1
|
Tesfai AS, Fischer J, Özen AC, Eppenberger P, Oehrstroem L, Rühli F, Ludwig U, Bock M. Multi-parameter Analytical Method for B1 and SNR Analysis (MAMBA): An open source RF coil design tool. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106825. [PMID: 32947127 DOI: 10.1016/j.jmr.2020.106825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In Magnetic Resonance Imaging (MRI), radio frequency (RF) coils of different forms and shapes are used to maximize signal-to-noise ratio (SNR). RF coils are designed for clinical applications and have dimensions comparable with the target body part to be imaged, and they perform best when loaded by human tissue majority of which have conductivity values higher than 0.5 S/m. However, they are not properly tuned and matched for samples having low conductivity such as solid samples with low water content. Moreover, for samples with low filling factor and low conductivity, the noise in MRI is dominated by RF coil losses. In this case, RF coil design can be optimized to improve image SNR. Here, a new software tool (Multi-parameter Analytical Method for B1 and SNR Analysis) MAMBA is presented to design and compare volume coils of birdcage, solenoid, and loop-gap design for these samples. The input parameters of the tool are the sample properties, the coil design and the hardware properties, of which a relative SNR is determined. For that, a figure of merit is calculated from the coil sensitivity, applied resonant frequency and the resistive losses of sample, coil and capacitive components. The tool was tested in an ancient Egyptian mummy head which represents an extreme case of MRI with short T2*. Two optimized birdcage coils were designed using MAMBA, constructed and compared to a commercial transmit receive head coil. Calculated relative SNR values are in good agreement with the measurements.
Collapse
Affiliation(s)
- Agazi Samuel Tesfai
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Johannes Fischer
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ali Caglar Özen
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Eppenberger
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Lena Oehrstroem
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Frank Rühli
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, Switzerland
| | - Ute Ludwig
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Abstract
Non-invasive external magnetic resonance imaging (MRI) of large vessel atherosclerosis is a robust and promising imaging modality that can be applied for the evaluation of the atherosclerotic process in large vessels. However, it requires expertise for setup and time for data acquisition and analysis. Intravascular MRI is a promising tool, but its use remains at the pre-clinical stage within selected research groups. In this review, the current status and future role of intravascular MRI for atherosclerotic plaque characterization are summarized, along with important challenges which will be necessary to overcome prior to the wide adoption of this technique.
Collapse
Affiliation(s)
- João L Cavalcante
- Department of Medicine, Division of Cardiology, UPMC Heart & Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Larose
- Faculté de médecine, Université Laval, Quebec, Quebec, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, 2725 chemin Sainte-Foy, Quebec, Quebec, G1V 4G5, Canada.
| |
Collapse
|
3
|
Venkateswaran M, Unal O, Hurley S, Samsonov A, Wang P, Fain SB, Kurpad KN. Modeling Endovascular MRI Coil Coupling With Transmit RF Excitation. IEEE Trans Biomed Eng 2016; 64:70-77. [PMID: 26960218 DOI: 10.1109/tbme.2016.2538279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. METHODS Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation, and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1 + fields and induced currents and voltages. Our models are validated using the Bloch-Siegert B1 + mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization, and high-resolution endovascular imaging. RESULTS Validation shows good agreement at 24-, 28-, and 34-μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates tradeoff in coil performance metrics when varying number of coil turns. Tracking, imaging, and wireless marker multimode coil features and their integration is demonstrated in a pig study. CONCLUSION Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention, and an animal imaging experiment. SIGNIFICANCE Our modular, adaptable, and computationally efficient modeling approach enables rapid comparison, selection, and optimization of inductively coupled coils for MRI-guided interventions.
Collapse
|
4
|
Tümer M, Sarioglu B, Mutlu S, Ulgen Y, Yalcinkaya A, Ozturk C. Using a low-amplitude RF pulse at echo time (LARFET) for device localization in MRI. Med Biol Eng Comput 2014; 52:885-94. [PMID: 25173518 DOI: 10.1007/s11517-014-1184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
We describe a new method for frequency down-conversion of MR signals acquired with the radio-frequency projections method for device localization. A low-amplitude, off-center RF pulse applied simultaneously with the echo signal is utilized as the reference for frequency down-conversion. Because of the low-amplitude and large offset from the Larmor frequency, the RF pulse minimally interfered with magnetic resonance of protons. We conducted an experiment with the coil placed at different positions to verify this concept. The down-converted signal was transformed into optical signal and transmitted via fiber-optic cable to a receiver unit placed outside the scanner room. The position of the coil could then be determined by the frequency analysis of this down-converted signal and superimposed on previously acquired MR images for comparison. Because of minimal positional errors (≤ 0.8 mm), this new device localization method may be adequate for most interventional MRI applications.
Collapse
Affiliation(s)
- Murat Tümer
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey,
| | | | | | | | | | | |
Collapse
|
5
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Interventional device visualization with toroidal transceiver and optically coupled current sensor for radiofrequency safety monitoring. Magn Reson Med 2014; 73:1315-27. [PMID: 24691876 DOI: 10.1002/mrm.25187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE The development of catheters and guidewires that are safe from radiofrequency (RF) -induced heating and clearly visible against background tissue is a major challenge in interventional MRI. An interventional imaging approach using a toroidal transmit-receive (transceive) coil is presented. This toroidal transceiver allows controlled, low levels of RF current to flow in the catheter/guidewire for visualization, and can be used with conductive interventional devices that have a localized low-impedance tip contact. METHODS Toroidal transceivers were built, and phantom experiments were performed to quantify transmit power levels required for device visibility and to detect heating hazards. Imaging experiments in a pig cadaver tested the extendibility to higher field strength and nonphantom settings. A photonically powered optically coupled toroidal current sensor for monitoring induced RF currents was built, calibrated, and tested using an independent image-based current estimation method. RESULTS Results indicate that high signal-to-noise ratio visualization is achievable using milliwatts of transmit power-power levels orders of magnitude lower than levels that induce measurable heating in phantom tests. Agreement between image-based current estimates and RF current sensor measurements validates sensor accuracy. CONCLUSION The toroidal transceiver, integrated with power and current sensing, could offer a promising platform for safe and effective interventional device visualization.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
6
|
Syms RRA, Young IR, Ahmad MM, Taylor-Robinson SD, Rea M. Magneto-inductive catheter receiver for magnetic resonance imaging. IEEE Trans Biomed Eng 2013; 60:2421-31. [PMID: 23591471 DOI: 10.1109/tbme.2013.2258020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A catheter-based RF receiver for internal magnetic resonance imaging is demonstrated. The device consists of a double-sided thin-film circuit, wrapped around a hollow catheter and sealed in place with heat-shrink tubing. Signals are detected using a resonant LC circuit at the catheter tip and transmitted along the catheter using an array of coupled LC circuits arranged as a magneto-inductive waveguide, a form of low frequency metamaterial. Coupling to a conventional RF system is accomplished using a demountable inductive transducer. Protection against external B 1 and E fields is obtained by using figure-of-eight elements with an electrical length shorter than that of an immersed dipole. The system is primarily designed for biliary imaging, can pass the biopsy channel of a side-opening duodenoscope, and is guidewire-compatible, potentially allowing clinicians to implement MR image guided procedures without changing their standard practice. Decoupling against B 1 and E fields is verified, and in vitro (1)H magnetic resonance imaging with submillimeter resolution is demonstrated at 1.5 T using phantoms.
Collapse
Affiliation(s)
- Richard R A Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
7
|
Qin L, Schmidt EJ, Tse ZTH, Santos J, Hoge WS, Tempany-Afdhal C, Butts-Pauly K, Dumoulin CL. Prospective motion correction using tracking coils. Magn Reson Med 2013; 69:749-59. [PMID: 22565377 PMCID: PMC3416927 DOI: 10.1002/mrm.24310] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/31/2012] [Accepted: 04/04/2012] [Indexed: 11/10/2022]
Abstract
Intracavity imaging coils provide higher signal-to-noise than surface coils and have the potential to provide higher spatial resolution in shorter acquisition times. However, images from these coils suffer from physiologically induced motion artifacts, as both the anatomy and the coils move during image acquisition. We developed prospective motion-correction techniques for intracavity imaging using an array of tracking coils. The system had <50 ms latency between tracking and imaging, so that the images from the intracavity coil were acquired in a frame of reference defined by the tracking array rather than by the system's gradient coils. Two-dimensional gradient-recalled and three-dimensional electrocardiogram-gated inversion-recovery-fast-gradient-echo sequences were tested with prospective motion correction using ex vivo hearts placed on a moving platform simulating both respiratory and cardiac motion. Human abdominal tests were subsequently conducted. The tracking array provided a positional accuracy of 0.7 ± 0.5 mm, 0.6 ± 0.4 mm, and 0.1 ± 0.1 mm along the X, Y, and Z directions at a rate of 20 frames-per-second. The ex vivo and human experiments showed significant image quality improvements for both in-plane and through-plane motion correction, which although not performed in intracavity imaging, demonstrates the feasibility of implementing such a motion-correction system in a future design of combined tracking and intracavity coil.
Collapse
Affiliation(s)
- Lei Qin
- Department of Radiology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Soloperto G, Casciaro S. Progress in atherosclerotic plaque imaging. World J Radiol 2012; 4:353-71. [PMID: 22937215 PMCID: PMC3430733 DOI: 10.4329/wjr.v4.i8.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods.
Collapse
|
9
|
Qian D, Bottomley PA. High-resolution intravascular magnetic resonance quantification of atherosclerotic plaque at 3T. J Cardiovasc Magn Reson 2012; 14:20. [PMID: 22448884 PMCID: PMC3340302 DOI: 10.1186/1532-429x-14-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thickness of fibrous caps (FCT) of atherosclerotic lesions is a critical factor affecting plaque vulnerability to rupture. This study tests whether 3 Tesla high-resolution intravascular cardiovascular magnetic resonance (CMR) employing tiny loopless detectors can identify lesions and accurately measure FCT in human arterial specimens, and whether such an approach is feasible in vivo using animal models. METHODS Receive-only 2.2 mm and 0.8 mm diameter intravascular loopless CMR detectors were fabricated for a clinical 3 Tesla MR scanner, and the absolute signal-to-noise ratio determined. The detectors were applied in a two-step protocol comprised of CMR angiography to identify atherosclerotic lesions, followed by high-resolution CMR to characterize FCT, lesion size, and/or vessel wall thickness. The protocol was applied in fresh human iliac and carotid artery specimens in a human-equivalent saline bath. Mean FCT measured by 80 μm intravascular CMR was compared with histology of the same sections. In vivo studies compared aortic wall thickness and plaque size in healthy and hyperlipidemic rabbit models, with post-mortem histology. RESULTS Histology confirmed plaques in human specimens, with calcifications appearing as signal voids. Mean FCT agreed with histological measurements within 13% on average (correlation coefficient, R = 0.98; Bland-Altman analysis, -1.3 ± 68.9 μm). In vivo aortic wall and plaque size measured by 80 μm intravascular CMR agreed with histology. CONCLUSION Intravascular 3T CMR with loopless detectors can both locate atherosclerotic lesions, and accurately measure FCT at high-resolution in a strategy that appears feasible in vivo. The approach shows promise for quantifying vulnerable plaque for evaluating experimental therapies.
Collapse
Affiliation(s)
- Di Qian
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Division of MR Research, Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, 600 N Wolfe St, Park 310, Baltimore, MD, USA
| |
Collapse
|
10
|
Gu H, Zhang F, Meng Y, Qiu B, Yang X. Development of a 0.014-in., anti-solenoid loop MR imaging guidewire for intravascular 3.0-T MR imaging. Magn Reson Imaging 2011; 29:1002-6. [PMID: 21705168 DOI: 10.1016/j.mri.2011.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aimed to develop a 0.014-in., anti-solenoid loop (ASL) magnetic resonance imaging guidewire (MRIG) for intravascular 3.0-T MR imaging. MATERIALS AND METHODS We first designed the ASL MRIG, which was made of a coaxial cable with its extended inner conductor and outer conductor connected to two micro-anti-solenoids. We then evaluated in vitro the functionality of the ASL MRIG by imaging a "vessel" in a phantom and achieving signal-to-noise ratio (SNR) and SNR contour map of the new 0.014-in. ASL MRIG. Subsequently, we validated in vivo the feasibility of using the ASL MRIG to generate intravenous 3.0-T MR images of parallel iliofemoral arteries of near-human-sized living pigs. RESULTS In vitro evaluation showed that the 0.014-in. ASL MRIG functioned well as a receiver coil with the 3.0-T MR scanner, clearly displaying the vessel wall with even distribution of MR signals and SNR contours from the ASL MRIG. Of the in vivo studies, the new ASL MRIG enabled us to successfully generate intravenous 3.0-T MR imaging of the iliofemoral arteries. CONCLUSION This study confirms that it is possible to build such small-looped MRIG at 0.014 in. for intravascular 3.0-T MR imaging.
Collapse
Affiliation(s)
- Huidong Gu
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. MATERIALS AND METHODS A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. RESULTS The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. CONCLUSION It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable.
Collapse
Affiliation(s)
- Krishna N Kurpad
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
12
|
Homagk AK, Umathum R, Korn M, Weber MA, Hallscheidt P, Semmler W, Bock M. An expandable catheter loop coil for intravascular MRI in larger blood vessels. Magn Reson Med 2010; 63:517-23. [PMID: 19918897 DOI: 10.1002/mrm.22228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study proposes a catheter system with an expandable coil etched on a polyimide foil. The catheter system combines the advantages of a small insertion diameter when the coil is rolled up in a protective carrier sheath with an increased signal-to-noise ratio (SNR) and penetration depth when the coil is pushed out. After imaging, the coil can be retracted into the sheath and folded back into the initial rolled-up configuration due to the tapered geometry of the carrier foil. The catheter system was tested on two healthy anesthetized pigs, including tracking and high-resolution intravascular imaging. To reduce artifacts in high-resolution images induced by catheter motion in the pulsatile blood flow, a motion-gating method was implemented that combines a flow-compensated two-dimensional fast low angle shot (FLASH) imaging sequence with the acquisition of projection data for retrospective gating. Using the projection data for motion detection, image SNR was increased by up to 500% over uncorrected images, and anatomic structures of 150 microm size could be differentiated in the aorta.
Collapse
Affiliation(s)
- Ann-Kathrin Homagk
- Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Saikus CE, Lederman RJ. Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging 2009; 2:1321-31. [PMID: 19909937 PMCID: PMC2843404 DOI: 10.1016/j.jcmg.2009.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/12/2023]
Abstract
Cardiovascular magnetic resonance (CMR) combines excellent soft-tissue contrast, multiplanar views, and dynamic imaging of cardiac function without ionizing radiation exposure. Interventional cardiovascular magnetic resonance (iCMR) leverages these features to enhance conventional interventional procedures or to enable novel ones. Although still awaiting clinical deployment, this young field has tremendous potential. We survey promising clinical applications for iCMR. Next, we discuss the technologies that allow CMR-guided interventions and, finally, what still needs to be done to bring them to the clinic.
Collapse
Affiliation(s)
- Christina E Saikus
- Translational Medicine Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1538, USA
| | | |
Collapse
|
14
|
Gilbert G, Soulez G, Beaudoin G. Comparative evaluation of the geometrical accuracy of intravascular magnetic resonance imaging: a phantom study. Acad Radiol 2009; 16:988-96. [PMID: 19394874 DOI: 10.1016/j.acra.2009.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate and compare the accuracy of cross-sectional imaging using an intravascular antenna in the context of vascular morphological measurements performed during a magnetic resonance imaging (MRI)-guided vascular intervention. MATERIALS AND METHODS Cross-sectional imaging of a multimodality vascular phantom was performed using intravascular and surface MRI, multidetector computed tomography, and intravascular ultrasound (IVUS). Using a balanced steady-state free-precession sequence, 18 sequences parameters sets were investigated (12 for intravascular MRI and 6 for surface MRI). Vessel diameters for all images and modalities were computed using an automated vessel segmentation algorithm. RESULTS Using IVUS as a gold standard, imaging using an intravascular antenna leads to an increase in geometrical accuracy in comparison to traditional surface MRI. This level of accuracy appears to follow a significant inverse proportionality relation in respect to vessel wall signal-to-noise ratio (SNR). Taking into account the rapid decrease in SNR as a function of the distance to the intravascular antenna, these results imply that, for a given level of geometrical accuracy, faster sequences can be used for the imaging of smaller vessels. CONCLUSION Imaging using an intravascular antenna appears as a valuable assistance to increase the accuracy of vascular morphological measurements. This increase in geometrical accuracy would be beneficial during the realization of an MRI-guided intervention, either to perform pretreatment measurements or to assess the outcome of the procedure. Acquisition parameters should be tailored to vessel size and procedural time constraints.
Collapse
|
15
|
Sathyanarayana S, Bottomley PA. MRI endoscopy using intrinsically localized probes. Med Phys 2009; 36:908-19. [PMID: 19378751 DOI: 10.1118/1.3077125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance imaging (MRI) is traditionally performed with fixed externally applied gradient magnetic fields and is hence intrinsically locked to the laboratory frame of reference (FoR). Here a method for high-resolution MRI that employs active, catheter-based, tiny internal probes that utilize the spatial properties of the probe itself for localization is proposed and demonstrated at 3 T. Because these properties are intrinsic to the probe, they move with it, transforming MRI from the laboratory FoR to the FoR of the device itself, analogous to an endoscope. The "MRI endoscope" can utilize loop coils and loopless antennas with modified sensitivity, in combination with adiabatic excitation by the device itself, to restrict the MRI sensitivity to a disk-shaped plane a few mm thick. Excitation with the MRI endoscope limits the eddy currents induced in the sample to an excited volume whose size is orders of magnitude below that excited by a conventional body MRI coil. Heat testing shows maximum local temperature increases of <1 degrees C during MRI, within regulatory guidelines. The method is demonstrated in a kiwifruit, in intact porcine and rabbit aortas, and in an atherosclerotic human iliac artery specimen, with in-plane resolution as small as 80 microm and 1.5-5 mm slice thickness.
Collapse
Affiliation(s)
- Shashank Sathyanarayana
- Department of Radiology, Division of MR Research, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
16
|
Eryaman Y, Öner Y, Atalar E. Design of internal MRI coils using ultimate intrinsic SNR. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2009; 22:221-8. [DOI: 10.1007/s10334-009-0167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/07/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
|
17
|
Anderson KJT, Leung G, Dick AJ, Wright GA. Forward-looking intravascular orthogonal-solenoid coil for imaging and guidance in occlusive arterial disease. Magn Reson Med 2008; 60:489-95. [PMID: 18666117 DOI: 10.1002/mrm.21667] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent intravascular imaging coil configurations have focused on side-viewing catheters capable of imaging the vessel wall of a patent vessel. These designs suffer from the presence of signal nulls and the inability to image in front of a device when it is oriented along the main static field. This is of particular importance when a device is being navigated through an occlusive lesion. To address these limitations we propose a new intravascular coil design consisting of two independent orthogonal solenoids located at the catheter tip. The two coils are oriented in such a way that signal nulls are eliminated and imaging is possible in planes located directly in front of the catheter. Complete characterization of the spatial signal-to-noise ratio (SNR) distribution of the design is presented. The coil configuration was fabricated on a 6F guide catheter, and its use is demonstrated in phantoms and in vivo.
Collapse
Affiliation(s)
- Kevan J T Anderson
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
18
|
Bock M, Wacker FK. MR-guided intravascular interventions: techniques and applications. J Magn Reson Imaging 2008; 27:326-38. [PMID: 18219686 DOI: 10.1002/jmri.21271] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities that make it an attractive imaging tool for diagnostic and therapeutic procedures. This tremendous potential of MRI has provided the rationale for increased attention toward MR-guided endovascular interventions. MR guidance has been used recently to navigate endovascular catheters and deliver stents, vena cava filters, embolization materials, and septum closure devices. However, its potential goes beyond just copying existing procedures toward the development of new minimally invasive techniques that cannot be performed with conventional guiding techniques. Because of technical limitations and safety issues associated with some of the currently available devices, a limited number of clinical studies have been performed so far. The overall success for this developing field requires considerable interdisciplinary research within both the interventional and the MR community. Only through a combined effort can this complex technology find its way into clinical practice. This review discusses the hardware and software improvements that have helped to advance endovascular interventions under MR imaging guidance from a pure research tool to become a clinical reality. In addition, technical and safety issues specific to endovascular MR image guidance will be described and practical applications will be shown that take advantage of the benefits of MR for endovascular interventions.
Collapse
Affiliation(s)
- Michael Bock
- Deutsches Krebsforschungszentrum, Department of Medical Physics in Radiology (E020), Heidelberg, Germany
| | | |
Collapse
|
19
|
Hillenbrand CM, Jesberger JA, Wong EY, Zhang S, Chang DT, Wacker FK, Lewin JS, Duerk JL. Toward rapid high resolution in vivo intravascular MRI: evaluation of vessel wall conspicuity in a porcine model using multiple imaging protocols. J Magn Reson Imaging 2006; 23:135-44. [PMID: 16416441 DOI: 10.1002/jmri.20497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To assess magnetic resonance (MR) pulse sequences for high resolution intravascular imaging. MATERIALS AND METHODS Intravascular imaging of the abdominal aorta and iliac arteries was performed in vivo in a porcine model at 1.5 T using catheter-mounted micro-receive coils. Ten protocols, including spin-echo (SE)-echo planar imaging (SE-EPI), segmented EPI, half-Fourier single-shot turbo spin-echo (HASTE), fast imaging with steady-state free precession (TrueFISP), turbo spin-echo (TSE), and SE acquisition schemes were employed in 13 trials. Images were analyzed by six expert raters with respect to wall-conspicuity, wall-to-lumen/tissue contrast, visible layers of the arterial wall, anticipated clinical usefulness, and overall image quality. Mean differences between sequence-types were evaluated using analysis of variance (ANOVA) between groups with planned comparisons. RESULTS The vessel wall was delineated in almost all protocols. Motion artifacts from physiological and device motion were reduced in fast techniques. The best contrast between the wall and surrounding tissue was provided by a HASTE protocol. Anatomic layers of the vessel wall were best depicted on dark blood T2-weighted TSE. Overall, TrueFISP was ranked highest on the remaining measures. CONCLUSION Dedicated catheter-coils combined with fast sequences have potential for in vivo characterization of vessel walls. TrueFISP offered the best overall image quality and acquisition speed, but suffered from the inability to delineate the multiple layers of the wall, which seems associated with dark blood- and T2-weighted contrast. We believe future intra-arterial trials should proceed from this study in normal artery imaging and initially focus on fast T2-weighted dark blood techniques in trials with pathology.
Collapse
Affiliation(s)
- Claudia M Hillenbrand
- Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1538, USA.
| |
Collapse
|
21
|
Rickers C, Kraitchman D, Fischer G, Kramer HH, Wilke N, Jerosch-Herold M. Cardiovascular interventional MR imaging: a new road for therapy and repair in the heart. Magn Reson Imaging Clin N Am 2005; 13:465-79. [PMID: 16084413 DOI: 10.1016/j.mric.2005.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the last 5 years, interventional MR imaging has been fertile ground for research. Real-time MR imaging, combined with recent advances in other MR imaging modalities such as perfusion imaging and intravascular imaging, has opened up new paths for cardiac therapy. The recent reports on cardiac stem cell therapy guided and monitored by MR imaging suggest that we are already seeing the establishment of an important role for cardiac MR imaging in cardiac restoration. The collaborative effort from a multidisciplinary team of basic biologists, engineers, and clinicians will refine stem cell incubation and labeling for MR-guided transcatheter endomyocardial injections, and this in turn may facilitate new studies in humans. Several groups have demonstrated in animal studies the feasibility of MR-guided catheter interventions for the treatment of congenital heart disease and arrythmia therapy. Hence, applications in humans remain the challenge for the next years. Although there have been first reports of cardiac catheterizations in humans by combined use of x-ray fluoroscopy and MR imaging, there are no reports in the literature suggesting that active tracking methods by MR imaging have been applied to humans. Safety issues (namely, heating of catheters and wires) hamper clinical use, particularly in infants and children. Current reports are promising that these limitations will be overcome in the near future and will eventually reduce x-ray usage during catheterization. In its current state, cardiac MR imaging offers a unique opportunity to investigate new therapeutic strategies for the treatment of congenital and acquired heart disease.
Collapse
Affiliation(s)
- Carsten Rickers
- Department of Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Magnetic resonance imaging (MRI), which provides superior soft-tissue imaging and no known harmful effects, has the potential as an alternative modality to guide various medical interventions. This review will focus on MR-guided endovascular interventions and present its current state and future outlook. In the first technical part, enabling technologies such as developments in fast imaging, catheter devices, and visualization techniques are examined. This is followed by a clinical survey that includes proof-of-concept procedures in animals and initial experience in human subjects. In preclinical experiments, MRI has already proven to be valuable. For example, MRI has been used to guide and track targeted cell delivery into or around myocardial infarctions, to guide atrial septal puncture, and to guide the connection of portal and systemic venous circulations. Several investigational MR-guided procedures have already been reported in patients, such as MR-guided cardiac catheterization, invasive imaging of peripheral artery atheromata, selective intraarterial MR angiography, and preliminary angioplasty and stent placement. In addition, MR-assisted transjugular intrahepatic portosystemic shunt procedures in patients have been shown in a novel hybrid double-doughnut x-ray/MRI system. Numerous additional investigational human MR-guided endovascular procedures are now underway in several medical centers around the world. There are also significant hurdles: availability of clinical-grade devices, device-related safety issues, challenges to patient monitoring, and acoustic noise during imaging. The potential of endovascular interventional MRI is great because as a single modality, it combines 3-dimensional anatomic imaging, device localization, hemodynamics, tissue composition, and function.
Collapse
Affiliation(s)
- Cengizhan Ozturk
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
23
|
Weiss S, Vernickel P, Schaeffter T, Schulz V, Gleich B. Transmission line for improved RF safety of interventional devices. Magn Reson Med 2005; 54:182-9. [PMID: 15968655 DOI: 10.1002/mrm.20543] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new concept is proposed to improve the safety of transmission lines with respect to heating during RF transmission. It is based on the integration of transformers into the transmission line. The concept was applied to an active tracking device. Miniature transformers were designed, and two types of tracking devices were built based on a standard line and a transformer line. Temperature measurements were performed for both devices during high specific absorption rate (SAR) scanning, and the suppression of RF heating to a physiologically non-relevant level was demonstrated for the transformer device. The transmission properties of the transformer line were examined in simulations and RF measurements. Active tracking with the transformer device performed robustly in the phantom. Because of the favorable signal transmission properties of the tested device, it is expected that the concept can be applied to the construction of clinical devices for tracking and intravascular imaging, which are RF-safe under clinical SAR conditions. Since the transformer line has a large bandwidth, the concept may also be applied for RF-safe transmission of non-MR signals.
Collapse
Affiliation(s)
- Steffen Weiss
- Department of Technical Systems, Philips Research Laboratories, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Farrar CT, Wedeen VJ, Ackerman JL. Cylindrical meanderline radiofrequency coil for intravascular magnetic resonance studies of atherosclerotic plaque. Magn Reson Med 2005; 53:226-30. [PMID: 15690524 DOI: 10.1002/mrm.20330] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to improve the performance of magnetic resonance imaging and spectroscopy of atherosclerotic plaque the potential use of novel radiofrequency coil structures with sensitive detection volumes tailored to the geometry of the arterial wall was investigated. It was found that a cylindrical meanderline (zig-zag) coil design provides a sensitive volume that is restricted to a cylindrical shell, thereby maximizing the filling factor and signal-to-noise ratio for plaques while reducing the intense blood signal. The cylindrical meanderline coil has the added advantages of an open interior, which allows for unimpeded blood flow during scanning, and the potential to be expanded against the walls of the artery, thereby stabilizing the coil against the pulsatile blood flow and minimizing motion artifacts. The performance of cylindrical meanderline coils with theoretical simulations of the electromagnetic fields as well as with experimental images of test objects (phantoms) and human endarterectomy surgical specimens is demonstrated. This radically new RF coil geometry offers the potential to improve the efficiency of MR data acquisition in medical applications in which curved surfaces or slabs contain the material of interest.
Collapse
Affiliation(s)
- Christian T Farrar
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
25
|
Celik H, Eryaman Y, Altintaş A, Abdel-Hafez IA, Atalar E. Evaluation of internal MRI coils using ultimate intrinsic SNR. Magn Reson Med 2004; 52:640-9. [PMID: 15334585 DOI: 10.1002/mrm.20200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The upper bounds of the signal-to-noise ratio (also known as the "ultimate intrinsic signal-to-noise ratio" (UISNR)) for internal and external coils were calculated. In the calculation, the body was modeled as a dielectric cylinder with a small coaxial cylindrical cavity in which internal coils could be placed. The calculated UISNR values can be used as reference solutions to evaluate the performance of internal MRI coils. As examples, we evaluated the performance of a loopless antenna and an endourethral coil design by comparing their ISNR with the UISNR.
Collapse
Affiliation(s)
- Haydar Celik
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
26
|
Hillenbrand CM, Elgort DR, Wong EY, Reykowski A, Wacker FK, Lewin JS, Duerk JL. Active device tracking and high-resolution intravascular MRI using a novel catheter-based, opposed-solenoid phased array coil. Magn Reson Med 2004; 51:668-75. [PMID: 15065238 DOI: 10.1002/mrm.20050] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel two-element, catheter-based phased array coil was designed and built for both active MR device tracking and high-resolution vessel wall imaging. The device consists of two independent solenoid coils that are wound in opposite directions, connected to separate receive channels, and mounted collinearly on an angiographic catheter. The elements were used independently or together for tracking or imaging applications, respectively. The array's dual functionality was tested on a clinical 1.5 T MRI scanner in vitro, in vivo, and in situ. During real-time catheter tracking, each element gave rise to a high-amplitude peak in the respective projection data, which enabled reliable and robust device tracking as well as automated slice positioning. In vivo microimaging with 240 microm in-plane resolution was achieved in 9 s using the device and TrueFISP imaging. Therefore, a single device was successfully implemented that met the combined requirements of intravascular device tracking and imaging.
Collapse
Affiliation(s)
- Claudia M Hillenbrand
- Department of Radiology, University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Karmarkar PV, Kraitchman DL, Izbudak I, Hofmann LV, Amado LC, Fritzges D, Young R, Pittenger M, Bulte JWM, Atalar E. MR-trackable intramyocardial injection catheter. Magn Reson Med 2004; 51:1163-72. [PMID: 15170836 DOI: 10.1002/mrm.20086] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There is growing interest in delivering cellular agents to infarcted myocardium to prevent postinfarction left ventricular remodeling. MRI can be effectively used to differentiate infarcted from healthy myocardium. MR-guided delivery of cellular agents/therapeutics is appealing because the therapeutics can be precisely targeted to the desired location within the infarct. In this study, a steerable intramyocardial injection catheter that can be actively tracked under MRI was developed and tested. The components of the catheter were arranged to form a loopless RF antenna receiver coil that enabled active tracking. Feasibility studies were performed in canine and porcine myocardial infarction models. Myocardial delayed-enhancement (MDE) imaging identified the infarcted myocardium, and real-time MRI was used to guide left ventricular catheterization from a carotid artery approach. The distal 35 cm of the catheter was seen under MRI with a bright signal at the distal tip of the catheter. The catheter was steered into position, the distal tip was apposed against the infarct, the needle was advanced, and a bolus of MR contrast agent and tissue marker dye was injected intramyocardially, as confirmed by imaging and postmortem histology. A pilot study involving intramyocardial delivery of magnetically labeled stem cells demonstrated the utility of the active injection catheter system.
Collapse
Affiliation(s)
- P V Karmarkar
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21025, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beuf O, Pilleul F, Armenean M, Hadour G, Saint-Jalmes H. In vivo colon wall imaging using endoluminal coils: Feasibility study on rabbits. J Magn Reson Imaging 2004; 20:90-6. [PMID: 15221813 DOI: 10.1002/jmri.20059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To assess in vivo distal colon wall magnetic resonance imaging (MRI) feasibility on rabbits using an endoluminal radio frequency (RF) coil on a 1.5-T clinical scanner. MATERIALS AND METHODS The endoluminal coil signal-to-noise ratio (SNR) was compared to a clinical four-element phased-array body coil. High-resolution (HR) MRI of rabbit colon walls was performed on six rabbits. The imaging protocol combined T1-weighted fast low-angle-shot (FLASH) sequences with and without fat saturation (FS), T2-weighted True-Fast imaging with steady state precession (Fisp), turbo spin-echo (TSE), and T1-weighted FLASH FS after contrast media injection. Images were compared to histological sections. Catheter tracking using an endoluminal coil in addition to external coils was also evaluated on two rabbits. RESULTS HR images allow visualization and identification of rabbit colon wall layers. Real-time tracking allows a clear visualization and a good positioning of the endoluminal coil within the rabbit. CONCLUSION Compared to a clinical multielement array coil, a dedicated endoluminal RF coil provides an important SNR increase at the region of interest (ROI). Very HR images of in vivo rabbit colon walls were achieved providing detailed information on the different wall layers. This technique could be considered on humans for accurate tumoral and inflammatory bowel disease diagnosis.
Collapse
Affiliation(s)
- O Beuf
- Laboratoire de RMN, CNRS UMR 5012, Université Claude Bernard Lyon I-ESCPE, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
The design and application of an intravascular extended sensitivity (IVES) MRI antenna is described. The device is a loopless antenna design that incorporates both an insulating, dielectric coating and a winding of the antenna whip into a helical shape. Because this antenna produces a broad region of high SNR and also allows for imaging near the tip of the device, it is useful for imaging long, luminal structures. To elucidate the design and function of this device, the effects of both insulation and antenna winding were characterized by theoretical and experimental studies. Insulation broadens the longitudinal region over which images can be collected (i.e., along the lumen of a vessel) by increasing the resonant pole length. Antenna winding, conversely, allows for imaging closer to the tip of the antenna by decreasing the resonant pole length. Over a longitudinal region of 20 cm, the IVES imaging antenna described here produces a system SNR of approximately 40,000/r (mL(-1)Hz(1/2)), where r is the radial distance from the antenna axis in centimeters. As opposed to microcoil antenna designs, these antennas do not require exact positioning and allow for imaging over broad tissue regions. While focusing on the design of the IVES antenna, this work also serves to enhance our overall understanding of the properties and behavior of the loopless antenna design.
Collapse
Affiliation(s)
- Robert C Susil
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
30
|
Botnar RM, Bücker A, Kim WY, Viohl I, Günther RW, Spuentrup E. Initial experiences with in vivo intravascular coronary vessel wall imaging. J Magn Reson Imaging 2003; 17:615-9. [PMID: 12720273 DOI: 10.1002/jmri.10291] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To evaluate potential use of a loopless internal receiver coil for in vivo coronary artery vessel wall imaging in five domestic swine. MATERIALS AND METHODS Intravascular free-breathing black blood coronary vessel wall imaging was performed using a previously described double inversion fast spin echo technique after x-ray guided placement of an internal receiver coil in or in close proximity to the target vessel (LAD, LCX). RESULTS Image quality using the phased array coil was reproducible, while image quality with the internal receiver coil was heavily dependent on coil position with respect to the examined artery, and likely also dependent on blood flow and/or cardiac-related coil motion. With internal coil placement in the left circumflex coronary artery, images of the left anterior descending vessel wall appeared similar or superior compared to commercially available phased array surface coil images. With coil placement in the target vessel itself, imaging was suboptimal because of the extremely high signal intensity (hotspot) in close proximity to the vessel wall, leading to low contrast between the vessel wall and the surrounding tissues and blood. CONCLUSION In this study, we demonstrate the feasibility of in vivo intravascular coronary vessel wall imaging. Continued research is necessary to minimize coil motion and optimize coil sensitivity algorithms.
Collapse
Affiliation(s)
- René M Botnar
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Yang X, Atalar E, Zerhouni EA. Intravascular MR imaging and intravascular MR-guided interventions. INTERNATIONAL JOURNAL OF CARDIOVASCULAR INTERVENTIONS 2003; 2:85-96. [PMID: 12623594 DOI: 10.1080/acc.2.2.85.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intravascular MR technology, using an intravascularly placed MR receiver probe to acquire high-resolution angiographic MR images (i.e. intravascular MR imaging) and to guide cardiovascular interventional therapies (i.e. intravascular MR-guided interventions), is a new, very attractive development in the field of MR imaging. The new technology offers unique advantages for cardiovascular imaging and interventions, including superior contrast capability and multiplanar imaging capabilities without the use of contrast agents and with no risk of ionizing radiation. Thecombination of intravascular MR techniques with other advanced MR imaging techniques, such as functional MR imaging, will open new avenues for the future comprehensive management of cardiovascular atherosclerotic disease. Further improvements in intravascular MR fluoroscopy with true real-time display, analogous to X-ray fluoroscopy, will dramatically establish the role of intravascular MR technology in modern medicine.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
32
|
Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, Ladd ME. Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med 2003; 49:129-37. [PMID: 12509828 DOI: 10.1002/mrm.10334] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An integrated system for performing interventional magnetic resonance angiography (MRA) with actively visualized instruments and real-time image fusion was implemented on a 1.5 T scanner. True fast imaging with steady precession (TrueFISP) imaging provided high acquisition speed paired with high signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for the simultaneous visualization of active instruments and arterial morphology. The system enabled simultaneous image reconstruction and image postprocessing of multiple receiver channels, with subsequent image fusion display in real time. Optional interleaved image acquisition in two planes provided additional important information for biplanar instrument guidance. Various vascular interventions, including selective catheterization and subsequent selective MRA of the abdominal aorta, renal arteries, superior mesenteric artery (SMA), hepatic artery, and aortic arch, were performed on 10 pigs under MR guidance. In terms of instrument contrast, image acquisition, reconstruction, and fusion speed, the setup represents a powerful platform for performing interventional MRA procedures.
Collapse
Affiliation(s)
- Harald H Quick
- Department of Diagnostic and Interventional Radiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Faiss S, Lewin JS, Nour SG, Zeitz M, Duerk JL, Wacker FK. Endoscopically inserted endoluminal receiver coil for high-resolution magnetic resonance imaging of the pancreas: Initial results in an animal model. Gastrointest Endosc 2003; 57:106-10. [PMID: 12518145 DOI: 10.1067/mge.2003.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study assessed the feasibility of high-resolution magnetic resonance imaging of the pancreas by means of an endoscopically inserted endoluminal magnetic resonance receiver coil. METHOD A 0.032-inch diameter internal magnetic resonance imaging receiver coil was endoscopically inserted into the pancreatic duct in 4 pigs through the accessory channel of a standard duodenoscope to obtain high-resolution magnetic resonance images by using T1- and T2-weighted sequences. RESULTS The pig anatomy precluded the usual transoral approach; however, transgastric access allowed endoscopic transpapillary insertion of a receiver coil into the pancreatic duct in all animals without the need for sphincterotomy. The small swine pancreas could then be visualized by magnetic resonance imaging with a 0.3 x 0.3-mm in-plane resolution. CONCLUSION High-resolution pancreas magnetic resonance imaging is feasible by using an endoscopically inserted endoluminal receiver coil. The smaller stomach and larger pancreatic duct diameter in humans will facilitate clinical application of the imaging procedure.
Collapse
Affiliation(s)
- Siegbert Faiss
- Department of Gastroenterology, Benjamin Franklin University Hospital, Free University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Crottet D, Meuli R, Wicky S, van der Klink JJ. Reciprocity and sensitivity of opposed-solenoid endovascular MRI probes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 159:219-225. [PMID: 12482703 DOI: 10.1016/s1090-7807(02)00106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several forms of catheter-mounted "inside-out" probes for endovascular imaging have been proposed in the literature. The "opposed-solenoid" structure has been studied in relatively little detail, although it has some potential advantages over the others. Using a small water sample as a voxel, we measure point by point the spatial variation of the sensitivity and the rf field strength of such a probe, and connect the two by the reciprocity relation. By itself, the corresponding plot provides a nice example of the reciprocity relation at work; and for the characterization of the probe it gives a check on data quality. The results can be understood from simple considerations and agree well with the sensitivity observed in the image of a phantom.
Collapse
Affiliation(s)
- Denis Crottet
- Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
35
|
Tsekos NV, Woodard PK, Foster GJ, Moustakidis P, Sharp TL, Herrero P, Gropler RJ. Dynamic coronary MR angiography and first-pass perfusion with intracoronary administration of contrast agent. J Magn Reson Imaging 2002; 16:311-9. [PMID: 12205588 DOI: 10.1002/jmri.10161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate whether dynamic imaging of the coronary arteries can be performed with intracoronary infusion of low-dose gadolinium (Gd)-based contrast agent and assess the effect of long duration and multiple infusions on the image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). MATERIALS AND METHODS Dynamic coronary magnetic resonance (MR) imaging (130 msec/image) and contrast agent first pass myocardial perfusion studies were performed with intracoronary infusions of low-dose Gd-based MR contrast agent on dogs (N = 4) using a fast multislice gradient recalled echo (GRE) sequence. RESULTS Contrast-enhanced coronary arteries were clearly imaged during infusion periods as long as 2.3 minutes. The SNR and CNR of the contrast-enhanced coronary arteries remained essentially unchanged over multiple consecutive angiographic sessions. In addition, we demonstrated that first pass studies performed with intracoronary injection of MR contrast agent can be used as a means of assessing regional myocardial perfusion. CONCLUSION These studies demonstrated that, using intracoronary infusion of Gd, coronary magnetic resonance angiography (MRA) can be performed with high temporal resolution, and multiple low-dose slow infusions of Gd-based MR contrast agent can be performed without compromise of the vessel SNR and CNR.
Collapse
Affiliation(s)
- Nikolaos V Tsekos
- Cardiovascular Imaging Laboratory, Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
MRI is a powerful noninvasive imaging tool with high spatial resolution that continues to prove its value in determining atherosclerotic plaque size, volume, and tissue components. Multispectral MRI sequences have been validated to characterize atherosclerotic plaque components in animals; they have recently been applied to human aorta and carotid artery and are being used to identify the vulnerable plaque. The ability to measure wall thickness in human coronary artery wall has been realized. Future developments may allow plaque characterization in the coronary arteries with surface coil imaging, but intravascular MRI may play an important role in this regard. Novel contrast agents for identifying inflammation and thrombus within atherosclerotic plaque will aid in the identification of higher-risk atherosclerotic disease. Lastly, MRI has progressed to the point where it can be used in serial studies of atherosclerotic plaque progression and regression in the face of therapeutic intervention. MRI will continue to evolve an important role in imaging of atherosclerotic plaque.
Collapse
Affiliation(s)
- C Joon Choi
- Department of Internal Medicine, University of Virginia Health System, Charlottesville 22908, USA
| | | |
Collapse
|
37
|
Kandarpa K. MR Guidance for Interventions. J Vasc Interv Radiol 2002. [DOI: 10.1016/s1051-0443(02)70071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
38
|
Duerk JL, Wong EY, Lewin JS. A brief review of hardware for catheter tracking in magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2002; 13:199-208. [PMID: 11755097 DOI: 10.1007/bf02678597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Magnetic resonance imaging (MRI) has traditionally been used exclusively in a role for patient diagnosis. However, it is unlikely that this role is sufficient for its continued prominence in medical imaging. Instead, the more ambitious role in diagnosis and also therapy/intervention will occur as demand for minimally invasive procedures increases. Fortunately, with recent improvement in technical specifications and creative pulse sequence design, MRI systems can now provide high quality near-real-time images that facilitate a variety of image-guided procedures, many based around delivery via catheters. While X-ray opacity is not available as a means for detecting the progression of the catheter in MRI systems today, a variety of novel hardware devices have been designed and used for MRI catheter tracking. This report provides a brief review of some fundamental methods for catheter tracking in MRI.
Collapse
Affiliation(s)
- Jeffrey L Duerk
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
39
|
Abstract
This work describes a real-time imaging and visualization technique that allows multiple field of view (FOV) imaging. A stream of images from a single receiver channel can be reconstructed at multiple FOVs within each image frame. Alternately, or in addition, when multiple receiver channels are available, image streams from each channel can be independently reconstructed at multiple FOVs. The implementation described here provides for real-time visualization of the placement of guidewires and catheters on a dynamic roadmap during interventional procedures. The loopless catheter antenna, an electrically active intravascular probe, was used for MR signal reception. In 2D projection images, the catheter and surrounding structures within its diameter of sensitivity appear as bright signal. The simplicity of the resulting images allows very-narrow-FOV imaging to decrease imaging time. Very-narrow-FOV images are acquired on MR receiver channels that collect guidewire or catheter data. These very-narrow-FOV images provide very high frame rate continuous, real-time imaging of the interventional devices (25 fps). Large-FOV images are formed from receiver channels that collect anatomical data from standard imaging surface coils, and simultaneously provide a dynamic, frequently updated roadmap. These multiple-FOV images are displayed together, improving visualization of interventional device placement.
Collapse
Affiliation(s)
- Pelin Aksit
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-0845, USA
| | | | | | | |
Collapse
|
40
|
Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL. A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging 2001; 14:56-62. [PMID: 11436215 DOI: 10.1002/jmri.1151] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Accurate localization of minimally invasive devices is critical to the success of interventional procedures. Device orientation and tip position are two of the most important pieces of information needed to define device location for magnetic resonance imaging (MRI)-guided interventional procedures. While a single one-element micro coil incorporated into an interventional device has proven to be effective in some applications, it can only supply tip position information. However, multiple positions on the device are necessary to also determine its orientation. For this purpose, a novel single micro coil design with three separate winding elements that provides both the device orientation and tip position is described in this study. Definition of MR scan planes, by using the device orientation and the target tissue location, permits automatic tracking of the insertion of the device. Furthermore, devices that include this coil design are permitted to bend to a limited extent. This makes the micro coil design appropriate for many flexible interventional devices. Reliable near-real-time tracking of three points on an interventional device is demonstrated on a 0.2T MRI system with modest gradient performance. Phantom and in vivo animal experiments are used to demonstrate the utility of this new coil design.
Collapse
Affiliation(s)
- Q Zhang
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-5056, USA
| | | | | | | | | |
Collapse
|
41
|
Demarco JK, Rutt BK, Clarke SE. Carotid plaque characterization by magnetic resonance imaging: review of the literature. Top Magn Reson Imaging 2001; 12:205-17. [PMID: 11432578 DOI: 10.1097/00002142-200106000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) of carotid plaque has undergone significant improvements in the last decade. Early studies utilizing ex vivo specimens and spin-echo or fast spin-echo imaging led to the conclusion that T2 weighting is the best single contrast to characterize carotid plaque morphology. On these images, the fibrous plaque appears bright and the lipid core is dark; thrombus can have variable intensity. There can be an overlap in T2-weighted signal intensities among the various plaque components, which can be partially offset by the use of multispectral analysis of multiple contrast images. With improvements in coil design, sequence design, and main field and gradient capabilities, accurate in vivo differentiation and measurement of these various carotid plaque components should be possible in 3 to 5 years. Ex vivo and in vivo studies have yielded high-resolution measurements of the complex three-dimensional lumen geometry, which are being used to predict hemodynamic forces acting on the lumenal surface. Carotid plaque burden can be accurately measured in vivo today; ongoing longitudinal studies should lead to a better understanding of the relationship between plaque burden and the risk of thromboembolic complications, as well as the effect of diet and drug therapy in hyperlipidemic patients. With these developments in place or soon to be available, MRI of the diseased carotid artery wall may prove to be even more important than magnetic resonance angiography.
Collapse
Affiliation(s)
- J K Demarco
- University Radiology Group, University of Medicine and Dentistry of New Jersey, Laurie Imaging Center, New Brunswick 08901, USA
| | | | | |
Collapse
|
42
|
Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103:415-22. [PMID: 11157694 DOI: 10.1161/01.cir.103.3.415] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Based on the observation that ultrasmall superparamagnetic particles of iron oxides (USPIOs) are phagocytosed by cells of the mononuclear phagocytic system, the purpose of this study was to evaluate their use as a marker of atherosclerosis-associated inflammatory changes in the vessel wall before luminal narrowing is present. METHODS AND RESULTS Experiments were conducted on 6 heritable hyperlipidemic and 3 New Zealand White rabbits. 3D MR angiography (MRA) of the thoracic aorta was performed on all rabbits by use of a conventional paramagnetic contrast agent that failed to reveal any abnormalities. One week later, all rabbits except 1 of the hyperlipidemic animals were injected with a USPIO contrast agent (Sinerem, Guerbet) at a dose of 1 mmol Fe/kg. 3D MRA data sets collected over the subsequent 5 days showed increasing signal in the aortic lumen. Whereas the aortic wall of the control rabbits remained smooth and bright, marked susceptibility effects became evident on day 4 within the aortic walls of hyperlipidemic rabbits. Ex vivo imaging of aortic specimens confirmed the in vivo results. Histopathology documented marked Fe uptake in macrophages embedded in atherosclerotic plaque of the hyperlipidemic rabbits. Electron microscopy showed multiple cytoplasmic Fe particles in macrophages. No such changes were seen in control rabbits or in the hyperlipidemic rabbit that had not received Sinerem. CONCLUSIONS USPIOs are phagocytosed by macrophages in atherosclerotic plaques of the aortic wall of hyperlipidemic rabbits in a quantity sufficient to cause susceptibility effects detectable by MRI.
Collapse
Affiliation(s)
- S G Ruehm
- Institutes of Diagnostic Radiology, University Hospital Zürich, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Chaabane L, Canet E, Serfaty JM, Contard F, Guerrier D, Douek P, Briguet A. Microimaging of atherosclerotic plaque in animal models. MAGMA (NEW YORK, N.Y.) 2000; 11:58-60. [PMID: 11186989 DOI: 10.1007/bf02678496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- L Chaabane
- Laboratoire de RMN, CNRS UMR 5012, UCB-CPE, Villeurbanne, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Several attributes make magnetic resonance imaging (MRI) attractive for guidance of intravascular therapeutic procedures, including high soft tissue contrast, imaging in arbitrary oblique planes, lack of ionizing radiation, and the ability to provide functional information, such as flow velocity or flow volume per unit time, in conjunction with morphologic information. For MR guidance of vascular interventions to be safe, the interventionalist must be able to visualize catheters and guidewires relative to the vascular system and surrounding tissues. A number of approaches for rendering instruments visible in an MR environment have been developed, including both passive and active techniques. Passive techniques depend on contrast agents or susceptibility artifacts that enhance the appearance of the catheter in the image itself, whereas active techniques rely on supplemental hardware built into the catheter, such as a radiofrequency (RF) coil. Additionally, the ability to introduce an RF coil mounted on a catheter presents the opportunity to obtain high-resolution images of the vessel wall. These images can provide the capability to distinguish and identify various plaque components. The additional capabilities of MRI could potentially open up new applications within the purview of vascular interventions beyond those currently performed under X-ray fluoroscopic guidance.
Collapse
Affiliation(s)
- M E Ladd
- Department of Radiology, University Hospital Essen, D-45122 Essen, Germany.
| | | | | |
Collapse
|
45
|
Rogers WJ, Prichard JW, Hu YL, Olson PR, Benckart DH, Kramer CM, Vido DA, Reichek N. Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscler Thromb Vasc Biol 2000; 20:1824-30. [PMID: 10894824 DOI: 10.1161/01.atv.20.7.1824] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic resonance imaging (MRI) is capable of distinguishing between atherosclerotic plaque components solely on the basis of biochemical differences. However, to date, the majority of plaque characterization has been performed by using high-field strength units or special coils, which are not clinically applicable. Thus, the purpose of the present study was to evaluate MRI properties in histologically verified plaque components in excised human carotid endarterectomy specimens with the use of a 5F catheter-based imaging coil, standard acquisition software, and a clinical scanner operating at 0.5 T. Human carotid endarterectomy specimens from 17 patients were imaged at 37 degrees C by use of an opposed solenoid intravascular radiofrequency coil integrated into a 5F double-lumen catheter interfaced to a 0.5-T General Electric interventional scanner. Cross-sectional intravascular MRI (156x250 microm in-plane resolution) that used different imaging parameters permitted the calculation of absolute T1and T2, the magnetization transfer contrast ratio, the magnitude of regional signal loss associated with an inversion recovery sequence (inversion ratio), and regional signal loss in gradient echo (gradient echo-to-spin echo ratio) in plaque components. Histological staining included hematoxylin and eosin, Masson's trichrome, Kossa, oil red O, and Gomori's iron stain. X-ray micrographs were also used to identify regions of calcium. Seven plaque components were evaluated: fibrous cap, smooth muscle cells, organizing thrombus, fresh thrombus, lipid, edema, and calcium. The magnetization transfer contrast ratio was significantly less in the fibrous cap (0.62+/-13) than in all other components (P<0.05) The inversion ratio was greater in lipid (0.91+/-0.09) than all other components (P<0.05). Calcium was best distinguished by using the gradient echo-to-spin echo ratio, which was lower in calcium (0.36+/-0.2) than in all plaque components, except for the organizing thrombus (P<0.04). Absolute T1 (range 300+/-140 ms for lipid to 630+/-321 ms for calcium) and T2 (range 40+/-12 ms for fresh thrombus to 59+/-21 ms for smooth muscle cells) were not significantly different between groups. In vitro intravascular MRI with catheter-based coils and standard software permits sufficient spatial resolution to visualize major plaque components. Pulse sequences that take advantage of differences in biochemical structure of individual plaque components show quantitative differences in signal properties between fibrous cap, lipid, and calcium. Therefore, catheter-based imaging coils may have the potential to identify and characterize those intraplaque components associated with plaque stability by use of existing whole-body scanners.
Collapse
Affiliation(s)
- W J Rogers
- Department of Medicine, Allegheny General Hospital, Pittsburgh, PA 15212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS, Duerk JL. Active MR guidance of interventional devices with target-navigation. Magn Reson Med 2000; 44:56-65. [PMID: 10893522 DOI: 10.1002/1522-2594(200007)44:1<56::aid-mrm10>3.0.co;2-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This project incorporated a novel inductive coupling structure of three micro coils into an invasive device tip to determine both its tip position and orientation. Moreover, with the introduction of a new target-navigation technique the MR scan plane was defined automatically by the invasive device orientation and target tissue location. A time domain multiplexing technique was applied for simultaneous MR imaging and device tracking. Using these techniques, the acquired MR images always showed both the invasive device and its target tissue. Thus, roadmap images and their potential misregistration errors were avoided. A graphical user interface (GUI) was also designed to assist interventional physicians in monitoring and guiding the insertion of the interventional device. Ex vivo phantom and in vivo animal experiments were performed to test this new technique. The methods developed in this project provide a new active technique for interventional device guidance using MRI. Magn Reson Med 44:56-65, 2000.
Collapse
Affiliation(s)
- Q Zhang
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kalinowski M, Heverhagen J, Alfke H, Klose KJ, Wagner HJ. Mid-term follow-up after percutaneous hydrodynamic thrombectomy in lower limb ischemia: initial experience with two-dimensional MR imaging and three-dimensional MR angiography. J Vasc Interv Radiol 2000; 11:747-53. [PMID: 10877420 DOI: 10.1016/s1051-0443(07)61634-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE To assess noninvasively mid-term patency, reocclusion, and mid-term changes of the arterial wall after percutaneous hydrodynamic thrombectomy in patients with acute lower limb ischemia using magnetic resonance (MR) imaging/MR angiography (MRA). MATERIALS AND METHODS Arterial wall and luminal changes were evaluated in 16 patients (10 men, six women; mean age, 70 years), with a minimum follow-up of 12 months after percutaneous thrombectomy with a hydrodynamic catheter for acute lower limb ischemia (embolic, n = 5; thrombotic, n = 11). Adjunctive PTA was performed in 44%. The mean follow-up was 23 months +/- 7.6 (range, 12-33 months). MR imaging and MRA were performed on a 1.0 T system using an extremity coil and two-dimensional (2D) time-of-flight, turbo spin echo, 2D gradient echo, and contrast enhanced three-dimensional (3D) gradient echo sequences. RESULTS In one patient, a complete reocclusion was noted and, in two patients, a hemodynamically insignificant restenosis (< or = 50%) was identified with MR imaging. This was in accordance with color flow duplex sonography, physical examination, ankle/brachial index measurements, and the treadmill test. The MR morphometry documented an increase of the entire vessel area from 48.9 mm2 +/- 3.3 (control segments) to 55.5 mm2 +/- 2.8 at the treated segments (+13.3%; P < .05). The vessel wall area increased from 31.7 mm2 +/- 1.8 to 39.4 mm2 +/- 2.3 (+24.4%; P < .05). The mean area stenosis grade was 12%. CONCLUSION MR imaging with use of morphometric analysis is a possible tool to noninvasively determine the mid-term patency and restenosis/reocclusion and remodeling process after percutaneous thrombectomy and other interventional procedures.
Collapse
Affiliation(s)
- M Kalinowski
- Department of Diagnostic Radiology, University Hospital, Philipps-University, Marburg, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Stent deployment is used to improve the immediate and long-term results of vascular interventions in various vascular sites. X-ray angiography as an imaging modality is often limited in providing an accurate assessment with regard to vessel size, plaque calcification, or stent deployment. In this study, the potential of using the stent endoprothesis as a radiofrequency (RF) receive-only probe for MR guidance and lesion imaging was investigated. Three different principles were developed to visualize stents actively, the first employing the stent as a loop antenna, the second employing the stent in an electrical dipole configuration, and the third employing the stent in a hybrid configuration as a coaxial line antenna. The three configurations resulted in different signal characteristics. Based on two of these antenna configurations, stent deployment devices were built and evaluated in in vitro as well as in vivo sheep experiments. Active stent visualization allows real-time MR guidance through the vessel tree and monitoring of stent deployment. In addition, the stent antenna may become useful for high resolution imaging of the vessel wall. Magn Reson Med 42:738-745, 1999.
Collapse
Affiliation(s)
- H H Quick
- Institute of Diagnostic Radiology, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Quick HH, Ladd ME, Zimmermann-Paul GG, Erhart P, Hofmann E, von Schulthess GK, Debatin JF. Single-loop coil concepts for intravascular magnetic resonance imaging. Magn Reson Med 1999; 41:751-8. [PMID: 10332851 DOI: 10.1002/(sici)1522-2594(199904)41:4<751::aid-mrm14>3.0.co;2-v] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compared with other coil designs that have been investigated for intravascular use, the single-loop coil can be designed with a very small diameter for insertion into small vessels and with a longitudinal extent over several centimeters for multislice imaging. If it designed to be expandable inside the target vessel, then it combines these features with increased signal-to-noise ratio (SNR) and penetration depth. Expandable single-loop coils that are capable of meeting these requirements were developed and integrated into two different commercial catheter-based delivery systems: a self-expandable, single-loop made from NiTinol and a single-loop coil mounted on an inflatable balloon. The influence of a small-diameter coaxial cable for remote tuning and matching on the coil performance was investigated. Calculations showed the dependence of the signal on the separation between the conductors. The comparison of both catheter approaches in in vitro flow experiments and in an in vivo pig experiment revealed the influence of pulsatile flow on image quality during intravascular imaging with these designs.
Collapse
Affiliation(s)
- H H Quick
- Department of Radiology, University Hospital Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Zimmermann-Paul GG, Quick HH, Vogt P, von Schulthess GK, Kling D, Debatin JF. High-resolution intravascular magnetic resonance imaging: monitoring of plaque formation in heritable hyperlipidemic rabbits. Circulation 1999; 99:1054-61. [PMID: 10051300 DOI: 10.1161/01.cir.99.8.1054] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The individual makeup of atherosclerotic plaque has been identified as a dominant prognostic factor. With the use of an intravascular magnetic resonance (MR) catheter coil, we evaluated the effectiveness of high-resolution MR in the study of the development of atherosclerotic lesions in heritable hyperlipidemic rabbits. METHODS AND RESULTS Sixteen hyperlipidemic rabbits were investigated at the ages of 6, 12, 24, and 36 months. The aorta was studied with digital subtraction angiography and high-resolution MR with the use of a surface coil and an intravascular coil that consisted of a single-loop copper wire integrated in a 5F balloon catheter. Images were correlated with histological sections regarding wall thickness, plaque area, and plaque components. Digital subtraction angiography revealed no abnormalities in the 6- and 12-month-old rabbits and only mild stenoses in the 24- and 36-month-old rabbits. High-resolution imaging with surface coils resulted in an in-plane resolution of 234x468 microm. Delineation of the vessel wall was not possible in younger rabbits and correlated only poorly with microscopic measurements in the 36-month-old rabbits. Intravascular images achieved an in-plane resolution of 117x156 microm. Increasing thickness of the aortic wall and plaque area was observed with increasing age. In the 24- and 36-month-old animals, calcification could be differentiated from fibrous and fatty tissue on the basis of the T2-fast spin echo images, as confirmed by histological correlation. CONCLUSIONS Atherosclerotic evolution of hyperlipidemic rabbits can be monitored with high-resolution intravascular MR imaging. Image quality is sufficient to determine wall thickness and plaque area and to differentiate plaque components.
Collapse
|