1
|
Karan P, Edde M, Gilbert G, Barakovic M, Magon S, Descoteaux M. Characterization of the orientation dependence of magnetization transfer measures in single and crossing-fiber white matter. Magn Reson Med 2024; 92:2207-2221. [PMID: 38924176 DOI: 10.1002/mrm.30195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To fully characterize the orientation dependence of magnetization transfer (MT) and inhomogeneous MT (ihMT) measures in the whole white matter (WM), for both single-fiber and crossing-fiber voxels. METHODS A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution. This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, the orientation dependence inside 31 different WM bundles was characterized to evaluate the homogeneity of the effect. Variation of the results within and between-subject was assessed from a 12-subject dataset. RESULTS Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Heterogeneity of the orientation dependence across bundles was observed, but homogeneity within similar bundles was also highlighted. Differences in behavior between MT and ihMT measures, as well as the ratio and saturation versions of these, were noted. CONCLUSION Orientation dependence characterization was proven possible over the entirety of WM. The vast range of effects and subtleties of the orientation dependence on MT measures showed the need for, but also the challenges of, a correction method.
Collapse
Affiliation(s)
- Philippe Karan
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Manon Edde
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | | | - Muhamed Barakovic
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, Basel, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Neuroscience and Rare Diseases Roche Innovation Center Basel, Basel, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
2
|
Guo T, Song Y, Tong J, Jiao S, Shen C, Wang H, Cui J, Dai D, Ma J, Chen M. Collagen degradation assessment with an in vitro rotator cuff tendinopathy model using multiparametric ultrashort-TE magnetization transfer (UTE-MT) imaging. Magn Reson Med 2024; 92:1658-1669. [PMID: 38725197 DOI: 10.1002/mrm.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE This study aims to assess ultrashort-TE magnetization transfer (UTE-MT) imaging of collagen degradation using an in vitro model of rotator cuff tendinopathy. METHODS Thirty-six supraspinatus tendon specimens were divided into three groups and treated with 600 U collagenase (Group 1), 150 U collagenase (Group 2), and phosphate buffer saline (Group 3). UTE-MT imaging was performed to assess changes in macromolecular fraction (MMF), macromolecule transverse relaxation time (T2m), water longitudinal relaxation rate constant (R1m), the magnetization exchange rate from the macromolecular to water pool (Rm0 w) and from water to the macromolecular pool (Rm0 m), and magnetization transfer ratio (MTR) at baseline and following digestion and their differences between groups. Biochemical and histological studies were conducted to determine the extent of collagen degradation. Correlation analyses were performed with MMF, T2m, R1m, Rm0 w, Rm0 m, and MTR, respectively. Univariate and multivariate linear regression analyses were performed to evaluate combinations of UTE-MT parameters to predict collagen degradation. RESULTS MMF, T2m, R1m, Rm0 m, and MTR decreased after digestion. MMF (r = -0.842, p < 0.001), MTR (r = -0.78, p < 0.001), and Rm0 m (r = -0.662, p < 0.001) were strongly negatively correlated with collagen degradation. The linear regression model of differences in MMF and Rm0 m before and after digestion explained 68.9% of collagen degradation variation in the tendon. The model of postdigestion in MMF and T2m and the model of MTR explained 54.2% and 52.3% of collagen degradation variation, respectively. CONCLUSION This study highlighted the potential of UTE-MT parameters for evaluation of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Tan Guo
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Song
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinlian Tong
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sheng Jiao
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Shen
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Dapeng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Ma
- Biotherapy Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Department of Radiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Fujiwara Y, Eitoku S, Sakae N, Izumi T, Kumazoe H, Kitajima M. Single-point macromolecular proton fraction mapping using a 0.3 T permanent magnet MRI system: phantom and healthy volunteer study. Radiol Phys Technol 2024:10.1007/s12194-024-00843-5. [PMID: 39251498 DOI: 10.1007/s12194-024-00843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In a 0.3 T permanent-magnet magnetic resonance imaging (MRI) system, quantifying myelin content is challenging owing to long imaging times and low signal-to-noise ratio. macromolecular proton fraction (MPF) offers a quantitative assessment of myelin in the nervous system. We aimed to demonstrate the practical feasibility of MPF mapping in the brain using a 0.3 T MRI. Both 0.3 T and 3.0 T MRI systems were used. The MPF-mapping protocol used a standard 3D fast spoiled gradient-echo sequence based on the single-point reference method. Proton density, T1, and magnetization transfer-weighted images were obtained from a protein phantom at 0.3 T and 3.0 T to calculate MPF maps. MPF was measured in all phantom sections to assess its relationship to protein concentration. We acquired MPF maps for 16 and 8 healthy individuals at 0.3 T and 3.0 T, respectively, measuring MPF in nine brain tissues. Differences in MPF between 0.3 T and 3.0 T, and between 0.3 T and previously reported MPF at 0.5 T, were investigated. Pearson's correlation coefficient between protein concentration and MPF at 0.3 T and 3.0 T was 0.92 and 0.90, respectively. The 0.3 T MPF of brain tissue strongly correlated with 3.0 T MPF and literature values measured at 0.5 T. The absolute mean differences in MPF between 0.3 T and 0.5 T were 0.42% and 1.70% in white and gray matter, respectively. Single-point MPF mapping using 0.3 T permanent-magnet MRI can effectively assess myelin content in neural tissue.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Department of Medical Imaging Technology, Faculty of Life Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-Ku, Kumamoto, 862-0976, Japan.
| | - Shoma Eitoku
- Department of Radiology, Hospital of the University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-Ku, Kitakyushu, 807-8556, Japan
| | - Nobutaka Sakae
- Department of Neurology, National Hospital Organization Omuta National Hospital, 1044-1, Tachibana, Omuta, 837-0911, Japan
| | - Takahisa Izumi
- Department of Radiology, National Hospital Organization Kumamoto Saishun Medical Center, 2659 Suya, Koshi, Kumamoto, 861-1196, Japan
| | - Hiroyuki Kumazoe
- Department of Radiology, National Hospital Organization Omuta National Hospital, 1044-1, Tachibana, Omuta, 837-0911, Japan
| | - Mika Kitajima
- Department of Diagnostic Imaging Technology, Faculty of Life Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-Ku, Kumamoto, 862-0976, Japan
| |
Collapse
|
4
|
Lo J, Du K, Lee D, Zeng C, Athertya JS, Silva ML, Flechner R, Bydder GM, Ma Y. Multicompartment imaging of the brain using a comprehensive MR imaging protocol. Neuroimage 2024; 298:120800. [PMID: 39159704 DOI: 10.1016/j.neuroimage.2024.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
In this study, we describe a comprehensive 3D magnetic resonance imaging (MRI) protocol designed to assess major tissue and fluid components in the brain. The protocol comprises four different sequences: 1) magnetization transfer prepared Cones (MT-Cones) for two-pool MT modeling to quantify macromolecular content; 2) short-TR adiabatic inversion-recovery prepared Cones (STAIR-Cones) for myelin water imaging; 3) proton-density weighted Cones (PDw-Cones) for total water imaging; and 4) highly T2 weighted Cones (T2w-Cones) for free water imaging. By integrating these techniques, we successfully mapped key brain components-namely macromolecules, myelin water, intra/extracellular water, and free water-in ten healthy volunteers and five patients with multiple sclerosis (MS) using a 3T clinical scanner. Brain macromolecular proton fraction (MMPF), myelin water proton fraction (MWPF), intra/extracellular water proton fraction (IEWPF), and free water proton fraction (FWPF) values were generated in white matter (WM), grey matter (GM), and MS lesions. Excellent repeatability of the protocol was demonstrated with high intra-class correlation coefficient (ICC) values. In MS patients, the MMPF and MWPF values of the lesions and normal-appearing WM (NAWM) were significantly lower than those in normal WM (NWM) in healthy volunteers. Moreover, we observed significantly higher FWPF values in MS lesions compared to those in NWM and NAWM regions. This study demonstrates the capability of our technique to volumetrically map major brain components. The technique may have particular value in providing a comprehensive assessment of neuroinflammatory and neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- James Lo
- Department of Radiology, University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Kevin Du
- Department of Radiology, University of California, San Diego, CA, USA
| | - David Lee
- Department of Radiology, University of California, San Diego, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | - Melissa Lou Silva
- Department of Radiology, University of California, San Diego, CA, USA
| | - Reese Flechner
- Department of Radiology, University of California, San Diego, CA, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
5
|
Shin SH, Moazamian D, Tang Q, Jerban S, Ma Y, Du J, Chang EY. Towards assessing and improving the reliability of ultrashort echo time quantitative magnetization transfer (UTE-qMT) MRI of cortical bone: In silico and ex vivo study. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01190-7. [PMID: 39126439 DOI: 10.1007/s10334-024-01190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) modeling of the cortical bone. MATERIALS AND METHODS Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans. RESULTS The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have minimal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw images with an 8-fold higher SNR. DISCUSSION The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-qMT imaging of cortical bones.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Qingbo Tang
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, USA.
- Radiology Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
6
|
Hou J, Cai Z, Chen W, So TY. Spin-lock based fast whole-brain 3D macromolecular proton fraction mapping of relapsing-remitting multiple sclerosis. Sci Rep 2024; 14:17943. [PMID: 39095418 PMCID: PMC11297137 DOI: 10.1038/s41598-024-67445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
A sensitive and efficient imaging technique is required to assess the subtle abnormalities occurring in the normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in patients with relapsing-remitting multiple sclerosis (RRMS). In this study, a fast 3D macromolecular proton fraction (MPF) quantification based on spin-lock (fast MPF-SL) sequence was proposed for brain MPF mapping. Thirty-four participants, including 17 healthy controls and 17 RRMS patients were prospectively recruited. We conducted group comparison and correlation between conventional MPF-SL, fast MPF-SL, and DWI, and compared differences in quantified parameters within MS lesions and the regional NAWM, NAGM, and normal-appearing deep grey matter (NADGN). MPF of MS lesions was significantly reduced (7.17% ± 1.15%, P < 0.01) compared to all corresponding normal-appearing regions. MS patients also showed significantly reduced mean MPF values compared with controls in NAGM (4.87% ± 0.38% vs 5.21% ± 0.32%, P = 0.01), NAWM (9.49% ± 0.69% vs 10.32% ± 0.59%, P < 0.01) and NADGM (thalamus 5.59% ± 0.67% vs 6.00% ± 0.41%, P = 0.04; caudate 5.10% ± 0.55% vs 5.53% ± 0.58%, P = 0.03). MPF and ADC showed abnormalities in otherwise normal appearing close to lesion areas (P < 0.01). In conclusion, time-efficient MPF mapping of the whole brain can be acquired efficiently (< 3 min) using fast MPF-SL. It offers a promising alternative way to detect white matter abnormalities in MS.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongyou Cai
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Lee J, Ji S, Oh SH. So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging. Magn Reson Med Sci 2024; 23:291-306. [PMID: 38644201 PMCID: PMC11234950 DOI: 10.2463/mrms.rev.2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
In MRI, researchers have long endeavored to effectively visualize myelin distribution in the brain, a pursuit with significant implications for both scientific research and clinical applications. Over time, various methods such as myelin water imaging, magnetization transfer imaging, and relaxometric imaging have been developed, each carrying distinct advantages and limitations. Recently, an innovative technique named as magnetic susceptibility source separation has emerged, introducing a novel surrogate biomarker for myelin in the form of a diamagnetic susceptibility map. This paper comprehensively reviews this cutting-edge method, providing the fundamental concepts of magnetic susceptibility, susceptibility imaging, and the validation of the diamagnetic susceptibility map as a myelin biomarker that indirectly measures myelin content. Additionally, the paper explores essential aspects of data acquisition and processing, offering practical insights for readers. A comparison with established myelin imaging methods is also presented, and both current and prospective clinical and scientific applications are discussed to provide a holistic understanding of the technique. This work aims to serve as a foundational resource for newcomers entering this dynamic and rapidly expanding field.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Se-Hong Oh
- Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| |
Collapse
|
8
|
Deveshwar N, Yao J, Han M, Dwork N, Shen X, Ljungberg E, Caverzasi E, Cao P, Henry R, Green A, Larson PEZ. Quantification of the in vivo brain ultrashort-T 2* component in healthy volunteers. Magn Reson Med 2024; 91:2417-2430. [PMID: 38291598 DOI: 10.1002/mrm.30013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Recent work has shown MRI is able to measure and quantify signals of phospholipid membrane-bound protons associated with myelin in the human brain. This work seeks to develop an improved technique for characterizing this brain ultrashort-T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component in vivo accounting forT 1 $$ {\mathrm{T}}_1 $$ weighting. METHODS Data from ultrashort echo time scans from 16 healthy volunteers with variable flip angles (VFA) were collected and fitted into an advanced regression model to quantify signal fraction, relaxation time, and frequency shift of the ultrashort-T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component. RESULTS The fitted components show intra-subject differences of different white matter structures and significantly elevated ultrashort-T 2 ∗ $$ {\mathrm{T}}_2\ast $$ signal fraction in the corticospinal tracts measured at 0.09 versus 0.06 in other white matter structures and significantly elevated ultrashort-T 2 ∗ $$ {\mathrm{T}}_2\ast $$ frequency shift in the body of the corpus callosum at- $$ - $$ 1.5 versus- $$ - $$ 2.0 ppm in other white matter structures. CONCLUSION The significantly different measured components and measuredT 1 $$ {\mathrm{T}}_1 $$ relaxation time of the ultrashort-T 2 ∗ $$ {\mathrm{T}}_2\ast $$ component suggest that this method is picking up novel signals from phospholipid membrane-bound protons.
Collapse
Affiliation(s)
- Nikhil Deveshwar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California, USA
| | - Jingwen Yao
- UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Misung Han
- UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Nicholas Dwork
- Departments of Biomedical Informatics and Radiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Xin Shen
- UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Emil Ljungberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Eduardo Caverzasi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Peng Cao
- Department of Diagnostic Radiology, Hong Kong University, Hong Kong, China
| | - Roland Henry
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Ari Green
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- UC Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
9
|
Siravo E. Editorial for "Detection of Neuroinflammation Induced by Typhoid Vaccine Using Quantitative Magnetization Transfer MR: A Randomized Crossover Study". J Magn Reson Imaging 2024; 59:1695-1696. [PMID: 37539827 DOI: 10.1002/jmri.28936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
|
10
|
Plank JR, Morgan CA, Smith AK, Sundram F, Hoeh NR, Muthukumaraswamy S, Lin JC. Detection of Neuroinflammation Induced by Typhoid Vaccine Using Quantitative Magnetization Transfer MR: A Randomized Crossover Study. J Magn Reson Imaging 2024; 59:1683-1694. [PMID: 37540052 DOI: 10.1002/jmri.28938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The role of neuroinflammation in psychiatric disorders is not well-elucidated. A noninvasive technique sensitive to low-level neuroinflammation may improve understanding of the pathophysiology of these conditions. PURPOSE To test the ability of quantitative magnetization transfer (QMT) MR at 3 T for detection of low-level neuroinflammation induced by typhoid vaccine within a clinically reasonable scan time. STUDY TYPE Randomized, crossover, placebo-controlled. SUBJECTS Twenty healthy volunteers (10 males; median age 34 years). FIELD STRENGTH/SEQUENCE Magnetization prepared rapid gradient-echo and MT-weighted 3D fast low-angle shot sequences at 3 T. ASSESSMENT Participants were randomized to either vaccine or placebo first with imaging, then after a washout period received the converse with a second set of imaging. MT imaging, scan time, and blood-based inflammatory marker concentrations were assessed pre- and post-vaccine and placebo. Mood was assessed hourly using the Profile of Mood States questionnaire. QMT parameter maps, including the exchange rate from bound to free pool (kba) were generated using a two-pool model and then segmented into tissue type. STATISTICAL TESTS Voxel-wise permutation-based analysis examined inflammatory-related alterations of QMT parameters. The threshold-free cluster enhancement method with family-wise error was used to correct voxel-wise results for multiple comparisons. Region of interest averages were fed into mixed models and Bonferroni corrected. Spearman correlations assessed the relationship between mood scores and QMT parameters. Results were considered significant if corrected P < 0.05. RESULTS Scan time for the MT-weighted acquisition was approximately 11 minutes. Blood-based analysis showed higher IL-6 concentrations post-vaccine compared to post-placebo. Voxel-wise analysis found three clusters indicating an inflammatory-mediated increase in kba in cerebellar white matter. Cerebellar kba for white matter was negatively associated with vigor post-vaccine but not post-placebo. DATA CONCLUSION This study suggested that QMT at 3 T may show some sensitivity to low-level neuroinflammation. Further studies are needed to assess the viability of QMT for use in inflammatory-based disorders. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia R Plank
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Catherine A Morgan
- Centre for Advanced MRI, Auckland UniServices Limited, Auckland, New Zealand
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Alex K Smith
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Frederick Sundram
- Department of Psychological Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Nicholas R Hoeh
- Department of Psychological Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Assländer J, Gultekin C, Mao A, Zhang X, Duchemin Q, Liu K, Charlson RW, Shepherd TM, Fernandez-Granda C, Flassbeck S. Rapid quantitative magnetization transfer imaging: Utilizing the hybrid state and the generalized Bloch model. Magn Reson Med 2024; 91:1478-1497. [PMID: 38073093 DOI: 10.1002/mrm.29951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model parameters. THEORY AND METHODS We combine two recently proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi-solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all eight parameters of the two-pool model. We sparsely sample each time frame along this spin dynamics with a three-dimensional radial koosh-ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency. RESULTS We extracted qMT parameter maps of the whole brain with an effective resolution of 1.24 mm from a 12.6-min scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and longer relaxation times, consistent with previous reports. CONCLUSION The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Cem Gultekin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
| | - Andrew Mao
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, New York, USA
| | - Xiaoxia Zhang
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Quentin Duchemin
- Laboratoire d'analyse et de mathématiques appliquées, Université Gustave Eiffel, Champs-sur-Marne, France
| | - Kangning Liu
- Center for Data Science, New York University, New York, New York, USA
| | - Robert W Charlson
- Department of Neurology, NYU School of Medicine, New York, New York, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
| | - Carlos Fernandez-Granda
- Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
- Center for Data Science, New York University, New York, New York, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Assländer J, Mao A, Marchetto E, Beck ES, La Rosa F, Charlson RW, Shepherd TM, Flassbeck S. Unconstrained quantitative magnetization transfer imaging: disentangling T1 of the free and semi-solid spin pools. ARXIV 2024:arXiv:2301.08394v3. [PMID: 36713253 PMCID: PMC9882584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since the inception of magnetization transfer (MT) imaging, it has been widely assumed that Henkelman's two spin pools have similar longitudinal relaxation times, which motivated many researchers to constrain them to each other. However, several recent publications reported a T 1 s of the semi-solid spin pool that is much shorter than T 1 f of the free pool. While these studies tailored experiments for robust proofs-of-concept, we here aim to quantify the disentangled relaxation processes on a voxel-by-voxel basis in a clinical imaging setting, i.e., with an effective resolution of 1.24mm isotropic and full brain coverage in 12min. To this end, we optimized a hybrid-state pulse sequence for mapping the parameters of an unconstrained MT model. We scanned four people with relapsing-remitting multiple sclerosis (MS) and four healthy controls with this pulse sequence and estimated T 1 f ≈ 1.84 s and T 1 s ≈ 0.34 s in healthy white matter. Our results confirm the reports that T 1 s ≪ T 1 f and we argue that this finding identifies MT as an inherent driver of longitudinal relaxation in brain tissue. Moreover, we estimated a fractional size of the semi-solid spin pool of m 0 s ≈ 0.212 , which is larger than previously assumed. An analysis of T 1 f in normal-appearing white matter revealed statistically significant differences between individuals with MS and controls.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI R), Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
| | - Andrew Mao
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI R), Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 1st Avenue, New York, 10016, NY, USA
| | - Elisa Marchetto
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI R), Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
| | - Erin S Beck
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York, 10029, NY, USA
| | - Francesco La Rosa
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, New York, 10029, NY, USA
| | - Robert W Charlson
- Department of Neurology, New York University School of Medicine, 240 E 38th Street, New York, 10016, NY, USA
| | - Timothy M Shepherd
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI R), Dept. of Radiology, New York University School of Medicine, 650 1st Avenue, New York, 10016, NY, USA
| |
Collapse
|
13
|
Khodanovich M, Naumova A, Kamaeva D, Obukhovskaya V, Vasilieva S, Schastnyy E, Kataeva N, Levina A, Kudabaeva M, Pashkevich V, Moshkina M, Tumentceva Y, Svetlik M. Neurocognitive Changes in Patients with Post-COVID Depression. J Clin Med 2024; 13:1442. [PMID: 38592295 PMCID: PMC10933987 DOI: 10.3390/jcm13051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Depression and cognitive impairment are recognized complications of COVID-19. This study aimed to assess cognitive performance in clinically diagnosed post-COVID depression (PCD, n = 25) patients using neuropsychological testing. Methods: The study involved 71 post-COVID patients with matched control groups: recovered COVID-19 individuals without complications (n = 18) and individuals without prior COVID-19 history (n = 19). A post-COVID depression group (PCD, n = 25) was identified based on psychiatric diagnosis, and a comparison group (noPCD, n = 46) included participants with neurological COVID-19 complications, excluding clinical depression. Results: The PCD patients showed gender-dependent significant cognitive impairment in the MoCA, Word Memory Test (WMT), Stroop task (SCWT), and Trail Making Test (TMT) compared to the controls and noPCD patients. Men with PCD showed worse performances on the SCWT, in MoCA attention score, and on the WMT (immediate and delayed word recall), while women with PCD showed a decline in MoCA total score, an increased processing time with less errors on the TMT, and worse immediate recall. No differences between groups in Sniffin's stick test were found. Conclusions: COVID-related direct (post-COVID symptoms) and depression-mediated (depression itself, male sex, and severity of COVID-19) predictors of decline in memory and information processing speed were identified. Our findings may help to personalize the treatment of depression, taking a patient's gender and severity of previous COVID-19 disease into account.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Anna Naumova
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican Street, Seattle, WA 98109, USA;
| | - Daria Kamaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia
| | - Victoria Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Svetlana Vasilieva
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Evgeny Schastnyy
- Department of Affective States, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya Street, Tomsk 634014, Russia; (S.V.); (E.S.)
| | - Nadezhda Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 6340505, Russia
| | - Anastasia Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
- Medica Diagnostic and Treatment Center, 86 Sovetskaya Street, Tomsk 634510, Russia
| | - Marina Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Valentina Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Marina Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Yana Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia; (D.K.); (V.O.); (N.K.); (A.L.); (M.K.); (V.P.); (M.M.); (Y.T.); (M.S.)
| |
Collapse
|
14
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
15
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
16
|
Lawless RD, McKnight CD, O’Grady KP, Combes AJE, Rogers BP. Detecting macromolecular differences of the CSF in low disability multiple sclerosis using quantitative MT MRI at 3T. Mult Scler J Exp Transl Clin 2023; 9:20552173231211396. [PMID: 38021451 PMCID: PMC10644741 DOI: 10.1177/20552173231211396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.
Collapse
Affiliation(s)
- Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna JE Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Soustelle L, Troalen T, Hertanu A, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions. Magn Reson Med 2023. [PMID: 37154400 DOI: 10.1002/mrm.29678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
18
|
Drobyshevsky A, Synowiec S, Goussakov I, Lu J, Gascoigne D, Aksenov DP, Yarnykh V. Temporal trajectories of normal myelination and axonal development assessed by quantitative macromolecular and diffusion MRI: Ultrastructural and immunochemical validation in a rabbit model. Neuroimage 2023; 270:119974. [PMID: 36848973 PMCID: PMC10103444 DOI: 10.1016/j.neuroimage.2023.119974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
INTRODUCTION Quantitative and non-invasive measures of brain myelination and maturation during development are of great importance to both clinical and translational research communities. While the metrics derived from diffusion tensor imaging, are sensitive to developmental changes and some pathologies, they remain difficult to relate to the actual microstructure of the brain tissue. The advent of advanced model-based microstructural metrics requires histological validation. The purpose of the study was to validate novel, model-based MRI techniques, such as macromolecular proton fraction mapping (MPF) and neurite orientation and dispersion indexing (NODDI), against histologically derived indexes of myelination and microstructural maturation at various stages of development. METHODS New Zealand White rabbit kits underwent serial in-vivo MRI examination at postnatal days 1, 5, 11, 18, and 25, and as adults. Multi-shell, diffusion-weighted experiments were processed to fit NODDI model to obtain estimates, intracellular volume fraction (ICVF) and orientation dispersion index (ODI). Macromolecular proton fraction (MPF) maps were obtained from three source (MT-, PD-, and T1-weighted) images. After MRI sessions, a subset of animals was euthanized and regional samples of gray and white matter were taken for western blot analysis, to determine myelin basic protein (MBP), and electron microscopy, to estimate axonal, myelin fractions and g-ratio. RESULTS MPF of white matter regions showed a period of fast growth between P5 and P11 in the internal capsule, with a later onset in the corpus callosum. This MPF trajectory was in agreement with levels of myelination in the corresponding brain region, as assessed by western blot and electron microscopy. In the cortex, the greatest increase of MPF occurred between P18 and P26. In contrast, myelin, according to MBP western blot, saw the largest hike between P5 and P11 in the sensorimotor cortex and between P11 and P18 in the frontal cortex, which then seemingly plateaued after P11 and P18 respectively. G-ratio by MRI markers decreased with age in the white matter. However, electron microscopy suggest a relatively stable g-ratio throughout development. CONCLUSION Developmental trajectories of MPF accurately reflected regional differences of myelination rate in different cortical regions and white matter tracts. MRI-derived estimation of g-ratio was inaccurate during early development, likely due to the overestimation of axonal volume fraction by NODDI due to the presence of a large proportion of unmyelinated axons.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA.
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Jing Lu
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - David Gascoigne
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Daniil P Aksenov
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, Evanston, IL, USA
| | - Vasily Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Afshari R, Santini F, Heule R, Meyer CH, Pfeuffer J, Bieri O. Rapid whole-brain quantitative MT imaging. Z Med Phys 2023:S0939-3889(23)00031-4. [PMID: 37019739 DOI: 10.1016/j.zemedi.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times. METHODS Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B1 and-T1 mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB0) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, kf, and their transverse relaxation time, T2r. RESULTS Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B1-correction was essential for all investigated sets, whereas ΔB0-correction showed limited bias for the observed maximum off-resonances at 3 T. CONCLUSION The combination of rapid B1-T1 mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.
Collapse
|
20
|
Huber E, Corrigan NM, Yarnykh VL, Ferjan Ramírez N, Kuhl PK. Language Experience during Infancy Predicts White Matter Myelination at Age 2 Years. J Neurosci 2023; 43:1590-1599. [PMID: 36746626 PMCID: PMC10008053 DOI: 10.1523/jneurosci.1043-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
Parental input is considered a key predictor of language achievement during the first years of life, yet relatively few studies have assessed the effects of parental language input and parent-infant interactions on early brain development. We examined the relationship between measures of parent and child language, obtained from naturalistic home recordings at child ages 6, 10, 14, 18, and 24 months, and estimates of white matter myelination, derived from quantitative MRI at age 2 years (mean = 26.30 months, SD = 1.62, N = 22). Analysis of the white matter focused on dorsal pathways associated with expressive language development and long-term language ability, namely, the left arcuate fasciculus (AF) and superior longitudinal fasciculus (SLF). Frequency of parent-infant conversational turns (CT) uniquely predicted myelin density estimates in both the AF and SLF. Moreover, the effect of CT remained significant while controlling for total adult speech and child speech-related utterances, suggesting a specific role for interactive language experience, rather than simply speech exposure or production. An exploratory analysis of 18 additional tracts, including the right AF and SLF, indicated a high degree of anatomic specificity. Longitudinal analyses of parent and child language variables indicated an effect of CT as early as 6 months of age, as well as an ongoing effect over infancy. Together, these results link parent-infant conversational turns to white matter myelination at age 2 years, and suggest that early, interactive experiences with language uniquely contribute to the development of white matter associated with long-term language ability.SIGNIFICANCE STATEMENT Children's earliest experiences with language are thought to have profound and lasting developmental effects. Recent studies suggest that intervention can increase the quality of parental language input and improve children's learning outcomes. However, important questions remain about the optimal timing of intervention, and the relationship between specific aspects of language experience and brain development. We report that parent-infant turn-taking during home language interactions correlates with myelination of language related white matter pathways through age 2 years. Effects were independent of total speech exposure and infant vocalizations and evident starting at 6 months of age, suggesting that structured language interactions throughout infancy may uniquely support the ongoing development of brain systems critical to long-term language ability.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington 98195
| | - Naja Ferjan Ramírez
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Linguistics, University of Washington, Seattle, Washington 98195
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington 98195
- Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
21
|
Wang P, Sisco N, Yoo W, Borazanci A, Karis J, Dortch R. Rapid whole-brain myelin imaging with selective inversion recovery and compressed SENSE. Magn Reson Med 2023; 89:1041-1054. [PMID: 36352756 DOI: 10.1002/mrm.29512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Quantitative magnetization transfer (QMT) using selective inversion recovery (SIR) can quantify the macromolecular-to-free proton pool size ratio (PSR), which has been shown to relate closely with myelin content. Currently clinical applications of SIR have been hampered by long scan times. In this work, the acceleration of SIR-QMT using CS-SENSE (compressed sensing SENSE) was systematically studied. THEORY AND METHODS Phantoms of varied concentrations of bovine serum albumin and human scans were first conducted to evaluate the SNR, precision of SIR-QMT parameters, and scan time. Based on these results, an optimized CS-SENSE factor of 8 was determined and the test-retest repeatability was further investigated. RESULTS A whole-brain SIR imaging of 6 min can be achieved. Bland-Altman analyses indicated excellent agreement between the test and retest sessions with a difference in mean PSR of 0.06% (and a difference in mean R1f of -0.001 s-1 ). In addition, the assessment of the intraclass correlation coefficient (ICC) revealed high reliability in nearly all the white matter and gray matter regions. In white matter regions, the ICC was 0.93 (95% confidence interval [CI]: 0.88-0.96, p < 0.001) for PSR, and 0.90 (95% CI: 0.83-0.94, p < 0.001) for R1f . In gray matter, ICC was 0.84 (95% CI: 0.66-0.93, p < 0.001) in PSR, and 0.98 (95% CI: 0.95-0.99, p < 0.001) for R1f . The method also showed excellent capability to detect focal lesions in multiple sclerosis. CONCLUSION Rapid, reliable, and sensitive whole-brain SIR imaging can be achieved using CS-SENSE, which is expected to significantly promote widespread clinical translation.
Collapse
Affiliation(s)
- Ping Wang
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nicholas Sisco
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Wonsuk Yoo
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Aimee Borazanci
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - John Karis
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Richard Dortch
- Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Hou J, Wong VWS, Qian Y, Jiang B, Chan AWH, Leung HHW, Wong GLH, Yu SCH, Chu WCW, Chen W. Detecting Early-Stage Liver Fibrosis Using Macromolecular Proton Fraction Mapping Based on Spin-Lock MRI: Preliminary Observations. J Magn Reson Imaging 2023; 57:485-492. [PMID: 35753084 DOI: 10.1002/jmri.28308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Liver fibrosis is characterized by macromolecule depositions. Recently, a novel technology termed macromolecular proton fraction quantification based on spin-lock magnetic resonance imaging (MPF-SL) is reported to measure macromolecule levels. HYPOTHESIS MPF-SL can detect early-stage liver fibrosis by measuring macromolecule levels in the liver. STUDY TYPE Retrospective. SUBJECTS Fifty-five participants, including 22 with no fibrosis (F0) and 33 with early-stage fibrosis (F1-2), were recruited. FIELD STRENGTH/SEQUENCE 3 T; two-dimensional (2D) MPF-SL turbo spin-echo sequence, 2D spin-lock T1rho turbo spin-echo sequence, and multi-slice 2D gradient echo sequence. ASSESSMENT Macromolecular proton fraction (MPF), T1rho, liver iron concentration (LIC), and fat fraction (FF) biomarkers were quantified within regions of interest. STATISTICAL TESTS Group comparison of the biomarkers using Mann-Whitney U tests; correlation between the biomarkers assessed using Spearman's rank correlation coefficient and linear regression with goodness-of-fit; fibrosis stage differentiation using receiver operating characteristic curve (ROC) analysis. P-value < 0.05 was considered statistically significant. RESULTS Average T1rho was 41.76 ± 2.94 msec for F0 and 41.15 ± 3.73 msec for F1-2 (P = 0.60). T1rho showed nonsignificant correlation with either liver fibrosis (ρ = -0.07; P = 0.61) or FF (ρ = -0.14; P = 0.35) but indicated a negative correlation with LIC (ρ = -0.66). MPF was 4.73 ± 0.45% and 5.65 ± 0.81% for F0 and F1-2 participants, respectively. MPF showed a positive correlation with liver fibrosis (ρ = 0.59), and no significant correlations with LIC (ρ = 0.02; P = 0.89) or FF (ρ = 0.05; P = 0.72). The area under the ROC curve was 0.85 (95% confidence interval [CI] 0.75-0.95) and 0.55 (95% CI 0.39-0.71; P = 0.55) for MPF and T1rho to discriminate between F0 and F1-2 fibrosis, respectively. DATA CONCLUSION MPF-SL has the potential to diagnose early-stage liver fibrosis and does not appear to be confounded by either LIC or FF. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Vincent W-S Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Yurui Qian
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Anthony W-H Chan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Howard H-W Leung
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong
| | - Grace L-H Wong
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong.,Medical Data Analytics Centre, Chinese University of Hong Kong, Hong Kong
| | - Simon C-H Yu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Winnie C-W Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
23
|
Sukstanskii AL, Yablonskiy DA. Microscopic theory of spin-spin and spin-lattice relaxation of bound protons in cellular and myelin membranes-A lateral diffusion model (LDM). Magn Reson Med 2023; 89:370-383. [PMID: 36094730 PMCID: PMC9826187 DOI: 10.1002/mrm.29430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Deciphering salient features of biological tissue cellular microstructure in health and diseases is an ultimate goal of MRI. While most MRI approaches are based on studying MR properties of tissue "free" water indirectly affected by tissue microstructure, other approaches, such as magnetization transfer (MT), directly target signals from tissue-forming macromolecules. However, despite three-decades of successful applications, relationships between MT measurements and tissue microstructure remain elusive, hampering interpretation of experimental results. The goal of this paper is to develop microscopic theory connecting the structure of cellular and myelin membranes to their MR properties. THEORY AND METHODS Herein we introduce a lateral diffusion model (LDM) that explains the T2 (spin-spin) and T1 (spin-lattice) MRI relaxation properties of the macromolecular-bound protons by their dipole-dipole interaction modulated by the lateral diffusion of long lipid molecules forming cellular and myelin membranes. RESULTS LDM predicts anisotropic T1 and T2 relaxation of membrane-bound protons. Moreover, their T2 relaxation cannot be described in terms of a standard R2 = 1/T2 relaxation rate parameter, but rather by a relaxation rate function R2 (t) that depends on time t after RF excitation, having, in the main approximation, a logarithmic behavior: R2 (t) ∼ lnt. This anisotropic non-linear relaxation leads to an absorption lineshape that is different from Super-Lorentzian traditionally used in interpreting MT experiments. CONCLUSION LDM-derived analytical equations connect the membrane-bound protons T1 and T2 relaxation with dynamic distances between protons in neighboring membrane-forming lipid molecules and their lateral diffusion. This sheds new light on relationships between MT parameters and microstructure of cellular and myelin membranes.
Collapse
|
24
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
25
|
Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry 2022; 27:5144-5153. [PMID: 36071113 PMCID: PMC9772130 DOI: 10.1038/s41380-022-01740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023]
Abstract
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Collapse
|
26
|
Sui YV, Masurkar AV, Rusinek H, Reisberg B, Lazar M. Cortical myelin profile variations in healthy aging brain: A T1w/T2w ratio study. Neuroimage 2022; 264:119743. [PMID: 36368498 PMCID: PMC9904172 DOI: 10.1016/j.neuroimage.2022.119743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Demyelination is observed in both healthy aging and age-related neurodegenerative disorders. While the significance of myelin within the cortex is well acknowledged, studies focused on intracortical demyelination and depth-specific structural alterations in normal aging are lacking. Using the recently available Human Connectome Project Aging dataset, we investigated intracortical myelin in a normal aging population using the T1w/T2w ratio. To capture the fine changes across cortical depths, we employed a surface-based approach by constructing cortical profiles traveling perpendicularly through the cortical ribbon and sampling T1w/T2w values. The curvatures of T1w/T2w cortical profiles may be influenced by differences in local myeloarchitecture and other tissue properties, which are known to vary across cortical regions. To quantify the shape of these profiles, we parametrized the level of curvature using a nonlinearity index (NLI) that measures the deviation of the profile from a straight line. We showed that NLI exhibited a steep decline in aging that was independent of local cortical thinning. Further examination of the profiles revealed that lower T1w/T2w near the gray-white matter boundary and superficial cortical depths were major contributors to the apparent NLI variations with age. These findings suggest that demyelination and changes in other T1w/T2w related tissue properties in normal aging may be depth-specific and highlight the potential of NLI as a unique marker of microstructural alterations within the cerebral cortex.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Corresponding author. (Y.V. Sui)
| | - Arjun V. Masurkar
- Department of Neurology, Center for Cognitive Neurology, NYU Grossman School of Medicine, New York, NY, USA,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA,Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Henry Rusinek
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA,Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Barry Reisberg
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, rm440, New York, NY 10016, USA
| |
Collapse
|
27
|
Weiss Y, Huber E, Ferjan Ramírez N, Corrigan NM, Yarnykh VL, Kuhl PK. Language input in late infancy scaffolds emergent literacy skills and predicts reading related white matter development. Front Hum Neurosci 2022; 16:922552. [PMID: 36457757 PMCID: PMC9705348 DOI: 10.3389/fnhum.2022.922552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Longitudinal studies provide the unique opportunity to test whether early language provides a scaffolding for the acquisition of the ability to read. This study tests the hypothesis that parental language input during the first 2 years of life predicts emergent literacy skills at 5 years of age, and that white matter development observed early in the 3rd year (at 26 months) may help to account for these effects. We collected naturalistic recordings of parent and child language at 6, 10, 14, 18, and 24 months using the Language ENvironment Analysis system (LENA) in a group of typically developing infants. We then examined the relationship between language measures during infancy and follow-up measures of reading related skills at age 5 years, in the same group of participants (N = 53). A subset of these children also completed diffusion and quantitative MRI scans at age 2 years (N = 20). Within this subgroup, diffusion tractography was used to identify white matter pathways that are considered critical to language and reading development, namely, the arcuate fasciculus (AF), superior and inferior longitudinal fasciculi, and inferior occipital-frontal fasciculus. Quantitative macromolecular proton fraction (MPF) mapping was used to characterize myelin density within these separately defined regions of interest. The longitudinal data were then used to test correlations between early language input and output, white matter measures at age 2 years, and pre-literacy skills at age 5 years. Parental language input, child speech output, and parent-child conversational turns correlated with pre-literacy skills, as well as myelin density estimates within the left arcuate and superior longitudinal fasciculus. Mediation analyses indicated that the left AF accounted for longitudinal relationships between infant home language measures and 5-year letter identification and letter-sound knowledge, suggesting that the left AF myelination at 2 years may serve as a mechanism by which early language experience supports emergent literacy.
Collapse
Affiliation(s)
- Yael Weiss
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Elizabeth Huber
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Naja Ferjan Ramírez
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Linguistics, University of Washington, Seattle, WA, United States
| | - Neva M. Corrigan
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Patricia K. Kuhl
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
28
|
Corrigan NM, Yarnykh VL, Huber E, Zhao TC, Kuhl PK. Brain myelination at 7 months of age predicts later language development. Neuroimage 2022; 263:119641. [PMID: 36170763 PMCID: PMC10038938 DOI: 10.1016/j.neuroimage.2022.119641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Between 6 and 12 months of age there are dramatic changes in infants' processing of language. The neurostructural underpinnings of these changes are virtually unknown. The objectives of this study were to (1) examine changes in brain myelination during this developmental period and (2) examine the relationship between myelination during this period and later language development. Macromolecular proton fraction (MPF) was used as a marker of myelination. Whole-brain MPF maps were obtained with 1.25 mm3 isotropic spatial resolution from typically developing children at 7 and 11 months of age. Effective myelin density was calculated from MPF based on a linear relationship known from the literature. Voxel-based analyses were used to identify longitudinal changes in myelin density and to calculate correlations between myelin density at these ages and later language development. Increases in myelin density were more predominant in white matter than in gray matter. A strong predictive relationship was found between myelin density at 7 months of age, language production at 24 and 30 months of age, and rate of language growth. No relationships were found between myelin density at 11 months, or change in myelin density between 7 and 11 months of age, and later language measures. Our findings suggest that critical changes in brain structure may precede periods of pronounced change in early language skills.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA 98195, USA; Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Zhao TC, Corrigan NM, Yarnykh VL, Kuhl PK. Development of executive function-relevant skills is related to both neural structure and function in infants. Dev Sci 2022; 25:e13323. [PMID: 36114705 PMCID: PMC9620956 DOI: 10.1111/desc.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/26/2022] [Accepted: 08/25/2022] [Indexed: 01/13/2023]
Abstract
The development of skills related to executive function (EF) in infancy, including their emergence, underlying neural mechanisms, and interconnections to other cognitive skills, is an area of increasing research interest. Here, we report on findings from a multidimensional dataset demonstrating that infants' behavioral performance on a flexible learning task improved across development and that the task performance is highly correlated with both neural structure and neural function. The flexible learning task probed infants' ability to learn two different associations, concurrently, over 16 trials, requiring multiple skills relevant to EF. We examined infants' neural structure by measuring myelin density in the brain, using a novel macromolecular proton fraction (MPF) mapping method. We further examined an important neural function of speech processing by characterizing the mismatch response (MMR) to speech contrasts using magnetoencephalography (MEG). All measurements were performed longitudinally in monolingual English-learning infants at 7- and 11-months of age. At the group level, 11-month-olds, but not 7-month-olds, demonstrated evidence of learning both associations in the behavioral task. Myelin density in the prefrontal region at 7 months of age was found to be highly predictive of behavioral task performance at 11 months of age, suggesting that myelination may support the development of these skills. Furthermore, a machine-learning regression analysis revealed that individual differences in the behavioral task are predicted by concurrent neural speech processing at both ages, suggesting that these skills do not develop in isolation. Together, these cross-modality results revealed novel insights into EF-related skills. HIGHLIGHT: Monolingual infants demonstrated flexible learning on a task requiring executive function skills at 11 months, but not at 7 months. Infants' myelin density at 7 months is highly predictive of their behavioral performance in the flexible learning task at 11 months of age. Individual differences in the flexible learning task performance are also correlated with concurrent neural processing of speech at both ages.
Collapse
Affiliation(s)
- T. Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington, USA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| | - Neva M. Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington, USA
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Patricia K. Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington, USA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
31
|
York EN, Thrippleton MJ, Meijboom R, Hunt DPJ, Waldman AD. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Brain Commun 2022; 4:fcac088. [PMID: 35652121 PMCID: PMC9149789 DOI: 10.1093/braincomms/fcac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Myelin-sensitive MRI such as magnetization transfer imaging has been widely used in multiple sclerosis. The influence of methodology and differences in disease subtype on imaging findings is, however, not well established. Here, we systematically review magnetization transfer brain imaging findings in relapsing-remitting multiple sclerosis. We examine how methodological differences, disease effects and their interaction influence magnetization transfer imaging measures. Articles published before 06/01/2021 were retrieved from online databases (PubMed, EMBASE and Web of Science) with search terms including 'magnetization transfer' and 'brain' for systematic review, according to a pre-defined protocol. Only studies that used human in vivo quantitative magnetization transfer imaging in adults with relapsing-remitting multiple sclerosis (with or without healthy controls) were included. Additional data from relapsing-remitting multiple sclerosis subjects acquired in other studies comprising mixed disease subtypes were included in meta-analyses. Data including sample size, MRI acquisition protocol parameters, treatments and clinical findings were extracted and qualitatively synthesized. Where possible, effect sizes were calculated for meta-analyses to determine magnetization transfer (i) differences between patients and healthy controls; (ii) longitudinal change and (iii) relationships with clinical disability in relapsing-remitting multiple sclerosis. Eighty-six studies met inclusion criteria. MRI acquisition parameters varied widely, and were also underreported. The majority of studies examined the magnetization transfer ratio in white matter, but magnetization transfer metrics, brain regions examined and results were heterogeneous. The analysis demonstrated a risk of bias due to selective reporting and small sample sizes. The pooled random-effects meta-analysis across all brain compartments revealed magnetization transfer ratio was 1.17 per cent units (95% CI -1.42 to -0.91) lower in relapsing-remitting multiple sclerosis than healthy controls (z-value: -8.99, P < 0.001, 46 studies). Linear mixed-model analysis did not show a significant longitudinal change in magnetization transfer ratio across all brain regions [β = 0.12 (-0.56 to 0.80), t-value = 0.35, P = 0.724, 14 studies] or normal-appearing white matter alone [β = 0.037 (-0.14 to 0.22), t-value = 0.41, P = 0.68, eight studies]. There was a significant negative association between the magnetization transfer ratio and clinical disability, as assessed by the Expanded Disability Status Scale [r = -0.32 (95% CI -0.46 to -0.17); z-value = -4.33, P < 0.001, 13 studies]. Evidence suggests that magnetization transfer imaging metrics are sensitive to pathological brain changes in relapsing-remitting multiple sclerosis, although effect sizes were small in comparison to inter-study variability. Recommendations include: better harmonized magnetization transfer acquisition protocols with detailed methodological reporting standards; larger, well-phenotyped cohorts, including healthy controls; and, further exploration of techniques such as magnetization transfer saturation or inhomogeneous magnetization transfer ratio.
Collapse
Affiliation(s)
- Elizabeth N. York
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | | | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic,
University of Edinburgh, Edinburgh, UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Lee CH, Walczak P, Zhang J. Inhomogeneous magnetization transfer MRI of white matter structures in the hypomyelinated shiverer mouse brain. Magn Reson Med 2022; 88:332-340. [PMID: 35344613 DOI: 10.1002/mrm.29207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 12/31/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Inhomogeneous magnetization transfer (ihMT) MRI is uniquely sensitive to myelin with lipids as a primary source of its contrast. In this study, we investigated whether ihMT can detect white matter structures in the hypomyelinated shiverer mouse brain, a model of dysmyelination. METHODS Conventional MT and ihMT images were acquired from ex vivo Rag2-/- control and shiverer mouse brains at 7T using previously reported optimized saturation parameters. RESULTS ihMT ratio (ihMTR) maps revealed hypomyelinated corpus callosum in the shiverer mouse brain, whereas conventional MT ratio (MTR) maps showed no clear contrast. The ihMTR values of the corpus callosum in the shiverer mice were reduced by approximately 40% compared to controls, but remained significantly higher than the ihMTR values of the cortex. CONCLUSION The finding further confirms ihMT's high myelin specificity and suggests its use as a marker to detect early myelination or myelin repair.
Collapse
Affiliation(s)
- Choong Heon Lee
- Center for Biomedical Imaging, Department of Radiology, New York University Langone School of Medicine, New York, NY, USA
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Langone School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
34
|
Yarnykh VL, Korostyshevskaya AM, Savelov AA, Isaeva YO, Gornostaeva AM, Tulupov AA, Sagdeev RZ. Macromolecular proton fraction mapping in magnetic resonance imaging: physicochemical principles and biomedical applications. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Magnetic resonance in the evaluation of circulation and mass transfer in human. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
37
|
West DJ, Cruz G, Teixeira RPAG, Schneider T, Tournier JD, Hajnal JV, Prieto C, Malik SJ. An MR fingerprinting approach for quantitative inhomogeneous magnetization transfer imaging. Magn Reson Med 2022; 87:220-235. [PMID: 34418151 PMCID: PMC7614010 DOI: 10.1002/mrm.28984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules, and ihMT appears to be specific to myelinated tissue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios and quantitative parameter maps. THEORY AND METHODS Building on previous work that uses multiband RF pulses to efficiently generate ihMT contrast, we propose a cyclic steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of an MR fingerprinting acquisition, except that the signal fluctuations are entirely mediated by MT effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio and ihMT ratio maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. RESULTS Phantom and in vivo brain data acquired at 1.5 Tesla demonstrate the expected contrast trends, with ihMT ratio maps showing contrast more specific to white matter, as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. CONCLUSION By cycling between multiband and single-band pulses, an entirely MT-mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular-specific tissue parameters.
Collapse
Affiliation(s)
- Daniel J. West
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Gastao Cruz
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Rui P. A. G. Teixeira
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | | | - Jacques-Donald Tournier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Shaihan J. Malik
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
38
|
Yarnykh VL. Data-Driven Retrospective Correction of B 1 Field Inhomogeneity in Fast Macromolecular Proton Fraction and R 1 Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3473-3484. [PMID: 34110989 PMCID: PMC8711232 DOI: 10.1109/tmi.2021.3088258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Correction of B1 field non-uniformity is critical for many quantitative MRI methods including variable flip angle (VFA) T1 mapping and single-point macromolecular proton fraction (MPF) mapping. The latter method showed promising results as a fast and robust quantitative myelin imaging approach and involves VFA-based R1=1/T1 map reconstruction as an intermediate processing step. The need for B1 correction restricts applications of the above methods, since B1 mapping sequences increase the examination time and are not commonly available in clinics. A new algorithm was developed to enable retrospective data-driven simultaneous B1 correction in VFA R1 and single-point MPF mapping. The principle of the algorithm is based on different mathematical dependences of B1 -related errors in R1 and MPF allowing extraction of a surrogate B1 field map from uncorrected R1 and MPF maps. To validate the method, whole-brain R1 and MPF maps with isotropic 1.25 mm3 resolution were obtained on a 3 T MRI scanner from 11 volunteers. Mean parameter values in segmented brain tissues were compared between three reconstruction options including the absence of correction, actual B1 correction, and surrogate B1 correction. Surrogate B1 maps closely reproduced actual patterns of B1 inhomogeneity. Without correction, B1 non-uniformity caused highly significant biases in R1 and MPF ( ). Surrogate B1 field correction reduced the biases in both R1 and MPF to a non-significant level ( 0.1 ≤ P ≤ 0.8 ). The described algorithm obviates the use of dedicated B1 mapping sequences in fast single-point MPF mapping and provides an alternative solution for correction of B1 non-uniformities in VFA R1 mapping.
Collapse
|
39
|
Soustelle L, Troalen T, Hertanu A, Mchinda S, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. A strategy to reduce the sensitivity of inhomogeneous magnetization transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T. Magn Reson Med 2021; 87:1346-1359. [PMID: 34779020 DOI: 10.1002/mrm.29055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To minimize the sensitivity of inhomogeneous magnetization transfer gradient-echo (ihMT-GRE) imaging to radiofrequency (RF) transmit field ( B 1 + ) inhomogeneities at 3 T. METHODS The ihMT-GRE sequence was optimized by varying the concentration of the RF saturation energy over time, obtained by increasing the saturation pulse power while extending the sequence repetition time (TR). Different protocols were tested using numerical simulations and human in vivo experiments in the brain white matter (WM) of healthy subjects at 3 T. The sensitivity of the ihMT ratio (ihMTR) to B 1 + variations was investigated by comparing measurements obtained at nominal transmitter adjustments and following a 20% global B 1 + drop. The resulting relative variations (δihMTR ) were evaluated voxelwise as a function of the local B 1 + distribution. The reproducibility of the protocol providing minimal B 1 + bias was assessed in a test-retest experiment. RESULTS In line with simulations, ihMT-GRE experiments conducted at high concentration of the RF energy over time demonstrated strong reduction of the B 1 + inhomogeneity effects in the human WM. Under the optimal conditions of 350-ms TR and 3-µT root mean square (RMS) saturation power, 73% of all WM voxels presented δihMTR below 10%. Reproducibility analysis yielded a close-to-zero systematic bias (ΔihMTR = -0.081%) and a high correlation (ρ² = 0.977) between test and retest experiments. CONCLUSION Concentrating RF saturation energy in ihMT-GRE sequences mitigates the sensitivity of the ihMTR to B 1 + variations and allows for clinical-ready ihMT imaging at 3 T. This feature is of particular interest for high and ultra-high field applications.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Samira Mchinda
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
40
|
Khodanovich MY, Gubskiy IL, Kudabaeva MS, Namestnikova DD, Kisel AA, Anan’ina TV, Tumentceva YA, Mustafina LR, Yarnykh VL. Long-term monitoring of chronic demyelination and remyelination in a rat ischemic stroke model using macromolecular proton fraction mapping. J Cereb Blood Flow Metab 2021; 41:2856-2869. [PMID: 34107787 PMCID: PMC8756474 DOI: 10.1177/0271678x211020860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022]
Abstract
Remyelination is a key process enabling post-stroke brain tissue recovery and plasticity. This study aimed to explore the feasibility of demyelination and remyelination monitoring in experimental stroke from the acute to chronic stage using an emerging myelin imaging biomarker, macromolecular proton fraction (MPF). After stroke induction by transient middle cerebral artery occlusion, rats underwent repeated MRI examinations during 85 days after surgery with histological endpoints for the animal subgroups on the 7th, 21st, 56th, and 85th days. MPF maps revealed two sub-regions within the infarct characterized by distinct temporal profiles exhibiting either a persistent decrease by 30%-40% or a transient decrease followed by return to nearly normal values after one month of observation. Myelin histology confirmed that these sub-regions had nearly similar extent of demyelination in the sub-acute phase and then demonstrated either chronic demyelination or remyelination. The remyelination zones also exhibited active axonal regrowth, reconstitution of compact fiber bundles, and proliferation of neuronal and oligodendroglial precursors. The demyelination zones showed more extensive astrogliosis from the 21st day endpoint. Both sub-regions had substantially depleted neuronal population over all endpoints. These results histologically validate MPF mapping as a novel approach for quantitative assessment of myelin damage and repair in ischemic stroke.
Collapse
Affiliation(s)
| | - Ilya L Gubskiy
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian Medical University, Moscow, Russian Federation
| | - Marina S Kudabaeva
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Darya D Namestnikova
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian Medical University, Moscow, Russian Federation
| | - Alena A Kisel
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
- Department of Radiology, University of Washington, Seattle, USA
| | - Tatyana V Anan’ina
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Yana A Tumentceva
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Lilia R Mustafina
- Department of histology, embriology, and cytology, Siberian State Medical University, Tomsk, Russian Federation
| | - Vasily L Yarnykh
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
- Department of Radiology, University of Washington, Seattle, USA
| |
Collapse
|
41
|
Bayer FM, Bock M, Jezzard P, Smith AK. Unbiased signal equation for quantitative magnetization transfer mapping in balanced steady-state free precession MRI. Magn Reson Med 2021; 87:446-456. [PMID: 34331470 PMCID: PMC8951070 DOI: 10.1002/mrm.28940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Purpose Quantitative magnetization transfer (qMT) imaging can be used to quantify the proportion of protons in a voxel attached to macromolecules. Here, we show that the original qMT balanced steady‐state free precession (bSSFP) model is biased due to over‐simplistic assumptions made in its derivation. Theory and Methods We present an improved model for qMT bSSFP, which incorporates finite radiofrequency (RF) pulse effects as well as simultaneous exchange and relaxation. Furthermore, a correction relating to finite RF pulse effects for sinc‐shaped excitations is derived. The new model is compared to the original one in numerical simulations of the Bloch‐McConnell equations and in previously acquired in vivo data. Results Our numerical simulations show that the original signal equation is significantly biased in typical brain tissue structures (by 7%‐20%), whereas the new signal equation outperforms the original one with minimal bias (<1%). It is further shown that the bias of the original model strongly affects the acquired qMT parameters in human brain structures, with differences in the clinically relevant parameter of pool‐size‐ratio of up to 31%. Particularly high biases of the original signal equation are expected in an MS lesion within diseased brain tissue (due to a low T2/T1‐ratio), demanding a more accurate model for clinical applications. Conclusion The improved model for qMT bSSFP is recommended for accurate qMT parameter mapping in healthy and diseased brain tissue structures.
Collapse
Affiliation(s)
- Fritz M Bayer
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,D-BSSE, ETH Zurich, Basel, Switzerland
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Sui YV, Bertisch H, Lee HH, Storey P, Babb JS, Goff DC, Samsonov A, Lazar M. Quantitative Macromolecular Proton Fraction Mapping Reveals Altered Cortical Myelin Profile in Schizophrenia Spectrum Disorders. Cereb Cortex Commun 2021; 2:tgab015. [PMID: 34296161 PMCID: PMC8271044 DOI: 10.1093/texcom/tgab015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/12/2023] Open
Abstract
Myelin abnormalities have been reported in schizophrenia spectrum disorders (SSD) in white matter. However, in vivo examinations of cortical myeloarchitecture in SSD, especially those using quantitative measures, are limited. Here, we employed macromolecular proton fraction (MPF) obtained from quantitative magnetization transfer imaging to characterize intracortical myelin organization in 30 SSD patients versus 34 healthy control (HC) participants. We constructed cortical myelin profiles by extracting MPF values at various cortical depths and quantified their shape using a nonlinearity index (NLI). To delineate the association of illness duration with myelin changes, SSD patients were further divided into 3 duration groups. Between-group comparisons revealed reduced NLI in the SSD group with the longest illness duration (>5.5 years) compared with HC predominantly in bilateral prefrontal areas. Within the SSD group, cortical NLI decreased with disease duration and was positively associated with a measure of spatial working memory capacity as well as with cortical thickness (CT). Layer-specific analyses suggested that NLI decreases in the long-duration SSD group may arise in part from significantly increased MPF values in the midcortical layers. The current study reveals cortical myelin profile changes in SSD with illness progression, which may reflect an abnormal compensatory mechanism of the disorder.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hilary Bertisch
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hong-Hsi Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pippa Storey
- Department of Radiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - James S Babb
- Department of Radiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Donald C Goff
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alexey Samsonov
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
43
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
44
|
Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton fraction. Transl Psychiatry 2021; 11:365. [PMID: 34226491 PMCID: PMC8257619 DOI: 10.1038/s41398-021-01475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Myelin deficiency is commonly recognized as an important pathological feature of brain tissues in schizophrenia (SZ). In this pilot study, global myelin content abnormalities in white matter (WM) and gray matter (GM) of SZ patients were non-invasively investigated using a novel clinically-targeted quantitative myelin imaging technique, fast macromolecular proton fraction (MPF) mapping. MPF maps were obtained from 23 healthy subjects and 31 SZ patients using a clinical 1.5T magnetic resonance imaging (MRI) scanner. Mean MPF in WM and GM was compared between the healthy control subjects and SZ patients with positive and negative leading symptoms using the multivariate analysis of covariance. The SZ patients had significantly reduced MPF in GM (p < 0.001) and WM (p = 0.02) with the corresponding relative decrease of 5% and 3%, respectively. The effect sizes for the myelin content loss in SZ relative to the control group were 1.0 and 1.5 for WM and GM, respectively. The SZ patients with leading negative symptoms had significantly lower MPF in GM (p < 0.001) and WM (p = 0.003) as compared to the controls and showed a significant MPF decrease in WM (p = 0.03) relative to the patients with leading positive symptoms. MPF in WM significantly negatively correlated with the disease duration in SZ patients (Pearson's r = -0.51; p = 0.004). This study demonstrates that chronic SZ is characterized by global microscopic brain hypomyelination of both WM and GM, which is associated with the disease duration and negative symptoms. Myelin deficiency in SZ can be detected and quantified by the fast MPF mapping method.
Collapse
|
45
|
Corrigan NM, Yarnykh VL, Hippe DS, Owen JP, Huber E, Zhao TC, Kuhl PK. Myelin development in cerebral gray and white matter during adolescence and late childhood. Neuroimage 2020; 227:117678. [PMID: 33359342 PMCID: PMC8214999 DOI: 10.1016/j.neuroimage.2020.117678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
Myelin development during adolescence is becoming an area of growing interest in view of its potential relationship to cognition, behavior, and learning. While recent investigations suggest that both white matter (WM) and gray matter (GM) undergo protracted myelination during adolescence, quantitative relations between myelin development in WM and GM have not been previously studied. We quantitatively characterized the dependence of cortical GM, WM, and subcortical myelin density across the brain on age, gender, and puberty status during adolescence with the use of a novel macromolecular proton fraction (MPF) mapping method. Whole-brain MPF maps from a cross-sectional sample of 146 adolescents (age range 9–17 years) were collected. Myelin density was calculated from MPF values in GM and WM of all brain lobes, as well as in subcortical structures. In general, myelination of cortical GM was widespread and more significantly correlated with age than that of WM. Myelination of GM in the parietal lobe was found to have a significantly stronger age dependence than that of GM in the frontal, occipital, temporal and insular lobes. Myelination of WM in the temporal lobe had the strongest association with age as compared to WM in other lobes. Myelin density was found to be higher in males as compared to females when averaged across all cortical lobes, as well as in a bilateral subcortical region. Puberty stage was significantly correlated with myelin density in several cortical areas and in the subcortical GM. These findings point to significant differences in the trajectories of myelination of GM and WM across brain regions and suggest that cortical GM myelination plays a dominant role during adolescent development.
Collapse
Affiliation(s)
- Neva M Corrigan
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States.
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Julia P Owen
- Department of Radiology, University of Washington, Seattle WA 98195, United States
| | - Elizabeth Huber
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - T Christina Zhao
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Portage Bay Building, Seattle WA 98195, United States
| |
Collapse
|
46
|
Cornejo P, Feygin T, Vaughn J, Pfeifer CM, Korostyshevska A, Patel M, Bardo DME, Miller J, Goncalves LF. Imaging of fetal brain tumors. Pediatr Radiol 2020; 50:1959-1973. [PMID: 33252762 DOI: 10.1007/s00247-020-04777-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/13/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
Congenital brain tumors, defined as those diagnosed prenatally or within the first 2 months of age, represent less than 2% of pediatric brain tumors. Their location, prevalence and pathophysiology differ from those of tumors that develop later in life. Imaging plays a crucial role in diagnosis, tumor characterization and treatment planning. The most common lesions diagnosed in utero are teratomas, followed by gliomas, choroid plexus papillomas and craniopharyngiomas. In this review, we summarize the pathogenesis, diagnosis, management and prognosis of the most frequent fetal brain tumors.
Collapse
Affiliation(s)
- Patricia Cornejo
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA. .,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, AZ, USA. .,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA. .,Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA. .,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA.
| | - Tamara Feygin
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer Vaughn
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, AZ, USA.,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | - Cory M Pfeifer
- Department of Radiology, UT Southwestern, Dallas, TX, USA
| | - Alexandra Korostyshevska
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Mittun Patel
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | - Dianna M E Bardo
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, AZ, USA.,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | - Jeffrey Miller
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.,Department of Neuroradiology, Barrows Neurological Institute, Phoenix, AZ, USA.,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ, USA.,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA
| | - Luis F Goncalves
- Department of Radiology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.,Department of Radiology, University of Arizona College of Medicine, Phoenix, AZ, USA.,Department of Radiology, Creighton University School of Medicine, Phoenix, AZ, USA
| |
Collapse
|
47
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
48
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Soustelle L, Antal MC, Lamy J, Harsan LA, Loureiro de Sousa P. Determination of optimal parameters for 3D single-point macromolecular proton fraction mapping at 7T in healthy and demyelinated mouse brain. Magn Reson Med 2020; 85:369-379. [PMID: 32767495 DOI: 10.1002/mrm.28397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine optimal constrained tissue parameters and off-resonance sequence parameters for single-point macromolecular proton fraction (SP-MPF) mapping based on a comprehensive quantitative magnetization transfer (qMT) protocol in healthy and demyelinated living mice at 7T. METHODS Using 3D spoiled gradient echo-based sequences, a comprehensive qMT protocol is performed by sampling the Z-spectrum of mice brains, in vivo. Provided additional T1 , B 1 + and B0 maps allow for the estimation of qMT tissue parameters, among which three will be constrained, namely the longitudinal and transverse relaxation characteristics of the free pool (R1,f T2,f ), the cross-relaxation rate (R) and the bound pool transverse relaxation time (T2,r ). Different sets of constrained parameters are investigated to reduce the bias between the SP-MPF and its reference based on the comprehensive protocol. RESULTS Based on a whole-brain histogram analysis about the constrained parameters, the optimal experimental parameters that minimize the global bias between reference and SP-MPF maps consist of a 600° and 6 kHz off-resonance irradiation pulse. Following a Bland-Altman analysis over regions of interest, optimal constrained parameters were R1,f T2,f = 0.0129, R = 26.5 s-1 , and T2,r = 9.1 µs, yielding an overall MPF bias of 10-4 (limits of agreement [-0.0068;0.0070]) and a relative variation of 0.64% ± 5.95% between the reference and the optimal single-point method across all mice. CONCLUSION The necessity of estimating animal model- and field-dependent constrained parameters was demonstrated. The single-point MPF method can be reliably applied at 7T, as part of routine preclinical in vivo imaging protocol in mice.
Collapse
Affiliation(s)
- Lucas Soustelle
- ICube, Université de Strasbourg, CNRS, Strasbourg, France.,Aix Marseille University, CNRS, CRMBM, Marseille, France
| | | | - Julien Lamy
- ICube, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | |
Collapse
|
50
|
Hou J, Wong VWS, Jiang B, Wang YX, Wong GLH, Chan AWH, Chu WCW, Chen W. Macromolecular proton fraction mapping based on spin-lock magnetic resonance imaging. Magn Reson Med 2020; 84:3157-3171. [PMID: 32627861 DOI: 10.1002/mrm.28362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods. METHODS In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T. RESULTS Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis. CONCLUSION A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|