1
|
Chung JJ, Kim H, Ji Y, Lu D, Zhou IY, Sun PZ. Improving standardization and accuracy of in vivo omega plot exchange parameter determination using rotating-frame model-based fitting of quasi-steady-state Z-spectra. Magn Reson Med 2025; 93:151-165. [PMID: 39221563 PMCID: PMC11518644 DOI: 10.1002/mrm.30259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Although Ω-plot-driven quantification of in vivo amide exchange properties has been demonstrated, differences in scan parameters may complicate the fidelity of determination. This work systematically evaluated the use of quasi-steady-state (QUASS) Z-spectra reconstruction to standardize in vivo amide exchange quantification across acquisition conditions and further determined it in vivo. METHODS Simulation and in vivo rodent brain chemical exchange saturation transfer (CEST) data at 4.7 T were fit with and without QUASS reconstruction using both multi-Lorentzian and model-based fitting approaches. pH modulation was accomplished both in simulation and in vivo by inducing global ischemia via cardiac arrest. Amide parameters were determined via Ω-plots and compared across methods. RESULTS Simulation showed that Ω-plots using multi-Lorentzian fitting could underestimate the exchange rate, with error increasing as conditions diverged from the steady state. In comparison, model-based fitting using QUASS estimated the same exchange rate within 2%. These results aligned with in vivo findings where multi-Lorentzian fitting of native Z-spectra resulted in an exchange rate of 64 ± 13 s-1 (38 ± 16 s-1 after cardiac arrest), whereas model-based fitting of QUASS Z-spectra yielded an exchange rate of 126 ± 25 s-1 (49 ± 13 s-1). CONCLUSION The model-based fitting of QUASS CEST Z-spectra enables consistent and accurate quantification of exchange parameters through Ω-plot construction by reducing error due to signal overlap and nonequilibrium CEST effects.
Collapse
Affiliation(s)
- Julius Juhyun Chung
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| | - Hahnsung Kim
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
2
|
Raymond JJ, Chowdhury MSI, Crawley MR, Morrow JR. Co(II) Macrocyclic Complexes with Amide-Glycinate Pendants as ParaCEST and Liposomal CEST Agents. Chemistry 2024; 30:e202401638. [PMID: 38861702 DOI: 10.1002/chem.202401638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Macrocyclic Co(II) complexes with appended amide-glycinate groups were prepared to develop paramagnetic Co(II) chemical exchange saturation transfer (CEST) agents of reduced overall charge. Complexes with reduced charge and lowered osmolarity are important for their loading into liposomes and to provide complexes that are highly water soluble and well tolerated in animals. Co(L1) has two non-coordinating benzyl groups and two amide-glycinate pendants, whereas Co(L2) has two unsubstituted amide pendants and two amide-glycinate pendants on cyclam (1,4,8,11-tetraazacyclododecane). The 1H NMR spectrum of Co(L1) is consistent with a single cis-pendant isomer with both amide protons in the trans-configuration, as supported by an X-ray crystal structure. Co(L2) has a mixture of different isomers in solution, including the trans-1,4 and 1,8 pendant isomers. The Z-spectrum of Co(L1) shows one highly-shifted CEST peak, whereas Co(L2) exhibits six CEST peaks. Encapsulation of 40 mM Co(L1) in a liposome with osmotically-induced shrinking at 300 mOsm/L produces a liposomal CEST agent with saturation frequency offset of 3 ppm. Addition of the amphiphilic 1,4,7-triazacyclononane-based complex Co(L5) to the liposomal bilayer at 18 mM with Co(L1) encapsulated in the liposome at 50 mM changes the sign and increases the magnitude of the saturation frequency offset to -7.5 ppm at 300 mOsm/L.
Collapse
Affiliation(s)
- Jaclyn J Raymond
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260
| | - Md Saiful I Chowdhury
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260
| |
Collapse
|
3
|
Wu Q, Gong P, Liu S, Li Y, Liang D, Zheng H, Wu Y. B 1 inhomogeneity corrected CEST MRI based on direct saturation removed omega plot model at 5T. Magn Reson Med 2024; 92:532-542. [PMID: 38650080 DOI: 10.1002/mrm.30112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE CEST can image macromolecules/compounds via detecting chemical exchange between labile protons and bulk water. B1 field inhomogeneity impairs CEST quantification. Conventional B1 inhomogeneity correction methods depend on interpolation algorithms, B1 choices, acquisition number or calibration curves, making reliable correction challenging. This study proposed a novel B1 inhomogeneity correction method based on a direct saturation (DS) removed omega plot model. METHODS Four healthy volunteers underwent B1 field mapping and CEST imaging under four nominal B1 levels of 0.75, 1.0, 1.5, and 2.0 μT at 5T. DS was resolved using a multi-pool Lorentzian model and removed from respective Z spectrum. Residual spectral signals were used to construct the omega plot as a linear function of 1/B 1 2 $$ {B}_1^2 $$ , from which corrected signals at nominal B1 levels were calculated. Routine asymmetry analysis was conducted to quantify amide proton transfer (APT) effect. Its distribution across white matter was compared before and after B1 inhomogeneity correction and also with the conventional interpolation approach. RESULTS B1 inhomogeneity yielded conspicuous artifact on APT images. Such artifact was mitigated by the proposed method. Homogeneous APT maps were shown with SD consistently smaller than that before B1 inhomogeneity correction and the interpolation method. Moreover, B1 inhomogeneity correction from two and four CEST acquisitions yielded similar results, superior over the interpolation method that derived inconsistent APT contrasts among different B1 choices. CONCLUSION The proposed method enables reliable B1 inhomogeneity correction from at least two CEST acquisitions, providing an effective way to improve quantitative CEST MRI.
Collapse
Affiliation(s)
- Qiting Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pengcheng Gong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Shengping Liu
- Department of Biomedical Engineering, Chongqing University of Technology, Chongqing, China
| | - Ye Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
4
|
Sun PZ. Quasi-steady-state (QUASS) reconstruction enhances T 1 normalization in apparent exchange-dependent relaxation (AREX) analysis: A reevaluation of T 1 correction in quantitative CEST MRI of rodent brain tumor models. Magn Reson Med 2024; 92:236-245. [PMID: 38380727 PMCID: PMC11055669 DOI: 10.1002/mrm.30056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE The apparent exchange-dependent relaxation (AREX) analysis has been proposed as an effective means to correct T1 contribution in CEST quantification. However, it has been recognized that AREX T1 correction is not straightforward if CEST scans are not performed under the equilibrium condition. Our study aimed to test if quasi-steady-state (QUASS) reconstruction could boost the accuracy of the AREX metric under common non-equilibrium scan conditions. THEORY AND METHODS Numerical simulation and in vivo scans were performed to assess the AREX metric accuracy. The CEST signal was simulated under different relaxation delays, RF saturation amplitudes, and durations. The AREX was evaluated as a function of the bulk water T1 and labile proton concentration using the multiple linear regression model. AREX MRI was also assessed in brain tumor rodent models, with both apparent CEST scans and QUASS reconstruction. RESULTS Simulation showed that the AREX calculation from apparent CEST scans, under non-equilibrium conditions, had significant dependence on labile proton fraction ratio, RF saturation time, and T1. In comparison, QUASS-boosted AREX depended on the labile proton fraction ratio without significant dependence on T1 and RF saturation time. Whereas the apparent (2.7 ± 0.8%) and QUASS MTR asymmetry (2.8 ± 0.8%) contrast between normal and tumor regions of interest (ROIs) were significant, the difference was small. In comparison, AREX contrast between normal and tumor ROIs calculated from the apparent CEST scan and QUASS reconstruction was 3.8 ± 1.1%/s and 4.4 ± 1.2%/s, respectively, statistically different from each other. CONCLUSIONS AREX analysis benefits from the QUASS-reconstructed equilibrium CEST effect for improved T1 correction and quantitative CEST analysis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Shaghaghi M, Damen FC, Li W, Tai LM, Cai K. Induced saturation transfer recovery steady states (iSTRESS) for proton exchange rate mapping with CEST MRI, a preliminary study. Magn Reson Imaging 2024; 109:264-270. [PMID: 38522624 PMCID: PMC11440908 DOI: 10.1016/j.mri.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Proton exchange underpins essential mechanisms in diverse MR imaging contrasts. Omega plots have proven effective in mapping proton exchange rates (kex) in live human brains, enabling the differentiation of MS lesion activities and characterization of ischemic stroke. However, Omega plots require extended saturation durations (typically 5 to 10 s), resulting in high specific absorption rates (SAR) that can hinder clinical feasibility. In this study, we introduce a novel kex mapping approach, named induced Saturation Transfer Recovery Steady-States (iSTRESS). iSTRESS integrates an excitation flip angle pulse prior to chemical exchange saturation transfer (CEST) saturation, effectively aligning the magnetization with its steady-state value. This innovation reduces saturation times and mitigates SAR concerns. The formula for iSTRESS-based kex quantification was derived theoretically, involving two measurements with distinct excitation flip angles and saturation B1 values. Bloch-McConnell simulations confirmed that iSTRESS-based kex values closely matched input values (R2 > 0.99). An iSTRESS MRI sequence was implemented on a 9.4 T preclinical MRI, imaging protein phantoms with pH values ranging from 6.2 to 7.4 (n = 4). Z-spectra were acquired using excitation flip angles of 30° and 60°, followed by CEST saturation at powers of 30 and 120 Hz respectively, with a total saturation time of <1 s, resulting in two iSTRESS states for kex mapping. kex maps derived from the phantom study exhibited a linear correlation (R2 > 0.99) with Omega plot results. The developed iSTRESS method allows for kex quantification with significantly reduced saturation times, effectively minimizing SAR concerns.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Frederick C Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Weiguo Li
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Shaghaghi M, Cai K. Analytical solution of the Bloch-McConnell equations for steady-state CEST Z-spectra. Magn Reson Imaging 2024; 109:74-82. [PMID: 38430977 PMCID: PMC11463197 DOI: 10.1016/j.mri.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE To derive an analytic expression for the steady-state Chemical Exchange Saturation Transfer (CEST) Z-spectra of a two-pool proton-exchanging system, facilitating simulations and expedited fitting of steady-state Z-spectra. METHOD The analytical expression is derived by directly solving the set of Bloch-McConnell differential equations in matrix form for a two-pool exchanging system, determining water magnetization under steady-state saturation across the entire Z-spectrum. The analytic solution is compared and validated against the numerical solution of Bloch-McConnell equations under prolonged saturation. The study also explores the line shape of a CEST peak, interpolating under-sampled Z-spectra, and Z-spectral fitting in the presence of noise. RESULTS The derived analytic solution accurately reproduces spectra obtained through numerical solutions. Direct fitting of simulated CEST spectra with the analytical solution yields the physical parameters of the exchanging system. The study shows that the analytical solution enables the reproduction of fully sampled spectra from sparsely sampled Z-spectra. Additionally, it confirms the approximation of the CEST spectrum of a single exchanging proton species with a Lorentzian function. Monte Carlo simulations reveal that the accuracy and precision of Z-spectral fittings for physical parameters are significantly influenced by data noise. The study also derives and discusses the analytical solution for three-pool Z-spectra. CONCLUSION The derived analytic solution for steady state Z-spectra can be utilized for simulations and Z-spectrum fitting, significantly reducing fitting times compared to numerical methods employed for fitting CEST Z-spectra.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
7
|
Wang Y, Sun YX, Yang QY, Gao JH. A generalized QUCESOP method with evaluating CEST peak overlap. NMR IN BIOMEDICINE 2024; 37:e5098. [PMID: 38224670 DOI: 10.1002/nbm.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
The overlapping peaks of the target chemical exchange saturation transfer (CEST) solutes and other unknown CEST solutes affect the quantification results and accuracy of the chemical exchange parameters-the fractional concentration, f b , exchange rate, k b , and transverse relaxation rate, R 2 b -for the target solutes. However, to date, no method has been established for assessing the overlapping peaks. This study aimed to develop a method for quantifying the f b , k b , and R 2 b values of a specific CEST solute, as well as assessing the overlap between the CEST peaks of the specific solute(s) and other unknown solutes. A simplified R 1 ρ model was proposed, assuming linear approximation of the other solutes' contributions to R 1 ρ . A CEST data acquisition scheme was applied with various saturation offsets and saturation powers. In addition to fitting the f b , k b , and R 2 b values of the specific solute, the overlapping condition was evaluated based on the root mean square error (RMSE) between the trajectories of the acquired and synthesized data. Single-solute and multi-solute phantoms with various phosphocreatine (PCr) concentrations and pH values were used to calculate the f b and k b of PCr and the corresponding RMSE. The feasibility of RMSE for evaluating the overlapping condition, and the accurate fitting of f b and k b in weak overlapping conditions, were verified. Furthermore, the method was employed to quantify the nuclear Overhauser effect signal in rat brains and the PCr signal in rat skeletal muscles, providing results that were consistent with those reported in previous studies. In summary, the proposed approach can be applied to evaluate the overlapping condition of CEST peaks and quantify the f b , k b , and R 2 b values of specific solutes, if the weak overlapping condition is satisfied.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu-Yu Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- McGovern Institute for Brain Research, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
8
|
Di Gregorio E, Papi C, Conti L, Di Lorenzo A, Cavallari E, Salvatore M, Cavaliere C, Ferrauto G, Aime S. A Magnetic Resonance Imaging-Chemical Exchange Saturation Transfer (MRI-CEST) Method for the Detection of Water Cycling across Cellular Membranes. Angew Chem Int Ed Engl 2024; 63:e202313485. [PMID: 37905585 DOI: 10.1002/anie.202313485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Water cycling across the membrane transporters is considered a hallmark of cellular metabolism and it could be of high diagnostic relevance in the characterization of tumors and other diseases. The method relies on the response of intracellular proton exchanging molecules to the presence of extracellular Gd-based contrast agents (GBCAs). Paramagnetic GBCAs enhances the relaxation rate of water molecules in the extracellular compartment and, through membrane exchange, the relaxation enhancement is transferred to intracellular molecules. The effect is detected at the MRI-CEST (Magnetic Resonance Imaging - Chemical Exchange Saturation Transfer) signal of intracellular proton exchanging molecules. The magnitude of the change in the CEST response reports on water cycling across the membrane. The method has been tested on Red Blood Cells and on orthotopic murine models of breast cancer with different degree of malignancy (4T1, TS/A and 168FARN). The distribution of voxels reporting on membrane permeability fits well with the cells' aggressiveness and acts as an early reporter to monitor therapeutic treatments.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Antonino Di Lorenzo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Eleonora Cavallari
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Marco Salvatore
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Carlo Cavaliere
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Silvio Aime
- IRCCS SDN SynLab, Via E. Gianturco 113, 80143, Napoli, Italy
| |
Collapse
|
9
|
Zhuang C, Chen B, Wu S, Xu L, Zhang X, Zheng X, Chen Y, Geng Y, Guan J, Lin Y, Wilman AH, Wu R. Repurposing of the PET Probe Prototype PiB for Label and Radiation-Free CEST MRI Molecular Imaging of Amyloid. ACS Chem Neurosci 2023; 14:4344-4351. [PMID: 38061891 PMCID: PMC10741654 DOI: 10.1021/acschemneuro.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Positron emission tomography (PET) probes are specific and sensitive while suffering from radiation risk. It is worthwhile to explore the chemical emission saturation transfer (CEST) effects of the probe prototypes and repurpose them for CEST imaging to avoid radiation. In this study, we used 11C-PiB as an example of a PET probe for detecting amyloid and tested the feasibility of repurposing this PET probe prototype, PiB, for CEST imaging. After optimizing the parameters through preliminary phantom experiments, we used APP/PS1 transgenic mice and age-matched C57 mice for in vivo CEST magnetic resonance imaging (MRI) of amyloid. Furthermore, the pathological assessment was conducted on the same brain slices to evaluate the correlation between the CEST MRI signal abnormality and β-amyloid deposition detected by immunohistochemical staining. In our results, the Z-spectra revealed an apparent CEST effect that peaked at approximately 6 ppm. APP/PS1 mice as young as 9 months injected with PiB showed a significantly higher CEST effect compared to the control groups. The hyperintense region was correlated with the Aβ deposition shown by pathological staining. In conclusion, repurposing the PET probe prototype for CEST MRI imaging is feasible and enables label- and radiation-free detection of the amyloid while maintaining the sensitivity and specificity of the ligand. This study opens the door to developing CEST probes based on PET probe prototypes.
Collapse
Affiliation(s)
- Caiyu Zhuang
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Department
of Radiology, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Beibei Chen
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Shuohua Wu
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Liang Xu
- Department
of Medical Imaging, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaolei Zhang
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Xinhui Zheng
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yue Chen
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yiqun Geng
- Laboratory
of Molecular Pathology, Shantou University
Medical College, Shantou 515041, China
| | - Jitian Guan
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Yan Lin
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou 515041, China
| | - Alan H. Wilman
- The Department
of Biomedical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Renhua Wu
- Department
of Radiology, Second Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
- Provincial
Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou 515041, China
| |
Collapse
|
10
|
Guo X, Zhang L, Hu J, Szilágyi B, Yu M, Chen S, Tircsó G, Zhou X, Tao J. Improving the potential of paraCEST through magnetic-coupling induced line sharpening. Chem Sci 2023; 14:14157-14165. [PMID: 38098703 PMCID: PMC10717539 DOI: 10.1039/d3sc04770a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Magnetic coupling between paramagnetic centers is a crucial phenomenon in the design of efficient MRI contrast agents. In this study, we investigate the paraCEST properties and magnetic coupling effects of a novel homodinuclear Ni(ii) complex, 1, containing a Robson type macrocyclic ligand. A thorough analysis of the complex's electronic and magnetic properties revealed that the magnetic coupling effect reduces the transverse relaxation rate and enhances the sharpness of the proton resonances, leading to enhanced CEST efficiency. This novel mechanism, which we coined "magnetic-coupling induced line sharpening" (MILS), can be crucial for optimizing the performance of paramagnetic metal complexes in paraCEST imaging. Moreover, magnetic coupling plays a critical role in the relaxation properties of homodinuclear complexes. Our study not only paves the way for the creation of advanced paraCEST agents with enhanced CEST capabilities and sensitivity but also provides valuable guidance for the design of other MRI contrast agents utilizing dinuclear metal complexes.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiesheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Balázs Szilágyi
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
- Doctoral School of Chemistry, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Gyula Tircsó
- Department of Physical Chemistry, Faculty of Science and Technology, University of Debrecen Egyetem tér 1 H-4032 Debrecen Hungary
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
11
|
Panda SK, Rai A, Singh AK. Study of paraCEST response on six-coordinated Co(II) and Ni(II) complexes of a pyridine-tetraamide-based ligand. Dalton Trans 2023. [PMID: 38009007 DOI: 10.1039/d3dt02283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
This study highlights the successful synthesis of a potential ligand, 2,2',2'',2'''-((pyridine-2,6-diylbis(methylene))bis(azanetriyl))tetraacetamide (PATA), along with its corresponding Co(II) and Ni(II) complexes for paraCEST-based agents. X-ray diffraction data confirmed that both the complexes are six coordinated with distorted octahedral geometries, but only the [Co(PATA)]2+ complex has a good structural feature to show paraCEST activity. After a thorough characterization of the ligand and both of its complexes, various studies, including solution-state magnetic properties, redox properties, temperature, and pH variation studies, were carried out. [Co(PATA)]2+ remained inert in the presence of competing ions, under acidic conditions, at high temperatures, and in the physiological pH range. The paraCEST response of [Co(PATA)]2+ has been measured in the presence of HEPES buffer medium, and a high paraCEST feature was discovered at both 37 and 25 °C. The pH variation paraCEST studies were carried out and the exchange rate constant of the probe at 37 and 25 °C was also determined. However, due to the fast exchange of water protons, the [Ni(PATA)(OH2)]2+ complex remained inactive in the CEST process.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- Indian Institute of Technology Bhubaneswar, Khordha, Odisha, 752050, India.
| | - Ankit Rai
- Indian Institute of Technology Bhubaneswar, Khordha, Odisha, 752050, India.
| | | |
Collapse
|
12
|
Wu L, Lu D, Sun PZ. Comparison of model-free Lorentzian and spinlock model-based fittings in quantitative CEST imaging of acute stroke. Magn Reson Med 2023; 90:1958-1968. [PMID: 37335834 PMCID: PMC10538953 DOI: 10.1002/mrm.29772] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE CEST MRI detects complex tissue changes following acute stroke. Our study aimed to test if spinlock model-based fitting of the quasi-steady-state (QUASS)-reconstructed equilibrium CEST MRI improves the determination of multi-pool signal changes over the commonly-used model-free Lorentzian fitting in acute stroke. THEORY AND METHODS Multiple three-pool CEST Z-spectra were simulated using Bloch-McConnell equations for a range of T1 , relaxation delay, and saturation times. The multi-pool CEST signals were solved from the simulated Z-spectra to test the accuracy of routine Lorentzian (model-free) and spinlock (model-based) fittings without and with QUASS reconstruction. In addition, multiparametric MRI scans were obtained in rat models of acute stroke, including relaxation, diffusion, and CEST Z-spectrum. Finally, we compared model-free and model-based per-pixel CEST quantification in vivo. RESULTS The spinlock model-based fitting of QUASS CEST MRI provided a nearly T1 -independent determination of multi-pool CEST signals, advantageous over the fittings of apparent CEST MRI (model-free and model-based). In vivo data also demonstrated that the spinlock model-based QUASS fitting captured significantly different changes in semisolid magnetization transfer (-0.9 ± 0.8 vs. 0.3 ± 0.8%), amide (-1.1 ± 0.4 vs. -0.5 ± 0.2%), and guanidyl (1.0 ± 0.4 vs. 0.7 ± 0.3%) signals over the model-free Lorentzian analysis. CONCLUSION Our study demonstrated that spinlock model-based fitting of QUASS CEST MRI improved the determination of the underlying tissue changes following acute stroke, promising further clinical translation of quantitative CEST imaging.
Collapse
Affiliation(s)
- Limin Wu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dongshuang Lu
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Phillip Zhe Sun
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
13
|
Sun PZ. Numerical simulation-based assessment of pH-sensitive chemical exchange saturation transfer MRI quantification accuracy across field strengths. NMR IN BIOMEDICINE 2023; 36:e5000. [PMID: 37401645 DOI: 10.1002/nbm.5000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI detects dilute labile protons via their exchange with bulk water, conferring pH sensitivity. Based on published exchange and relaxation properties, a 19-pool simulation was used to model the brain pH-dependent CEST effect and assess the accuracy of quantitative CEST (qCEST) analysis across magnetic field strengths under typical scan conditions. First, the optimal B1 amplitude was determined by maximizing pH-sensitive amide proton transfer (APT) contrast under the equilibrium condition. Apparent and quasi-steady-state (QUASS) CEST effects were then derived under the optimal B1 amplitude as functions of pH, RF saturation duration, relaxation delay, Ernst flip angle, and field strength. Finally, CEST effects, particularly the APT signal, were isolated with spinlock model-based Z-spectral fitting to evaluate the accuracy and consistency of CEST quantification. Our data showed that QUASS reconstruction significantly improved the consistency between simulated and equilibrium Z-spectra. The residual difference between QUASS and equilibrium CEST Z-spectra was, on average, 30 times less than that of the apparent CEST Z-spectra across field strengths, saturation, and repetition times. Also, the spinlock fitting of the QUASS CEST effect significantly reduced the residual errors 9-fold. Furthermore, the isolated APT amplitude from QUASS reconstruction was consistent and higher than the apparent CEST analysis under nonequilibrium conditions. To summarize, this study confirmed that QUASS reconstruction facilitates accurate determination of the CEST system under different scan protocols across field strengths, with the potential to help standardize CEST quantification.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Panda SK, Torres J, Kremer C, Singh AK. Comparative paraCEST effect of amide and hydroxy groups in divalent cobalt and nickel complexes of tripyridine-based ligands. Dalton Trans 2023; 52:13594-13607. [PMID: 37698164 DOI: 10.1039/d3dt01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Co(II) and Ni(II) complexes of two tri-pyridine-based ligands with two hydroxy and two amide exchangeable protons (TDTA) and with six amide exchangeable protons (TMTP) were investigated for application as paraCEST-based magnetic resonance imaging (MRI) contrast agents. The two hydroxy groups present in the TDTA ligand were found to be passive while the amide group was active towards the CEST process. In the case of the Co(II) and Ni(II) complexes of the TMTP ligand, all three coordinated amide groups participated in the exchange process, and excellent CEST signals were observed. The X-ray structure of the four complexes revealed the seven-coordinate geometry of Co(II) complexes and the six-coordinate geometry of Ni(II) complexes. The presence of amide protons and hydroxy protons in the complexes was detected by the NMR method. The stability of the complexes in solution at high temperatures, in different pH ranges and acidic conditions, in the presence of competing cations, and biologically relevant anions was investigated. Potentiometric titrations were carried out to determine the ligand's protonation constants and the complexes' thermodynamic stability constant at 25.0 °C and I = 0.15 mol L-1 NaClO4. ParaCEST studies of [Co(TMTP)]2+ and [Ni(TMTP)]2+ at variable pH and variable pulse power are highlighted.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- Indian Institute of Technology Bhubaneswar, Khordha, Odisha 752050, India.
| | - Julia Torres
- Área de Química Inorgánica - DEC, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Carlos Kremer
- Área de Química Inorgánica - DEC, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | | |
Collapse
|
15
|
Sun C, Zhao Y, Zu Z. Validation of the presence of fast exchanging amine CEST effect at low saturation powers and its influence on the quantification of APT. Magn Reson Med 2023; 90:1502-1517. [PMID: 37317709 PMCID: PMC10614282 DOI: 10.1002/mrm.29742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Accurately quantifying the amide proton transfer (APT) effect and the underlying exchange parameters is crucial for its applications, but previous studies have reported conflicting results. In these quantifications, the CEST effect from the fast exchange amine was always ignored because it was considered weak with low saturation powers. This paper aims to evaluate the influence of the fast exchange amine CEST on the quantification of APT at low saturation powers. METHODS A quantification method with low and high saturation powers was used to distinguish APT from the fast exchange amine CEST effect. Simulations were conducted to assess the method's capability to separate APT from the fast exchange amine CEST effect. Animal experiments were performed to assess the relative contributions from the fast exchange amine and amide to CEST signals at 3.5 ppm. Three APT quantification methods, each with varying degrees of contamination from the fast exchange amine, were employed to process the animal data to assess the influence of the amine on the quantification of APT effect and the exchange parameters. RESULTS The relative size of the fast exchange amine CEST effect to APT effect gradually increases with increasing saturation power. At 9.4 T, it increases from approximately 20% to 40% of APT effect with a saturation power increase from 0.25 to 1 μT. CONCLUSION The fast exchange amine CEST effect leads overestimation of APT effect, fitted amide concentration, and amide-water exchange rate, potentially contributing to the conflicting results reported in previous studies.
Collapse
Affiliation(s)
- Casey Sun
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Chemistry, University of Florida, Gainesville, US
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
16
|
Igarashi T, Kim H, Sun PZ. Detection of tissue pH with quantitative chemical exchange saturation transfer magnetic resonance imaging. NMR IN BIOMEDICINE 2023; 36:e4711. [PMID: 35141979 PMCID: PMC10249910 DOI: 10.1002/nbm.4711] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 05/12/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a novel means for sensitive detection of dilute labile protons and chemical exchange rates. By sensitizing to pH-dependent chemical exchange, CEST MRI has shown promising results in monitoring tissue statuses such as pH changes in disorders like acute stroke, tumor, and acute kidney injury. This article briefly reviews the basic principles for CEST imaging and quantitative measures, from the simplistic asymmetry analysis to multipool Lorentzian decoupling and quasi-steady-state reconstruction. In particular, the advantages and limitations of commonly used quantitative approaches for CEST applications are discussed.
Collapse
Affiliation(s)
- Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hahnsung Kim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| |
Collapse
|
17
|
Perlman O, Farrar CT, Heo HY. MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification. NMR IN BIOMEDICINE 2023; 36:e4710. [PMID: 35141967 PMCID: PMC9808671 DOI: 10.1002/nbm.4710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 05/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast mechanism, capable of providing molecular information at sufficient resolution and amplified sensitivity. However, it has not yet become a routinely employed clinical technique, due to a variety of confounding factors affecting its contrast-weighted image interpretation and the inherently long scan time. CEST MR fingerprinting (MRF) is a novel approach for addressing these challenges, allowing simultaneous quantitation of several proton exchange parameters using rapid acquisition schemes. Recently, a number of deep-learning algorithms have been developed to further boost the performance and speed of CEST and semi-solid macromolecule magnetization transfer (MT) MRF. This review article describes the fundamental theory behind semisolid MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning approaches for MRF image reconstruction and describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally, practical considerations are discussed, and future perspectives are given, accompanied by basic demonstration code and data.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Longo DL, Carella A, Corrado A, Pirotta E, Mohanta Z, Singh A, Stabinska J, Liu G, McMahon MT. A snapshot of the vast array of diamagnetic CEST MRI contrast agents. NMR IN BIOMEDICINE 2023; 36:e4715. [PMID: 35187749 PMCID: PMC9724179 DOI: 10.1002/nbm.4715] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/11/2023]
Abstract
Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.
Collapse
Affiliation(s)
- Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Elisa Pirotta
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Zinia Mohanta
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aruna Singh
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julia Stabinska
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T. McMahon
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Sherry AD, Castelli DD, Aime S. Prospects and limitations of paramagnetic chemical exchange saturation transfer agents serving as biological reporters in vivo. NMR IN BIOMEDICINE 2023; 36:e4698. [PMID: 35122337 PMCID: PMC9984198 DOI: 10.1002/nbm.4698] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/23/2023]
Abstract
The concept of using paramagnetic metal ion complexes as chemical exchange saturation transfer agents (paraCEST) for molecular imaging of various biological processes first appeared in the literature about 20 years ago. The first paraCEST agent was based on a highly shifted, inner-sphere, slowly exchanging water molecule that could be activated at a frequency far away from bulk water, a substantial advantage for selective activation of the agent alone. Many other paraCEST agent designs followed that were based on activation of exchanging -NH or -OH proton on the chelate itself. Both types of paraCEST designs are attractive for molecular imaging because the rates of water molecule or ligand proton exchange can be designed to be sensitive to a biological or physiological property such as pH, enzyme activity, or redox. Hence, the intensity or frequency of the resulting CEST signal provides a direct readout of that property. Many molecular designs have appeared in the literature over the past 20 years, mostly reported as proof-of-concept designs but, unfortunately, only a few reports have explored the limitations of paraCEST agents for imaging a biological process in vivo. As a community, we now know that the sensitivity of paraCEST agents is lower than one might anticipate based upon simple chemical exchange principles and, in general, it appears the sensitivity of paraCEST agents is even lower in vivo than in vitro. In this short review, we address some of the factors that contribute to the limited sensitivity of paraCEST agents in vivo, offer some thoughts on approaches that could lead to dramatically improved paraCEST sensitivity, and challenge the scientific community to perform more in vivo experiments designed to test these ideas.
Collapse
Affiliation(s)
- A. Dean Sherry
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Sun PZ. Generalization of quasi-steady-state reconstruction to CEST MRI with two-tiered RF saturation and gradient-echo readout-Synergistic nuclear Overhauser enhancement contribution to brain tumor amide proton transfer-weighted MRI. Magn Reson Med 2023; 89:2014-2023. [PMID: 36579767 DOI: 10.1002/mrm.29570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE While amide proton transfer-weighted (APTw) MRI has been adopted in tumor imaging, there are concurrent APT, magnetization transfer, and nuclear Overhauser enhancement changes. Also, the APTw image is confounded by relaxation changes, particularly when the relaxation delay and saturation time are not sufficiently long. Our study aimed to extend a quasi-steady-state (QUASS) solution to determine the contribution of the multipool CEST signals to the observed tumor APTw contrast. METHODS Our study derived the QUASS solution for a multislice CEST-MRI sequence with an interleaved RF saturation and gradient-echo readout between signal averaging. Multiparametric MRI scans were obtained in rat brain tumor models, including T1 , T2 , diffusion, and CEST scans. Finally, we performed spinlock model-based multipool fitting to determine multiple concurrent CEST signal changes in the tumor. RESULTS The QUASS APTw MRI showed small but significant differences in normal and tumor tissues and their contrast from the acquired asymmetry calculation. The spinlock model-based fitting showed significant differences in semisolid magnetization transfer, amide, and nuclear Overhauser enhancement effects between the apparent and QUASS CEST MRI. In addition, we determined that the tumor APTw contrast is due to synergistic APT increase (+3.5 ppm) and NOE decrease (-3.5 ppm), with their relative contribution being about one third and two thirds under a moderate B1 of 0.75 μT at 4.7 T. CONCLUSION Our study generalized QUASS analysis to gradient-echo image readout and quantified the underlying tumor CEST signal changes, providing an improved elucidation of the commonly used APTw MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Emory Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Ackerman JJH. In memoriam: William T. Dixon (1945-2022). Magn Reson Med 2023; 89:1293-1296. [PMID: 36579771 DOI: 10.1002/mrm.29568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
|
22
|
Sun PZ. Demonstration of accurate multi-pool chemical exchange saturation transfer MRI quantification - Quasi-steady-state reconstruction empowered quantitative CEST analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107379. [PMID: 36689786 PMCID: PMC10023465 DOI: 10.1016/j.jmr.2023.107379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 05/18/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute labile protons and microenvironment properties, yet CEST quantification has been challenging. This difficulty is because the CEST measurement depends not only on the underlying CEST system but also on the scan protocols, including RF saturation amplitude, duration, and repetition time. In addition, T1 normalization is not straightforward under non-equilibrium conditions. Recently, a quasi-steady-state (QUASS) algorithm was established to reconstruct the desired equilibrium state from experimental measurements. Our study aimed to determine the accuracy of spinlock-model-based multi-pool CEST quantification using numerical simulations and phantom experiments. In short, CEST Z-spectra were simulated for a representative 3-pool model, and CEST amplitudes were solved with spinlock model-based multi-pool fitting and assessed as a function of RF saturation time (Ts), repetition time (TR), and T1. Although the apparent CEST signals showed significant T1 dependence, such relationships were not observed following QUASS reconstruction. To test the accuracy of T1 correction, a multi-vial phantom of nicotinamide and creatine was doped with manganese chloride, resulting in T1 ranging from 1 s to beyond 2 s. The multi-labile signals determined from the routine measurements showed significant dependence on Ts, TR, and T1. In contrast, CEST signals from the QUASS reconstruction showed consistent quantification independent of such variables. To summarize, our study demonstrated that accurate CEST quantification is feasible in multi-pool CEST systems with the spinlock-model-based fitting of QUASS CEST MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
23
|
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH. Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement-CEST, and quantitative magnetization transfer MRI. Magn Reson Med 2023; 89:774-786. [PMID: 36226662 PMCID: PMC11027791 DOI: 10.1002/mrm.29477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Standardized blood tests often lack adequate sensitivity and specificity to capture the gradual progression of renal injuries. We suggest a multiparametric molecular MRI approach as a noninvasive tool for monitoring renal function loss and distinguishing different types of renal injuries. METHODS CEST and quantitative magnetization transfer (qMT) imaging were performed on cisplatin (n = 16) and aristolochic acid (AA)-induced nephropathy (n = 22) mouse models at 7T with an infusion of either saline or urea. Seven-pool Lorentzian fitting was applied for the analysis of CEST Z-spectra, and the T1 -corrected CEST contrast apparent exchange-dependent relaxation (AREX) from urea (+1 ppm) and two nuclear Overhauser enhancement (NOE) pools (-1.6 and -3.5 ppm) were measured. Similarly, qMT spectra were fitted into two-pool Ramani equation and the relative semi-solid macromolecular pool-size ratio was measured. Histology of mouse kidneys was performed to validate the MR findings. RESULTS AA model showed disrupted spatial gradients of urea in the kidney and significantly decreased NOE CEST and qMT contrast. The cisplatin model showed slightly decreased qMT contrast only. The orrelation of MR parameters to histological features showed that NOE CEST and qMT imaging are sensitive to both acute and chronic injuries, whereas urea CEST shows a significant correlation only to acute injuries. CONCLUSION These results indicate that our multiparametric approach allows comprehensive and totally noninvasive monitoring of renal function and histological changes for distinguishing different nephropathies.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Michael F. Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, CA
| | - Jingshen Wang
- Department of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Mark Velasquez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | | |
Collapse
|
24
|
Ji Y, Lu D, Sun PZ, Zhou IY. In vivo pH mapping with omega plot-based quantitative chemical exchange saturation transfer MRI. Magn Reson Med 2023; 89:299-307. [PMID: 36089834 PMCID: PMC9617761 DOI: 10.1002/mrm.29444] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) MRI is promising for detecting dilute metabolites and microenvironment properties, which has been increasingly adopted in imaging disorders such as acute stroke and cancer. However, in vivo CEST MRI quantification remains challenging because routine asymmetry analysis (MTRasym ) or Lorentzian decoupling measures a combined effect of the labile proton concentration and its exchange rate. Therefore, our study aimed to quantify amide proton concentration and exchange rate independently in a cardiac arrest-induced global ischemia rat model. METHODS The amide proton CEST (APT) effect was decoupled from tissue water, macromolecular magnetization transfer, nuclear Overhauser enhancement, guanidinium, and amine protons using the image downsampling expedited adaptive least-squares (IDEAL) fitting algorithm on Z-spectra obtained under multiple RF saturation power levels, before and after global ischemia. Omega plot analysis was applied to determine amide proton concentration and exchange rate simultaneously. RESULTS Global ischemia induces a significant APT signal drop from intact tissue. Using the modified omega plot analysis, we found that the amide proton exchange rate decreased from 29.6 ± 5.6 to 12.1 ± 1.3 s-1 (P < 0.001), whereas the amide proton concentration showed little change (0.241 ± 0.035% vs. 0.202 ± 0.034%, P = 0.074) following global ischemia. CONCLUSION Our study determined the labile proton concentration and exchange rate underlying the in vivo APT MRI. The significant change in the exchange rate, but not the concentration of amide proton demonstrated that the pH effect dominates the APT contrast during tissue ischemia.
Collapse
Affiliation(s)
- Yang Ji
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Dongshuang Lu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Emory Primate Imaging Center, Emory Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Vassallo G, Garello F, Aime S, Terreno E, Delli Castelli D. 31P ParaCEST: 31P MRI-CEST Imaging Based on the Formation of a Ternary Adduct between Inorganic Phosphate and Eu-DO3A. Inorg Chem 2022; 61:19663-19667. [PMID: 36445702 PMCID: PMC9946289 DOI: 10.1021/acs.inorgchem.2c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Development of the field of magnetic resonance imaging (MRI) chemical exchange saturation transfer (CEST) contrast agents is hampered by the limited sensitivity of the technique. In water, the high proton concentration allows for an enormous amplification of the exchanging proton pool. However, the 1H CEST in water implies that the number of nuclear spins of the CEST-generating species has to be in the millimolar range. The use of nuclei other than a proton allows exploitation of signals different from that of water, thus lowering the concentration of the exchanging pool as the source of the CEST effect. In this work, we report on the detection of a 31P signal from endogenous inorganic phosphate (Pifree) as the source of CEST contrast by promoting its exchange with the Pi bound to the exogenous complex 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (Pibound). The herein-reported results demonstrate that this approach can improve the detectability threshold by 3 orders of magnitude with respect to the conventional 1H CEST detection (considered per single proton). This achievement reflects the decrease of the bulk concentration of the detected signal from 111.2 M (water) to 10 mM (Pi). This method paves the way to a number of biological studies and clinically translatable applications, herein addressed with a proof-of-concept in the field of cellular imaging.
Collapse
Affiliation(s)
- Giulia Vassallo
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Francesca Garello
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Silvio Aime
- IRCCS
SDN SynLab, Via E. Gianturco
113, 80143Napoli, Italy
| | - Enzo Terreno
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| | - Daniela Delli Castelli
- Department
of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126Turin, Italy
| |
Collapse
|
26
|
Zaiss M, Jin T, Kim SG, Gochberg DF. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR IN BIOMEDICINE 2022; 35:e4789. [PMID: 35704180 DOI: 10.1002/nbm.4789] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a versatile MRI method that provides contrast based on the level of molecular and metabolic activity. This contrast arises from indirect measurement of protons in low concentration molecules that are exchanging with the abundant water proton pool. The indirect measurement is based on magnetization transfer of radio frequency (rf)-prepared magnetization from the small pool to the water pool. The signal can be modeled by the Bloch-McConnell equations combining standard magnetization dynamics and chemical exchange processes. In this article, we review analytical solutions of the Bloch-McConnell equations and especially the derived CEST signal equations and their implications. The analytical solutions give direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and concentration of the solute pools, but also on the system parameters such as the rf irradiation field B1 , as well as the static magnetic field B0 . These theoretical field-strength dependencies and their influence on sequence design are highlighted herein. In vivo results of different groups making use of these field-strength benefits/dependencies are reviewed and discussed.
Collapse
Affiliation(s)
- Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tao Jin
- NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Shaghaghi M, Cai K. Toward In Vivo MRI of the Tissue Proton Exchange Rate in Humans. BIOSENSORS 2022; 12:bios12100815. [PMID: 36290953 PMCID: PMC9599426 DOI: 10.3390/bios12100815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration. However, it cannot be used for in vivo studies without some modification due to the contributions from the water signal. In vivo tissue proton exchange rate (kex) MRI, based on the direct saturation (DS) removed Omega plot, quantifies the weighted average of kex of the endogenous tissue metabolites. This technique has been successfully employed for imaging the variation in the kex of ex vivo phantoms, as well as in vivo human brains in healthy subjects, and stroke or multiple sclerosis (MS) patients. In this paper, we present a brief review of the methods used for kex imaging with a focus on the development of in vivo kex MRI technique based on the DS-removed Omega plot. We then review the recent clinical studies utilizing this technique for better characterizing brain lesions. We also outline technical challenges for the presented technique and discuss its prospects for detecting tissue microenvironmental changes under oxidative stress.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
28
|
Pandey S, Ghosh R, Ghosh A. Preparation of Hydrothermal Carbon Quantum Dots as a Contrast Amplifying Technique for the diaCEST MRI Contrast Agents. ACS OMEGA 2022; 7:33934-33941. [PMID: 36188278 PMCID: PMC9520682 DOI: 10.1021/acsomega.2c02911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The discovery of exogenous contrast agents (CAs) is one of the key factors behind the success and widespread acceptability of MRI as an imaging tool. To the long list of CAs, the newest addition is the chemical exchange saturation transfer (CEST)-based CAs. Among them, the diaCEST CAs are the safer metal-free option constituted by a large pool of organic and macromolecules, but the tradeoff comes in terms of smaller natural offset. Another major challenge for the CEST CAs is that they need to operate in the tens of millimolar concentration range to produce any meaningful contrast. The quest for high efficiency diaCEST agents has led to a number of strategies such as use of hydrogen bonding, use of equivalent protons, and use of diatropic ring current. Here, we present carbon quantum dot formation using hydrothermal treatment as a new strategy to amplify diaCEST contrast efficiency. We show that while the well-known analgesic drug lidocaine hydrochloride when repurposed as a diaCEST CA produces no contrast at the physiological pH and temperature, the carbon dots prepared from it elevate the physiological contrast to a sizable 11%. Also, the maximum efficiency at an acidic pH gets amplified by a factor of 2 to 46%. The study showed that the enhancement in CEST efficiency is reproducible and the pH response of these carbon dots is tunable through variation in synthesis conditions such as temperature, duration, and precursor concentration.
Collapse
|
29
|
Zhao Y, Zu Z, Xu J, Gore JC, Does MD, Li J, Gochberg DF. Mapping pH using stimulated echoes formed via chemical exchange. Magn Reson Imaging 2022; 92:100-107. [PMID: 35764217 DOI: 10.1016/j.mri.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE RACETE (refocused acquisition of chemical exchange transferred excitations) is a recently developed approach to imaging solute exchange with water. However, it lacks biophysical specificity, as it is sensitive to exchange rates, relaxation rates, solute concentration, and macromolecular content. We modified this sequence and developed a protocol and corresponding metric with specific sensitivity to the solute exchange rate and hence a means for mapping pH. THEORY AND METHODS RACETE splits the two gradients traditionally used in a stimulated-echo sequence into one applied after exciting solutes and one applied after exciting water, hence requiring exchange for echo formation. In this work, we leverage the dependence of the stimulated-echo signal on the exchange process. By preserving the total irradiation power and using a ratio metric, the other signal dependencies cancel, leaving a specific measure of exchange rate. Additionally, artifacts due to off-resonance excitation of water are addressed using a phase cancelling approach; and a gradient-echo imaging sequence with a variable flip angle excitation is tailored for a fast read-out of RECETE prepared signals. This method is validated using numerical simulations and salicylic acid phantom experiments at 9.4 T. RESULTS Numerical simulations and phantom experiments demonstrate that the ratio-metric is a single-variable function of exchange rate with extremely low dependence on confounding factors. Additionally, artifacts due to direct water excitation are removed and robustness to B0 and B1 inhomogeneities is demonstrated. CONCLUSION The proposed method can be used for fast pH mapping with robustness against the confounding effects that widely exist in other methods.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Lorentzian-Corrected Apparent Exchange-Dependent Relaxation (LAREX) Ω-Plot Analysis-An Adaptation for qCEST in a Multi-Pool System: Comprehensive In Silico, In Situ, and In Vivo Studies. Int J Mol Sci 2022; 23:ijms23136920. [PMID: 35805925 PMCID: PMC9266897 DOI: 10.3390/ijms23136920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.
Collapse
|
31
|
Perlman O, Zhu B, Zaiss M, Rosen MS, Farrar CT. An end-to-end AI-based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST). Magn Reson Med 2022. [PMID: 35092076 DOI: 10.6084/m9.figshare.14877765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
PURPOSE To develop an automated machine-learning-based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS An MR physics-governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and in vivo mouse brains at 9.4T. RESULTS The acquisition times for AutoCEST optimized schedules ranged from 35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearson's r=0.992 , p<0.0001 ), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearson's r=-0.161 , p=0.522 ). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearson's r=0.971 , p<0.0001 ) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearson's r=0.959 , p<0.0001 ). The AutoCEST in vivo mouse brain semi-solid proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to the white matter (19.80% ± 0.50%), as expected. CONCLUSION AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bo Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute For Biological Cybernetics, Tübingen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
32
|
Perlman O, Zhu B, Zaiss M, Rosen MS, Farrar CT. An end-to-end AI-based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST). Magn Reson Med 2022; 87:2792-2810. [PMID: 35092076 PMCID: PMC9305180 DOI: 10.1002/mrm.29173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop an automated machine-learning-based method for the discovery of rapid and quantitative chemical exchange saturation transfer (CEST) MR fingerprinting acquisition and reconstruction protocols. METHODS An MR physics-governed AI system was trained to generate optimized acquisition schedules and the corresponding quantitative reconstruction neural network. The system (termed AutoCEST) is composed of a CEST saturation block, a spin dynamics module, and a deep reconstruction network, all differentiable and jointly connected. The method was validated using a variety of chemical exchange phantoms and in vivo mouse brains at 9.4T. RESULTS The acquisition times for AutoCEST optimized schedules ranged from 35 to 71 s, with a quantitative image reconstruction time of only 29 ms. The resulting exchangeable proton concentration maps for the phantoms were in good agreement with the known solute concentrations for AutoCEST sequences (mean absolute error = 2.42 mM; Pearson's r = 0.992 , p < 0.0001 ), but not for an unoptimized sequence (mean absolute error = 65.19 mM; Pearson's r = - 0.161 , p = 0.522 ). Similarly, improved exchange rate agreement was observed between AutoCEST and quantification of exchange using saturation power (QUESP) methods (mean absolute error: 35.8 Hz, Pearson's r = 0.971 , p < 0.0001 ) compared to an unoptimized schedule and QUESP (mean absolute error = 58.2 Hz; Pearson's r = 0.959 , p < 0.0001 ). The AutoCEST in vivo mouse brain semi-solid proton volume fractions were lower in the cortex (12.77% ± 0.75%) compared to the white matter (19.80% ± 0.50%), as expected. CONCLUSION AutoCEST can automatically generate optimized CEST/MT acquisition protocols that can be rapidly reconstructed into quantitative exchange parameter maps.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
| | - Bo Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
| | - Moritz Zaiss
- Magnetic Resonance CenterMax Planck Institute For Biological CyberneticsTübingenGermany
- Department of NeuroradiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Matthew S. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
- Department of PhysicsHarvard UniversityCambridgeMAUSA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolCharlestownMAUSA
| |
Collapse
|
33
|
Pandey S, Chakraborty S, Ghosh R, Radhakrishnan D, Peruncheralathan S, Ghosh A. The role of hydrogen bonding in tuning CEST contrast efficiency: a comparative study of intra- and inter-molecular hydrogen bonding. NEW J CHEM 2022. [DOI: 10.1039/d1nj04637c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A comparison of different diacetamide isomers shows the influence of hydrogen-bonding networks in tuning the diaCEST MRI contrast efficiency.
Collapse
Affiliation(s)
- Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Rimilmandrita Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Divya Radhakrishnan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
34
|
Pandey S, Keerthana AC, Madhulika S, Prasad P, Peruncheralathan S, Ghosh A. Hydrothermal treatment as a means of improving the solubility and enhancing the diaCEST MRI contrast efficiency. NEW J CHEM 2022. [DOI: 10.1039/d2nj02529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dot formation through the hydrothermal treatment of amino-thioamide improves the diaCEST contrast efficiency.
Collapse
Affiliation(s)
- Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Anil C. Keerthana
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Swati Madhulika
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Punit Prasad
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - S. Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
35
|
BADE AN, GENDELMAN HE, MCMILLAN J, LIU Y. Chemical exchange saturation transfer for detection of antiretroviral drugs in brain tissue. AIDS 2021; 35:1733-1741. [PMID: 34049358 PMCID: PMC8373768 DOI: 10.1097/qad.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antiretroviral drug theranostics facilitates the monitoring of biodistribution and efficacy of therapies designed to target HIV type-1 (HIV-1) reservoirs. To this end, we have now deployed intrinsic drug chemical exchange saturation transfer (CEST) contrasts to detect antiretroviral drugs within the central nervous system (CNS). DESIGN AND METHODS CEST effects for lamivudine (3TC) and emtricitabine (FTC) were measured by asymmetric magnetization transfer ratio analyses. The biodistribution of 3TC in different brain sub-regions of C57BL/6 mice treated with lipopolysaccharides was determined using MRI. CEST effects of 3TC protons were quantitated by Lorentzian fitting analysis. 3TC levels in plasma and brain regions were measured using ultraperformance liquid chromatography tandem mass spectrometry to affirm the CEST test results. RESULTS CEST effects of the hydroxyl and amino protons in 3TC and FTC linearly correlated to drug concentrations. 3TC was successfully detected in vivo in brain sub-regions by MRI. The imaging results were validated by measurements of CNS drug concentrations. CONCLUSION CEST contrasts can be used to detect antiretroviral drugs using MRI. Such detection can be used to assess spatial--temporal drug biodistribution. This is most notable within the CNS where drug biodistribution may be more limited with the final goal of better understanding antiretroviral drug-associated efficacy and potential toxicity.
Collapse
Affiliation(s)
- Aditya N. BADE
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. GENDELMAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - JoEllyn MCMILLAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong LIU
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
36
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
37
|
Sun PZ. Quasi-steady-state CEST (QUASS CEST) solution improves the accuracy of CEST quantification: QUASS CEST MRI-based omega plot analysis. Magn Reson Med 2021; 86:765-776. [PMID: 33749052 DOI: 10.1002/mrm.28744] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE CEST MRI omega plot quantifies the labile proton fraction ratio (fr ) and exchange rate (ksw ), yet it assumes long RF saturation time (Ts) and relaxation delay (Td). Our study aimed to test if a quasi-steady-state (QUASS) CEST analysis that accounts for the effect of finite Ts and Td could improve the accuracy of CEST MRI quantification. METHODS We modeled the MRI signal evolution using a typical CEST EPI sequence. The signal relaxes toward its thermal equilibrium following the bulk water relaxation rate during Td, and then toward its CEST steady state following the spin-lock relaxation rate during Ts from which the QUASS CEST effect is derived. Both fr and ksw were solved from simulated conventional apparent CEST and QUASS CEST MRI. We also performed MRI experiments from a Cr-gel phantom under serially varied Ts and Td times from 1.5 to 7.5 s. RESULTS Simulation showed that, although ksw could be slightly overestimated (3%-15%) for the range of Ts and Td, fr could be substantially underestimated by as much as 67%. In contrast, the QUASS solution provided accurate ksw and fr determination within 2%. The CEST MRI experiments confirmed that the QUASS solution enabled robust quantification of ksw and fr , superior over the omega plot analysis based on the conventional apparent CEST MRI measurements. CONCLUSIONS The QUASS CEST MRI algorithm corrects the effect of finite Ts and Td times on CEST measurements, thereby allowing robust and accurate CEST quantification.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Chakraborty S, Peruncheralathan S, Ghosh A. Paracetamol and other acetanilide analogs as inter-molecular hydrogen bonding assisted diamagnetic CEST MRI contrast agents. RSC Adv 2021; 11:6526-6534. [PMID: 35423188 PMCID: PMC8694904 DOI: 10.1039/d0ra10410h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paracetamol and a few other acetanilide derivatives are reported as a special class of diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI contrast agents, that exhibit contrast only when the molecules form inter-molecular hydrogen bonding mediated molecular chains or sheets. Without the protection of the hydrogen bonding their contrast producing labile proton exchanges too quickly with the solvent to produce any appreciable contrast. Through a number of variable temperature experiments we demonstrate that under the conditions when the hydrogen bond network breaks and the high exchange returns back, the contrast drops quickly. The well-known analgesic drug paracetamol shows 12% contrast at a concentration of 15 mM at physiological conditions. With the proven safety track-record for human consumption and appreciable physiological contrast, paracetamol shows promise as a diaCEST agent for in vivo studies.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - S Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI Bhubaneswar 752050 Odisha India
| |
Collapse
|
39
|
Sun PZ. Quasi-steady state chemical exchange saturation transfer (QUASS CEST) analysis-correction of the finite relaxation delay and saturation time for robust CEST measurement. Magn Reson Med 2021; 85:3281-3289. [PMID: 33486816 DOI: 10.1002/mrm.28653] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE CEST provides a MR contrast mechanism sensitizing to the exchange between dilute labile and bulk water protons. However, the CEST effect depends on the RF saturation duration and relaxation delay, which need to be long to reach its steady state. Our study aims to estimate the QUAsi-Steady State (QUASS) CEST signal from experiments with shorter saturation and relaxation delay times. METHODS The evolution of the CEST signal was modeled as a function of the bulk water longitudinal relaxation rate during the relaxation delay (Td) and spin-lock relaxation rate during the RF saturation (Ts), from which the QUASS CEST effect is solved. Numeric simulations were programmed to compare the apparent CEST and QUASS CEST effects as a function of Ts and Td times. We also performed CEST MRI experiments from a creatine-gel pH phantom under serially varied Ts and Td times. RESULTS The numeric simulation showed that although the apparent CEST effect depends on Td and Ts, the QUASS CEST solution has little dependence. Phantom results showed that the routine CEST pH contrast could be described by a nonlinear regression model (ie, Δ C E S T R = Δ C E S T R eq app 1 - e - R 1 ρ app · t ). We had Δ C E S T R eq app = 3.90 ± 0.03 % (P < 5e-8) and R 1 ρ app = 0.62 ± 0.02 s - 1 (P < 5e-6). For the QUASS CEST analysis, we modeled the pH contrast as Δ C E S T R = Δ C E S T R eq QUASS + s · t , using a linear regression model. We had Δ C E S T R eq QUASS = 3.63 ± 0.01 % (P < 5e-9) and s = - 0.02 ± 0.00 % / s (P < 0.01), the slope of which is minimal. CONCLUSIONS The QUASS CEST algorithm provides a post-processing solution that facilitates robust CEST measurement.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
40
|
Kim H, Wu Y, Villano D, Longo DL, McMahon MT, Sun PZ. Analysis Protocol for the Quantification of Renal pH Using Chemical Exchange Saturation Transfer (CEST) MRI. Methods Mol Biol 2021; 2216:667-688. [PMID: 33476030 PMCID: PMC9703203 DOI: 10.1007/978-1-0716-0978-1_40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The kidney plays a major role in maintaining body pH homeostasis. Renal pH, in particular, changes immediately following injuries such as intoxication and ischemia, making pH an early biomarker for kidney injury before the symptom onset and complementary to well-established laboratory tests. Because of this, it is imperative to develop minimally invasive renal pH imaging exams and test pH as a new diagnostic biomarker in animal models of kidney injury before clinical translation. Briefly, iodinated contrast agents approved by the US Food and Drug Administration (FDA) for computed tomography (CT) have demonstrated promise as novel chemical exchange saturation transfer (CEST) MRI agents for pH-sensitive imaging. The generalized ratiometric iopamidol CEST MRI analysis enables concentration-independent pH measurement, which simplifies in vivo renal pH mapping. This chapter describes quantitative CEST MRI analysis for preclinical renal pH mapping, and their application in rodents, including normal conditions and acute kidney injury.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Yin Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Torino, Italy
| | - Michael T McMahon
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
41
|
Chakraborty S, Das M, Srinivasan A, Ghosh A. Tetrakis-( N-methyl-4-pyridinium)-porphyrin as a diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agent. NEW J CHEM 2021. [DOI: 10.1039/d0nj04869k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Easily synthesizable tetrakis-(N-methyl-4-pyridinium)-porphyrin as a diaCEST agent that shows nearly pH independent good contrast in a wide range of pH.
Collapse
Affiliation(s)
- Subhayan Chakraborty
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Mainak Das
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - A. Srinivasan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| | - Arindam Ghosh
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- Bhubaneswar 752050
- India
| |
Collapse
|
42
|
Shin SH, Wendland MF, Vandsburger MH. Delayed urea differential enhancement CEST (dudeCEST)-MRI with T 1 correction for monitoring renal urea handling. Magn Reson Med 2020; 85:2791-2804. [PMID: 33180343 DOI: 10.1002/mrm.28583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We demonstrate a method of delayed urea differential enhancement CEST for probing urea recycling action of the kidney using expanded multi-pool Lorentzian fitting and apparent exchange-dependent relaxation compensation. METHODS T1 correction of urea CEST contrast by apparent exchange-dependent relaxation was tested in phantoms. Nine mice were scanned at 7 Tesla following intraperitoneal injection of 2M 150 μL urea, and later saline. T1 maps and Z-spectra were acquired before and 20 and 40 min postinjection. Z-spectra were fit to a 7-pool Lorentzian model for CEST quantification and compared to urea assay of kidney homogenate. Renal injury was induced by aristolochic acid in 7 mice, and the same scan protocol was performed. RESULTS Apparent exchange-dependent relaxation corrected for variable T1 times in phantoms. Urea CEST contrast at +1 ppm increased significantly at both time points following urea injection in the inner medulla and papilla. When normalizing the postinjection urea CEST contrast to the corresponding baseline value, both urea and saline injection resulted in identical fold changes in urea CEST contrast. Urea assay of kidney homogenate showed a significant correlation to both apparent exchange-dependent relaxation (R2 = 0.4687, P = .0017) and non-T1 -corrected Lorentzian amplitudes (R2 = 0.4964, P = .0011). Renal injury resulted in increased T1 time in the cortex and reduced CEST contrast change upon urea and saline infusion. CONCLUSION Delayed urea enhancement following infusion can provide insight into renal urea handling. In addition, changes in CEST contrast at 1.0 ppm following saline infusion may provide insight into renal function.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
43
|
Macrocyclic Chelates Bridged by a Diaza-Crown Ether: Towards Multinuclear Bimodal Molecular Imaging Probes. Molecules 2020; 25:molecules25215019. [PMID: 33138207 PMCID: PMC7663075 DOI: 10.3390/molecules25215019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/02/2022] Open
Abstract
Bridged polymacrocyclic ligands featured by structurally different cages offer the possibility of coordinating multiple trivalent lanthanide ions, giving rise to the exploitation of their different physicochemical properties, e.g., multimodal detection for molecular imaging purposes. Intrigued by the complementary properties of optical and MR-based image capturing modalities, we report the synthesis and characterization of the polymetallic Ln(III)-based chelate comprised of two DOTA-amide-based ligands (DOTA—1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bridged via 1,10-diaza-18-crown-6 (DA18C6) motif. The DOTA-amide moieties and the DA18C6 were used to chelate two Eu(III) ions and one Tb(III) ion, respectively, resulting in a multinuclear heterometallic complex Eu2LTb. The bimetallic complex without Tb(III), Eu2L, displayed a strong paramagnetic chemical exchange saturation transfer (paraCEST) effect. Notably, the luminescence spectra of Eu2LTb featured mixed emission including the characteristic bands of Eu(III) and Tb(III). The advantageous features of the complex Eu2LTb opens new possibilities for the future design of bimodal probes and their potential applicability in CEST MR and optical imaging.
Collapse
|
44
|
Rodríguez-Rodríguez A, Zaiss M, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Moritz Zaiss
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Lab of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P.R. China
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
45
|
Demetriou E, Kujawa A, Golay X. Pulse sequences for measuring exchange rates between proton species: From unlocalised NMR spectroscopy to chemical exchange saturation transfer imaging. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:25-71. [PMID: 33198968 DOI: 10.1016/j.pnmrs.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Within the field of NMR spectroscopy, the study of chemical exchange processes through saturation transfer techniques has a long history. In the context of MRI, chemical exchange techniques have been adapted to increase the sensitivity of imaging to small fractions of exchangeable protons, including the labile protons of amines, amides and hydroxyls. The MR contrast is generated by frequency-selective irradiation of the labile protons, which results in a reduction of the water signal associated with transfer of the labile protons' saturated magnetization to the protons of the surrounding free water. The signal intensity depends on the rate of chemical exchange and the concentration of labile protons as well as on the properties of the irradiation field. This methodology is referred to as CEST (chemical exchange saturation transfer) imaging. Applications of CEST include imaging of molecules with short transverse relaxation times and mapping of physiological parameters such as pH, temperature, buffer concentration and chemical composition due to the dependency of this chemical exchange effect on all these parameters. This article aims to describe these effects both theoretically and experimentally. In depth analysis and mathematical modelling are provided for all pulse sequences designed to date to measure the chemical exchange rate. Importantly, it has become clear that the background signal from semi-solid protons and the presence of the Nuclear Overhauser Effect (NOE), either through direct dipole-dipole mechanisms or through exchange-relayed signals, complicates the analysis of CEST effects. Therefore, advanced methods to suppress these confounding factors have been developed, and these are also reviewed. Finally, the experimental work conducted both in vitro and in vivo is discussed and the progress of CEST imaging towards clinical practice is presented.
Collapse
Affiliation(s)
- Eleni Demetriou
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Aaron Kujawa
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
46
|
Ye H, Shaghaghi M, Chen Q, Zhang Y, Lutz SE, Chen W, Cai K. In Vivo Proton Exchange Rate (k ex ) MRI for the Characterization of Multiple Sclerosis Lesions in Patients. J Magn Reson Imaging 2020; 53:408-415. [PMID: 32975008 DOI: 10.1002/jmri.27363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Currently available radiological methods do not completely capture the diversity of multiple sclerosis (MS) lesion subtypes. This lack of information hampers the understanding of disease progression and potential treatment stratification. For example, inflammation persists in some lesions after gadolinium (Gd) enhancement resolves. Novel metabolic and molecular imaging methods may improve the current assessments of MS pathophysiology. PURPOSE To compare the in vivo proton exchange rate (kex ) MRI with Gd-enhanced MRI for characterizing MS lesions. STUDY TYPE Retrospective. SUBJECTS Sixteen consecutively diagnosed relapsing-remitting multiple sclerosis (RRMS) patients. FIELD STRENGTH/SEQUENCE 3.0T MRI with T2 -weighted imaging, postcontrast T1 -weighted imaging, and single-slice chemical exchange saturation transfer imaging. ASSESSMENT MS lesions in white matter were assessed for Gd enhancement and kex elevation compared to normal-appearing white matter (NAWM). STATISTICAL TESTS Student's t-test was used for analyzing the difference of kex values between lesions and NAWM, with statistical significance set at 0.05. RESULTS Of all 153 MS lesions, 78 (51%) lesions were Gd-enhancing and 75 (49%) were Gd-negative. Without exception, all 78 Gd-enhancing lesions showed significantly elevated kex values compared to NAWM (924 ± 130 s-1 vs. 735 ± 61 s-1 , P < 0.05). Of 75 Gd-negative lesions, 18 lesions (24%) showed no kex elevation (762 ± 29 s-1 vs. 755 ± 28 s-1 , P = 0.47) and 57 (76%) showed significant kex elevation (950 ± 124 s-1 vs. 759 ± 48 s-1 , P < 0.05) compared to NAWM. MS lesions with kex elevation appeared nodular (118, 87.4%), ring-like (15, 11.1%), or irregular-shaped (2, 1.5%). DATA CONCLUSION For Gd-enhancing lesions, kex MRI is highly consistent with Gd-enhanced images by showing 100% of elevated kex . For all Gd-negative lesions, the discrepancy on kex MRI may further differentiate active slowly expanding lesions or chronic inactive lesions, supporting kex as an imaging biomarker for tissue oxidative stress and inflammation. Level of Evidence 2 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:408-415.
Collapse
Affiliation(s)
- Haiqi Ye
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mehran Shaghaghi
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qianlan Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarah E Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kejia Cai
- Department of Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA.,Center for MR Research, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
47
|
Novel proton exchange rate MRI presents unique contrast in brains of ischemic stroke patients. J Neurosci Methods 2020; 346:108926. [PMID: 32896540 DOI: 10.1016/j.jneumeth.2020.108926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND To map and quantify the proton exchange rate (kex) of brain tissues using improved omega plots in ischemic stroke patients and to investigate whether kex can serve as a potential endogenous surrogate imaging biomarker for detecting the metabolic state and the pathologic changes due to ischemic stroke. NEW METHOD Three sets of Z-spectra were acquired from seventeen ischemic stroke patients using a spin echo-echo planar imaging sequence with pre-saturation chemical exchange saturation transfer (CEST) pulse at B1 of 1.5, 2.5, and 3.5 μT, respectively. Pixel-wise kex was calculated from improved omega plot of water direct saturation (DS)-removed Z-spectral signals. RESULTS The derived kex maps can differentiate infarcts from contralateral normal brain tissues with significantly increased signal (893 ± 52 s-1vs. 739 ± 34 s-1, P < 0.001). COMPARISON WITH EXISTING METHOD(S) The kex maps were found to be different from conventional contrasts from diffusion-weighted imaging (DWI), CEST, and semi-solid magnetization transfer (MT) MRI. In brief, kex MRI showed larger lesion areas than DWI with different degrees and different lesion contrast compared to CEST and MT. CONCLUSIONS In this preliminary translational research, the kex MRI based on DS-removed omega plots has been demonstrated for in vivo imaging of clinical ischemic stroke patients. As a noninvasive and unique MRI contrast, kex MRI at 3 T may serve as a potential surrogate imaging biomarker for the metabolic changes of stroke and help for monitoring the evolution and the treatment of stroke.
Collapse
|
48
|
Kwiatkowski G, Kozerke S. Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z-spectrum domain. NMR IN BIOMEDICINE 2020; 33:e4360. [PMID: 32621367 DOI: 10.1002/nbm.4360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) is an MR contrast modality offering an enhanced sensitivity for the detection of dilute metabolites with exchangeable protons. Quantitative analysis requires the acquisition of a number of images (usually between 20 and 50 RF offsets) per Z-spectrum, leading to long acquisition times of the order of 5-40 min in practice. In this work, we explore the possibility of employing sparsity in the Z-spectrum domain (irradiation offset dimension) to provide an accelerated acquisition scheme without compromising the quality of reconstructed CEST spectra. METHOD AND THEORY Ex vivo and in vivo data were acquired on an experimental, small animal 9.4 T system. Three different reconstruction methods were tested: k-Z SPARSE, k-Z SLR and k-Z principal component analysis (PCA) using retrospective undersampling with net acceleration factors R = 2, 3, 5. The quality of the reconstructed data was compared with respect to CEST spectra and full magnetization transfer ratio (MTR) asymmetry maps. RESULTS In both phantom and in vivo data, CEST spectra and the resulting MTR asymmetry maps were reconstructed without significant deterioration in data quality. For a low acceleration factor (R = 2, 3) all applied methods resulted in similar data quality, while for high acceleration factor (R = 5) only k-Z PCA and k-Z SLR could be used. Loss in spatial resolution was observed in reconstruction with k-Z PCA for all acceleration factors. An example of prospective undersampling with acceleration factor R = 3 and k-Z PCA reconstruction demonstrates improved CEST maps when compared with fully sampled data acquisition with either three times longer scan duration or threefold prolonged acquisition window per frequency offset. CONCLUSION The acquisition time of CEST spectra can be significantly accelerated by exploiting the sparsity of the Z-domain. For prospective and retrospective analysis using k-Z PCA, an acceleration factor of up to R = 3 can be used without significant loss in data quality.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Wang Y, Chen JF, Li P, Gao JH. Quantifying the fractional concentrations and exchange rates of small-linewidth CEST agents using the QUCESOP method under multi-solute conditions in MRI signals. Magn Reson Med 2020; 85:268-280. [PMID: 32726502 DOI: 10.1002/mrm.28436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel method for quantifying the fractional concentration (fb ) and the exchange rate (kb ) of a specific small-linewidth chemical exchange saturation transfer (CEST) solute in the presence of other unknown CEST solutes. THEORY AND METHODS A simplified R1ρ model was proposed assuming a small linewidth of the specific solute and a linear approximation of the other solutes' contribution to R1ρ . Two modes of CEST data acquisition, using various saturation offsets and various saturation powers, were used. The fb and kb of the specific solute could be fitted using the proposed model. In MRI experiments, using either single-solute or multi-solute phantoms with various creatine concentrations and pHs, the fb and kb values of creatine were calculated for each phantom; the fb and kb values of phosphocreatine in rats' skeletal muscles were also evaluated. RESULTS The fitted fb value of creatine from the phantoms were in excellent agreement. The fitted kb value of creatine from the phantoms coincides with that from the literature, as do the fb and kb values of phosphocreatine in skeletal muscles. CONCLUSION The proposed approach enables us to quantify the fb and kb values of a specific small-linewidth solute in the presence of other unknown solutes.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Fang Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyu Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
50
|
Sun PZ. Demonstration of magnetization transfer and relaxation normalized pH-specific pulse-amide proton transfer imaging in an animal model of acute stroke. Magn Reson Med 2020; 84:1526-1533. [PMID: 32080897 DOI: 10.1002/mrm.28223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE pH-weighted amide proton transfer (APT) MRI is promising to serve as a new surrogate metabolic imaging biomarker for refined ischemic tissue demarcation. APT MRI with pulse-RF irradiation (pulse-APT) is an alternative to the routine continuous wave (CW-) APT MRI that overcomes the RF duty cycle limit. Our study aimed to generalize the recently developed pH-specific magnetization transfer and relaxation-normalized APT (MRAPT) analysis to pulse-APT MRI in acute stroke imaging. METHODS Multiparametric MRI, including CW- and pulse-APT MRI scans, were performed following middle cerebral artery occlusion in rats. We calculated pH-sensitive MTRasym and pH-specific MRAPT contrast between the ipsilateral diffusion lesion and contralateral normal area. RESULTS An inversion pulse of 10 to 15 ms maximizes the pH-sensitive MRI contrast for pulse-APT MRI. The contrast-to-noise ratio of pH-specific MRAPT effect between the contralateral normal area and ischemic lesion from both methods are comparable (3.25 ± 0.65 vs. 3.59 ± 0.40, P > .05). pH determined from both methods were in good agreement, with their difference within 0.1. CONCLUSIONS Pulse-APT MRI provides highly pH-specific mapping for acute stroke imaging.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|