1
|
Kwak M, Succi PJ, Benitez B, Mitchinson CJ, Bergstrom HC. The effects of sex and contraction intensity on fatigability and muscle oxygenation in trained individuals. Appl Physiol Nutr Metab 2025; 50:1-12. [PMID: 39298792 DOI: 10.1139/apnm-2024-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fatigability varies depending on sex and contraction intensity during sustained exercise. This study examined the responses of time to task failure (TTF), performance fatigability (PF), and muscle oxygenation (SmO2) in males and females during isometric handgrip holds to failure (HTF) at 30% and 60% maximum voluntary isometric contraction (MVIC). Males (n = 12) and females (n = 12) performed a pre-MVIC, handgrip HTF at randomly ordered percentages of MVIC (either 30% or 60%), followed by a post-MVIC on the dominant arm. During the HTF testing, the TTF and SmO2 responses were recorded, and PF was determined from the pre- to post-MVICs. TTF for 30% MVIC HTF was greater than 60% MVIC HTF (p < 0.001), but was not different between males and females (p = 0.117). PF exhibited an inverse relationship with intensity for each sex, while males demonstrated greater PF than females for both 30% and 60% MVIC HTF. For the 60% MVIC HTF, males demonstrated greater desaturation than females (CI95% = [-28.1, -2.6%], p = 0.021, d = 0.621), but not for the 30% MVIC HTF (CI95% = [-12.2, 7.9%], p = 0.315, d = 0.621). Sex differences in PF and SmO2 may be attributed to the differences in muscle mass, absolute strength, contractile properties, and muscle metabolism between males and females. However, these proposed differences between males and females may not fully inform exercise performance (e.g., TTF). Sex-specific fatigue responses may be affected by complex physio-psychological mechanisms, and therefore, additional investigations under diverse exercise conditions are required to better prescribe exercise for both males and females.
Collapse
Affiliation(s)
- Minyoung Kwak
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Brian Benitez
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, The University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Benitez B, Kwak M, Succi PJ, Mitchinson CJ, Weir JP, Bergstrom HC. Examination of sex differences in fatigability and neuromuscular responses during continuous, maximal, isometric leg extension. Physiol Meas 2024; 45:105001. [PMID: 39322012 DOI: 10.1088/1361-6579/ad7fcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Objective.This study examined sex-related differences in fatigability and neuromuscular responses using surface electromyographic (sEMG) and mechanomyographic (sMMG) amplitude (AMP) and frequency (MPF) during fatiguing, maximal, bilateral isometric leg extensions.Approach.Twenty recreationally active males and females with resistance training experience performed continuous, maximal effort, bilateral isometric leg extensions until their force reduced by 50%. Linear mixed effect models analyzed patterns of force, sEMG, and sMMG AMP and MPF responses in the dominant limb. An independent samples t-test compared time-to-task failure (TTF) between sexes.Main Results.There were no significant differences in TTF between males and females. However, males experienced a greater rate of force loss compared to females. Furthermore, sEMG AMP and MPF and sMMG AMP responses followed similar linear trends for both sexes, while sMMG MPF showed non-linear responses with sex-dependent differences.Significance.These data suggest that although TTF was similar, males had a higher rate of force reduction, likely due to greater absolute strength. Furthermore, despite parallel changes in sEMG AMP and MPF, as well as sMMG AMP, the divergent responses observed in sMMG MPF highlight sex-dependent differences in how males and females experience changes in the firing rates of active motor units during sustained maximal contractions.
Collapse
Affiliation(s)
- Brian Benitez
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Minyoung Kwak
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Clara J Mitchinson
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS 66045, United States of America
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY 40536, United States of America
| |
Collapse
|
3
|
Kearney KM, Diaz TO, Harley JB, Nichols JA. From Simulation to Reality: Predicting Torque With Fatigue Onset via Transfer Learning. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3669-3676. [PMID: 39302781 PMCID: PMC11523560 DOI: 10.1109/tnsre.2024.3465016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Muscle fatigue impacts upper extremity function but is often overlooked in biomechanical models. The present work leveraged a transfer learning approach to improve torque predictions during fatiguing upper extremity movements. We developed two artificial neural networks to model sustained elbow flexion: one trained solely on recorded data (i.e., direct learning) and one pre-trained on simulated data and fine-tuned on recorded data (i.e., transfer learning). We simulated muscle activations and joint torques using a musculoskeletal model and a muscle fatigue model (n = 1,701 simulations). We also recorded static subject-specific features (e.g., anthropometric measurements) and dynamic muscle activations and torques during sustained elbow flexion in healthy young adults (n = 25 subjects). Using the simulated dataset, we pre-trained a long short-term memory neural network (LSTM) to regress fatiguing elbow flexion torque from muscle activations. We concatenated this pre-trained LSTM with a feedforward architecture, and fine-tuned the model on recorded muscle activations and static features to predict elbow flexion torques. We trained a similar architecture solely on the recorded data and compared each neural network's predictions on 5 leave-out subjects' data. The transfer learning model outperformed the direct learning model, as indicated by a decrease of 24.9% in their root-mean-square-errors (6.22 Nm and 8.28 Nm, respectively). The transfer learning model and direct learning model outperformed analogous musculoskeletal simulations, which consistently underpredicted elbow flexion torque. Our results suggest that transfer learning from simulated to recorded datasets can decrease reliance on assumptions inherent to biomechanical models and yield predictions robust to real-world conditions.
Collapse
|
4
|
Proppe CE, Rivera PM, Kelly RT, Rotenberger NP, Salazar S, Lubiak SM, Hill EC. Indices of exercise induced muscle damage following low load resistance exercise with blood flow restriction in untrained males. J Sports Med Phys Fitness 2024; 64:880-888. [PMID: 38863419 DOI: 10.23736/s0022-4707.24.15896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
BACKGROUND There is conflicting evidence regarding the presence and magnitude of exercise-induced muscle damage (EIMD) following low-load resistance training with blood flow restriction (LL+BFR), which may be related to the protocol implemented or exercise volume. Therefore, the purpose of this investigation was to examine the effects of a 75 repetition (BFR-75) (1×30, 3×15) and four sets to volitional failure (BFR-4x) protocols on indices of EIMD among untrained men. METHODS Twelve males with no history of lower-body resistance training during the previous six months volunteered for this investigation. One leg was randomly assigned to BFR-75, and the other to BFR-4x. Participants performed isokinetic, unilateral, concentric-eccentric, leg extension muscle actions at 30% of maximal strength with BFR. Indices of EIMD (limb circumference, perceived muscle soreness, pain pressure threshold [PPT], passive range of motion, and maximal strength [MVIC]) were recorded before exercise and 0, 24, 48, 72, and 96-hours post-exercise for each protocol. RESULTS There were no significant changes (P>0.05) in limb circumference, PPT, passive range of motion, or MVIC. For both BFR-75 and BFR-4x, perceived muscle soreness increased (P<0.001) similarly 24- (2.5±1.7 AU) and 48-hours (1.9±1.7 AU) post-exercise. CONCLUSIONS There was an increase in muscle soreness 24-48 hours post-exercise for both conditions, which may be due to metabolic stress, but this did not affect the force-generating capacity of the muscle (MVIC), suggesting minimal EIMD. The conflicting evidence of EIMD following LL+BFR may be related to differences in restriction time or overall exercise time.
Collapse
Affiliation(s)
- Christopher E Proppe
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA -
| | - Paola M Rivera
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ryan T Kelly
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Nathaniel P Rotenberger
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Santiago Salazar
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Sean M Lubiak
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Ethan C Hill
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
- Florida Space Institute, Partnership I, Research Parkway, University of Central Florida, Orlando, FL, USA
- College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
5
|
Hunter SK, Senefeld JW. Sex differences in human performance. J Physiol 2024; 602:4129-4156. [PMID: 39106346 DOI: 10.1113/jp284198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Sex as a biological variable is an underappreciated aspect of biomedical research, with its importance emerging in more recent years. This review assesses the current understanding of sex differences in human physical performance. Males outperform females in many physical capacities because they are faster, stronger and more powerful, particularly after male puberty. This review highlights key sex differences in physiological and anatomical systems (generally conferred via sex steroids and puberty) that contribute to these sex differences in human physical performance. Specifically, we address the effects of the primary sex steroids that affect human physical development, discuss insight gained from an observational study of 'real-world data' and elite athletes, and highlight the key physiological mechanisms that contribute to sex differences in several aspects of physical performance. Physiological mechanisms discussed include those for the varying magnitude of the sex differences in performance involving: (1) absolute muscular strength and power; (2) fatigability of limb muscles as a measure of relative performance; and (3) maximal aerobic power and endurance. The profound sex-based differences in human performance involving strength, power, speed and endurance, and that are largely attributable to the direct and indirect effects of sex-steroid hormones, sex chromosomes and epigenetics, provide a scientific rationale and framework for policy decisions on sex-based categories in sports during puberty and adulthood. Finally, we highlight the sex bias and problem in human performance research of insufficient studies and information on females across many areas of biology and physiology, creating knowledge gaps and opportunities for high-impact studies.
Collapse
Affiliation(s)
- Sandra K Hunter
- Movement Science Program, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathon W Senefeld
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
6
|
Dello Iacono A, Watson K, Jukic I. The Autoregulation Rest-Redistribution Training Method Mitigates Sex Differences in Neuromuscular and Perceived Fatigue During Resistance Training. Int J Sports Physiol Perform 2024; 19:685-695. [PMID: 38772547 DOI: 10.1123/ijspp.2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE To examine the sex differences in performance and perceived fatigue during resistance training prescribed using traditional (TRA) and autoregulation rest-redistribution training (ARRT) approaches. METHODS Twelve resistance-trained men and 12 women completed 2 sessions including the bench-press exercise matched for load (75% of 1-repetition maximum), volume (24 repetitions), and total rest (240 s). Sessions were performed in a counterbalanced randomized design with TRA consisting of 3 sets of 8 repetitions with 120-second interset rest and ARRT employing a personalized combination of clusters, repetitions per cluster, and between-clusters rest regulated with a 20% velocity-loss threshold. The effects of TRA and ARRT on velocity loss, unilateral isometric peak force, and rating of fatigue (ROF) were compared between sexes. RESULTS The velocity loss was generally lower during ARRT compared with TRA (-0.47% [0.11%]), with velocity loss being mitigated by ARRT to a greater extent among males compared with females (-0.37% [0.15%]). A smaller unilateral isometric peak force decline was observed after ARRT than TRA among males compared with females (-38.4 [8.4] N). Lower ROF after ARRT than TRA was found among males compared to females (-1.97 [0.55] AU). Additionally, males reported greater ROF than females across both conditions (1.92 [0.53] AU), and ARRT resulted in lower ROF than TRA overall (-0.83 [0.39] AU). CONCLUSIONS The ARRT approach resulted in decreased velocity loss, peak force impairment, and ROF compared with TRA in both sexes. However, male subjects exhibited more pronounced acute within-session benefits from the ARRT method.
Collapse
Affiliation(s)
- Antonio Dello Iacono
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom
| | - Kevin Watson
- Department of Strength and Conditioning, Glasgow School of Sport, Glasgow, United Kingdom
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- Division of Sport and Exercise Sciences, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
7
|
Olmos AA, Montgomery TR, Sears KN, Dinyer TK, Hammer SM, Bergstrom HC, Hill EC, Succi PJ, Lawson J, Trevino MA. Blood flow restriction increases necessary muscle excitation of the elbow flexors during a single high-load contraction. Eur J Appl Physiol 2024; 124:1807-1820. [PMID: 38236301 DOI: 10.1007/s00421-023-05405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)-force relationships of the biceps brachii (BB) during a single high-load muscle action. METHODS Twelve recreationally active males and eleven recreationally active females performed maximal voluntary contractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force segment was normalized to MVC EMGRMS. RESULTS For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment (p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater during the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than CON collapsed across sex (p = 0.041). CONCLUSION BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing segment. However, EMGRMS-force relationships during the linearly increasing- and decreasing-segments were not different between sexes during BFR and CON.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Tony R Montgomery
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Kylie N Sears
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Taylor K Dinyer
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Shane M Hammer
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - Ethan C Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, 32816, USA
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY, 40506, USA
| | - John Lawson
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, 32816, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Oklahoma State University, 191 CRC, Stillwater, OK, 74074, USA.
| |
Collapse
|
8
|
Smith RW, Ortega DG, Arnett JE, Neltner TJ, Schmidt RJ, Johnson GO, Weir JP, Housh TJ. The effects of sustained, low- and high-intensity isometric tasks on performance fatigability and the perceived responses that contributed to task termination. Eur J Appl Physiol 2024; 124:1587-1599. [PMID: 38165446 DOI: 10.1007/s00421-023-05396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The present study examined the effects of sustained, isometric low- versus high-intensity tasks on time to task failure (TTF), performance fatigability (PF), ratings of perceived exertion (RPE), and the perceived causes of task termination from a post-test questionnaire (PTQ). METHODS Ten men (mean ± SD: age = 21.1 ± 2.3 years; height = 180.2 ± 5.7 cm; body mass = 79.5 ± 8.8 kg) performed maximal voluntary isometric contractions (MVICs) before and after fatiguing, isometric forearm flexion tasks anchored to the torque corresponding to RPE values of 2 (TRQ2FT = 23.8 ± 7.1 N·m) and 8 (TRQ8FT = 60.9 ± 11.4 N·m). In addition, the subjects completed a PTQ which surveyed whether the perceived sensations of fatigue or pain, and/or the psychological factors of loss of focus and motivation contributed to the decision to terminate the task. Repeated measures ANOVAs, Wilcoxon-Signed Rank tests, and Spearman's Rank-Order Correlations were used to analyze the data. RESULTS Across the fatiguing tasks, there were similar decreases in MVIC torque (95.2 ± 20.3 vs. 68.9 ± 15.6 N·m; p < 0.001) and RPE values (p = 0.122) at task failure for TRQ2FT (7.4 ± 2.7) and TRQ8FT (8.9 ± 1.0), but a longer (p = 0.005) TTF for the TRQ2FT (245.0 ± 177.0 s) than TRQ8FT (36.8 ± 11.1 s). CONCLUSIONS Despite reaching task failure, the subjects were able to perform MVICs that were 100-300% greater than the target torque values within seconds of terminating the tasks. Thus, we hypothesized that task failure was not caused by an inability to produce sufficient torque to sustain the tasks, but rather an unwillingness to continue the task.
Collapse
Affiliation(s)
- Robert W Smith
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA.
| | - Dolores G Ortega
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Tyler J Neltner
- Department of Health and Human Performance, University of Wisconsin-Platteville, Platteville, WI, 53818, USA
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| | - Joseph P Weir
- Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Terry J Housh
- Department of Nutrition and Health Sciences, University of NE - Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
9
|
Hammer SM, Sears KN, Montgomery TR, Olmos AA, Hill EC, Trevino MA, Dinyer-McNeely TK. Sex differences in muscle contraction-induced limb blood flow limitations. Eur J Appl Physiol 2024; 124:1121-1129. [PMID: 37889287 DOI: 10.1007/s00421-023-05339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To determined sex differences in absolute- and %-reductions in blood flow during intermittent muscular contractions as well as relationships between blood flow reductions and time to task failure (TTF). METHODS Thirteen males (25 ± 4 years) and 13 females (22 ± 5 years) completed intermittent isometric trapezoidal forearm flexion at 50% maximal voluntary contraction until task failure. Doppler ultrasound was used to measure brachial artery blood flow (BABF) during the 12-s plateau phase and 12-s relaxation phase. RESULTS Target torque was less in females than males (24 ± 5 vs. 42 ± 7 Nm; p < 0.001); however, TTF was not different between sexes (F: 425 ± 187 vs. M: 401 ± 158 s; p = 0.72). Relaxation-phase BABF at end-exercise was less in females than males (435 ± 161 vs. 937 ± 281 mL/min; p < 0.001) but contraction-phase BABF was not different (127 ± 46 vs. 190 ± 99 mL/min; p = 0.42). Absolute- and %-reductions in BABF by contraction were less in females than males (309 ± 146 vs. 747 ± 210 mL/min and 69 ± 10 vs. 80% ± 6%, respectively; both p < 0.01) and were associated with target torque independent of sex (r = 0.78 and 0.56, respectively; both p < 0.01). Absolute BABF reduction per target torque (mL/min/Nm) and TTF were positively associated in males (r = 0.60; p = 0.031) but negatively associated in females (r = - 0.61; p = 0.029). CONCLUSIONS This study provides evidence that females incur less proportional reduction in limb blood flow from muscular contraction than males at a matched relative intensity suggesting females may maintain higher levels of muscle oxygen delivery and metabolite removal than males across the contraction-relaxation cycle of intermittent exercise.
Collapse
Affiliation(s)
- Shane M Hammer
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA.
| | - Kylie N Sears
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Tony R Montgomery
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Alex A Olmos
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Ethan C Hill
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael A Trevino
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Taylor K Dinyer-McNeely
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
10
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Yoon S, Cederbaum LA, Côté JN. Females show less decline in contractile function than males after repeated all-out cycling. Appl Physiol Nutr Metab 2024; 49:199-212. [PMID: 37820383 DOI: 10.1139/apnm-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Females demonstrate greater fatigue resistance during a range of exercise modalities; however, this may be confounded by the lower mechanical work completed. Accordingly, this study examined the sex-specific peripheral and central fatigue mechanisms during repeated all-out cycling and whether they are affected by total mechanical work performed. A total of 26 healthy young adults (12 females) performed 10 × 10 s all-out cycling interspersed by 30 s passive recovery. Metabolic responses, peripheral and central fatigue, were quantified via changes in pre- to post-exercise blood lactate, potentiated quadriceps twitch force (and contractile properties) evoked via supramaximal electrical stimulation of the femoral nerve, and voluntary activation of the knee extensors, respectively. During exercise, mechanical work, vastus lateralis muscle activation (via surface electromyography), and deoxygenation (via near-infrared spectroscopy) were recorded. Sex comparison analyses were performed before and after statistically controlling for total mechanical work (via ANCOVA). Mechanical work and muscle activation plateaued at similar sprint repetition (sprint 5) and voluntary activation change (pre vs. post) was similar between the sexes. Females, however, showed lower %work decrement (i.e., fatigability; P = 0.037) and peripheral responses as evident by lower reductions in quadriceps twitch force (P < 0.001) and muscle deoxygenation (P = 0.001). Adjusting for total mechanical work did not change these sex comparison results. We show that females' greater fatigue resistance during repeated all-out cycling may not be attributed to the greater total mechanical work performed but could be mediated by lower peripheral fatigue in the knee extensor muscles.
Collapse
Affiliation(s)
- SangHoon Yoon
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| | - Lauren A Cederbaum
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| |
Collapse
|
12
|
Ortega DG, Housh TJ, Smith RW, Arnett JE, Neltner TJ, Anders JPV, Schmidt RJ, Johnson GO. Effects of a Sustained, Isometric Forearm Flexion Task to Failure on Torque and Neuromuscular Responses at 3 Elbow Joint Angles. J Strength Cond Res 2024; 38:e25-e33. [PMID: 38085633 DOI: 10.1519/jsc.0000000000004599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
ABSTRACT Ortega, DG, Housh, TJ, Smith, RW, Arnett, JE, Neltner, TJ, Anders, JPV, Schmidt, RJ, and Johnson, GO. The effects of a sustained, isometric forearm flexion task to failure on torque and neuromuscular responses at 3 elbow joint angles. J Strength Cond Res 38(1): e25-e33, 2024-This study examined the effects of a sustained, isometric forearm flexion task anchored to torque to task failure on maximal voluntary isometric contraction (MVIC) and neuromuscular responses at 3 elbow joint angles. Eleven women (mean ± SD: age = 20.8 ± 2.7 years, height = 169.3 ± 7.4 cm, body mass = 67.7 ± 6.9 kg) performed two 3s forearm flexion MVICs at elbow joint angles (JAs) of 75°, 100°, and 125° before and after a sustained, isometric forearm flexion task to failure at a fatiguing joint angle of 100° anchored to a torque value that corresponded to a rating of perceived exertion of 8 (RPE = 8). The amplitude (AMP) and mean power frequency (MPF) of the electromyographic (EMG) and mechanomyographic (MMG) signals were recorded from the biceps brachii. Repeated-measures ANOVAs were used to compare mean differences for MVIC and neuromuscular parameters. Collapsed across JAs, MVIC (p < 0.001) and EMG MPF (p = 0.006) pretest values were greater than posttest values. Collapsed across time, EMG MPF at JA75 was greater than JA100 (p < 0.001) and JA125 (p < 0.001), and JA100 was greater (p = 0.007) than JA125. For EMG AMP, there was a fatigue-induced decrease at JA75 (p = 0.003). For neuromuscular efficiency (NME = normalized torque/normalized EMG AMP), there were decreases from pretest to posttest at JA100 (p = 0.002) and JA125 (p = 0.008). There were no significant interactions or main effects for MMG AMP and MMG MPF. From these findings, it was hypothesized that the decline in MVICs at JA75, JA100, and JA125 was due to fatigue-induced metabolic perturbations that resulted in JA-specific neuromuscular responses. Thus, neuromuscular parameters may provide insight into the JA-specific mechanisms of fatigue.
Collapse
Affiliation(s)
- Dolores G Ortega
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Terry J Housh
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Robert W Smith
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Jocelyn E Arnett
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Tyler J Neltner
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - John Paul V Anders
- Department of Human Sciences, The Exercise Science Program, The Ohio State University, Columbus, Ohio
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, Exercise Physiology Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska; and
| |
Collapse
|
13
|
Lowe TW, Tenan MS, Shah K, Griffin L. Low-load blood flow restriction reduces time-to-minimum single motor unit discharge rate. Exp Brain Res 2023; 241:2795-2805. [PMID: 37874365 DOI: 10.1007/s00221-023-06720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Resistance training with low loads in combination with blood flow restriction (BFR) facilitates increases in muscle size and strength comparable with high-intensity exercise. We investigated the effects of BFR on single motor unit discharge behavior throughout a sustained low-intensity isometric contraction. Ten healthy individuals attended two experimental sessions: one with, the other without, BFR. Motor unit discharge rates from the tibialis anterior (TA) were recorded with intramuscular fine-wire electrodes throughout the duration of a sustained fatigue task. Three 5-s dorsiflexion maximal voluntary contractions (MVC) were performed before and after the fatigue task. Each participant held a target force of 20% MVC until endurance limit. A significant decrease in motor unit discharge rate was observed in both the non-BFR condition (from 13.13 ± 0.87 Hz to 11.95 ± 0.43 Hz, P = 0.03) and the BFR condition (from 12.95 ± 0.71 Hz to 10.9 ± 0.75 Hz, P = 0.03). BFR resulted in significantly shorter endurance time and time-to-minimum discharge rates and greater end-stage motor unit variability. Thus, low-load BFR causes an immediate steep decline in motor unit discharge rate that is greater than during contractions performed without BFR. This shortened neuromuscular response of time-to-minimum discharge rate likely contributes to the rapid rate of neuromuscular fatigue observed during BFR.
Collapse
Affiliation(s)
- Timothy W Lowe
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew S Tenan
- The Blanchette Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Kena Shah
- Select Physical Therapy, Spring, TX, USA
| | - Lisa Griffin
- Department of Kinesiology and Health Education, The University of Texas at Austin, 1University Station, D3700, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Alexander AM, Hurla LM, Didier KD, Hammer SM, Rollins KS, Barstow TJ. Sex differences in the intensity-duration relationships of the severe- and extreme-intensity exercise domains. Eur J Sport Sci 2023; 23:2221-2231. [PMID: 37199235 PMCID: PMC10615677 DOI: 10.1080/17461391.2023.2215723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Extreme-intensity exercise is described by W'ext (analogous to J' for isometric exercise) that is smaller than W' of severe-intensity exercise (W'sev) in males. Sex differences in exercise tolerance appear to diminish at near-maximal exercise, however, there is evidence of greater contributions of peripheral fatigue (i.e. potentiated twitch force; Qpot) in males during extreme-intensity exercise. Therefore, the current study tested the hypotheses that J'ext would not be different between males and females, however, males would exhibit a greater reduction in neuromuscular function (i.e. maximal voluntary contraction, MVC; Qpot) following extreme-intensity exercise. Seven males and 7 females completed three severe- (Tlim: 2-4 min, S3; 5-8 min, S2; 9-15 min, S1) and three extreme-intensity (70, 80, 90%MVC) knee-extension bouts. MVC and Qpot relative to baseline were compared at task failure and at 150 s of recovery. J'ext was significantly less than J'sev in males (2.4 ± 1.2kJ vs 3.9 ± 1.3kJ; p = 0.03) and females (1.6 ± 0.8kJ vs 2.9 ± 1.7kJ; p = 0.05); however, there were no sex differences in J'ext or J'sev. MVC (%Baseline) was greater at task failure following extreme-intensity exercise (76.5 ± 20.0% vs 51.5 ± 11.5% in males, 75.7 ± 19.4% vs 66.7 ± 17.4% in females), but was not different at 150 s of recovery (95.7 ± 11.8% in males, 91.1 ± 14.2% in females). Reduction in Qpot, however, was greater in males (51.9 ± 16.3% vs 60.6 ± 15.5%) and was significantly correlated with J'ext (r2 = 0.90, p < 0.001). Although there were no differences in the magnitude of J'ext, differences in MVC and Qpot are evidence of sex-specific responses and highlight the importance of appropriately characterizing exercise intensity regarding exercise domains when comparing physiological responses in males and females.Highlights We have previously shown evidence that extreme-intensity dynamic exercise is described by W'ext in males and smaller than W'sev. We currently tested for potential sex differences in J'ext (isometric analogue to W') and neuromuscular responses (i.e. maximal voluntary contraction, MVC; potentiated twitch force, Qpot) during extreme-intensity exercise.J'ext and extreme-intensity exercise tolerance was not different between males and females. The reduction in MVC was not different across extreme-intensity exercise across males and females, whereas the reduction in Qpot was greater in males following all extreme-intensity exercises, although not after exercise at 90%MVC.Together, although extreme-intensity exercise tolerance is not different, these data highlight differences in the contributing mechanisms of fatigue during severe- and extreme-intensity exercise between males and females.
Collapse
Affiliation(s)
- Andrew M. Alexander
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Endocrinology, Diabetes, and Nutrition, Mayo Clinic, Rochester MN, USA
| | - Logan M. Hurla
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
| | - Kaylin D. Didier
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison WI, USA
| | - Shane M. Hammer
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater OK, USA
| | - Korynne S. Rollins
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Safety Pharmacology, Lab Corp, Madison WI, USA
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
15
|
Räntilä A, Ahtiainen JP, Häkkinen K. Effects of Acute Loading Induced Fatigability, Acute Serum Hormone Responses and Training Volume to Individual Hypertrophy and Maximal Strength during 10 Weeks of Strength Training. J Sports Sci Med 2023; 22:559-570. [PMID: 37711707 PMCID: PMC10499158 DOI: 10.52082/jssm.2023.559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
This study investigated whether a strength training session-induced acute fatigue is related to individuals' strength training adaptations in maximal force and/or muscle hypertrophy, and whether acute responses in serum testosterone (T) and growth hormone (GH) concentrations during the training sessions would be associated with individual neuromuscular adaptations. 26 males completed the 10-week strength-training intervention, which included fatiguing dynamic leg press acute loading bouts (5 x 10 RM) at weeks two, four, six, and ten. Blood samples were collected before and after the loading and after 24h of recovery for serum T, GH, and cortisol (C) concentrations at weeks 2, 6, and 10. The cross-sectional area of the vastus lateralis was measured by ultrasonography. Isometric force measurements were performed before and immediately after loadings, and loading-induced acute decrease in maximal force was reported as the fatigue percentage. The subjects were split into three groups according to the degree of training-induced muscle hypertrophy after the training period. Increases in isometric force were significant for High Responders (HR, n = 10) (by 24.3 % ± 17.2, p = 0.035) and Medium Responders (MR, n = 7) (by 23.8 % ± 5.5, p = 0.002), whereas the increase of 26.2 % (±16.5) in Low Responders (LR, n = 7) was not significant. The amount of work (cm + s) increased significantly at every measurement point in all the groups. A significant correlation was observed between the fatigue percentage and relative changes in isometric force after the training period for the whole group (R = 0.475, p = 0.022) and separately only in HR (R = 0.643, p = 0.049). Only the HR group showed increased acute serum GH concentrations at every measurement point. There was also a significant acute increase in serum T for HR at weeks 6 and 10. HR showed the strongest correlation between acute loading-induced fatigue and isometric force gains. HR was also more sensitive to acute increases in serum concentrations of T and GH after the loading. Acute fatigue and serum GH concentrations may be indicators of responsiveness to muscle strength gain and, to some extent, muscle hypertrophy.
Collapse
Affiliation(s)
- Aapo Räntilä
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| | - Keijo Häkkinen
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, Finland
| |
Collapse
|
16
|
Jo D, Bilodeau M. Sex differences concerning the effects of ankle muscle fatigue on static postural control and spinal proprioceptive input at the ankle. Front Hum Neurosci 2023; 17:1015597. [PMID: 37476006 PMCID: PMC10355328 DOI: 10.3389/fnhum.2023.1015597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Aims The main aim of this study was to determine sex differences in postural control changes with ankle muscle fatigue during a standing forward leaning (FL) task under different vision conditions. The secondary aim was to examine sex differences in the effect of fatigue on soleus (SOL) H-reflex amplitude, a measure of motoneuron excitability with activation of Ia afferents. Methods Fifteen healthy young adult males (mean age: 28.0 years) and 16 healthy young adult females (mean age: 26.1 years) were asked to perform four consecutive FL tasks [30 s; two with eyes open (EO) and two with eyes closed (EC)] before, and immediately following a fatiguing exercise consisting of alternating ankle plantarflexion (6 s) and dorsiflexion (2 s) maximal isometric contractions, and at 5 and 10 min of recovery. Center of pressure (COP) sway variables (mean position, standard deviation, ellipse area, average velocity, and frequency), an ankle co-contraction index, and a ratio of SOL H-reflex to the maximum amplitude of the compound muscle action potential (M-max) were obtained during the FL tasks. A rating of perceived fatigue (RPF) was also documented at the different time points. Results Time to task failure (reduction of 50% in maximal voluntary isometric contraction torque of ankle plantar flexors) and the increase in RPF value were not significantly different between males and females. Both sex groups showed similar and significant increases (p < 0.05) in mean COP sway velocity with no significant changes in co-contraction indices. No significant effects of fatigue and related interactions were found for SOL H/M-max ratio. Discussion The absence of a significant sex difference in postural control change (sway and co-contraction) with fatigue could be explained by similar perceived (RPF) and performance fatigability (exercise duration) between males and females in the present study. Fatigue did not lead to significant changes in SOL spinal motoneuron excitability with activation of Ia afferents.
Collapse
Affiliation(s)
- Donguk Jo
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Aging and Movement Laboratory, Bruyère Research Institute, Ottawa, ON, Canada
| | - Martin Bilodeau
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Aging and Movement Laboratory, Bruyère Research Institute, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- LIFE Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Nieto-Acevedo R, Romero-Moraleda B, Díaz-Lara FJ, Rubia ADL, González-García J, Mon-López D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports (Basel) 2023; 11:118. [PMID: 37368568 DOI: 10.3390/sports11060118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this paper was to conduct a systematic review and meta-analysis of studies examining the differences in the mean propulsive velocities between men and women in the different exercises studied (squat, bench press, inclined bench press and military press). Quality Assessment and Validity Tool for Correlational Studies was used to assess the methodological quality of the included studies. Six studies of good and excellent methodological quality were included. Our meta-analysis compared men and women at the three most significant loads of the force-velocity profile (30, 70 and 90% of 1RM). A total of six studies were included in the systematic review, with a total sample of 249 participants (136 men and 113 women). The results of the main meta-analysis indicated that the mean propulsive velocity is lower in women than men in 30% of 1RM (ES = 1.30 ± 0.30; CI: 0.99-1.60; p < 0.001) and 70% of 1RM (ES = 0.92 ± 0.29; CI: 0.63, 1.21; p < 0.001). In contrast, for the 90% of the 1RM (ES = 0.27 ± 0.27; CI: 0.00, 0.55), we did not find significant differences (p = 0.05). Our results support the notion that prescription of the training load through the same velocity could cause women to receive different stimuli than men.
Collapse
Affiliation(s)
- Raúl Nieto-Acevedo
- Departamento de Deportes, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Calle Martín Fierro, 7, 28040 Madrid, Spain
| | - Blanca Romero-Moraleda
- Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Francisco Javier Díaz-Lara
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Avda. Carlos III S/N, 45071 Toledo, Spain
| | - Alfonso de la Rubia
- Departamento de Deportes, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Calle Martín Fierro, 7, 28040 Madrid, Spain
| | - Jaime González-García
- Exercise and Sport Sciences, Faculty of Health Science, Universidad Francisco de Vitoria, 28223 Pozuelo, Spain
| | - Daniel Mon-López
- Departamento de Deportes, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad Politécnica de Madrid, Calle Martín Fierro, 7, 28040 Madrid, Spain
| |
Collapse
|
18
|
Benitez B, Dinyer-McNeely TK, McCallum L, Kwak M, Succi PJ, Bergstrom HC. Load-Specific Performance Fatigability, Coactivation, and Neuromuscular Responses to Fatiguing Forearm Flexion Muscle Actions in Women. J Strength Cond Res 2023; 37:769-779. [PMID: 36961986 DOI: 10.1519/jsc.0000000000004379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
ABSTRACT Benitez, B, Dinyer-McNeeley, TK, McCallum, L, Kwak, M, Succi, PJ, and Bergstrom, HC. Load-specific performance fatigability, coactivation, and neuromuscular responses to fatiguing forearm flexion muscle actions in women. J Strength Cond Res 37(4): 769-779, 2023-This study examined the effects of fatiguing, bilateral, dynamic constant external resistance (DCER) forearm flexion on performance fatigability, coactivation, and neuromuscular responses of the biceps brachii (BB) and triceps brachii (TB) at high (80% 1 repetition maximum [1RM]) and low (30% 1RM) relative loads in women. Ten women completed 1RM testing and repetitions to failure (RTF) at 30 and 80% 1RM. Maximal voluntary isometric force was measured before and after RTF. Electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) signals were measured from the BB and TB. Performance fatigability was greater (p < 0.05) after RTF at 30% (%∆ = 41.56 ± 18.61%) than 80% (%∆ = 19.65 ± 8.47%) 1RM. There was an increase in the coactivation ratio (less coactivation) between the initial and final repetitions at 30%, which may reflect greater increases in agonist muscle excitation (EMG AMP) relative to the antagonist for RTF at 30% than 80% 1RM. The initial repetitions EMG AMP was greater for 80% than 30% 1RM, but there was no difference between loads for the final repetitions. For both loads, there were increases in EMG MPF and MMG AMP and decreases in MMG MPF that may suggest fatigue-dependent recruitment of higher-threshold motor units. Thus, RTF at 30 and 80% 1RM during DCER forearm flexion may not necessitate additional muscle excitation to the antagonist muscle despite greater fatigability after RTF at 30% 1RM. These specific acute performance and neuromuscular responses may provide insight into the unique mechanism underlying adaptations to training performed at varying relative loads.
Collapse
Affiliation(s)
- Brian Benitez
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Taylor K Dinyer-McNeely
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma
| | - Lindsay McCallum
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Minyoung Kwak
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Pasquale J Succi
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| | - Haley C Bergstrom
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and
| |
Collapse
|
19
|
Smith RW, Housh TJ, Arnett JE, Anders JPV, Neltner TJ, Ortega DG, Schmidt RJ, Johnson GO. Utilizing the RPE-Clamp model to examine interactions among factors associated with perceived fatigability and performance fatigability in women and men. Eur J Appl Physiol 2023; 123:1397-1409. [PMID: 36856798 DOI: 10.1007/s00421-023-05163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
PURPOSE The purpose of the present study was to examine the interactions between perceived fatigability and performance fatigability in women and men by utilizing the RPE-Clamp model to assess the fatigue-induced effects of a sustained, isometric forearm flexion task anchored to RPE = 8 on time to task failure (TTF), torque, and neuromuscular responses. METHODS Twenty adults (10 men and 10 women) performed two, 3 s forearm flexion maximal voluntary isometric contractions (MVICs) followed by a sustained, isometric forearm flexion task anchored to RPE = 8 using the OMNI-RES (0-10) scale at an elbow joint angle of 100°. Electromyographic amplitude (EMG AMP) was recorded from the biceps brachii. Torque and EMG AMP values resulting from the sustained task were normalized to the pretest MVIC. Neuromuscular efficiency was defined as NME = normalized torque/normalized EMG AMP. Mixed factorial ANOVAs and Bonferroni corrected dependent t tests and independent t tests were used to examine differences across time and between sex for torque and neuromuscular parameters. RESULTS There were no differences between the women and men for the fatigue-induced decreases in torque, EMG AMP, or NME, and the mean decreases (collapsed across sex) were 50.3 ± 8.6 to 2.8 ± 2.9% MVIC, 54.7 ± 12.0 to 19.6 ± 5.3% MVIC, and 0.94 ± 0.19 to 0.34 ± 0.16, respectively. Furthermore, there were no differences between the women and men for TTF (251.8 ± 74.1 vs. 258.7 ± 77.9 s). CONCLUSION The results suggested that the voluntary reductions in torque to maintain RPE and the decreases in NME were likely due to group III/IV afferent feedback from peripheral fatigue that resulted in excitation-contraction coupling failure.
Collapse
Affiliation(s)
- Robert W Smith
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
- , 840 N 14th Street, Lincoln, NE, 68508, USA.
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Jocelyn E Arnett
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - John Paul V Anders
- The Exercise Science Program, Department of Human Sciences, The Ohio State University, Columbus, OH, 43017, USA
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
20
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
21
|
Nuzzo JL. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J Strength Cond Res 2023; 37:494-536. [PMID: 36696264 DOI: 10.1519/jsc.0000000000004329] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ABSTRACT Nuzzo, JL. Narrative review of sex differences in muscle strength, endurance, activation, size, fiber type, and strength training participation rates, preferences, motivations, injuries, and neuromuscular adaptations. J Strength Cond Res 37(2): 494-536, 2023-Biological sex and its relation with exercise participation and sports performance continue to be discussed. Here, the purpose was to inform such discussions by summarizing the literature on sex differences in numerous strength training-related variables and outcomes-muscle strength and endurance, muscle mass and size, muscle fiber type, muscle twitch forces, and voluntary activation; strength training participation rates, motivations, preferences, and practices; and injuries and changes in muscle size and strength with strength training. Male subjects become notably stronger than female subjects around age 15 years. In adults, sex differences in strength are more pronounced in upper-body than lower-body muscles and in concentric than eccentric contractions. Greater male than female strength is not because of higher voluntary activation but to greater muscle mass and type II fiber areas. Men participate in strength training more frequently than women. Men are motivated more by challenge, competition, social recognition, and a desire to increase muscle size and strength. Men also have greater preference for competitive, high-intensity, and upper-body exercise. Women are motivated more by improved attractiveness, muscle "toning," and body mass management. Women have greater preference for supervised and lower-body exercise. Intrasexual competition, mate selection, and the drive for muscularity are likely fundamental causes of exercise behaviors in men and women. Men and women increase muscle size and strength after weeks of strength training, but women experience greater relative strength improvements depending on age and muscle group. Men exhibit higher strength training injury rates. No sex difference exists in strength loss and muscle soreness after muscle-damaging exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
22
|
Pethick J, Tallent J. The Neuromuscular Fatigue-Induced Loss of Muscle Force Control. Sports (Basel) 2022; 10:184. [PMID: 36422953 PMCID: PMC9694672 DOI: 10.3390/sports10110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular fatigue is characterised not only by a reduction in the capacity to generate maximal muscle force, but also in the ability to control submaximal muscle forces, i.e., to generate task-relevant and precise levels of force. This decreased ability to control force is quantified according to a greater magnitude and lower complexity (temporal structure) of force fluctuations, which are indicative of decreased force steadiness and adaptability, respectively. The "loss of force control" is affected by the type of muscle contraction used in the fatiguing exercise, potentially differing between typical laboratory tests of fatigue (e.g., isometric contractions) and the contractions typical of everyday and sporting movements (e.g., dynamic concentric and eccentric contractions), and can be attenuated through the use of ergogenic aids. The loss of force control appears to relate to a fatigue-induced increase in common synaptic input to muscle, though the extent to which various mechanisms (afferent feedback, neuromodulatory pathways, cortical/reticulospinal pathways) contribute to this remains to be determined. Importantly, this fatigue-induced loss of force control could have important implications for task performance, as force control is correlated with performance in a range of tasks that are associated with activities of daily living, occupational duties, and sporting performance.
Collapse
Affiliation(s)
- Jamie Pethick
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jamie Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester CO4 3SQ, UK
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne 3800, Australia
| |
Collapse
|
23
|
Walker S, Häkkinen K, Virtanen R, Mane S, Bachero-Mena B, Pareja-Blanco F. Acute neuromuscular and hormonal responses to 20% vs 40% velocity-loss in males and females before and after 8 weeks of velocity-loss resistance training. Exp Physiol 2022; 107:1046-1060. [PMID: 35930559 PMCID: PMC9542169 DOI: 10.1113/ep090371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do males and females differ in fatiguability during dynamic loadings, and what are the acute neuromuscular and hormonal responses to 20% versus 40% velocity-loss resistance loadings? How does an 8-week velocity-loss resistance training period modify acute neuromuscular and hormonal responses in males and females? What is the main finding and its importance? Utilizing resistance training methods that regulate the within-set fatigue limit, males appeared to be more susceptible to fatigue than females before the training period. This between-sex difference was diminished after training. The predominant mechanisms of fatigue from 20% and 40% velocity-based resistance training appears to be within the musculature. ABSTRACT Scientific examination of velocity-based resistance training (VBRT) has increased recently, but how males and females respond to different VBRT protocols or how these acute responses are modified after a period of training is unknown. Habitually resistance-trained males and females followed either a 20% or 40% velocity-loss program for 8 weeks. Acute squat loading tests (5 sets, 70% 1-RM load, 3 minutes rest) were performed before and after the training period. Tests of maximum neuromuscular performance and blood sampling were conducted prior to, within 10 minutes of completion (POST) and 24 hours after each acute loading test. Testing included countermovement jump, resting femoral nerve electrical stimulation, and bilateral isometric leg press. Blood samples were analysed for whole-blood lactate, serum testosterone, cortisol, growth hormone and creatine kinase concentrations. Countermovement jump height, maximum isometric bilateral leg press force, and force from 10 Hz doublet decreased in all groups at POST after 20% and 40% velocity-loss. Only males showed reduced force from 100 Hz doublet and voluntary force over 100 ms at POST before training. 40% velocity-loss led to increased blood lactate and growth hormone responses before training in both males and females. After training, more systematic and equivalent responses in force over 100 ms, force from 100 Hz doublet and blood lactate were observed regardless of sex/VBRT protocol. Overall, acute responses were greater from 40% VBRT and males were more susceptible to acute loss in force production capacity before the training period. These VBRT protocol- and sex-related differences were diminished after training. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Keijo Häkkinen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Roosa Virtanen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Shashank Mane
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland
| | - Beatriz Bachero-Mena
- Department of Human Movement and Sports Performance, University of Seville, Spain
| | - Fernando Pareja-Blanco
- Physical Performance and Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
24
|
Gorzi A, Rezapour N, Jabbari S, Youzbashi L, Salehi J, Gahreman D, Krause Neto W. Deceptive intensities: An exploratory strategy for overcoming early central fatigue in resistance training. Physiol Behav 2022; 255:113921. [PMID: 35872038 DOI: 10.1016/j.physbeh.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Neuropsychological stress induced by misleading information can limit human performance, possibly by early central fatigue mechanisms. In this study, we investigated the impact caused by prescribing misleading intensities of resistance exercise on acute electroencephalogram (EEG) and electromyogram (EMG) responses and the total number of repetitions to exhaustion. Collegiate female students performed three sets of biceps curls to exhaustion. The actual intensity for all sets was set at 65% 1-Repetition Maximum (1-RM). However, participants were deceptively informed that the intensities were 60%, 65%, or 70% 1-RM. The number of repetitions to fatigue and the magnitude of EEG and EMG signals were analyzed. The number of repetitions to exhaustion was significantly lower in greater announced intensities (18.11 ± 8.44) compared to lower (29.76 ± 16.28; p = 0.017) and correctly (27.82 ± 11.01; p = 0.001) announced intensity. The correlation between frontal and motor-cortex signals was significant in lower (r = 0.72, p = 0.001) and higher (r = 0.64, p = 0.005) announced intensities. The median and mean frequencies of EMG signal and Root Mean Square (RMS) did not show any significant difference between sets, but the peak-to-peak range (PPR) of biceps EMG signals was significantly higher in lower intensity (0.145 ± 0.042) when compared with higher (0.104 ± 0.044; p = 0.028) or correctly (0.126 ± 0.048; p = 0.037) announced intensity. It seems that deceptive information regarding the mass of an object could affect the number of repetitions to exhaustion and PPR to cover muscle capacity in endurance-type strength training.
Collapse
Affiliation(s)
- Ali Gorzi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran.
| | - Neda Rezapour
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Sepideh Jabbari
- Department of Electrical and Computer Engineering, University of Zanjan, Zanjan. Iran
| | - Leila Youzbashi
- Department of Sport Sciences, University of Zanjan, Zanjan, Iran
| | - Javad Salehi
- Department of Psychology, University of Zanjan. Zanjan. Iran
| | - Daniel Gahreman
- Exercise and Sport Science, College of Health and Human Sciences, Charles Darwin University, Darwin. Australia
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo-SP, Brazil.
| |
Collapse
|
25
|
McKeown DJ, McNeil CJ, Simmonds MJ, Kavanagh JJ. Post-fatigue ability to activate muscle is compromised across a wide range of torques during acute hypoxic exposure. Eur J Neurosci 2022; 56:4653-4668. [PMID: 35841186 PMCID: PMC9546238 DOI: 10.1111/ejn.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/11/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to assess how severe acute hypoxia alters the neural mechanisms of muscle activation across a wide range of torque output in a fatigued muscle. Torque and electromyography responses to transcranial and motor nerve stimulation were collected from 10 participants (27 years ± 5 years, 1 female) following repeated performance of a sustained maximal voluntary contraction that reduced torque to 60% of the pre‐fatigue peak torque. Contractions were performed after 2 h of hypoxic exposure and during a sham intervention. For hypoxia, peripheral blood oxygen saturation was titrated to 80% over a 15‐min period and remained at 80% for 2 h. Maximal voluntary torque, electromyography root mean square, voluntary activation and corticospinal excitability (motor evoked potential area) and inhibition (silent period duration) were then assessed at 100%, 90%, 80%, 70%, 50% and 25% of the target force corresponding to the fatigued maximal voluntary contraction. No hypoxia‐related effects were identified for voluntary activation elicited during motor nerve stimulation. However, during measurements elicited at the level of the motor cortex, voluntary activation was reduced at each torque output considered (P = .002, ηp2 = .829). Hypoxia did not impact the correlative linear relationship between cortical voluntary activation and contraction intensity or the correlative curvilinear relationship between motor nerve voluntary activation and contraction intensity. No other hypoxia‐related effects were identified for other neuromuscular variables. Acute severe hypoxia significantly impairs the ability of the motor cortex to voluntarily activate fatigued muscle across a wide range of torque output.
Collapse
Affiliation(s)
- Daniel J McKeown
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Justin J Kavanagh
- Neural Control of Movement Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Lewis MH, Siedler MR, Lamadrid P, Ford S, Smith T, SanFilippo G, Waddell B, Trexler ET, Buckner S, Campbell BI. Sex Differences May Exist for Performance Fatigue but Not Recovery After Single-Joint Upper-Body and Lower-Body Resistance Exercise. J Strength Cond Res 2022; 36:1498-1505. [PMID: 35333210 DOI: 10.1519/jsc.0000000000004239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Lewis, MH, Siedler, MR, Lamadrid, P, Ford, S, Smith, T, SanFilippo, G, Waddell, B, Trexler, ET, Buckner, S, and Campbell, BI. Sex differences may exist for performance fatigue but not recovery after single-joint upper-body and lower-body resistance exercise. J Strength Cond Res 36(6): 1498-1505, 2022-This study evaluated sex differences in performance recovery and fatigue during dynamic exercise. Twenty-eight resistance-trained males (n = 16) and females (n = 12) completed a repeated-measures, randomized, parallel-groups design. The protocol consisted of a baseline assessment, a recovery period (4, 24, or 48 hours), and a postrecovery assessment. The assessments were identical consisting of 4 sets of 10 repetition maximum (10RM) bicep curls and 4 sets of 10RM leg extensions to failure. Recovery was quantified as the number of total repetitions completed in the postrecovery bout. Fatigue was quantified as the number of repetitions completed set to set within the session. For analysis, we set the level of significance at p ≤ 0.05. No sex differences in performance recovery were observed across any of the investigated time periods for either exercise modality. Regarding fatigue, significant effects were observed for set (p < 0.001) and sex (p = 0.031) for bicep curls. Repetitions dropped in later sets, and females generally completed a greater number of repetitions than males (8.8 ± 0.5 vs. 7.2 ± 0.5). For leg extension, a significant sex × set interaction was observed (p = 0.003), but post hoc tests revealed these sex differences as marginal. Our results suggest that in dynamic bicep curls and leg extensions, other factors unrelated to sex may be more impactful on performance recovery. To optimize an athlete's desired adaptations, it may be more important to consider other variables unrelated to sex such as volume, perceived exertion, and training history when formulating training prescriptions for single-joint exercises.
Collapse
Affiliation(s)
- Megan H Lewis
- Exercise Science Program, University of South Florida, Tampa FL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jo D, Goubran M, Bilodeau M. Sex differences in central and peripheral fatigue induced by sustained isometric ankle plantar flexion. J Electromyogr Kinesiol 2022; 65:102676. [DOI: 10.1016/j.jelekin.2022.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022] Open
|
28
|
Alexander AM, Hammer SM, Didier KD, Huckaby LM, Barstow TJ. Neuromuscular recovery from severe- and extreme-intensity exercise in men and women. Appl Physiol Nutr Metab 2022; 47:458-468. [PMID: 35020495 DOI: 10.1139/apnm-2021-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maximal voluntary contraction force (MVC), potentiated twitch force (Qpot), and voluntary activation (%VA) recover to baseline within 90 s following extreme-intensity exercise. However, methodological limitations mask important recovery kinetics. We hypothesized reductions in MVC, Qpot, and %VA at task failure following extreme-intensity exercise would be less than following severe-intensity exercise, and Qpot and MVC following extreme-intensity exercise would show significant recovery within 120 s but remain depressed following severe-intensity exercise. Twelve subjects (6 men) completed 2 severe-intensity (40, 50% MVC) and 2 extreme-intensity (70, 80% MVC) isometric knee-extension exercise bouts to task failure (Tlim). Neuromuscular function was measured at baseline, Tlim, and through 150 s of recovery. Each intensity significantly reduced MVC and Qpot compared with baseline. MVC was greater at Tlim (p < 0.01) and at 150 s of recovery (p = 0.004) following exercise at 80% MVC compared with severe-intensity exercise. Partial recovery of MVC and Qpot were detected within 150 s following Tlim for each exercise intensity; Qpot recovered to baseline values within 150 s of recovery following exercise at 80% MVC. No differences in %VA were detected pre- to post-exercise or across recovery for any intensity. Although further analysis showed sex-specific differences in MVC and Qpot, future studies should closely examine sex-dependent responses to extreme-intensity exercise. It is clear, however, that these data reinforce that mechanisms limiting exercise tolerance during extreme-intensity exercise recover quickly. Novelty: Severe- and extreme-intensity exercise cause independent responses in fatigue accumulation and the subsequent recovery time courses. Recovery of MVC and Qpot occurs much faster following extreme-intensity exercise in both men and women.
Collapse
Affiliation(s)
- Andrew M Alexander
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Shane M Hammer
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Kaylin D Didier
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Lillie M Huckaby
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA.,Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
29
|
Horobeanu C, Pullinger SA, Paulus J, Savoia C, Wong FY, Seurot A, Croisier JL, Forthomme B. Sex differences in shoulder performance fatiguability are affected by arm position, dominance and muscle group. BMC Musculoskelet Disord 2022; 23:299. [PMID: 35351091 PMCID: PMC8962062 DOI: 10.1186/s12891-022-05232-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background Injury prevalence data, muscle strength, and fatiguability differ between males and females. In addition, arm spatial orientation affects muscle activation and strength of the shoulder muscles. Nevertheless, little research has been conducted in relation to the shoulder rotator muscles comparing men and women. Therefore, the main aim of of this study was to perform a comparative investigation between two arm spatial orientations (45° and 90° of abduction in the frontal plane) during a fatigue assessment of the internal rotator (IR) and external rotator (ER) shoulder muscles. Secondly, the interaction between sex and dominance with muscular performance was assessed. Methods Forty healthy sedentary participants, 20 males and 20 females took part in this study. Participants performed a fatigue resistance protocol consisting of 30 consecutive maximal concentric contractions of the IR and ER shoulder muscles in a supine position at a speed of 180°/s. The upper limb was abducted to an angle of 45° or 90° in the frontal plane and each participant was tested on the dominant and nom-dominant side, counterbalanced in order of administration. Performance measures of Induced Fatigue (IF; %), Cumulated Performance (C.Perf; J) and Best Repetition (BR; J) were calculated and used for analysis. IF represents the % difference between the amount of work done over the last 3 and first 3 repetitions, BR represents the largest amount of work done during a single contraction, and C.Perf represents the total amount of work done during all repetitions. Results Muscle group was the only factor to display significant variation when not considering other factors, with higher values for C.Perf (mean difference = 353.59 J, P < 0.0005), BR (mean difference = 14.21 J, P < 0.0005) and IF (mean difference = 3.65%, P = 0.0046). There was a significant difference between both angles, with higher values observed at 90° compared to 45° of abduction for C.Perf by ~ 7.5% (mean difference = 75 to 152 J) and ~ 10.8% (mean difference = 5.1 to 9.4 J) for BR in the ER, in males and females respectively (P < 0.0005). The dominant arm was significantly stronger than the non-dominant arm for C.Perf by 11.7% (mean difference = 111.58 J) for males and by 18% (mean difference = 82.77 J) for females in the ER at 45° abduction. At 90° abduction, only females were stronger in the dominant arm by 18.8% (mean difference = 88.17 J). Values for BR ranged from 9.2 to 21.8% depending on the abduction angle and sex of the athlete (mean difference = 2.44 – 4.85 J). Males were significantly stronger than females by 48.8 to 50.7% for values of C.Perf and BR in both the IR and ER (P < 0.0005). There was a significant difference between the ER and IR muscles, with significantly higher values observed for the IR in C.Perf (mean difference = 331.74 J) by 30.0% and in BR (mean difference = 13.31 J) by 26.64%. Discussion Differences in shoulder performance fatiguability between sexes are affected by arm position, arm dominance and muscle groups. In agreement with the literature, performance values in males were approximately 50% higher than in females. However, the amount of IF was no different between both sexes. Based on findings in literature, it could be suggested that this is due to differences between males and females in motor control and/or coordination strategies during repetitive tasks. In addition, we also observed the IR muscles to be significantly stronger than the ER muscles. It has long been established in literature that these observations are due to the muscle-size differences between both muscle groups, where the IR muscles can produce a larger amount of force due to the larger cross-sectional area. Results of our study found similar ER:IR ratios compared to previous reports. Conclusion Therefore, these findings are useful for clinicians when monitoring rehabilitation programs in sedentary individuals following shoulder injuries.
Collapse
|
30
|
Kilgas MA, Yoon T, McDaniel J, Phillips KC, Elmer SJ. Physiological Responses to Acute Cycling With Blood Flow Restriction. Front Physiol 2022; 13:800155. [PMID: 35360241 PMCID: PMC8963487 DOI: 10.3389/fphys.2022.800155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aerobic exercise with blood flow restriction (BFR) can improve muscular function and aerobic capacity. However, the extent to which cuff pressure influences acute physiological responses to aerobic exercise with BFR is not well documented. We compared blood flow, tissue oxygenation, and neuromuscular responses to acute cycling with and without BFR. Ten participants completed four intermittent cycling (6 × 2 min) conditions: low-load cycling (LL), low-load cycling with BFR at 60% of limb occlusion pressure (BFR60), low-load cycling with BFR at 80% of limb occlusion pressure (BFR80), and high-load cycling (HL). Tissue oxygenation, cardiorespiratory, metabolic, and perceptual responses were assessed during cycling and blood flow was measured during recovery periods. Pre- to post-exercise changes in knee extensor function were also assessed. BFR60 and BFR80 reduced blood flow (~33 and ~ 50%, respectively) and tissue saturation index (~5 and ~15%, respectively) when compared to LL (all p < 0.05). BFR60 resulted in lower VO2, heart rate, ventilation, and perceived exertion compared to HL (all p < 0.05), whereas BFR80 resulted in similar heart rates and exertion to HL (both p > 0.05). BFR60 and BFR80 elicited greater pain compared to LL and HL (all p < 0.05). After exercise, knee extensor torque decreased by ~18 and 40% for BFR60 and BFR80, respectively (both p < 0.05), and was compromised mostly through peripheral mechanisms. Cycling with BFR increased metabolic stress, decreased blood flow, and impaired neuromuscular function. However, only BFR60 did so without causing very severe pain (>8 on pain intensity scale). Cycling with BFR at moderate pressure may serve as a potential alternative to traditional high-intensity aerobic exercise.
Collapse
Affiliation(s)
- Matthew A. Kilgas
- School of Health and Human Performance, Northern Michigan University, Marquette, MI, United States
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Tejin Yoon
- Department of Physical Education, Kangwon National University, Chuncheon, South Korea
| | - John McDaniel
- Department of Exercise Physiology, Kent State University, Kent, OH, United States
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Kevin C. Phillips
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
31
|
Rissanen J, Walker S, Pareja-Blanco F, Häkkinen K. Velocity-based resistance training: do women need greater velocity loss to maximize adaptations? Eur J Appl Physiol 2022; 122:1269-1280. [PMID: 35258681 PMCID: PMC9012837 DOI: 10.1007/s00421-022-04925-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
Purpose Men and women typically display different neuromuscular characteristics, force–velocity relationships, and differing strength deficit (upper vs. lower body). Thus, it is not clear how previous recommendations for training with velocity-loss resistance training based on data in men will apply to women. This study examined the inter-sex differences in neuromuscular adaptations using 20% and 40% velocity-loss protocols in back squat and bench press exercises. Methods The present study employed an 8-week intervention (2 × week) comparing 20% vs. 40% velocity-loss resistance training in the back squat and bench press exercises in young men and women (~ 26 years). Maximum strength (1-RM) and submaximal-load mean propulsive velocity (MPV) for low- and high-velocity lifts in squat and bench press, countermovement jump and vastus lateralis cross-sectional area were measured at pre-, mid-, and post-training. Surface EMG of quadriceps measured muscle activity during performance tests. Results All groups increased 1-RM strength in squat and bench press exercises, as well as MPV using submaximal loads and countermovement jump height (P < 0.05). No statistically significant between-group differences were observed, but higher magnitudes following 40% velocity loss in 1-RM (g = 0.60) and in low- (g = 1.42) and high-velocity (g = 0.98) lifts occurred in women. Training-induced improvements were accompanied by increases in surface EMG amplitude and vastus lateralis cross-sectional area. Conclusion Similar increases in strength and power performance were observed in men and women over 8 weeks of velocity-based resistance training. However, some results suggest that strength and power gains favor using 40% rather than 20% velocity loss in women.
Collapse
Affiliation(s)
- J Rissanen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014, Jyväskylä, Finland
| | - S Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014, Jyväskylä, Finland.
| | - F Pareja-Blanco
- Department of Sports and Computer Sciences, Physical Performance and Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - K Häkkinen
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Room VIV225, 40014, Jyväskylä, Finland
| |
Collapse
|
32
|
Carbohydrate Mouth Rinse Increases High but Not Low Intensity Repetitions to Failure in Resistance-Trained Males. Nutrients 2022; 14:nu14040875. [PMID: 35215525 PMCID: PMC8875644 DOI: 10.3390/nu14040875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Carbohydrate mouth rinsing (CMR) has been shown to enhance exercise performance. However, the influence of CMR on repetitions to failure with different intensities (40% or 80% of 1 RM) is unknown. Therefore, the purpose of this study was to examine the effects of a 6% CMR solution on muscular endurance assessed at 40% and 80% of 1 RM in resistance-trained males. Sixteen resistance-trained males (age: 25 ± 3 years, height: 182 ± 6 cm, body mass: 86 ± 3 kg, body fat: 16 ± 3%, bench press 1 RM: 106 ± 16 kg, resistance training experience: 5 ± 1 years) completed four conditions in random order. The four conditions consisted of ten seconds of mouth rinsing with 25 mL solutions containing either maltodextrin or placebo (sweetened water) prior to performing a bench press muscular endurance test at either 40% of 1 RM or 80% of 1 RM. Total repetitions, heart rate (HR), ratings of perceived exertion (RPE), glucose (GLU) and felt arousal (FA) were recorded for each condition. There was a significant condition by intensity interaction (p = 0.02). CMR significantly increased total repetitions compared with placebo at the higher intensity (80% of 1 RM; p = 0.04), while there was no effect at the lower intensity (p = 0.20). In addition, HR, RPE, GLU and FA did not differ between conditions or across intensities (p > 0.05). In conclusion, CMR-enhanced muscular endurance performed at higher but not lower intensities.
Collapse
|
33
|
Alix-Fages C, Del Vecchio A, Baz-Valle E, Santos-Concejero J, Balsalobre-Fernández C. The role of the neural stimulus in regulating skeletal muscle hypertrophy. Eur J Appl Physiol 2022; 122:1111-1128. [PMID: 35138447 DOI: 10.1007/s00421-022-04906-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training variables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input (neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic response and propose neurophysiological assessments that may improve our understanding of resistance training variables that impact on muscular adaptations.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
| | - Alessandro Del Vecchio
- Neuromuscular Physiology and Neural Interfacing Group, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Eneko Baz-Valle
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
34
|
Black CD, Haskins KR, Bemben MG, Larson RD. Carbohydrate Mouth Rinsing Does Not Alter Central or Peripheral Fatigue After High-Intensity and Low-Intensity Exercise in Men. J Strength Cond Res 2022; 36:142-148. [PMID: 34941611 DOI: 10.1519/jsc.0000000000004162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Black, CD, Haskins, KR, Bemben, MG, and Larson, RD. Carbohydrate mouth rinsing does not alter central or peripheral fatigue after high-intensity and low-intensity exercise in men. J Strength Cond Res 36(1): 142-148, 2022-Carbohydrate (CHO) mouth rinsing improves performance during endurance exercise. However, its ability to attenuate fatigue during strength-based exercise is less certain. This study sought to determine the effects of a CHO mouth rinse on torque production and voluntary activation (VA%) after high-intensity and low-intensity isometric exercise. Twelve male subjects (22.5 ± 2.3 years; 183.5 ± 6.5 cm; 82.2 ± 13.9 kg) completed 4 testing sessions in a double-blind crossover fashion. Knee extension maximal voluntary isometric strength (MVC) was assessed before(Pre), immediately (iPost-Ex), and 5 minutes (5-min Post Ex) after isometric exercise performed at 80% or 20% of MVC. An 8% CHO solution or placebo (PLA) was rinsed for 20 seconds after exercise. VA% was determined by twitch interpolation. A 2 condition (CHO vs. PLA) × 2 contraction intensity (20 vs. 80%) × 3 time (Pre, iPost Ex, and 5-min Post Ex) completely within subject-repeated measured analysis of variance was performed; statistical significance was set at p ≤ 0.05. Greater reductions in MVC were found at iPost-Ex after exercise at 20% compared with 80% of MVC (-25 ± 14% vs. -11 ± 8%; p < 0.001) as well as for VA% (-17 ± 14% vs. -8 ± 14%; p < 0.004). No differences were observed in the CHO vs. PLA condition (p ≥ 0.34). We were successful in eliciting differing levels of central and peripheral fatigue by exercising at a low and high intensity. Despite significantly larger declines in VA% after exercise at 20% of MVC, CHO mouth rinsing had no effects compared with placebo on any measured variable.
Collapse
Affiliation(s)
- Christopher D Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | | | | | | |
Collapse
|
35
|
Marshall PW, Forward T, Enoka RM. Fatigability of the knee extensors following high- and low-load resistance exercise sessions in trained men. Eur J Appl Physiol 2021; 122:245-254. [PMID: 34669044 DOI: 10.1007/s00421-021-04832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Fatigability after gym-based resistance exercises with high and low loads has not been well described, thus limiting the translation of exhaustive low-weight prescription into athletic practice. We compared the fatigability and recovery of the knee extensor muscles for up to 1H after sessions that involved either high- or low-load resistance exercises. METHODS 16 trained men performed two resistance exercise sessions between 5 and 7 days apart. The LIGHT session involved five sets to task failure at 50% of maximal knee-extension strength, whereas the HEAVY session accrued repetitions across seven sets at intensities ≥ 80% maximal knee-extension strength. Measures of quadriceps maximal torque and rate of torque development were measured before, after, and 1H after each exercise session. Muscle activation (electromyography and voluntary activation) and contractility were measured from doublet stimulation of the femoral nerve during and after maximal contractions, respectively. RESULTS Greater declines in maximal rate of torque development were observed after the LIGHT compared with the HEAVY session (p < 0.001), with full recovery after 1H. Voluntary activation (100-Hz doublet stimulation) and surface electromyograms were reduced immediately after the HEAVY session only (p < 0.05), with greater declines in quadriceps twitch amplitudes after the LIGHT session (p < 0.01). Voluntary activation (100-Hz doublet stimulation) was reduced at 1H after both the HEAVY and LIGHT sessions (p < 0.05). CONCLUSIONS Despite differences in the decreases in muscle activation and contractility after high- and low-load resistance-exercise sessions, recovery of neuromuscular function was essentially complete after 1H of rest for both sessions.
Collapse
Affiliation(s)
- Paul W Marshall
- Department of Exercise Sciences, University of Auckland, Building 907, Newmarket, 1023, Auckland, New Zealand. .,Human Performance Laboratory, School of Health Sciences, Western Sydney University, Penrith, Australia.
| | - Thomas Forward
- Human Performance Laboratory, School of Health Sciences, Western Sydney University, Penrith, Australia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
36
|
Rakshit R, Xiang Y, Yang J. Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions. J Biomech 2021; 127:110695. [PMID: 34454329 DOI: 10.1016/j.jbiomech.2021.110695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
The three-compartment controller with enhanced recovery (3CC-r) model of muscle fatigue has previously been validated separately for both sustained (SIC) and intermittent isometric contractions (IIC) using different objective functions, but its performance has not yet been tested against both contraction types simultaneously using a common objective function. Additionally, prior validation has been performed using common parameters at the joint level, whereas applications to many real-world tasks will require the model to be applied to agonistic and synergistic muscle groups. Lastly, parameters for the model have previously been derived for a mixed-sex cohort not considering the differece in fatigabilities between the sexes. In this work we validate the 3CC-r model using a comprehensive isometric contraction database drawn from 172 publications segregated by functional muscle group (FMG) and sex. We find that prediction errors are reduced by 19% on average when segregating the dataset by FMG alone, and by 34% when segregating by both sex and FMG. However, minimum prediction errors are found to be higher when validated against both SIC and IIC data together using torque decline as the outcome variable than when validated sequentially against hypothesized SIC intensity-endurance time curves with endurance time as the outcome variable and against raw IIC data with torque decline as the outcome variable.
Collapse
Affiliation(s)
- Ritwik Rakshit
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiang Xiang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
37
|
Kataoka R, Vasenina E, Hammert WB, Ibrahim AH, Dankel SJ, Buckner SL. Is there Evidence for the Suggestion that Fatigue Accumulates Following Resistance Exercise? Sports Med 2021; 52:25-36. [PMID: 34613589 DOI: 10.1007/s40279-021-01572-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 12/28/2022]
Abstract
It has been suggested that improper post-exercise recovery or improper sequence of training may result in an 'accumulation' of fatigue. Despite this suggestion, there is a lack of clarity regarding which physiological mechanisms may be proposed to contribute to fatigue accumulation. The present paper explores the time course of the changes in various fatigue-related measures in order to understand how they may accumulate or lessen over time following an exercise bout or in the context of an exercise program. Regarding peripheral fatigue, the depletion of energy substrates and accumulation of metabolic byproducts has been demonstrated to occur following an acute bout of resistance training; however, peripheral accumulation and depletion appear unlikely candidates to accumulate over time. A number of mechanisms may contribute to the development of central fatigue, postulating the need for prolonged periods of recovery; however, a time course is difficult to determine and is dependent on which measurement is examined. In addition, it has not been demonstrated that central fatigue measures accumulate over time. A potential candidate that may be interpreted as accumulated fatigue is muscle damage, which shares similar characteristics (i.e., prolonged strength loss). Due to the delayed appearance of muscle damage, it may be interpreted as accumulated fatigue. Overall, evidence for the presence of fatigue accumulation with resistance training is equivocal, making it difficult to draw the conclusion that fatigue accumulates. Considerable work remains as to whether fatigue can accumulate over time. Future studies are warranted to elucidate potential mechanisms underlying the concept of fatigue accumulation.
Collapse
Affiliation(s)
- Ryo Kataoka
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Ecaterina Vasenina
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - William B Hammert
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Adam H Ibrahim
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA
| | - Scott J Dankel
- Exercise Physiology Laboratory, Department of Health and Exercise Science, Rowan University, Glassboro, NJ, USA
| | - Samuel L Buckner
- USF Muscle Lab, Exercise Science Program, University of South Florida, 4202 E. Fowler Ave. PED 214, Tampa, FL, 33620-8600, USA.
| |
Collapse
|
38
|
Marshall PW, Finn HT, Enoka RM. Declines in muscle contractility and activation during isometric contractions of the knee extensors vary with contraction intensity and exercise volume. Exp Physiol 2021; 106:2096-2106. [PMID: 34411379 DOI: 10.1113/ep089788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is there a critical threshold beyond which the loss of muscle contractility is regulated by the level of muscle activation during single-limb exercise of differing intensities and volumes? What is the main finding and its importance? Plateaus in the decline in muscle contractility during single-limb knee extension depended on both exercise volume and contraction intensity. A plateau was only evident with an increase in exercise volume. Muscle activation increased and did not decline despite substantial reductions in contractility. The findings indicate that the decrease in muscle contractility exhibited by resistance-trained men during the performance of submaximal isometric contractions with the knee extensors was not regulated by the level of muscle activation. ABSTRACT Our study examined the influence of contraction intensity and exercise volume on changes in muscle contractility and activation of the knee extensor muscles. Maximal voluntary torque (MVT) and rate of change in torque, surface electromyograms, voluntary activation, V-waves and quadriceps resting twitch measures were assessed in 10 resistance-trained men during two experimental sessions. Each session began with an initial baseline series of contractions at a fixed intensity of 40% or 80% MVT. The 40%-only session continued with five contractions to task failure at 40% MVT. The 80% session continued with five contractions to failure each at 80%, 60% and 40% MVT. Greater reductions in MVT were observed during the baseline contractions of the 40%-only session compared with the 80% session at each matched-volume time point (P < 0.05), with similar changes in twitch values (P < 0.001). MVT and twitch values plateaued at each intensity during the 80% session and were significantly different across intensities: 80% > 60% > 40% (P < 0.001). There were no differences for measures during the five contractions at 40% MVT performed on the different days, despite a greater volume of exercise performed prior to the 40% MVT during the 80% session. At each contraction intensity, a plateau in contractility loss was observed as more contractions were performed. We found that initial increases in muscle activation were maintained in the presence of increases in exercise volume and, in contrast to the critical-threshold hypothesis, did not decline in parallel with reductions in muscle contractility.
Collapse
Affiliation(s)
- Paul W Marshall
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.,Human Performance Laboratory, School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Harrison T Finn
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
39
|
Mehta RK, Rhee J. Revealing Sex Differences During Upper and Lower Extremity Neuromuscular Fatigue in Older Adults Through a Neuroergonomics Approach. FRONTIERS IN NEUROERGONOMICS 2021; 2:663368. [PMID: 38235250 PMCID: PMC10790897 DOI: 10.3389/fnrgo.2021.663368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/26/2021] [Indexed: 01/19/2024]
Abstract
Background: Sex differences in neuromuscular fatigue is well-documented, however the underlying mechanisms remain understudied, particularly for the aging population. Objective: This study investigated sex differences in fatigability of the upper and lower extremity of older adults using a neuroergonomics approach. Methods: Thirty community-dwelling older adults (65 years or older; 15 M, 15 F) performed intermittent submaximal fatiguing handgrip and knee extension exercises until voluntary exhaustion on separate days. Muscle activity from prime muscles of the hand/arm and knee extensors were monitored using electromyography, neural activity from the frontal, motor, and sensory areas were monitored using functional near infrared spectroscopy, and force output were obtained. Results: While older males were stronger than females across both muscle groups, they exhibited longer endurance times and greater strength loss during knee extension exercises. These lower extremity findings were associated with greater force complexity over time and concomitant increase in left motor and right sensory motor regions. While fatigability during handgrip exercises was comparable across sexes, older females exhibited concurrent increases in the activation of the ipsilateral motor regions over time. Discussion: We identified differences in the underlying central neural strategies adopted by males and females in maintaining downstream motor outputs during handgrip fatigue that were not evident with traditional ergonomics measures. Additionally, enhanced neural activation in males during knee exercises that accompanied longer time to exhaustion point to potential rehabilitation/exercise strategies to improve neuromotor outcomes in more fatigable older adults.
Collapse
Affiliation(s)
- Ranjana K. Mehta
- Wm. Michael Barnes '64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Joohyun Rhee
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL. Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 2021; 599:3853-3878. [PMID: 34159610 DOI: 10.1113/jp281293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/17/2021] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower P ETC O 2 , experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. Females had no faster recovery of performance after accounting for sex differences in lean mass. ABSTRACT The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21-36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of V ̇ O 2 max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower P ETC O 2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of V ̇ O 2 max , revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle V ̇ O 2 was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced P ETC O 2 and brain oxygenation.
Collapse
Affiliation(s)
- Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Robert Boushel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jostein Hallen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
41
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
42
|
Anders JPV, Keller JL, Smith CM, Hill EC, Neltner TJ, Housh TJ, Schmidt RJ, Johnson GO. Performance fatigability and the bilateral deficit during maximal, isokinetic leg extensions in men and women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND: Few studies have examined sex differences in performance fatigability and the bilateral deficit in a dynamic modality. OBJECTIVES: The purpose of this study was to examine: 1) Leg-, mode-, and sex-specific differences in performance fatigability during maximal, dynamic leg extension muscle actions and; 2) the time course of fatigue-induced changes in the bilateral deficit for both men and women. METHODS: Eleven men and 11 women participated in 3 test visits consisting of 50 maximal, concentric, isokinetic leg extensions at 60∘/s. Each visit was randomized to perform either unilateral right leg only (RL), unilateral left leg only (LL), or bilateral (BL) leg extensions. RESULTS: The BL performance fatigability was significantly (p< 0.001) less than RL and LL. Both men and women demonstrated significant (p< 0.001) declines in moment and an attenuation of the bilateral deficit throughout the fatiguing task. There were no differences between sex for performance fatigability (p= 0.128) or the bilateral deficit (p= 0.102). CONCLUSIONS: Unilateral muscle actions were more susceptible to fatigue than BL muscle actions. Men exhibited an earlier decline in moment than women, however, men and women exhibited similar magnitudes and patterns of decline in the bilateral deficit.
Collapse
Affiliation(s)
- John Paul V. Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joshua L. Keller
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cory M. Smith
- College of Human Sciences, Kinesiology, University of Texas at El Paso, TX, USA
| | - Ethan C. Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Tyler J. Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terry J. Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard J. Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Glen O. Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
43
|
Florencio LL, de Oliveira AS, Will-Lemos T, Pinheiro CF, Marçal JCDS, Dach F, Fernández-de-Las-Peñas C, Bevilaqua-Grossi D. Muscle endurance and cervical electromyographic activity during submaximal efforts in women with and without migraine. Clin Biomech (Bristol, Avon) 2021; 82:105276. [PMID: 33561677 DOI: 10.1016/j.clinbiomech.2021.105276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite previous reports supporting cervical muscle weakness and altered motor control in migraine, the endurance under standardized submaximal loads has not been investigated. Therefore, this study aimed to assess the endurance and muscle activity of the cervical musculature during submaximal isometric contractions in women with migraine and those without headache. METHODS Cervical muscle endurance tests were performed for flexors and extensors at 25%, 50%, and 75% of the output force during maximal isometric contraction using the Multi-Cervical Rehabilitation Unit with customized biofeedback. Initial values and relative rates of changes in root mean square and median frequency were calculated using cervical muscle superficial electromyography. FINDINGS Women with chronic migraine presented significantly shorter flexor endurance time in all load tests than controls (25%, P = .001, 50%, P = .005; 75%, P = .013), while episodic migraine only differed from controls at 75% (P = .018). The frequency of neck pain and/or pain referred to the head after the endurance test was up 12% in the control group, 40% in the episodic migraine group and 68% of the chronic migraine group. Few differences between groups were observed in the electromyographic variables and none of them was related to a worse performance in the endurance tests. INTERPRETATION Cervical flexor endurance was reduced in women with chronic migraine when independent of the load, whereas it was reduced to 75% of the maximal force in those with episodic migraine. No difference in the electromyographic variables could be related to this reduced flexor endurance. Also, no differences were detected in extensors endurance.
Collapse
Affiliation(s)
- Lidiane Lima Florencio
- Department of Health Sciences -Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Anamaria Siriani de Oliveira
- Department of Health Sciences -Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tenysson Will-Lemos
- Department of Health Sciences -Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carina Ferreira Pinheiro
- Department of Health Sciences -Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Fabiola Dach
- Department of Neurosciences and Behavioral Sciences - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Débora Bevilaqua-Grossi
- Department of Health Sciences -Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
44
|
Similar performance fatigability and neuromuscular responses following sustained bilateral tasks above and below critical force. Eur J Appl Physiol 2021; 121:1111-1124. [PMID: 33484333 DOI: 10.1007/s00421-020-04588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study examined the magnitude of performance fatigability as well as the associated limb- and intensity-specific neuromuscular patterns of responses during sustained, bilateral, isometric, leg extensions above and below critical force (CF). METHODS Twelve women completed three sustained leg extensions (1 below and 2 above CF) anchored to forces corresponding to RPE = 1, 5, and 8 (10-point scale). During each sustained leg extension, electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) were assessed from each vastus lateralis in 5% of time-to-exhaustion (TTE) segments. Before and after each sustained leg extension, the subjects completed maximal voluntary isometric contractions (MVIC), and the percent decline was defined as performance fatigability. Polynomial regression was used to define the individual and composite neuromuscular and force values versus time relationships. Repeated-measures ANOVAs assessed differences in performance fatigability and TTE. RESULTS The grand mean for performance fatigability was 10.1 ± 7.6%. For TTE, the repeated-measures ANOVA indicated that there was a significant (p < 0.05) effect for Intensity, such that RPE = 1 > 5 > 8. There were similar neuromuscular patterns of response between limbs as well as above and below CF. EMG MPF, however, exhibited decreases only above CF. CONCLUSIONS Performance fatigability was unvarying above and below CF as well as between limbs. In addition, there were similar fatigue-induced motor unit activation strategies above and below CF, but peripheral fatigue likely contributed to a greater extent above CF.
Collapse
|
45
|
Sex Differences in Response to Listening to Self-Selected Music during Repeated High-Intensity Sprint Exercise. SEXES 2021. [DOI: 10.3390/sexes2010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to examine possible sex differences in high-intensity exercise performance, fatigue, and motivational responses to exercise while listening to music. Physically active males and females (ages 18–24) were recruited to participate. Participants completed two separate repeated sprint exercise trials each with a different condition: (1) no music (NM) (2) self-selected music (SSM). During each trial, participants completed 3 × 15 s Wingate anaerobic tests (WAnTs) while listening to NM or SSM separated by 2 min of active recovery. Following each WAnT, rate of perceived exertion (RPE) and motivation to exercise were assessed. Relative power output, fatigue index, RPE, and motivation were analyzed. There were no significant sex differences for relative power between music conditions (p = 0.228). Fatigue index was significantly lower in females while listening to SSM (p = 0.032) versus NM while no differences were observed for males (p = 0.246). RPE was lower while listening to SSM versus NM in females (p = 0.020), but not for males (p = 0.277). Lastly, motivation to exercise increased in the SSM condition versus NM in females (p = 0.006) but not in males (p = 0.090). Results indicate that listening to SSM music did not result in superior anaerobic performance in either sex, but females responded more favorably to subjective outcomes (i.e., RPE and motivation) while listening to SSM, which may have in turn influenced indices of fatigue during the tests. These results suggest that females may respond more positively than males to exercise-induced fatigue while listening to SSM music during repeated bouts of high-intensity exercise.
Collapse
|
46
|
A mathematical model-based approach to optimize loading schemes of isometric resistance training sessions. SPORTS ENGINEERING 2020. [DOI: 10.1007/s12283-020-00337-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIndividualized resistance training is necessary to optimize training results. A model-based optimization of loading schemes could provide valuable impulses for practitioners and complement the predominant manual program design by customizing the loading schemes to the trainee and the training goals. We compile a literature overview of model-based approaches used to simulate or optimize the response to single resistance training sessions or to long-term resistance training plans in terms of strength, power, muscle mass, or local muscular endurance by varying the loading scheme. To the best of our knowledge, contributions employing a predictive model to algorithmically optimize loading schemes for different training goals are nonexistent in the literature. Thus, we propose to set up optimal control problems as follows. For the underlying dynamics, we use a phenomenological model of the time course of maximum voluntary isometric contraction force. Then, we provide mathematical formulations of key performance indicators for loading schemes identified in sport science and use those as objective functionals or constraints. We then solve those optimal control problems using previously obtained parameter estimates for the elbow flexors. We discuss our choice of training goals, analyze the structure of the computed solutions, and give evidence of their real-life feasibility. The proposed optimization methodology is independent from the underlying model and can be transferred to more elaborate physiological models once suitable ones become available.
Collapse
|
47
|
Miller WM, Ye X, Jeon S. Effects of Maximal vs. Submaximal Isometric Fatiguing Exercise on Subsequent Submaximal Exercise Performance. J Strength Cond Res 2020; 34:1875-1883. [PMID: 31145388 DOI: 10.1519/jsc.0000000000003200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Miller, WM, Ye, X, and Jeon, S. Effects of maximal vs. submaximal isometric fatiguing exercise on subsequent submaximal exercise performance. J Strength Cond Res 34(7): 1875-1883, 2020-Exercise-induced muscle fatigue directly influences subsequent exercise performance. Thus, we examined task failure times for submaximal intermittent fatiguing isometric contractions performed after a bout of sustained maximal vs. submaximal isometric fatiguing contractions with the dominant elbow flexors. Twenty physically active individuals 8 men (mean ± SD = 21.4 ± 1.8 years; 80.9 ± 12.5 kg; 180 ± 6.4 cm) and 12 women (mean ± SD = 21.4 ± 2.7; 66.8 ± 15.6 kg; 165.7 ± 7.1 cm) participated in a 3-visit randomized cross-over study. Visit 1 included familiarization, and 2 and 3 were randomized for sustained maximal (until force was below 50% of the maximal force value) or submaximal conditions (50% of maximal force until task failure), followed by submaximal intermittent isometric contractions to task failure. Surface electromyography was recorded through the biceps brachii during all fatiguing contractions. Task failure time was significantly shorter for the maximal compared with submaximal condition, and no significant difference in sex or condition was found for the subsequent fatiguing condition. Electromyography amplitude significantly increased in the submaximal intermittent isometric contractions from prefatigue and first and final postfatigue with no condition or sex differences. Electromyography mean frequency significantly decreased from prefatigue and first and final postfatigue for both sexes, with no condition or sex differences. With both maximal and submaximal exercises inducing the same level of force deficit, our results suggested that both exercises might have imposed a similar burden on the neuromuscular system, thereby not providing differential effects on the subsequent submaximal exercise performance.
Collapse
Affiliation(s)
- William M Miller
- Department of Health, Exercise Science, and Recreation Management, University of Mississippi, University, Mississippi
| | | | | |
Collapse
|
48
|
The Influence of Thermal Alterations on Prefrontal Cortex Activation and Neuromuscular Function during a Fatiguing Task. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197194. [PMID: 33019602 PMCID: PMC7579217 DOI: 10.3390/ijerph17197194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to examine prefrontal cortex (PFC) activation, neuromuscular function, and perceptual measures in response to a fatiguing task, following thermal alterations of an exercising arm. Nineteen healthy adults completed three experimental sessions. At baseline, participants performed maximum voluntary isometric contractions (MVIC) of the elbow flexors. Next, participants submerged their right arm in a water bath for 15 min. Cold (C), neutral (N), and hot (H) water temperatures were maintained at 8, 33, and 44 °C, respectively. Following water immersion, participants performed an isometric elbow flexion contraction, at 20% of their MVIC, for 5 min. Ratings of perceived exertion (RPE), muscular discomfort, and task demands were assessed. Functional near-infrared spectroscopy was used to measure activation (oxygenation) of the PFC during the fatiguing task. Reductions in MVIC torque at the end of the fatiguing task were greater for the H (25.7 ± 8.4%) and N (22.2 ± 9.6%) conditions, compared to the C condition (17.5 ± 8.9%, p < 0.05). The increase in oxygenation of the PFC was greater for the H (13.3 ± 4.9 μmol/L) and N (12.4 ± 4.4 μmol/L) conditions, compared to the C condition (10.3 ± 3.8 μmol/L, p < 0.001) at the end of the fatiguing task. The increase in RPE, muscular discomfort, and task demands were greater in the H condition compared to the N and C conditions (p < 0.01). These results indicate that precooling an exercising arm attenuates the rise in PFC activation, muscle fatigue, and psychological rating during a fatiguing task.
Collapse
|
49
|
Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, Thomas K, Hunter SK, Howatson G, Goodall S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol 2020; 598:5717-5737. [PMID: 32964441 DOI: 10.1113/jp280031] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax -1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elliott Atkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sarah Corden
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Amber Tygart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
50
|
Marshall PW, Metcalf E, Hagstrom AD, Cross R, Siegler JC, Enoka RM. Changes in Fatigue Are the Same for Trained Men and Women after Resistance Exercise. Med Sci Sports Exerc 2020; 52:196-204. [PMID: 31343516 DOI: 10.1249/mss.0000000000002103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To measure changes in fatigue and knee-extensor torque in the 48 h after trained men and women completed a full-body resistance exercise session. METHODS Eight trained women (mean ± SD: age, 25.6 ± 5.9 yr; height, 1.68 ± 0.06 m; mass, 71.0 ± 8.6 kg) and eight trained men (age, 25.5 ± 6.2 yr; height, 1.79 ± 0.05 m; mass, 86.4 ± 9.8 kg) performed a full-body resistance exercise session based on real-world athletic practice. Measurements were performed before and after the exercise session, as well as 1, 24, and 48 h after the session. Fatigue and pain were measured with standardized self-report measures. Maximal isometric contractions with the knee extensors and superimposed femoral nerve stimulation were performed to examine maximal torque, rate of torque development, voluntary activation, and muscle contractility. Two sets of 10 isokinetic contractions (60°·s) with the knee extensors were performed during the protocol with use of near-infrared spectroscopy to assess muscle oxygenation. EMG were recorded from two quadriceps muscles during all isometric and isokinetic contractions. RESULTS Fatigue was increased from baseline for both sexes until 48 h after training (P < 0.001). Maximal torque and evoked twitch amplitudes were similarly reduced after exercise for men and women (P < 0.001). Voluntary activation and EMG amplitudes were unchanged after the training session. Muscle oxygenation was 13.3% ± 17.4% (P = 0.005) greater for women during the isokinetic repetitions, and the values were unchanged after the training session. CONCLUSIONS This is the first study to show similar changes in the fatigue reported by trained men and women in the 48 h after a training session involving full-body resistance exercises. Sex differences in muscle oxygenation during exercise do not influence the reductions in muscle force, activation, or contractility after the training session.
Collapse
Affiliation(s)
- Paul W Marshall
- School of Science and Health, Western Sydney University, AUSTRALIA
| | - Emily Metcalf
- School of Science and Health, Western Sydney University, AUSTRALIA
| | - Amanda D Hagstrom
- School of Medical Sciences, University of New South Wales, AUSTRALIA
| | - Rebecca Cross
- School of Science and Health, Western Sydney University, AUSTRALIA
| | - Jason C Siegler
- School of Science and Health, Western Sydney University, AUSTRALIA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO
| |
Collapse
|