li J, Swanson KR. Imaging of intratumoral heterogeneity in high-grade glioma. Cancer Lett 2020; 477:97-106. [PMID: 32112907 DOI: 10.1016/j.canlet.2020.02.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
High-grade glioma (HGG), and particularly Glioblastoma (GBM), can exhibit pronounced intratumoral heterogeneity that confounds clinical diagnosis and management. While conventional contrast-enhanced MRI lacks the capability to resolve this heterogeneity, advanced MRI techniques and PET imaging offer a spectrum of physiologic and biophysical image features to improve the specificity of imaging diagnoses. Published studies have shown how integrating these advanced techniques can help better define histologically distinct targets for surgical and radiation treatment planning, and help evaluate the regional heterogeneity of tumor recurrence and response assessment following standard adjuvant therapy. Application of texture analysis and machine learning (ML) algorithms has also enabled the emerging field of radiogenomics, which can spatially resolve the regional and genetically distinct subpopulations that coexist within a single GBM tumor. This review focuses on the latest advances in neuro-oncologic imaging and their clinical applications for the assessment of intratumoral heterogeneity.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| | - Lujia Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Jing Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, 5777 East Mayo Blvd, Support, Services Building Suite 2-700, Phoenix, AZ, 85054, USA.
| |
Collapse
|
5
|
Gharzeddine K, Hatzoglou V, Holodny AI, Young RJ. MR Perfusion and MR Spectroscopy of Brain Neoplasms. Radiol Clin North Am 2019; 57:1177-1188. [PMID: 31582043 DOI: 10.1016/j.rcl.2019.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Advances in imaging techniques, such as MR perfusion and spectroscopy, are increasingly indispensable in the management and treatment plans of brain neoplasms: from diagnosing, molecular/genetic typing and grading neoplasms, augmenting biopsy results and improving accuracy, to ultimately directing and monitoring treatment and response. New developments in treatment methods have resulted in new diagnostic challenges for conventional MR imaging, such as pseudoprogression, where MR perfusion has the widest current application. MR spectroscopy is showing increasing promise in noninvasively determining genetic subtypes and, potentially, susceptibility to molecular targeted therapies.
Collapse
Affiliation(s)
- Karem Gharzeddine
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Vaios Hatzoglou
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, 1275 York Avenue, New York, NY 10065, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, Weill Cornell Graduate School of Medical Sciences, 1275 York Avenue, New York, NY 10065, USA.
| | - Robert J Young
- Brain Imaging, Neuroradiology Research, Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
6
|
Manias KA, Harris LM, Davies NP, Natarajan K, MacPherson L, Foster K, Brundler MA, Hargrave DR, Payne GS, Leach MO, Morgan PS, Auer D, Jaspan T, Arvanitis TN, Grundy RG, Peet AC. Prospective multicentre evaluation and refinement of an analysis tool for magnetic resonance spectroscopy of childhood cerebellar tumours. Pediatr Radiol 2018; 48:1630-1641. [PMID: 30062569 PMCID: PMC6153873 DOI: 10.1007/s00247-018-4182-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/10/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND A tool for diagnosing childhood cerebellar tumours using magnetic resonance (MR) spectroscopy peak height measurement has been developed based on retrospective analysis of single-centre data. OBJECTIVE To determine the diagnostic accuracy of the peak height measurement tool in a multicentre prospective study, and optimise it by adding new prospective data to the original dataset. MATERIALS AND METHODS Magnetic resonance imaging (MRI) and single-voxel MR spectroscopy were performed on children with cerebellar tumours at three centres. Spectra were processed using standard scanner software and peak heights for N-acetyl aspartate, creatine, total choline and myo-inositol were measured. The original diagnostic tool was used to classify 26 new tumours as pilocytic astrocytoma, medulloblastoma or ependymoma. These spectra were subsequently combined with the original dataset to develop an optimised scheme from 53 tumours in total. RESULTS Of the pilocytic astrocytomas, medulloblastomas and ependymomas, 65.4% were correctly assigned using the original tool. An optimized scheme was produced from the combined dataset correctly assigning 90.6%. Rare tumour types showed distinctive MR spectroscopy features. CONCLUSION The original diagnostic tool gave modest accuracy when tested prospectively on multicentre data. Increasing the dataset provided a diagnostic tool based on MR spectroscopy peak height measurement with high levels of accuracy for multicentre data.
Collapse
Affiliation(s)
- Karen A Manias
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital, Birmingham, UK
| | - Lisa M Harris
- Department of Radiological Science, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Nigel P Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Medical Physics and Imaging, University Hospital Birmingham, Birmingham, UK
| | - Kal Natarajan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Medical Physics and Imaging, University Hospital Birmingham, Birmingham, UK
| | | | | | | | | | | | - Martin O Leach
- CRUK Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden Hospital, London, SW7 3RP, UK
| | - Paul S Morgan
- Medical Physics, Nottingham University Hospitals, Nottingham, UK
| | - Dorothee Auer
- Radiological and Imaging Sciences, University of Nottingham, Nottingham, UK
| | - Tim Jaspan
- Radiology Department, University Hospital Nottingham, Nottingham, UK
| | - Theodoros N Arvanitis
- Birmingham Children's Hospital, Birmingham, UK
- Institute of Digital Healthcare, WMG, University of Warwick, Warwick, UK
| | - Richard G Grundy
- The Childhood Brain Tumour Research Centre, The Medical School, University of Nottingham, Nottingham, UK
| | - Andrew C Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
- Birmingham Children's Hospital, Birmingham, UK.
| |
Collapse
|
7
|
Brandão LA, Castillo M. Adult Brain Tumors: Clinical Applications of Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 2017; 24:781-809. [PMID: 27742117 DOI: 10.1016/j.mric.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proton magnetic resonance spectroscopy (H-MRS) may be helpful in suggesting tumor histology and tumor grade and may better define tumor extension and the ideal site for biopsy compared with conventional magnetic resonance (MR) imaging. A multifunctional approach with diffusion-weighted imaging, perfusion-weighted imaging, and permeability maps, along with H-MRS, may enhance the accuracy of the diagnosis and characterization of brain tumors and estimation of therapeutic response. Integration of advanced imaging techniques with conventional MR imaging and the clinical history help to improve the accuracy, sensitivity, and specificity in differentiating tumors and nonneoplastic lesions.
Collapse
Affiliation(s)
- Lara A Brandão
- Clínica Felippe Mattoso, Av. Das Américas 700, sala 320, Barra da Tijuca, Rio de Janeiro 30112011, Brazil; Clínica IRM- Ressonância Magnética, Rua Capitão Salomão 44 Humaitá, Rio de Janeiro 22271040, Brazil.
| | - Mauricio Castillo
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Room 3326, Old Infirmary Building, Manning Drive, Chapel Hill, NC 27599-7510, USA
| |
Collapse
|
8
|
Nelson SL, Proctor DT, Ghasemloonia A, Lama S, Zareinia K, Ahn Y, Al-Saiedy MR, Green FHY, Amrein MW, Sutherland GR. Vibrational Profiling of Brain Tumors and Cells. Theranostics 2017; 7:2417-2430. [PMID: 28744324 PMCID: PMC5525746 DOI: 10.7150/thno.19172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex.
Collapse
Affiliation(s)
- Sultan L Nelson
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Dustin T Proctor
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Ahmad Ghasemloonia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Sanju Lama
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Kourosh Zareinia
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Younghee Ahn
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Mustafa R Al-Saiedy
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Francis HY Green
- Department of Pathology and Laboratory Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Matthias W Amrein
- Department of Cell Biology and Anatomy, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| | - Garnette R Sutherland
- Project neuroArm, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
9
|
Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Poptani H, Reddy R. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 2017; 19:225-232. [PMID: 27541025 PMCID: PMC5824619 DOI: 10.1007/s11307-016-0995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness. PROCEDURES Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor. RESULTS CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size. CONCLUSIONS Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Rong-Wen Tain
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick C Damen
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro M Scotti
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hari Hariharan
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Ravinder Reddy
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Abstract
Pediatric brain tumors are the leading cause of death from solid tumors in childhood. The most common posterior fossa tumors in children are medulloblastoma, atypical teratoid/rhabdoid tumor, cerebellar pilocytic astrocytoma, ependymoma, and brainstem glioma. Location, and imaging findings on computed tomography (CT) and conventional MR (cMR) imaging may provide important clues to the most likely diagnosis. Moreover, information obtained from advanced MR imaging techniques increase diagnostic confidence and help distinguish between different histologic tumor types. Here we discuss the most common posterior fossa tumors in children, including typical imaging findings on CT, cMR imaging, and advanced MR imaging studies.
Collapse
Affiliation(s)
- Lara A Brandão
- Radiologic Department, Clínica Felippe Mattoso, Fleury Medicina Diagnóstica, Avenida das Américas 700, sala 320, Barra Da Tijuca, Rio De Janeiro, Rio De Janeiro CEP 22640-100, Brazil; Department of Radiology, Clínica IRM- Ressonância Magnética, Rua Capitão Salomão, Humaitá, Rio De Janeiro, Rio De Janeiro CEP 22271-040, Brazil.
| | - Tina Young Poussaint
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
11
|
Verma G, Mohan S, Nasrallah MP, Brem S, Lee JYK, Chawla S, Wang S, Nagarajan R, Thomas MA, Poptani H. Non-invasive detection of 2-hydroxyglutarate in IDH-mutated gliomas using two-dimensional localized correlation spectroscopy (2D L-COSY) at 7 Tesla. J Transl Med 2016; 14:274. [PMID: 27659543 PMCID: PMC5034563 DOI: 10.1186/s12967-016-1035-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in the isocitrate dehydrogenase enzyme are present in a majority of lower-grade gliomas and secondary glioblastomas. This mis-sense mutation results in the neomorphic reduction of isocitrate dehydrogenase resulting in an accumulation of the "oncometabolite" 2-hydroxyglutarate (2HG). Detection of 2HG can thus serve as a surrogate biomarker for these mutations, with significant translational implications including improved prognostication. Two dimensional localized correlated spectroscopy (2D L-COSY) at 7T is a highly-sensitive non-invasive technique for assessing brain metabolism. This study aims to assess tumor metabolism using 2D L-COSY at 7T for the detection of 2HG in IDH-mutant gliomas. METHODS Nine treatment-naïve patients with suspected intracranial neoplasms were scanned at 7T MRI/MRS scanner using the 2D L-COSY technique. 2D-spectral processing and analyses were performed using a MATLAB-based reconstruction algorithm. Cross and diagonal peak volumes were quantified in the 2D L-COSY spectra and normalized with respect to the creatine peak at 3.0 ppm and quantified data were compared with previously-published data from six normal subjects. Detection of 2HG was validated using findings from immunohistochemical (IHC) staining in patients who subsequently underwent surgical resection. RESULTS 2HG was detected in both of the IDH-mutated gliomas (grade III Anaplastic Astrocytoma and grade II Diffuse Astrocytoma) and was absent in IDH wild-type gliomas and in a patient with breast cancer metastases. 2D L-COSY was also able to resolve complex and overlapping resonances including phosphocholine (PC) from glycerophosphocholine (GPC), lactate (Lac) from lipids and glutamate (Glu) from glutamine (Gln). CONCLUSIONS This study demonstrates the ability of 2D L-COSY to unambiguously detect 2HG in addition to other neuro metabolites. These findings may aid in establishing 2HG as a biomarker of malignant progression as well as for disease monitoring in IDH-mutated gliomas.
Collapse
Affiliation(s)
- Gaurav Verma
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at University of Pennsylvania, 3400, Spruce St., Philadelphia, PA, 19014, USA
| | - Suyash Mohan
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at University of Pennsylvania, 3400, Spruce St., Philadelphia, PA, 19014, USA.
| | | | - Steven Brem
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Chawla
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at University of Pennsylvania, 3400, Spruce St., Philadelphia, PA, 19014, USA
| | - Sumei Wang
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at University of Pennsylvania, 3400, Spruce St., Philadelphia, PA, 19014, USA
| | | | - M Albert Thomas
- Department of Radiological Sciences, UCLA, Los Angeles, CA, USA
| | - Harish Poptani
- Department of Cellular and Molecular Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Gottschalk M, Troprès I, Lamalle L, Grand S, Le Bas JF, Segebarth C. Refined modelling of the short-T2 signal component and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T. NMR IN BIOMEDICINE 2016; 29:943-951. [PMID: 27197077 DOI: 10.1002/nbm.3548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/22/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Short-TE (1) H MRS has great potential for brain cancer diagnostics. A major difficulty in the analysis of the spectra is the contribution from short-T2 signal components, mainly coming from mobile lipids. This complicates the accurate estimation of the spectral parameters of the resonance lines from metabolites, so that a qualitative to semi-quantitative interpretation of the spectra dominates in practice. One solution to overcome this difficulty is to measure and estimate the short-T2 signal component and to subtract it from the total signal, thus leaving only the metabolite signals. The technique works well when applied to spectra obtained from healthy individuals, but requires some optimisation during data acquisition. In the clinical setting, time constraints hardly allow this. Here, we propose an iterative estimation of the short-T2 signal component, acquired in a single acquisition after measurement of the full spectrum. The method is based on QUEST (quantitation based on quantum estimation) and allows the refinement of the estimate of the short-T2 signal component after measurement. Thus, acquisition protocols used on healthy volunteers can also be used on patients without further optimisation. The aim is to improve metabolite detection and, ultimately, to enable the estimation of the glutamine and glutamate signals distinctly. These two metabolites are of great interest in the characterisation of brain cancer, gliomas in particular. When applied to spectra from healthy volunteers, the new algorithm yields similar results to QUEST and direct subtraction of the short-T2 signal component. With patients, up to 12 metabolites and, at least, seven can be quantified in each individual brain tumour spectrum, depending on the metabolic state of the tumour. The refinement of the short-T2 signal component significantly improves the fitting procedure and produces a separate short-T2 signal component that can be used for the analysis of mobile lipid resonances. Thus, in brain tumour spectra, distinct estimates of signals from glutamate and glutamine are possible. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Irène Troprès
- Univ. Grenoble Alpes, IRMaGe, CNRS, UMR 3552, INSERM, US17 and CLUNI, CHU de Grenoble, IRMaGe, F-38000, Grenoble, France
| | - Laurent Lamalle
- Univ. Grenoble Alpes, IRMaGe, CNRS, UMR 3552, INSERM, US17 and CLUNI, CHU de Grenoble, IRMaGe, F-38000, Grenoble, France
| | - Sylvie Grand
- Université des Alpes Grenoble 1, Grenoble Institut des Neurosciences, Equipe 5, Clinique Universitaire de Neuroradiologie et IRM (CLUNI) and Centre Hospitalier Universitaire de Grenoble et des Alpes (CHUGA), Grenoble, France
| | - Jean-François Le Bas
- Université des Alpes Grenoble 1, Grenoble Institut des Neurosciences, Equipe 5, Clinique Universitaire de Neuroradiologie et IRM (CLUNI) and Centre Hospitalier Universitaire de Grenoble et des Alpes (CHUGA), Grenoble, France
| | | |
Collapse
|
13
|
Carrera I, Richter H, Beckmann K, Meier D, Dennler M, Kircher PR. Evaluation of intracranial neoplasia and noninfectious meningoencephalitis in dogs by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am J Vet Res 2016; 77:452-62. [DOI: 10.2460/ajvr.77.5.452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Nuclear Magnetic Resonance Study of Cerebrospinal Fluid From Patients With Multiple Sclerosis. Can J Neurol Sci 2015. [DOI: 10.1017/s0317167100047922] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACT:Proton nuclear magnetic resonance (NMR) spectroscopy was used to examine cerebrospinal fluid (CSF) from patients (n = 30) with actively progressive multiple sclerosis (MS). Metabolite concentrations obtained from the spectra were compared to those determined from the spectra of CSF from control patients (n = 27) with benign spinal disorders. No significant difference was found between the 2 groups for most constituents, including lactate, glutamine, citrate, creatine and creatinine, and glucose. Acetate levels were significantly higher in MS patients, while formate levels were significantly lower, than the controls. There were no significant differences in metabolite concentrations in CSF from early and longstanding MS patients. A peak due to an unidentified compound was found at 2.82 ppm in the spectra of CSF from patients with actively progressive MS, but not in the spectra of CSF from the controls. The peak was not found in spectra of CSF from patients with AIDS dementia complex (n = 9) or Parkinson's disease (n = 5), but it did appear in spectra of CSF from 1 patient with Jakob-Creutzfeldt disease (out of 3 examined) and from 1 patient (out of 7) with Guillan-Barré disease. The unidentified compound is volatile and, from the chemical shift of the observed NMR peak, is probably an N-methyl compound. As such, it may be an intermediate in the cholino-glycine cycle, in which an abnormality has been proposed to exist in MS patients.
Collapse
|
15
|
Metabolomic Screening of Tumor Tissue and Serum in Glioma Patients Reveals Diagnostic and Prognostic Information. Metabolites 2015; 5:502-20. [PMID: 26389964 PMCID: PMC4588809 DOI: 10.3390/metabo5030502] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 01/19/2023] Open
Abstract
Glioma grading and classification, today based on histological features, is not always easy to interpret and diagnosis partly relies on the personal experience of the neuropathologists. The most important feature of the classification is the aimed correlation between tumor grade and prognosis. However, in the clinical reality, large variations exist in the survival of patients concerning both glioblastomas and low-grade gliomas. Thus, there is a need for biomarkers for a more reliable classification of glioma tumors as well as for prognosis. We analyzed relative metabolite concentrations in serum samples from 96 fasting glioma patients and 81 corresponding tumor samples with different diagnosis (glioblastoma, oligodendroglioma) and grade (World Health Organization (WHO) grade II, III and IV) using gas chromatography-time of flight mass spectrometry (GC-TOFMS). The acquired data was analyzed and evaluated by pattern recognition based on chemometric bioinformatics tools. We detected feature patterns in the metabolomics data in both tumor and serum that distinguished glioblastomas from oligodendrogliomas (p(tumor) = 2.46 × 10(-8), p(serum) = 1.3 × 10(-5)) and oligodendroglioma grade II from oligodendroglioma grade III (p(tumor) = 0.01, p(serum) = 0.0008). Interestingly, we also found patterns in both tumor and serum with individual metabolite features that were both elevated and decreased in patients that lived long after being diagnosed with glioblastoma compared to those who died shortly after diagnosis (p(tum)(o)(r) = 0.006, p(serum) = 0.004; AUROCC(tumor) = 0.846 (0.647-1.000), AUROCC(serum) = 0.958 (0.870-1.000)). Metabolic patterns could also distinguish long and short survival in patients diagnosed with oligodendroglioma (p(tumor) = 0.01, p(serum) = 0.001; AUROCC(tumor) = 1 (1.000-1.000), AUROCC(serum) = 1 (1.000-1.000)). In summary, we found different metabolic feature patterns in tumor tissue and serum for glioma diagnosis, grade and survival, which indicates that, following further verification, metabolomic profiling of glioma tissue as well as serum may be a valuable tool in the search for latent biomarkers for future characterization of malignant glioma.
Collapse
|
16
|
Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR IN BIOMEDICINE 2015; 28:1-8. [PMID: 25295758 PMCID: PMC4257884 DOI: 10.1002/nbm.3216] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 05/03/2023]
Abstract
In general, multiple components such as water direct saturation, magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear Overhauser effect (NOE) contribute to the Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE located on a single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2 ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variations of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared with the normal brain tissue. Additionally, CEST@2ppm decreased with tumor progression. CEST@2ppm was found to correlate with the creatine concentration quantified with proton MRS. Based on the correlation curve, the creatine contribution to CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular Imaging Labs, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Weiguo Li
- Research Resource Center, Department of Bioengineering, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry and Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong J. Zhou
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Lama S, Auer RN, Tyson R, Gallagher CN, Tomanek B, Sutherland GR. Lactate storm marks cerebral metabolism following brain trauma. J Biol Chem 2014; 289:20200-8. [PMID: 24849602 DOI: 10.1074/jbc.m114.570978] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. The origin and role of lactate in severe traumatic brain injury (TBI) remains controversial. Using a modified weight drop model of severe TBI and magnetic resonance (MR) spectroscopy with infusion of (13)C-labeled glucose, lactate, and acetate, the present study investigated the possibility that neuronal-glial metabolism is uncoupled following severe TBI. Histopathology of the model showed severe brain injury with subarachnoid and hemorrhage together with glial cell activation and positive staining for Tau at 90 min post-trauma. High resolution MR spectroscopy of brain metabolites revealed significant labeling of lactate at C-3 and C-2 irrespective of the infused substrates. Increased (13)C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure.
Collapse
Affiliation(s)
- Sanju Lama
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Roland N Auer
- the Hôpital Ste-Justine, Département de Pathologie, Université de Montréal, Montreal, Québec H3T 1C5, Canada
| | - Randy Tyson
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Clare N Gallagher
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Boguslaw Tomanek
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Garnette R Sutherland
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| |
Collapse
|
18
|
Öz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, Bolan PJ, Brindle KM, Cudalbu C, Dinçer A, Dydak U, Emir UE, Frahm J, González RG, Gruber S, Gruetter R, Gupta RK, Heerschap A, Henning A, Hetherington HP, Howe FA, Hüppi PS, Hurd RE, Kantarci K, Klomp DWJ, Kreis R, Kruiskamp MJ, Leach MO, Lin AP, Luijten PR, Marjańska M, Maudsley AA, Meyerhoff DJ, Mountford CE, Nelson SJ, Pamir MN, Pan JW, Peet AC, Poptani H, Posse S, Pouwels PJW, Ratai EM, Ross BD, Scheenen TWJ, Schuster C, Smith ICP, Soher BJ, Tkáč I, Vigneron DB, Kauppinen RA. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014; 270:658-79. [PMID: 24568703 PMCID: PMC4263653 DOI: 10.1148/radiol.13130531] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.
Collapse
Affiliation(s)
- Gülin Öz
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jeffry R. Alger
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter B. Barker
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Robert Bartha
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alberto Bizzi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Chris Boesch
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Patrick J. Bolan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kevin M. Brindle
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Cristina Cudalbu
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alp Dinçer
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ulrike Dydak
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Uzay E. Emir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jens Frahm
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ramón Gilberto González
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stephan Gruber
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rolf Gruetter
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Rakesh K. Gupta
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Arend Heerschap
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Anke Henning
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Hoby P. Hetherington
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Franklyn A. Howe
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra S. Hüppi
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ralph E. Hurd
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Kejal Kantarci
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dennis W. J. Klomp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Roland Kreis
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Marijn J. Kruiskamp
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Martin O. Leach
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Alexander P. Lin
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Peter R. Luijten
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Małgorzata Marjańska
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew A. Maudsley
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Dieter J. Meyerhoff
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Carolyn E. Mountford
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Sarah J. Nelson
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - M. Necmettin Pamir
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Jullie W. Pan
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Andrew C. Peet
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Harish Poptani
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Stefan Posse
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Petra J. W. Pouwels
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Eva-Maria Ratai
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian D. Ross
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Tom W. J. Scheenen
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Christian Schuster
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ian C. P. Smith
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Brian J. Soher
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Ivan Tkáč
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | - Daniel B. Vigneron
- From the Center for Magnetic Resonance Research, University of Minnesota,
2021 6th St SE, Minneapolis, MN 55455 (G.O.)
| | | |
Collapse
|
19
|
Abstract
BACKGROUND AND PURPOSE To determine in vivo magnetic resonance spectroscopy (MRS) characteristics of intracranial glial tumours and to assess MRS reliability in glioma grading and discrimination between different histopathological types of tumours. MATERIAL AND METHODS Analysis of spectra of 26 patients with glioblastomas, 6 with fibrillary astrocytomas, 4 with anaplastic astrocytomas, 2 with pilocytic astrocytoma, 3 with oligodendrogliomas, 3 with anaplastic oligodendrogliomas and 17 control spectra taken from healthy hemispheres. RESULTS All tumours' metabolite ratios, except for Cho/Cr in fibrillary astrocytomas (p = 0.06), were statistically significantly different from the control. The tumours showed decreased Naa and Cr contents and a high Cho signal. The Lac-Lip signal was high in grade III astrocytomas and glioblastomas. Reports that Cho/Cr ratio increases with glioma's grade whereas Naa/Cr decreases were not confirmed. Anaplastic astrocytomas compared to grade II astrocytomas had a statistically significantly greater mI/Cr ratio (p = 0.02). In pilocytic astrocytomas the Naa/Cr value (2.58 ± 0.39) was greater, whilst the Cho/Naa ratio was lower (2.14 ± 0.64) than in the other astrocytomas. The specific feature of oligodendrogliomas was the presence of glutamate/glutamine peak Glx. However, this peak was absent in two out of three anaplastic oligodendrogliomas. Characteristically, the latter tumours had a high Lac-Lip signal. CONCLUSIONS MRS in vivo cannot be used as a reliable method for glioma grading. The method is useful in discrimination between WHO grade I and WHO grade II astrocytomas as well as oligodendrogliomas from other gliomas.
Collapse
|
20
|
Kumar V, Dwivedi DK, Jagannathan NR. High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR IN BIOMEDICINE 2014; 27:80-89. [PMID: 23828638 DOI: 10.1002/nbm.2979] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
High-resolution NMR spectroscopic studies of prostate tissue extracts, prostatic fluid, seminal fluid, serum and urine can be used for the detection of prostate cancer, based on the differences in their metabolic profiles. Useful diagnostic information is obtained by the detection or quantification of as many metabolites as possible and comparison with normal samples. Only a few studies have shown the potential of high-resolution in vitro NMR of prostate tissues. A survey of the literature has revealed that studies on body fluids, such as urine and serum, in relation to prostate cancer are rare. In addition, the potential of NMR of nuclei other than (1)H, such as (13)C and (31)P, has not been exploited fully. The metabolomic analysis of metabolites, detected by high-resolution NMR, may help to identify metabolites which could serve as useful biomarkers for prostate cancer detection. Such NMR-derived biomarkers would not only help in prostate cancer detection and in understanding the in vivo MRS metabolic profile, but also to investigate the biochemical and metabolic changes associated with cancer. Here, we review the published research work on body fluids in relation to prostate and prostate tissue extracts, and highlight the potential of such studies for future work.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
21
|
|
22
|
Yu L, Jiang C, Huang S, Gong X, Wang S, Shen P. Analysis of urinary metabolites for breast cancer patients receiving chemotherapy by CE-MS coupled with on-line concentration. Clin Biochem 2013; 46:1065-1073. [DOI: 10.1016/j.clinbiochem.2013.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/24/2022]
|
23
|
Abstract
Pediatric brain tumors are the most common solid tumor of childhood. This article focuses on the metabolic signature of common pediatric brain tumors using MR spectroscopic analyses.
Collapse
Affiliation(s)
- Lara A Brandão
- Clínica Felippe Mattoso, Barra Da Tijuca, Rio De Janeiro, Brazil.
| | | |
Collapse
|
24
|
Denkert C, Bucher E, Hilvo M, Salek R, Orešič M, Griffin J, Brockmöller S, Klauschen F, Loibl S, Barupal DK, Budczies J, Iljin K, Nekljudova V, Fiehn O. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med 2012; 4:37. [PMID: 22546809 PMCID: PMC3446265 DOI: 10.1186/gm336] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development.
Collapse
Affiliation(s)
- Carsten Denkert
- Institute of Pathology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mlynárik V, Cudalbu C, Clément V, Marino D, Radovanovic I, Gruetter R. In vivo metabolic profiling of glioma-initiating cells using proton magnetic resonance spectroscopy at 14.1 Tesla. NMR IN BIOMEDICINE 2012; 25:506-513. [PMID: 21796713 DOI: 10.1002/nbm.1763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
In the last decade, evidence has emerged indicating that the growth of a vast majority of tumors including gliomas is sustained by a subpopulation of cancer cells with stem cell properties called cancer initiating cells. These cells are able to initiate and propagate tumors and constitute only a fraction of all tumor cells. In the present study, we showed that intracerebral injection of cultured glioma-initiating cells into nude mice produced fast growing tumors showing necrosis and gadolinium enhancement in MR images, whereas gliomas produced by injecting freshly purified glioma-initiating cells grew slowly and showed no necrosis and very little gadolinium enhancement. Using proton localized spectroscopy at 14.1 Tesla, decreasing trends of N-acetylaspartate, glutamate and glucose concentrations and an increasing trend of glycine concentration were observed near the injection site after injecting cultured glioma-initiating cells. In contrast to the spectra of tumors grown from fresh cells, those from cultured cells showed intense peaks of lipids, increased absolute concentrations of glycine and choline-containing compounds, and decreased concentrations of glutamine, taurine and total creatine, when compared with a contralateral non-tumor-bearing brain tissue. A decrease in concentrations of N-acetylaspartate and γ-aminobutyrate was found in both tumor phenotypes after solid tumor formation. Further investigation is needed to determine the cause of the dissimilarities between the tumors grown from cultured glioma-initiating cells and those from freshly purified glioma-initiating cells, both derived from human glioblastomas.
Collapse
Affiliation(s)
- Vladimír Mlynárik
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Cao MD, Sitter B, Bathen TF, Bofin A, Lønning PE, Lundgren S, Gribbestad IS. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR IN BIOMEDICINE 2012; 25:369-78. [PMID: 21823183 DOI: 10.1002/nbm.1762] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 03/29/2011] [Accepted: 05/04/2011] [Indexed: 05/16/2023]
Abstract
PURPOSE This study aimed to evaluate whether MR metabolic profiling can be used for prediction of long-term survival and monitoring of treatment response in locally advanced breast cancer patients during neoadjuvant chemotherapy (NAC). METHODS High resolution magic angle spinning (HR MAS) MR spectra of pre- and post-treatment biopsies from 33 patients were acquired. Tissue concentrations of choline-containing metabolites (tCho), glycine and taurine were assessed using electronic reference to access in vivo concentration (ERETIC) of the signal and receiver operating characteristic (ROC) curves was used to define their potential to predict patient survival and treatment response. The metabolite profiles obtained by HR MAS spectroscopy were related to long-term survival and treatment response by genetic algorithm partial least squares discriminant analysis (GA PLS-DA). RESULTS Different pre-treatment MR metabolic profiles characterized by higher levels of tCho and lower levels of lactate were observed in patients with long-term survival (≥5 years, survivors) compared to patients who died of cancer recurrence (<5 years, non-survivors). A significant decrease in glycerophosphocholine (GPC) post-treatment was associated with long-term survival (p = 0.046) and partial response (p = 0.014) to NAC. Long-term survival was best predicted by GPC using ROC analyses (sens. 66.7%, spec. 62.5%), while taurine had the best predictive value of treatment response (sens. 72.7%, spec. 63.2%). GA PLS-DA multivariate classification models successfully discriminated between survivors and non-survivors, resulting in 82.7% and 90.2% cross-validation (CV) classification accuracy, pre- and post-treatment, respectively. Classification of treatment response using GA PLS-DA was not successful for this patient cohort. CONCLUSIONS Our results demonstrate that HR MAS MR metabolic profiles consisting of important metabolic characteristics of breast cancer tumors could potentially assist the classification and prediction of long-term survival in locally advanced breast cancer patients, in addition to being used as an adjunct for evaluation of treatment response to NAC.
Collapse
Affiliation(s)
- Maria D Cao
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7489, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
27
|
Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition. SCIENCE CHINA-LIFE SCIENCES 2011; 54:606-16. [DOI: 10.1007/s11427-011-4193-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
28
|
Faria A, Macedo Jr. F, Marsaioli A, Ferreira M, Cendes F. Classification of brain tumor extracts by high resolution ¹H MRS using partial least squares discriminant analysis. Braz J Med Biol Res 2011; 44:149-64. [DOI: 10.1590/s0100-879x2010007500146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 11/17/2010] [Indexed: 11/22/2022] Open
Affiliation(s)
- A.V. Faria
- Universidade Estadual de Campinas; The Johns Hopkins University, USA
| | - F.C. Macedo Jr.
- Universidade Estadual de Campinas, Brasil; Universidade Estadual de Londrina, Brasil
| | | | | | - F. Cendes
- Universidade Estadual de Campinas, Brasil
| |
Collapse
|
29
|
Lolli V, Tampieri D, Melançon D, Delpilar Cortes M. Imaging in primary central nervous system lymphoma. Neuroradiol J 2010; 23:680-9. [PMID: 24148721 DOI: 10.1177/197140091002300606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/17/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) accounts for approximately 3% of all primary CNS tumors. Congenital or acquired immunodeficiency is the only established risk factor for PCNSL. Rates decreased slightly in the mid-1990s, concordantly with the decreasing rates of AIDS. However, the incidence has been increasing in the elderly immunocompetent population, and this trend seems to be independent of improvements in diagnostic techniques, and of overall trends in the incidence of brain tumors and systemic lymphomas. This study presents our experience with the imaging features of PCNSL. Computed tomography (CT) and magnetic resonance imaging (MRI) findings were reviewed in a series of 38 cases of pathologically proven PCNSL. The incidence rate of PCNSL was higher in men than in women (58% versus 42%). Mean age at presentation was 63 years; 120 lesions were demonstrated in the 38 patients, with a 53% frequency of tumor multiplicity. Both CT and MR mainly showed solitary or multiple well-defined round or oval-shaped mass lesions, typically hyperdense on unenhanced CT scans, iso to hypointense on T2 MR weighted images. These lesions also showed an increased signal intensity on diffusion-weighted images. Virtually all lesions enhanced after intravenous administration of contrastmedium. On (1)H-magnetic resonance spectroscopy ((1)H-MRS) most lesions presented increased Cho/Cr, Cho/NAA and lactate/Cr ratios when compared to normal gray matter. No changes in the imaging presentation have occurred over the past two decades, apart from lesions now being smaller at diagnosis. Our imaging findings are in agreement with the existing literature data and with the reported increasing trend of multifocal tumors. Our epidemiologic results add value to the existing evidence of increasing incidence rates among the immunocompetent elderly population.
Collapse
Affiliation(s)
- V Lolli
- Institute of Diagnostic and Interventional Radiology, University of Turin; Turin, Italy -
| | | | | | | |
Collapse
|
30
|
Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M. pH optimization for a reliable quantification of brain tumor cell and tissue extracts with (1)H NMR: focus on choline-containing compounds and taurine. Anal Bioanal Chem 2010; 399:987-99. [PMID: 21069302 DOI: 10.1007/s00216-010-4321-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/03/2010] [Accepted: 10/10/2010] [Indexed: 12/23/2022]
Abstract
The aim of this study was to define the optimal pH for (1)H nuclear magnetic resonance (NMR) spectroscopy analysis of perchloric acid or methanol-chloroform-water extracts from brain tumor cells and tissues. The systematic study of the proton chemical shift variations as a function of pH of 13 brain metabolites in model solutions demonstrated that recording (1)H NMR spectra at pH 10 allowed resolving resonances that are overlapped at pH 7, especially in the 3.2-3.3 ppm choline-containing-compounds region. (1)H NMR analysis of extracts at pH 7 or 10 showed that quantitative measurements of lactate, alanine, glutamate, glutamine (Gln), creatine + phosphocreatine and myo-inositol (m-Ino) can be readily performed at both pHs. The concentrations of glycerophosphocholine, phosphocholine and choline that are crucial metabolites for tumor brain malignancy grading were accurately measured at pH 10 only. Indeed, the resonances of their trimethylammonium moieties are cleared of any overlapping signal, especially those of taurine (Tau) and phosphoethanolamine. The four non-ionizable Tau protons resonating as a singlet in a non-congested spectral region permits an easier and more accurate quantitation of this apoptosis marker at pH 10 than at pH 7 where the triplet at 3.43 ppm can be overlapped with the signals of glucose or have an intensity too low to be measured. Glycine concentration was determined indirectly at both pHs after subtracting the contribution of the overlapped signals of m-Ino at pH 7 or Gln at pH 10.
Collapse
Affiliation(s)
- O Robert
- UPS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Groupe de RMN Biomédicale, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Croitor Sava A, Martinez-Bisbal MC, Van Huffel S, Cerda JM, Sima DM, Celda B. Ex vivo high resolution magic angle spinning metabolic profiles describe intratumoral histopathological tissue properties in adult human gliomas. Magn Reson Med 2010; 65:320-8. [PMID: 20928877 DOI: 10.1002/mrm.22619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/05/2022]
Affiliation(s)
- A Croitor Sava
- Department of Electrical Engineering (ESAT), Division SCD, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
Chawla S, Oleaga L, Wang S, Krejza J, Wolf RL, Woo JH, O'Rourke DM, Judy KD, Grady MS, Melhem ER, Poptani H. Role of proton magnetic resonance spectroscopy in differentiating oligodendrogliomas from astrocytomas. J Neuroimaging 2010; 20:3-8. [PMID: 19021846 DOI: 10.1111/j.1552-6569.2008.00307.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Preoperative differentiation of astrocytomas from oligodendrogliomas is clinically important, as oligodendrogliomas are more sensitive to chemotherapy. The purpose of this study was to assess the role of proton magnetic resonance spectroscopy in distinguishing astrocytomas from oligodendrogliomas. METHODS Forty-six patients [astrocytomas (n= 17) and oligodendrogliomas (n= 29)] underwent magnetic resonance imaging and multi voxel proton magnetic resonance spectroscopic imaging before treatment. Peak areas for N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (mI), glutamate/glutamine (Glx), and lipids + lactate (Lip+Lac) were analyzed from voxels that exhibited hyperintensity on fluid-attenuated inversion recovery images and were normalized to Cr from each voxel. The average metabolite/Cr ratios from these voxels were then compared between astrocytomas and oligodendrogliomas. Receiver-operating curve analyses were used as measures of differentiation accuracy of metabolite ratios. A threshold value for a metabolite ratio was estimated by maximizing the sum of sensitivity and specificity. RESULTS A significant difference in mI/Cr was observed between astrocytomas and oligodendrogliomas (.50 +/- .18 vs. 0.66 +/- 0.20, P < .05). Using a threshold value of .56 for mI/Cr ratio, it was possible to differentiate oligodendrogliomas from astrocytomas with a sensitivity of 72.4% and specificity of 76.4%. CONCLUSION These results suggest that mI/Cr might aid in distinguishing oligodendrogliomas from astrocytomas.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Magnetic resonance microscopy contribution to interpret high-resolution magic angle spinning metabolomic data of human tumor tissue. J Biomed Biotechnol 2010; 2011. [PMID: 20871822 PMCID: PMC2943122 DOI: 10.1155/2011/763684] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/16/2010] [Accepted: 08/03/2010] [Indexed: 11/17/2022] Open
Abstract
HRMAS NMR is considered a valuable technique to obtain detailed metabolic profile of unprocessed tissues. To properly interpret the HRMAS metabolomic results, detailed information of the actual state of the sample inside the rotor is needed. MRM (Magnetic Resonance Microscopy) was applied for obtaining structural and spatially localized metabolic information of the samples inside the HRMAS rotors. The tissue was observed stuck to the rotor wall under the effect of HRMAS spinning. MRM spectroscopy showed a transference of metabolites from the tissue to the medium. The sample shape and the metabolite transfer after HRMAS indicated that tissue had undergone alterations and it can not be strictly considered as intact. This must be considered when HRMAS is used for metabolic tissue characterization, and it is expected to be highly dependent on the manipulation of the sample. The localized spectroscopic information of MRM reveals the biochemical compartmentalization on tissue samples hidden in the HRMAS spectrum.
Collapse
|
34
|
Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J, Gribbestad IS. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR IN BIOMEDICINE 2010; 23:424-31. [PMID: 20101607 DOI: 10.1002/nbm.1478] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/04/2009] [Accepted: 11/01/2009] [Indexed: 05/24/2023]
Abstract
Absolute quantitative measures of breast cancer tissue metabolites can increase our understanding of biological processes. Electronic REference To access In vivo Concentrations (ERETIC) was applied to high resolution magic angle spinning MR spectroscopy (HR MAS MRS) to quantify metabolites in intact breast cancer samples. The ERETIC signal was calibrated using solutions of creatine and TSP. The largest relative errors of the ERETIC method were 8.4%, compared to 4.4% for the HR MAS MRS method using TSP as a standard. The same MR experimental procedure was applied to intact tissue samples from breast cancer patients with clinically defined good (n = 13) and poor (n = 16) prognosis. All samples were examined by histopathology for relative content of different tissue types and proliferation index (MIB-1) after MR analysis. The resulting spectra were analyzed by quantification of tissue metabolites (β-glucose, lactate, glycine, myo-inositol, taurine, glycerophosphocholine, phosphocholine, choline and creatine), by peak area ratios and by principal component analysis. We found a trend toward lower concentrations of glycine in patients with good prognosis (1.1 µmol/g) compared to patients with poor prognosis (1.9 µmol/g, p = 0.067). Tissue metabolite concentrations (except for β-glucose) were also found to correlate to the fraction of tumor, connective, fat or glandular tissue by Pearson correlation analysis. Tissue concentrations of β-glucose correlated to proliferation index (MIB-1) with a negative correlation factor (-0.45, p = 0.015), consistent with increased energy demand in proliferating tumor cells. By analyzing several metabolites simultaneously, either in ratios or by metabolic profiles analyzed by PCA, we found that tissue metabolites correlate to patients' prognoses and health status five years after surgery. This study shows that the diagnostic and prognostic potential in MR metabolite analysis of breast cancer tissue is greater when combining multiple metabolites (MR Metabolomics).
Collapse
Affiliation(s)
- Beathe Sitter
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
35
|
Wright AJ, Fellows GA, Griffiths JR, Wilson M, Bell BA, Howe FA. Ex-vivo HRMAS of adult brain tumours: metabolite quantification and assignment of tumour biomarkers. Mol Cancer 2010; 9:66. [PMID: 20331867 PMCID: PMC2858738 DOI: 10.1186/1476-4598-9-66] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/23/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High-resolution magic angle spinning (HRMAS) NMR spectroscopy allows detailed metabolic analysis of whole biopsy samples for investigating tumour biology and tumour classification. Accurate biochemical assignment of small molecule metabolites that are "NMR visible" will improve our interpretation of HRMAS data and the translation of NMR tumour biomarkers to in-vivo studies. RESULTS 1D and 2D 1H HRMAS NMR was used to determine that 29 small molecule metabolites, along with 8 macromolecule signals, account for the majority of the HRMAS spectrum of the main types of brain tumour (astrocytoma grade II, grade III gliomas, glioblastomas, metastases, meningiomas and also lymphomas). Differences in concentration of 20 of these metabolites were statistically significant between these brain tumour types. During the course of an extended 2D data acquisition the HRMAS technique itself affects sample analysis: glycine, glutathione and glycerophosphocholine all showed small concentration changes; analysis of the sample after HRMAS indicated structural damage that may affect subsequent histopathological analysis. CONCLUSIONS A number of small molecule metabolites have been identified as potential biomarkers of tumour type that may enable development of more selective in-vivo 1H NMR acquisition methods for diagnosis and prognosis of brain tumours.
Collapse
Affiliation(s)
- Alan J Wright
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| | - Greg A Fellows
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | | | - M Wilson
- Cancer Sciences, University of Birmingham, Birmingham, UK
- Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - B Anthony Bell
- Academic Neurosurgery Unit, St George's, University of London, London, UK
| | - Franklyn A Howe
- Cardiac and Vascular Sciences, St George's, University of London, London, UK
| |
Collapse
|
36
|
Righi V, Andronesi OC, Mintzopoulos D, Black PM, Tzika AA. High-resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol 2010; 36:301-6. [PMID: 20043062 PMCID: PMC3715372 DOI: 10.3892/ijo_00000500] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The non-essential amino acid neurotransmitter glycine (Gly) may serve as a biomarker for brain tumors. Using 36 biopsies from patients with brain tumors [12 glioblastoma multiforme (GBM); 10 low-grade (LG), including 7 schwannoma and 3 pylocytic astrocytoma; 7 meningioma (MN); 7 brain metastases (MT), including 3 adenocarcinoma and 4 breast cancer] and 9 control biopsies from patients undergoing surgery for epilepsy, we tested the hypothesis that the presence of glycine may distinguish among these brain tumor types. Using high-resolution magic angle spinning (HRMAS) 1H magnetic resonance spectroscopy (MRS), we determined a theoretically optimum echo time (TE) of 50 ms for distinguishing Gly signals from overlapping myo-inositol (Myo) signals and tested our methodology in phantom and biopsy specimens. Quantitative analysis revealed higher levels of Gly in tumor biopsies (all combined) relative to controls; Gly levels were significantly elevated in LG, MT and GBM biopsies (P≤0.05). Residual Myo levels were elevated in LG and MT and reduced in MN and GBM (P<0.05 vs. control levels). We observed higher levels of Gly in GBM as compared to LG tumors (P=0.05). Meanwhile, although Gly levels in GBM and MT did not differ significantly from each other, the Gly:Myo ratio did distinguish GBM from MT (P<0.003) and from all other groups, a distinction that has not been adequately made previously. We conclude from these findings that Gly can serve as a biomarker for brain tumors and that the Gly:Myo ratio may be a useful index for brain tumor classification.
Collapse
Affiliation(s)
- Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
37
|
Colon A, Hofman P, Ossenblok P, Jansen J, ter Beek L, Berting R, Stam C, Boon P. MRS-lateralisation index in patients with epilepsy and focal cortical dysplasia or a MEG-focus using bilateral single voxels. Epilepsy Res 2010; 89:148-53. [DOI: 10.1016/j.eplepsyres.2009.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 11/07/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022]
|
38
|
Hu J, Feng W, Hua J, Jiang Q, Xuan Y, Li T, Haacke EM. A high spatial resolution in vivo 1H magnetic resonance spectroscopic imaging technique for the human breast at 3 T. Med Phys 2010; 36:4870-7. [PMID: 19994494 DOI: 10.1118/1.3213087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The technical challenges that have prevented routine proton magnetic resonance spectroscopic imaging (1H MRSI) examinations of the breast include insufficient spatial resolution, increased difficulties in shimming compared to the brain, and strong lipid contamination at short echo time (TE) at 1.5 T. The authors investigated the feasibility of high spatial resolution 1H MRSI of human breast cancer in a clinical setting at 3 T. METHODS Ten patient studies (eight cancers and two benign lesions) were performed in a 3 T whole-body clinical imager using a pulse sequence consisting of optional outer volume presaturation, optional CHESS pulse for lipid suppression, CHESS pulse for water suppression, and standard 2D/3D PRESS pulse sequence with an elliptical weighted k-space sampling scheme. RESULTS All ten studies were technically successful. The spectral quality was acceptable for all cases even the one with a 65 Hz width of water peak at half height. Choline (Cho) signals were clearly visible in malignant lesion areas, while there was no detectable Cho in normal appearing breast or in benign lesions. It was also observed that the distribution of Cho signal can be nonuniform across MRI demonstrated lesions. CONCLUSIONS To the author's knowledge, this is the first 2D/3D MRSI study of human breast cancer with short TE (less than 135 ms) at 3 T and the highest spatial resolution (up to 0.25 cm3) to date. In conclusion, the authors have presented a robust technique for high spatial resolution in vivo 1H MRSI of human breast cancer that uses the combined advantages of high field, short TE, multivoxel, and high spatial resolution itself to overcome the major technical challenges and illustrated its potential for routine clinical examination as well as advantages over single-voxel techniques in studying metabolite heterogeneity.
Collapse
Affiliation(s)
- Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pfisterer WK, Nieman RA, Scheck AC, Coons SW, Spetzler RF, Preul MC. Using ex vivo proton magnetic resonance spectroscopy to reveal associations between biochemical and biological features of meningiomas. Neurosurg Focus 2010; 28:E12. [DOI: 10.3171/2009.11.focus09216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The goal in this study was to determine if proton (1H) MR spectroscopy can differentiate meningioma grade and is associated with interpretations of biological behavior; the study was performed using ex vivo high-resolution spectra indicating metabolic characteristics.
Methods
Sixty-eight resected tissue samples of meningiomas were examined using ex vivo 1H MR spectroscopy. Of these meningiomas, 46 were WHO Grade I, 14 were WHO Grade II, and 8 were WHO Grade III. Fifty-nine were primary meningiomas and 9 were recurrences. Invasion of adjacent tissue (dura mater, bone, venous sinus, brain) was found in 32 cases. Thirty-nine meningiomas did not rapidly recur (as defined by expansion on MR imaging within a 5-year follow-up period), whereas rapid recurrence was confirmed in 24 meningiomas, and follow-up status was unknown in 5 cases.
Results
The absolute concentrations of total alanine and creatine were decreased in high-grade compared with low-grade meningiomas, as was the ratio of glycine to alanine (all p < 0.05). Additionally, alanine and the glycine/alanine ratio distinguished between primary and recurrent meningiomas (all p < 0.05). Finally, the absolute concentrations of alanine and creatine, and the glycine/alanine and choline/glutamate ratios were associated with rapid recurrence (p < 0.05).
Conclusions
. These data indicate that meningioma tissue can be characterized by metabolic parameters that are not typically identified by histopathological analysis alone. Creatine, glycine, and alanine may be used as markers of meningioma grade, recurrence, and the likelihood of rapid recurrence. These data validate a previous study of a separate group of Grade I meningiomas.
Collapse
Affiliation(s)
- Wolfgang K. Pfisterer
- 1Divisions of Neurological Surgery,
- 5Neurosurgical Department, Donauspital im Sozialmedizinisches Zentrum-Ost, Vienna, Austria
| | - Ronald A. Nieman
- 4Nuclear Magnetic Resonance Core Facility, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona; and
| | | | - Stephen W. Coons
- 3Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix
| | | | | |
Collapse
|
40
|
Kallenberg K, Bock HC, Helms G, Jung K, Wrede A, Buhk JH, Giese A, Frahm J, Strik H, Dechent P, Knauth M. Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. Radiology 2009; 253:805-12. [PMID: 19789222 DOI: 10.1148/radiol.2533071654] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use localized in vivo proton magnetic resonance (MR) spectroscopy of the contralateral hemisphere in patients with glioblastoma multiforme (GBM) to detect alterations in cerebral metabolites as potential markers of infiltrating GBM cells. MATERIALS AND METHODS The study was approved by the ethics committee, and written informed consent was obtained. Twenty-two patients with newly diagnosed and untreated GBM underwent in vivo single-voxel short echo time proton MR spectroscopy with a 3-T MR imaging system. Absolute metabolite concentrations in the hemisphere contralateral to the tumor were compared with data from five patients with low-grade gliomas (LGGs) and from a group of 14 age-matched control subjects by using analysis of variance and subsequent t tests or corresponding nonparametric tests. RESULTS In the contralateral hemisphere, MR spectroscopy revealed increased concentrations of myo-inositol and glutamine. Mean myo-inositol levels were significantly increased in patients with GBM (3.6 mmol/L +/- 0.8 [standard deviation]) relative to levels in control subjects (3.1 mmol/L +/- 0.6; P = .03) and tended to be higher relative to levels in patients with LGG (2.7 mmol/L +/- 0.8; P = .09). Mean glutamine concentrations in patients with GBM (3.4 mmol/L +/- 0.9) differed significantly from those in control subjects (2.7 mmol/L +/- 0.7; P = .01); mean concentrations in patients with GBM differed from those in patients with LGG (2.4 mmol/L +/- 0.5; P = .01). There were no significant differences between data in patients with LGG and in control subjects. CONCLUSION Increased concentrations of myo-inositol and glutamine in the contralateral normal-appearing white matter of GBM patients are consistent with mild astrocytosis and suggest the detectability of early neoplastic infiltration by using proton MR spectroscopy in vivo.
Collapse
Affiliation(s)
- Kai Kallenberg
- MR-Research in Neurology and Psychiatry, Department of Neuroradiology, Universitymedicine, Georg-August-Universität Göttingen, Robert-Koch-Strasse 40, 37099 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Farias G, Santos M, López V. Making decisions on brain tumor diagnosis by soft computing techniques. Soft comput 2009. [DOI: 10.1007/s00500-009-0495-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Righi V, Roda JM, Paz J, Mucci A, Tugnoli V, Rodriguez-Tarduchy G, Barrios L, Schenetti L, Cerdán S, García-Martín ML. 1H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR IN BIOMEDICINE 2009; 22:629-637. [PMID: 19322812 DOI: 10.1002/nbm.1377] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigate the profile of choline metabolites and the expression of the genes of the Kennedy pathway in biopsies of human gliomas (n = 23) using (1)H High Resolution Magic Angle Spinning (HR-MAS, 11.7 Tesla, 277 K, 4000 Hz) and individual genetic assays. (1)H HR-MAS spectra allowed the resolution and relative quantification by the LCModel of the resonances from choline (Cho), phosphocholine (PC) and glycerophosphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo (1)H NMR spectroscopy. All glioma biopsies depicted a prominent tCho peak. However, the relative contributions of Cho, PC, and GPC to tCho were different for low and high grade gliomas. Whereas GPC is the main component in low grade gliomas, the high grade gliomas show a dominant contribution of PC. This circumstance allowed the discrimination of high and low grade gliomas by (1)H HR-MAS, a result that could not be obtained using the tCho/Cr ratio commonly used by in vivo (1)H NMR spectroscopy. The expression of the genes involved in choline metabolism has been investigated in the same biopsies. High grade gliomas depict an upregulation of the beta gene of choline kinase and phospholipase C, as well as a downregulation of the cytidyltransferase B gene, the balance of these being consistent with the accumulation of PC. In the low grade gliomas, phospholipase A(1) and lysophospholipase are upregulated and phospholipase D is downregulated, supporting the accumulation of GPC. The present findings offer a promising procedure that will potentially help to accurately grade glioma tumors using (1)H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low grade gliomas.
Collapse
Affiliation(s)
- Valeria Righi
- Instituto de Investigationes Biomédicas Alberto Sols, CSIC/UAM, c/ Arturo Duperier 4, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer 2009; 8:6. [PMID: 19208232 PMCID: PMC2651110 DOI: 10.1186/1476-4598-8-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/10/2009] [Indexed: 11/10/2022] Open
Abstract
Background Brain and nervous system tumours are the most common solid cancers in children. Molecular characterisation of these tumours is important for providing novel biomarkers of disease and identifying molecular pathways which may provide putative targets for new therapies. 1H magic angle spinning NMR spectroscopy (1H HR-MAS) is a powerful tool for determining metabolite profiles from small pieces of intact tissue and could potentially provide important molecular information. Methods Forty tissue samples from 29 children with glial and primitive neuro-ectodermal tumours were analysed using HR-MAS (600 MHz Varian gHX nanoprobe). Tumour spectra were fitted to a library of individual metabolite spectra to provide metabolite values. These values were then used in a two tailed t-test and multi-variate analysis employing a principal component analysis and a linear discriminant analysis. Classification accuracy was estimated using a leave-one-out analysis and B632+ bootstrapping. Results Glial tumours had significantly (two tailed t-test p < 0.05) higher creatine and glutamine and lower taurine, phosphoethanolamine, phosphorylcholine and choline compared with primitive neuro-ectodermal tumours. Classification accuracy was 90%. Medulloblastomas (n = 9) had significantly (two tailed t-test p < 0.05) higher creatine, glutamine, phosphorylcholine, glycine and scyllo-inositol than neuroblastomas (n = 7), classification accuracy was 94%. Supratentorial primitive neuro-ectodermal tumours had metabolite profiles in keeping with other primitive neuro-ectodermal tumours whilst ependymomas (n = 2) had metabolite profiles intermediate between pilocytic astrocytomas (n = 10) and primitive neuro-ectodermal tumours. Conclusion HR-MAS identified key differences in the metabolite profiles of childhood brain and nervous system improving the molecular characterisation of these tumours. Further investigation of the underlying molecular pathways is required to assess their potential as targets for new agents.
Collapse
Affiliation(s)
- Martin Wilson
- Cancer Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Role of diffusion tensor imaging metrics and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of cystic intracranial mass lesions. Magn Reson Imaging 2009; 27:198-206. [DOI: 10.1016/j.mri.2008.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/13/2008] [Accepted: 06/17/2008] [Indexed: 12/14/2022]
|
45
|
Hattingen E, Lanfermann H, Quick J, Franz K, Zanella FE, Pilatus U. 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 22:33-41. [PMID: 18830648 DOI: 10.1007/s10334-008-0145-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/26/2022]
Abstract
OBJECT To investigate glycine (Gly) concentrations in low- and high-grade gliomas based on (1)H MR spectroscopic imaging (MRSI) with short and long echo time (TE). Myoinositol (MI) and Gly appear at the same resonance frequency of 3.56 ppm, but due to strong coupling the MI signal dephases more rapidly. Therefore, their contribution to the 3.56 ppm signal should be distinguishable comparing MRSI data acquired at short and long TE. MATERIALS AND METHODS (1)H MRSI (TE = 30 and 144 ms) was performed at 3 T in 29 patients with histopathological confirmed World Health Organization (WHO) grade II-IV gliomas and in FIVE healthy subjects. All spectra from the gliomas revealed increase of the 3.56 ppm resonance in the short TE spectra. Signal intensities of Gly and MI were differentiated either by analysing the short to long TE ratio of the resonance or by performing a weighted difference. Gly concentrations were compared between high-grade (WHO III-IV) and low-grade gliomas. RESULTS High-grade gliomas showed significantly higher Gly concentrations compared to low-grade gliomas. CONCLUSION Appropriate data processing of short and long TE (1)H MRSI provides a tool to distinguish and to quantify Gly and MI concentrations in gliomas. As Gly seems to be a marker of malignancy, more dedicated spectroscopic methods to differentiate these metabolites are justified.
Collapse
Affiliation(s)
- Elke Hattingen
- Institute of Neuroradiology, University of Frankfurt/Main, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 2008; 91:69-81. [PMID: 18810326 DOI: 10.1007/s11060-008-9685-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Purpose Glioblastoma Multiforme (GBM) is the most common and lethal primary brain tumor in adults. The goal of this study was to test the predictive value of MR parameters in relation to the survival of patients with newly diagnosed GBM who were scanned prior to receiving adjuvant radiation and chemotherapy. Methods The study population comprised 68 patients who had surgical resection and were to be treated with fractionated external beam radiation therapy and chemotherapy. Imaging scans included anatomical MRI, diffusion and perfusion weighted imaging and (1)H MRSI. The MR data were acquired 3-5 weeks after surgery and approximately 1 week before treatment with radiation therapy. The diffusion, perfusion and spectroscopic parameter values were quantified and subjected to proportional hazards analysis that was adjusted for age and scanner field strength. Results The patients with larger lesion burden based upon volumes of anatomic lesions, volume of CNI2 (number of voxels within the T2 lesion having choline to NAA index >2), volume of CBV3 (number of pixels within the T2 lesion having relative cerebral blood volume >3), and volume of nADC1.5 (number of pixels within the T2 lesion having normalized apparent diffusion coefficient <1.5) had a higher risk for poor outcome. High intensities of combined measures of lactate and lipid in the T2 and CNI2 regions were also associated with poor survival. Conclusions Our study indicated that several pre-treatment anatomic, physiological and metabolic MR parameters are predictive of survival. This information may be important for stratifying patients to specific treatment protocols and for planning focal therapy.
Collapse
|
47
|
Abstract
Above discussed aspects, considerations and technical possibilities, as well as methodological requirements, guidelines and clinical applications of proton spectroscopy strengthens our belief in the power of this method used in neurooncological diagnosis.
Collapse
Affiliation(s)
- J. Walecki
- The Medical Centre of Postgraduate Education; Warsaw, Poland
| | - E. Ślubowska
- Faculty of Mechatronics, Warsaw University of Technology; Warsaw, Poland
| |
Collapse
|
48
|
Sankar T, Assina R, Karis JP, Theodore N, Preul MC. Neurosurgical implications of mannitol accumulation within a meningioma and its peritumoral region demonstrated by magnetic resonance spectroscopy: case report. J Neurosurg 2008; 108:1010-3. [PMID: 18447720 DOI: 10.3171/jns/2008/108/5/1010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mannitol is widely considered the hyperosmolar therapy of choice in routine neurosurgical practice for the reduction of intracranial pressure (ICP). The authors present a unique case of a patient with a large meningioma treated with mannitol, in which mannitol accumulation within the tumor and its surrounding parenchyma was shown using in vivo magnetic resonance spectroscopy (MRS). This rare appearance of mannitol on MRS was characterized by a wide-based peak at 3.8 ppm, which remained detectable several hours after the last dose. These findings provide the first in vivo evidence in support of the prevailing theory that mannitol leakage into the peritumoral edematous region may contribute to rebound increases in ICP and suggest that this phenomenon has the potential to occur in extraaxial tumors. Judicious use of mannitol in the setting of elevated ICP due to tumor may be indicated to avoid potentially deleterious side effects caused by its accumulation.
Collapse
Affiliation(s)
- Tejas Sankar
- Neurosurgery Research Laboratory, Division of Neurological Surgery, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | | | | | | | | |
Collapse
|
49
|
Pichler BJ, Wehrl HF, Judenhofer MS. Latest Advances in Molecular Imaging Instrumentation. J Nucl Med 2008; 49 Suppl 2:5S-23S. [PMID: 18523063 DOI: 10.2967/jnumed.108.045880] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bernd J Pichler
- Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Radiology, Eberhard Karls University Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
50
|
Schneider JF, Confort-Gouny S, Viola A, Le Fur Y, Viout P, Bennathan M, Chapon F, Figarella-Branger D, Cozzone P, Girard N. Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short echo-time 1H-MR spectroscopy. J Magn Reson Imaging 2008; 26:1390-8. [PMID: 17968955 DOI: 10.1002/jmri.21185] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To assess the combined value of diffusion-weighted imaging (DWI) and proton magnetic resonance spectroscopy (1H-MRS) in differentiating medulloblastoma, ependymoma, pilocytic astrocytoma, and infiltrating glioma in a pediatric population. MATERIALS AND METHODS A total of 17 children with untreated posterior fossa tumors (seven medulloblastoma, four infiltrating glioma, two ependymoma, and four pilocytic astrocytoma), were investigated with conventional MRI, DWI, and MRS using a single-voxel technique. Within the nonnecrotic tumor core, apparent diffusion coefficient (ADC) values using a standardized region of interest (ROI) were retrieved. Quantification of water signal and analysis of metabolite signals from MRS measurements in the same tumorous area were reviewed using multivariant linear discriminant analysis. RESULTS Combination of ADC values and metabolites, which were normalized using water as an internal standard, allowed discrimination between the four tumor groups with a likelihood below 1 x 10(-9). Positive predictive value was 1 in all cases. Tumors could not be discriminated when using metabolite ratios or ADC values alone, nor could they be differentiated using creatine (Cr) as an internal reference even in combination with ADC values. CONCLUSION Linear discriminant analysis using DWI and MRS using water as internal reference, fully discriminates the four most frequent posterior fossa tumors in children.
Collapse
Affiliation(s)
- J F Schneider
- Department of Pediatric Radiology, University Children's Hospital Universitäts Kinderspital beider Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|