1
|
Matias AA, Serviente CF, Decker ST, Erol ME, Giuriato G, Le Fur Y, Nagarajan R, Bendahan D, Layec G. Repeatability of alkaline inorganic phosphate quantification in the skeletal muscle using 31P-magnetic resonance spectroscopy at 3 T. NMR IN BIOMEDICINE 2024; 37:e5255. [PMID: 39225116 DOI: 10.1002/nbm.5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The detection of a secondary inorganic phosphate (Pi) resonance, a possible marker of mitochondrial content in vivo, using phosphorus magnetic resonance spectroscopy (31P-MRS), poses technical challenges at 3 Tesla (T). Overcoming these challenges is imperative for the integration of this biomarker into clinical research. To evaluate the repeatability and reliability of measuring resting skeletal muscle alkaline Pi (Pialk) using with 31P-MRS at 3 T. After an initial set of experiments on five subjects to optimize the sequence, resting 31P-MRS of the quadriceps muscles were acquired on two visits (~4 days apart) using an intra-subjects design, from 13 sedentary to moderately active young male and female adults (22 ± 3 years old) within a whole-body 3 T MR system. Measurement variability attributed to changes in coil position, shimming procedure, and spectral analysis were quantified. 31P-MRS data were acquired with a 31P/-proton (1H) dual-tuned surface coil positioned on the quadriceps using a pulse-acquire sequence. Test-retest absolute and relative repeatability was analyzed using the coefficient of variation (CV) and intra-class correlation coefficients (ICC), respectively. After sequence parameter optimization, Pialk demonstrated high intra-subject repeatability (CV: 10.6 ± 5.4%, ICC: 0.80). Proximo-distal change in coil position along the length of the quadriceps introduced Pialk quantitation variability (CV: 28 ± 5%), due to magnetic field inhomogeneity with more distal coil locations. In contrast, Pialk measurement variability due to repeated shims from the same muscle volume (0.40 ± 0.09mM; CV: 6.6%), and automated spectral processing (0.37 ± 0.01mM; CV: 2.3%), was minor. The quantification of Pialk in skeletal muscle via surface coil 31P-MRS at 3 T demonstrated excellent reproducibility. However, caution is advised against placing the coil at the distal part of the quadriceps to mitigate shimming inhomogeneity.
Collapse
Affiliation(s)
- Alexs A Matias
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Corinna F Serviente
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- The Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Gaia Giuriato
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Neuroscience, Biomedicine, and Movement Science, University of Verona, Verona, Italy
- Department of Surgical, Medical and Dental, University of Modena and Reggio Emilia, Modena, Italy
| | - Yann Le Fur
- Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Rajakumar Nagarajan
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| | - David Bendahan
- Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts at Amherst, Amherst, MA, USA
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts at Amherst, Amherst, MA, USA
| |
Collapse
|
2
|
Seelen LWF, van den Wildenberg L, Gursan A, Froeling M, Gosselink MWJM, van der Kemp WJM, Haj Mohammad N, Molenaar IQ, van Santvoort HC, Klomp DWJ, Prompers JJ. 31P MR Spectroscopy in the Pancreas: Repeatability, Comparison With Liver, and Pilot Pancreatic Cancer Data. J Magn Reson Imaging 2024; 60:2657-2666. [PMID: 38485455 DOI: 10.1002/jmri.29326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE To assess the technical feasibility and repeatability of 31P MR spectroscopic imaging (MRSI) of the pancreas, compare 31P metabolite levels between pancreas and liver, and determine the feasibility of 31P MRSI in pancreatic cancer. STUDY TYPE Prospective cohort study. POPULATION 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE 7-T, 31P FID-MRSI, 1H gradient-echo MRI. ASSESSMENT 31P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31P MRSI data of pancreas and liver voxels (segmented on 1H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION In vivo 31P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Ayhan Gursan
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Froeling
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mevenkamp J, Bruls YMH, Mancilla R, Grevendonk L, Wildberger JE, Brouwers K, Hesselink MKC, Schrauwen P, Hoeks J, Houtkooper RH, Buitinga M, de Graaf RA, Lindeboom L, Schrauwen-Hinderling VB. Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD + at 3 T. Nat Commun 2024; 15:9159. [PMID: 39443469 PMCID: PMC11499639 DOI: 10.1038/s41467-024-53292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
NADH and NAD+ act as electron donors and acceptors and NAD+ was shown to stimulate mitochondrial biogenesis and metabolic health. We here develop a non-invasive Phosphorous Magnetic Resonance Spectroscopy (31P-MRS) method to quantify these metabolites in human skeletal muscle on a clinical 3 T MRI scanner. This new MR-sequence enables NADH and NAD+ quantification by suppressing α-ATP signal, normally overlapping with NADH and NAD+. The sequence is based on a double spin echo in combination with a modified z-Filter achieving strong α-ATP suppression with little effect on NAD+ and NADH. Here we test and validate it in phantoms and in humans by measuring reproducibility and detecting a physiological decrease in NAD+ and increase in NADH induced by ischemia. Furthermore, the 31P-MRS outcomes are compared to analysis in biopsies. Additionally, we show higher NAD+ and lower NADH content in physically active older adults compared to sedentary individuals, reflecting increased metabolic health.
Collapse
Affiliation(s)
- Julian Mevenkamp
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Yvonne M H Bruls
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Rodrigo Mancilla
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
- Exercise Physiology and Metabolism Laboratory (LABFEM), School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Lotte Grevendonk
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Joachim E Wildberger
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
| | - Kim Brouwers
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
| | - Matthijs K C Hesselink
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- Leiden University Medical Center, Clinical Epidemiology, Leiden, The Netherlands
| | - Joris Hoeks
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Riekelt H Houtkooper
- Amsterdam University Medical Center, Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Mijke Buitinga
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Robin A de Graaf
- Yale School of Medicine, Department of Radiology & Biomedical Imaging, New Haven, CT, USA
| | - Lucas Lindeboom
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Maastricht University Medical Center, Department of Radiology & Nuclear Medicine, Maastricht, The Netherlands.
- Maastricht University, Department of Nutrition & Movement Sciences (NUTRIM), Maastricht, The Netherlands.
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany.
| |
Collapse
|
4
|
Karkouri J, Rodgers CT. Sequence building block for magnetic resonance spectroscopy on Siemens VE-series scanners. NMR IN BIOMEDICINE 2024; 37:e5165. [PMID: 38807311 DOI: 10.1002/nbm.5165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/30/2024]
Abstract
We present a sequence building block (SBB) that embeds magnetic resonance spectroscopy (MRS) into another sequence on the Siemens VE platform without any custom hardware. This enables dynamic studies such as functional MRS (fMRS), dynamic shimming and frequency correction, and acquisition of navigator images for motion correction. The SBB supports nonlocalised spectroscopy (free induction decay), STimulated Echo Acquisition Mode single voxel spectroscopy, and 1D, 2D and 3D phase-encoded chemical shift imaging. It can embed 1H or X-nuclear MRS into a 1H sequence; and 1H-MRS into an X-nuclear sequence. We demonstrate integration into the vendor's gradient-recalled echo sequence. We acquire test data in phantoms with three coils (31P/1H, 13C/1H and 2H/1H) and in two volunteers on a 7-T Terra MRI scanner. Fifteen lines of code are required to insert the SBB into a sequence. Spectra and images are acquired successfully in all cases in phantoms, and in human abdomen and calf muscle. Phantom comparison of signal-to-noise ratio and linewidth showed that the SBB has negligible effects on image and spectral quality, except that it sometimes produces a nuclear Overhauser effect (NOE) signal enhancement for multinuclear applications in line with conventional 1H NOE pulses. Our new SBB embeds MRS into a host imaging or spectroscopy sequence in 15 lines of code. It allows homonuclear and heteronuclear interleaving. The package is available through the standard C2P procedure. We hope this will lower the barrier for entry to studies applying dynamic fMRS and for online motion correction and B0-shim updating.
Collapse
Affiliation(s)
- Jabrane Karkouri
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
5
|
Arieta LR, Smith ZH, Paluch AE, Kent JA. Effects of older age on contraction-induced intramyocellular acidosis and inorganic phosphate accumulation in vivo: A systematic review and meta-analysis. PLoS One 2024; 19:e0308336. [PMID: 39321147 PMCID: PMC11424002 DOI: 10.1371/journal.pone.0308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 09/27/2024] Open
Abstract
Although it is clear that the bioenergetic basis of skeletal muscle fatigue (transient decrease in peak torque or power in response to contraction) involves intramyocellular acidosis (decreased pH) and accumulation of inorganic phosphate (Pi) in response to the increased energy demand of contractions, the effects of old age on the build-up of these metabolites has not been evaluated systematically. The purpose of this study was to compare pH and [Pi] in young (18-45 yr) and older (55+ yr) human skeletal muscle in vivo at the end of standardized contraction protocols. Full study details were prospectively registered on PROSPERO (CRD42022348972). PubMed, Web of Science, and SPORTDiscus databases were systematically searched and returned 12 articles that fit the inclusion criteria for the meta-analysis. Participant characteristics, contraction mode (isometric, dynamic), and final pH and [Pi] were extracted. A random-effects model was used to calculate the mean difference (MD) and 95% confidence interval (CI) for pH and [Pi] across age groups. A subgroup analysis for contraction mode was also performed. Young muscle acidified more than older muscle (MD = -0.12 pH; 95%CI = -0.18,-0.06; p<0.01). There was no overall difference by age in final [Pi] (MD = 2.14 mM; 95%CI = -0.29,4.57; p = 0.08), although sensitivity analysis revealed that removing one study resulted in greater [Pi] in young than older muscle (MD = 3.24 mM; 95%CI = 1.72,4.76; p<0.01). Contraction mode moderated these effects (p = 0.02) such that young muscle acidified (MD = -0.19 pH; 95%CI = -0.27,-0.11; p<0.01) and accumulated Pi (MD = 4.69 mM; 95%CI = 2.79,6.59; p<0.01) more than older muscle during isometric, but not dynamic, contractions. The smaller energetic perturbation in older muscle indicated by these analyses is consistent with its relatively greater use of oxidative energy production. During dynamic contractions, elimination of this greater reliance on oxidative energy production and consequently lower metabolite accumulations in older muscle may be important for understanding task-specific, age-related differences in fatigue.
Collapse
Affiliation(s)
- Luke R. Arieta
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Zoe H. Smith
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Amanda E. Paluch
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
6
|
Sinha U, Sinha S. Magnetic Resonance Imaging Biomarkers of Muscle. Tomography 2024; 10:1411-1438. [PMID: 39330752 PMCID: PMC11436019 DOI: 10.3390/tomography10090106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
This review is focused on the current status of quantitative MRI (qMRI) of skeletal muscle. The first section covers the techniques of qMRI in muscle with the focus on each quantitative parameter, the corresponding imaging sequence, discussion of the relation of the measured parameter to underlying physiology/pathophysiology, the image processing and analysis approaches, and studies on normal subjects. We cover the more established parametric mapping from T1-weighted imaging for morphometrics including image segmentation, proton density fat fraction, T2 mapping, and diffusion tensor imaging to emerging qMRI features such as magnetization transfer including ultralow TE imaging for macromolecular fraction, and strain mapping. The second section is a summary of current clinical applications of qMRI of muscle; the intent is to demonstrate the utility of qMRI in different disease states of the muscle rather than a complete comprehensive survey.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Shantanu Sinha
- Muscle Imaging and Modeling Lab., Department of Radiology, University of California at San Diego, San Diego, CA 92037, USA
| |
Collapse
|
7
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
8
|
Chakraborty K, Burman R, Nisar S, Miller S, Loschinskey Z, Wu S, Li Y, Bag AK, Khan A, Goodenough C, Wilson N, Haris M, McCormack SE, Reddy R, Ness K, Finkel R, Bagga P. Reliability of In Vivo Creatine-Weighted Chemical Exchange Saturation Transfer (CrCEST) MRI in Calf Skeletal Muscle of Healthy Volunteers at 3 T. J Magn Reson Imaging 2024. [PMID: 39212126 DOI: 10.1002/jmri.29566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Skeletal muscle mitochondrial oxidative phosphorylation (mtOXPHOS) is important for ATP generation and its dysfunction leads to exercise intolerance. Phosphorus magnetic resonance spectroscopy (31P-MRS) is a useful, noninvasive technique for mtOXPHOS assessment but has limitations. Creatine-weighted chemical exchange saturation transfer (CrCEST) MRI is a potential alternative to assess muscle bioenergetics. PURPOSE To evaluate the interscan repeatability, intra- and interobserver reproducibility of CrCEST during mild plantar flexion exercise. STUDY TYPE Retrospective. SUBJECTS Twenty healthy volunteers (age 37.6 ± 12.4 years, 11 females). FIELD STRENGTH/SEQUENCE 3 T/CEST imaging using gradient echo readout. ASSESSMENT τCrCEST (postexercise Cr recovery time) was assessed in two scans for each participant, following mild plantar flexion exercises targeting the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles. Three observers measured τCrCEST for interobserver reproducibility. Three readings by one observer were used to measure intraobserver reproducibility. Two scans were used for within-participant interscan repeatability. STATISTICAL TESTS Paired t tests, intraclass correlation coefficient (ICC), and Pearson correlation were conducted. Bland-Altman plots were used to analyze the interobserver variability. A P-value of 0.05 was considered statistically significant. RESULTS There was excellent intra- (ICC∈ 0.94 - 0.98 $$ \in \left[0.94-0.98\right] $$ ) and interobserver (ICC∈ 0.9 - 0.98 $$ \in \left[0.9-0.98\right] $$ ) reproducibility, with moderate interscan repeatability for τCrCEST in LG and MG (ICC∈ 0.54 - 0.74 $$ \in \left[0.54-0.74\right] $$ ) and poor-to-moderate interscan repeatability in Sol (ICC∈ 0.24 - 0.53 $$ \in \left[0.24-0.53\right] $$ ). Excellent interobserver reproducibility was confirmed by Bland-Altman plots (fixed bias P-value∈ 0.08 - 0.87 $$ \in \left[0.08-0.87\right] $$ ). DATA CONCLUSION CrCEST MRI shows promise in assessing muscle bioenergetics by evaluating τCrCEST during mild plantar flexion exercise with reasonable reliability, particularly in LG and MG. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Kasturee Chakraborty
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ritambhar Burman
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sabah Nisar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Saorla Miller
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zachary Loschinskey
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shengjie Wu
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Asim K Bag
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ayaz Khan
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chelsea Goodenough
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirsten Ness
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard Finkel
- Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
9
|
Tkotz K, Zeiger P, Hanspach J, Mathy CS, Laun FB, Uder M, Nagel AM, Gast LV. Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T. MAGMA (NEW YORK, N.Y.) 2024:10.1007/s10334-024-01195-2. [PMID: 39105951 DOI: 10.1007/s10334-024-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T. MATERIALS AND METHODS Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results. RESULTS Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B0 map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement. CONCLUSION PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.
Collapse
Affiliation(s)
- Katharina Tkotz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Paula Zeiger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudius S Mathy
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
10
|
Han V, Reeder CP, Hernández-Morales M, Liu C. Any-nucleus distributed active programmable transmit coil. Magn Reson Med 2024; 92:389-405. [PMID: 38342981 DOI: 10.1002/mrm.30044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE There are 118 known elements. Nearly all of them have NMR active isotopes and at least 39 different nuclei have biological relevance. Despite this, most of today's MRI is based on only one nucleus-1H. To facilitate imaging all potential nuclei, we present a single transmit coil able to excite arbitrary nuclei in human-scale MRI. THEORY AND METHODS We present a completely new type of RF coil, the Any-nucleus Distributed Active Programmable Transmit Coil (ADAPT Coil), with fast switches integrated into the structure of the coil to allow it to operate at any relevant frequency. This coil eliminates the need for the expensive traditional RF amplifier by directly converting direct current (DC) power into RF magnetic fields with frequencies chosen by digital control signals sent to the switches. Semiconductor switch imperfections are overcome by segmenting the coil. RESULTS Circuit simulations demonstrated the effectiveness of the ADAPT Coil approach, and a 9 cm diameter surface ADAPT Coil was implemented. Using the ADAPT Coil, 1H, 23Na, 2H, and 13C phantom images were acquired, and 1H and 23Na ex vivo images were acquired. To excite different nuclei, only digital control signals were changed, which can be programmed in real time. CONCLUSION The ADAPT Coil presents a low-cost, scalable, and efficient method for exciting arbitrary nuclei in human-scale MRI. This coil concept provides further opportunities for scaling, programmability, lowering coil costs, lowering dead-time, streamlining multinuclear MRI workflows, and enabling the study of dozens of biologically relevant nuclei.
Collapse
Affiliation(s)
- Victor Han
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Charlie P Reeder
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Miriam Hernández-Morales
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Ramos SV, Distefano G, Lui LY, Cawthon PM, Kramer P, Sipula IJ, Bello FM, Mau T, Jurczak MJ, Molina AJ, Kershaw EE, Marcinek DJ, Shankland E, Toledo FG, Newman AB, Hepple RT, Kritchevsky SB, Goodpaster BH, Cummings SR, Coen PM. Role of Cardiorespiratory Fitness and Mitochondrial Oxidative Capacity in Reduced Walk Speed of Older Adults With Diabetes. Diabetes 2024; 73:1048-1057. [PMID: 38551899 PMCID: PMC11189829 DOI: 10.2337/db23-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Cardiorespiratory fitness and mitochondrial oxidative capacity are associated with reduced walking speed in older adults, but their impact on walking speed in older adults with diabetes has not been clearly defined. We examined differences in cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity between older adults with and without diabetes, as well as determined their relative contribution to slower walking speed in older adults with diabetes. Participants with diabetes (n = 159) had lower cardiorespiratory fitness and mitochondrial respiration in permeabilized fiber bundles compared with those without diabetes (n = 717), following adjustments for covariates including BMI, chronic comorbid health conditions, and physical activity. Four-meter and 400-m walking speeds were slower in those with diabetes. Mitochondrial oxidative capacity alone or combined with cardiorespiratory fitness mediated ∼20-70% of the difference in walking speed between older adults with and without diabetes. Additional adjustments for BMI and comorbidities further explained the group differences in walking speed. Cardiorespiratory fitness and skeletal muscle mitochondrial oxidative capacity contribute to slower walking speeds in older adults with diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Li-Yung Lui
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Peggy M. Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Philip Kramer
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ian J. Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Fiona M. Bello
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Theresa Mau
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anthony J. Molina
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Erin E. Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David J. Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Eric Shankland
- Department of Radiology, University of Washington School of Medicine, Seattle, WA
| | - Frederico G.S. Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Anne B. Newman
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Russell T. Hepple
- Department of Physical Therapy, University of Florida, Gainesville, FL
| | - Stephen B. Kritchevsky
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Paul M. Coen
- Translational Research Institute, AdventHealth, Orlando, FL
| |
Collapse
|
12
|
Kemp GJ. Editorial for "Quantitative Assessment of Peripheral Oxidative Metabolism With a New Dynamic 1H MRI: A Pilot Study in People With and Without Diabetes Mellitus". J Magn Reson Imaging 2024; 60:220-221. [PMID: 37655836 DOI: 10.1002/jmri.28993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Graham J Kemp
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
13
|
Armbruster RR, Kumar D, Benyard B, Jacobs P, Khandavilli A, Liu F, Nanga RPR, McCormack S, Cappola AR, Wilson N, Reddy R. Personalized and muscle-specific OXPHOS measurement with integrated CrCEST MRI and proton MR spectroscopy. Nat Commun 2024; 15:5387. [PMID: 38918361 PMCID: PMC11199598 DOI: 10.1038/s41467-024-49253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Creatine chemical exchange saturation transfer (CrCEST) MRI is an emerging high resolution and noninvasive method for measuring muscle specific oxidative phosphorylation (OXPHOS). However, CrCEST measurements are sensitive to changes in muscle pH, which might confound the measurement and interpretation of creatine recovery time (τCr). Even with the same prescribed exercise stimulus, the extent of acidification and hence its impact on τCr is expected to vary between individuals. To address this issue, a method to measure pH pre- and post-exercise and its impact on CrCEST MRI with high temporal resolution is needed. In this work, we integrate carnosine 1H- magnetic resonance spectroscopy (MRS) and 3D CrCEST to establish "mild" and "moderate/intense" exercise stimuli. We then test the dependence of CrCEST recovery time on pH using different exercise stimuli. This comprehensive metabolic imaging protocol will enable personalized, muscle specific OXPHOS measurements in both healthy aging and myriad other disease states impacting muscle mitochondria.
Collapse
Affiliation(s)
- Ryan R Armbruster
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dushyant Kumar
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blake Benyard
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Jacobs
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aditi Khandavilli
- Department of Biology, Department of Nutrition and Science, Cornell University, Ithaca, NY, 14850, USA
| | - Fang Liu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shana McCormack
- Neuroendocrine Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Neil Wilson
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravinder Reddy
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Franke VL, Breitling J, Boyd PS, Feignier A, Bangert R, Weckesser N, Schlemmer HP, Ladd ME, Bachert P, Paech D, Korzowski A. A versatile look-up algorithm for mapping pH values and magnesium ion content using 31P MRSI. NMR IN BIOMEDICINE 2024; 37:e5113. [PMID: 38316107 DOI: 10.1002/nbm.5113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and β-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.
Collapse
Affiliation(s)
- Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philip S Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antoine Feignier
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renate Bangert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weckesser
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
15
|
Wahidi R, Zhang Y, Li R, Xu J, Zayed MA, Hastings MK, Zheng J. Quantitative Assessment of Peripheral Oxidative Metabolism With a New Dynamic 1H MRI Technique: A Pilot Study in People With and Without Diabetes Mellitus. J Magn Reson Imaging 2024; 59:2091-2100. [PMID: 37695103 PMCID: PMC10925551 DOI: 10.1002/jmri.28996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is linked to impaired mitochondrial function. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a gadolinium-contrast-free 1H method to assess mitochondrial function by measuring low-concentration metabolites. A CEST MRI-based technique may serve as a non-invasive proxy for assessing mitochondrial health. HYPOTHESIS A 1H CEST MRI technique may detect significant differences in in vivo skeletal muscle phosphocreatine (SMPCr) kinetics between healthy volunteers and T2DM patients undergoing standardized isometric exercise. STUDY TYPE Cross-sectional study. SUBJECTS Seven subjects without T2DM (T2DM-) and seven age, sex, and BMI-matched subjects with T2DM (T2DM+). FIELD STRENGTH/SEQUENCE Single-shot rapid acquisition with refocusing echoes (RARE) and single-shot gradient-echo sequences, 3 T. ASSESSMENT Subjects underwent a rest-exercise-recovery imaging protocol to dynamically acquire SMPCr maps in calf musculature. Medial gastrocnemius (MG) and soleus SMPCr concentrations were plotted over time, and SMPCr recovery time, τ , was determined. Mitochondrial function index was calculated as the ratio of resting SMPCr to τ . Participants underwent a second exercise protocol for imaging of skeletal muscle blood flow (SMBF), and its association with SMPCr was assessed. STATISTICAL TESTS Unpaired t-tests and Pearson correlation coefficient. A P value <0.05 was considered statistically significant. RESULTS SMPCr concentrations in MG and soleus displayed expected declines during exercise and returns to baseline during recovery. τ was significantly longer in the T2DM+ cohort (MG 83.5 ± 25.8 vs. 54.0 ± 21.1, soleus 90.5 ± 18.9 vs. 51.2 ± 14.5). The mitochondrial function index in the soleus was significantly lower in the T2DM+ cohort (0.33 ± 0.08 vs. 0.66 ± 0.19). SMBF was moderately correlated with the SMPCr in T2DM-; this correlation was not significant in T2DM+ (r = -0.23, P = 0.269). CONCLUSION The CEST MRI method is feasible for quantifying SMPCr in peripheral muscle tissue. T2DM+ individuals had significantly lower oxidative capacities than T2DM- individuals. In T2DM, skeletal muscle metabolism appeared to be decoupled from perfusion. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ryan Wahidi
- Washington University School of Medicine, Missouri, Saint Louis, USA
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Li
- Washington University School of Medicine, Missouri, Saint Louis, USA
| | - Jiadi Xu
- John Hopkins University, Baltimore, MD, USA
| | - Mohamed A. Zayed
- Washington University School of Medicine, Missouri, Saint Louis, USA
| | - Mary K. Hastings
- Washington University School of Medicine, Missouri, Saint Louis, USA
| | - Jie Zheng
- Washington University School of Medicine, Missouri, Saint Louis, USA
| |
Collapse
|
16
|
Lopez FV, O'Shea A, Huo Z, DeKosky ST, Trouard TP, Alexander GE, Woods AJ, Bowers D. Frontal-temporal regional differences in brain energy metabolism and mitochondrial function using 31P MRS in older adults. GeroScience 2024; 46:3185-3195. [PMID: 38225480 PMCID: PMC11009166 DOI: 10.1007/s11357-023-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is a major risk for cognitive decline and transition to dementia. One well-known age-related change involves decreased brain efficiency and energy production, mediated in part by changes in mitochondrial function. Damaged or dysfunctional mitochondria have been implicated in the pathogenesis of age-related neurodegenerative conditions like Alzheimer's disease (AD). The aim of the current study was to investigate mitochondrial function over frontal and temporal regions in a sample of 70 cognitively normal older adults with subjective memory complaints and a first-degree family history of AD. We hypothesized cerebral mitochondrial function and energy metabolism would be greater in temporal as compared to frontal regions based on the high energy consumption in the temporal lobes (i.e., hippocampus). To test this hypothesis, we used phosphorous (31P) magnetic resonance spectroscopy (MRS) which is a non-invasive and powerful method for investigating in vivo mitochondrial function via high energy phosphates and phospholipid metabolism ratios. We used a single voxel method (left temporal and bilateral prefrontal) to achieve optimal sensitivity. Results of separate repeated measures analyses of variance showed 31P MRS ratios of static energy, energy reserve, energy consumption, energy demand, and phospholipid membrane metabolism were greater in the left temporal than bilateral prefrontal voxels. Our findings that all 31P MRS ratios were greater in temporal than bifrontal regions support our hypothesis. Future studies are needed to determine whether findings are related to cognition in older adults.
Collapse
Affiliation(s)
- Francesca V Lopez
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA.
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology, Fixel Center for Neurological Diseases, College of Medicine, and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Theodore P Trouard
- Department of Biomedical Engineering, College of Engineering, and Evelyn F. McKnight Brain Institute, University of Arizona and Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Gene E Alexander
- Department of Psychology and Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, Neuroscience and Physiological Sciences Graduate Interdisciplinary Programs, and BIO5 Institute, University of Arizona and Arizona Alzheimer's Disease Consortium, Tucson, AZ, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Center for Cognitive Aging and Memory, Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dawn Bowers
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, PO Box 100165, Gainesville, FL, 32610, USA
- Department of Neurology, Fixel Center of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Cap V, Rocha dos Santos VR, Repnin K, Červený D, Laistler E, Meyerspeer M, Frass-Kriegl R. Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle. SENSORS (BASEL, SWITZERLAND) 2024; 24:3309. [PMID: 38894105 PMCID: PMC11174775 DOI: 10.3390/s24113309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.
Collapse
Affiliation(s)
- Veronika Cap
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Vasco Rafael Rocha dos Santos
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Kostiantyn Repnin
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - David Červený
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic
| | - Elmar Laistler
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Meyerspeer
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Roberta Frass-Kriegl
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
19
|
Krššák M. Editorial for "Multi-Parametric Ageing Study Across Adulthood in the Leg Through Quantitative MR Imaging, 1H Spectroscopy and 31P Spectroscopy at 3T". J Magn Reson Imaging 2024. [PMID: 38593216 DOI: 10.1002/jmri.29380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Bozymski B, Emir U, Dydak U, Shen X, Thomas MA, Özen A, Chiew M, Clarke W, Sawiak S. 3D ultra-short echo time 31P-MRSI with rosette k-space pattern: Feasibility and comparison with conventional weighted CSI. RESEARCH SQUARE 2024:rs.3.rs-4223790. [PMID: 38659806 PMCID: PMC11042414 DOI: 10.21203/rs.3.rs-4223790/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI) provides valuable non-invasive in vivo information on tissue metabolism but is burdened by poor sensitivity and prolonged scan duration. Ultra-short echo time (UTE) acquisitions minimize signal loss when probing signals with relatively short spin-spin relaxation time (T2), while also preventing first-order dephasing. Here, a three-dimensional (3D) UTE sequence with a rosette k-space trajectory is applied to 31P-MRSI at 3T. Conventional chemical shift imaging (CSI) employs highly regular Cartesian k-space sampling, susceptible to substantial artifacts when accelerated via undersampling. In contrast, this novel sequence's "petal-like" pattern offers incoherent sampling more suitable for compressed sensing (CS). These results showcase the competitive performance of UTE rosette 31P-MRSI against conventional weighted CSI with simulation, phantom, and in vivo leg muscle comparisons.
Collapse
Affiliation(s)
| | - Uzay Emir
- School of Health Sciences, Purdue University
| | | | - Xin Shen
- Radiology and Biomedical Imaging, University of California San Francisco
| | | | - Ali Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - William Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences
| | - Stephen Sawiak
- Department of Clinical Neuroscience, University of Cambridge
| |
Collapse
|
21
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
22
|
Klepochová R, Niess F, Meyerspeer M, Slukova D, Just I, Trattnig S, Ukropec J, Ukropcová B, Kautzky-Willer A, Leutner M, Krššák M. Correlation between skeletal muscle acetylcarnitine and phosphocreatine metabolism during submaximal exercise and recovery: interleaved 1H/ 31P MRS 7 T study. Sci Rep 2024; 14:3254. [PMID: 38332163 PMCID: PMC10853526 DOI: 10.1038/s41598-024-53221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Acetylcarnitine is an essential metabolite for maintaining metabolic flexibility and glucose homeostasis. The in vivo behavior of muscle acetylcarnitine content during exercise has not been shown with magnetic resonance spectroscopy. Therefore, this study aimed to explore the behavior of skeletal muscle acetylcarnitine during rest, plantar flexion exercise, and recovery in the human gastrocnemius muscle under aerobic conditions. Ten lean volunteers and nine overweight volunteers participated in the study. A 7 T whole-body MR system with a double-tuned surface coil was used to acquire spectra from the gastrocnemius medialis. An MR-compatible ergometer was used for the plantar flexion exercise. Semi-LASER-localized 1H MR spectra and slab-localized 31P MR spectra were acquired simultaneously in one interleaved exercise/recovery session. The time-resolved interleaved 1H/31P MRS acquisition yielded excellent data quality. A between-group difference in acetylcarnitine metabolism over time was detected. Significantly slower τPCr recovery, τPCr on-kinetics, and lower Qmax in the overweight group, compared to the lean group was found. Linear relations between τPCr on-kinetics, τPCr recovery, VO2max and acetylcarnitine content were identified. In conclusion, we are the first to show in vivo changes of skeletal muscle acetylcarnitine during acute exercise and immediate exercise recovery with a submaximal aerobic workload using interleaved 1H/31P MRS at 7 T.
Collapse
Affiliation(s)
- Radka Klepochová
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fabian Niess
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Meyerspeer
- High-Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dorota Slukova
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging (MOLIMA), Vienna, Austria
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Leutner
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
24
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Kent JA. Measurements of in vivo skeletal muscle oxidative capacity are lower following sustained isometric compared with dynamic contractions. Appl Physiol Nutr Metab 2024; 49:250-264. [PMID: 37906958 DOI: 10.1139/apnm-2023-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Human skeletal muscle oxidative capacity can be quantified non-invasively using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to measure the rate constant of phosphocreatine (PCr) recovery (kPCr) following contractions. In the quadricep muscles, several studies have quantified kPCr following 24-30 s of sustained maximal voluntary isometric contraction (MVIC). This approach has the advantage of simplicity but is potentially problematic because sustained MVICs inhibit perfusion, which may limit muscle oxygen availability or increase the intracellular metabolic perturbation, and thus affect kPCr. Alternatively, dynamic contractions allow reperfusion between contractions, which may avoid limitations in oxygen delivery. To determine whether dynamic contraction protocols elicit greater kPCr than sustained MVIC protocols, we used a cross-sectional design to compare quadriceps kPCr in 22 young and 11 older healthy adults following 24 s of maximal voluntary: (1) sustained MVIC and (2) dynamic (MVDC; 120°·s-1, 1 every 2 s) contractions. Muscle kPCr was ∼20% lower following the MVIC protocol compared with the MVDC protocol (p ≤ 0.001), though this was less evident in older adults (p = 0.073). Changes in skeletal muscle pH (p ≤ 0.001) and PME accumulation (p ≤ 0.001) were greater following the sustained MVIC protocol, and pH (p ≤ 0.001) and PME (p ≤ 0.001) recovery were slower. These results demonstrate that (i) a brief, sustained MVIC yields a lower value for skeletal muscle oxidative capacity than an MVDC protocol of similar duration and (ii) this difference may not be consistent across populations (e.g., young vs. old). Thus, the potential effect of contraction protocol on comparisons of kPCr in different study groups requires careful consideration in the future.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Liam F Fitzgerald
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, MA 01003, USA
| | - Jane A Kent
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
25
|
Quan Z, Yang Z, Tang X, Fu C, Zhou X, Huang L, Xia L, Zhang X. A double-tuned 1 H/ 31 P coil for rabbit heart metabolism detection at 3 T. NMR IN BIOMEDICINE 2024; 37:e5049. [PMID: 37767723 DOI: 10.1002/nbm.5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS) employing proton nuclear resonance has emerged as a pivotal modality in clinical diagnostics and fundamental research. Nonetheless, the scope of MRI/MRS extends beyond protons, encompassing nonproton nuclei that offer enhanced metabolic insights. A notable example is phosphorus-31 (31 P) MRS, which provides valuable information on energy metabolites within the skeletal muscle and cardiac tissues of individuals affected by diabetes. This study introduces a novel double-tuned coil tailored for 1 H and 31 P frequencies, specifically designed for investigating cardiac metabolism in rabbits. The proposed coil design incorporates a butterfly-like coil for 31 P transmission, a four-channel array for 31 P reception, and an eight-channel array for 1 H reception, all strategically arranged on a body-conformal elliptic cylinder. To assess the performance of the double-tuned coil, a comprehensive evaluation encompassing simulations and experimental investigations was conducted. The simulation results demonstrated that the proposed 31 P transmit design achieved acceptable homogeneity and exhibited comparable transmit efficiency on par with a band-pass birdcage coil. In vivo experiments further substantiated the coil's efficacy, revealing that the rabbit with experimentally induced diabetes exhibited a lower phosphocreatine/adenosine triphosphate ratio compared with its normal counterpart. These findings emphasize the potential of the proposed coil design as a promising tool for investigating the therapeutic effects of novel diabetes drugs within the context of animal experimentation. Its capability to provide detailed metabolic information establishes it as an indispensable asset within this realm of research.
Collapse
Affiliation(s)
- Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhaoxia Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocui Tang
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Caixia Fu
- Application Developments, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Xiaoyue Zhou
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- College of Electrical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
McDonald C, Camino E, Escandon R, Finkel RS, Fischer R, Flanigan K, Furlong P, Juhasz R, Martin AS, Villa C, Sweeney HL. Draft Guidance for Industry Duchenne Muscular Dystrophy, Becker Muscular Dystrophy, and Related Dystrophinopathies - Developing Potential Treatments for the Entire Spectrum of Disease. J Neuromuscul Dis 2024; 11:499-523. [PMID: 38363616 DOI: 10.3233/jnd-230219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Duchenne muscular dystrophy (DMD) and related dystrophinopathies are neuromuscular conditions with great unmet medical needs that require the development of effective medical treatments. Objective To aid sponsors in clinical development of drugs and therapeutic biological products for treating DMD across the disease spectrum by integrating advancements, patient registries, natural history studies, and more into a comprehensive guidance. Methods This guidance emerged from collaboration between the FDA, the Duchenne community, and industry stakeholders. It entailed a structured approach, involving multiple committees and boards. From its inception in 2014, the guidance underwent revisions incorporating insights from gene therapy studies, cardiac function research, and innovative clinical trial designs. Results The guidance provides a deeper understanding of DMD and its variants, focusing on patient engagement, diagnostic criteria, natural history, biomarkers, and clinical trials. It underscores patient-focused drug development, the significance of dystrophin as a biomarker, and the pivotal role of magnetic resonance imaging in assessing disease progression. Additionally, the guidance addresses cardiomyopathy's prominence in DMD and the burgeoning field of gene therapy. Conclusions The updated guidance offers a comprehensive understanding of DMD, emphasizing patient-centric approaches, innovative trial designs, and the importance of biomarkers. The focus on cardiomyopathy and gene therapy signifies the evolving realm of DMD research. It acts as a crucial roadmap for sponsors, potentially leading to improved treatments for DMD.
Collapse
Affiliation(s)
| | - Eric Camino
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rafael Escandon
- DGBI Consulting, LLC, Bainbridge Island, Washington, DC, USA
| | | | - Ryan Fischer
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Kevin Flanigan
- Center for Experimental Neurotherapeutics, Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Furlong
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Rose Juhasz
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Chet Villa
- Trinity Health Michigan, Grand Rapids, MI, USA
| | - H Lee Sweeney
- Cincinnati Children's Hospital Medical Center within the UC Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
27
|
Hayden CMT, Nagarajan R, Smith ZH, Gilmore S, Kent JA. Postcontraction [acetylcarnitine] reflects interindividual variation in skeletal muscle ATP production patterns in vivo. Am J Physiol Regul Integr Comp Physiol 2024; 326:R66-R78. [PMID: 37955131 DOI: 10.1152/ajpregu.00027.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.
Collapse
Affiliation(s)
- Christopher M T Hayden
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States
| | - Zoe H Smith
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Samantha Gilmore
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
28
|
Sedivy P, Dezortova M, Rydlo J, Moravec P, Krizek I, Setinova B, Pajuelo D, Burian M, Hajek M. Technical note: MR-compatible pedal ergometer with electromechanical pedal resistance and exercise triggering enhanced by visual feedback via video display. Med Phys 2023; 50:8063-8068. [PMID: 37665757 DOI: 10.1002/mp.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND During and after exercise, dynamic 31 P MR parameters are typically measured using an MR-compatible ergometer. Self-built equipment for local condition can be constructed where possible. PURPOSE To develop a pedal resistance ergometer with rocker arm based on a system that combines electric weight displacement, visual self-monitoring, and exercise triggering. The repeatability and reproducibility were tested. METHODS The hardware and software for the ergometer were constructed from commercial components in a home laboratory. Twelve volunteers participated in the testing of the ergometer. RESULTS A fully automated ergometer system was developed, allowing the pedal resistance to be adjusted during the examination. The system includes a self-monitoring and triggering mechanism that enables both the operator and subject to monitor pedal frequency and force. The operator can modify the pedal resistance as desired during the exercise. This self-monitoring solution is simple and cost-effective, requiring only a commercial potentiometer, an Arduino converter, and a conventional video projector with a personal computer (PC). Additionally, all system components are located outside the magnetic resonance (MR) room, avoiding interference with the MR system. Results of several test of the reproducibility/repeatability of power at three pedal resistance values (15%, 24%, 25% maximal voluntary force) were expressed both as a coefficient of variation ranging from 6% to 3.1% and as an intraclass correlation of coefficient ranging from 0.96 to 0.99. Similar values were also found for other dynamic parameters of 31 P MR spectroscopy. These findings are similar to published data obtained on different types of ergometers. CONCLUSIONS Based on more than 1 year of usage, the ergometer proved successful in handling stationary and variable loads, and can be easily operated by a single user.
Collapse
Affiliation(s)
- Petr Sedivy
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Dezortova
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Rydlo
- Information Technology Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Moravec
- Department of Medical Technology and Investments, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Bara Setinova
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Pajuelo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Burian
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Hajek
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
29
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by phosphorus-31 magnetic resonance spectroscopy in clinical routine, part 1: Advanced quality control pipeline. NMR IN BIOMEDICINE 2023; 36:e5025. [PMID: 37797948 DOI: 10.1002/nbm.5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
Implementing a standardized phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic 31 P-MRS protocol. The aim is to provide decision support to the operator to assist in data processing and obtain reliable results based on objective criteria. We present here, in part 1, an advanced data quality control (QC) approach of a dynamic 31 P-MRS protocol. Part 2 is an impact study that will demonstrate the added value of the QC approach to explore data derived from two clinical populations that experience significant fatigue, patients with coronavirus disease 2019 and multiple sclerosis. In part 1, 31 P-MRS was performed using 3-T clinical MRI in 175 subjects from clinical and healthy control populations conducted in a University Hospital. An advanced data QC score (QCS) was developed using multiple objective criteria. The criteria were based on current recommendations from the literature enriched by new proposals based on clinical experience. The QCS was designed to indicate valid and corrupt data and guide necessary objective data editing to extract as much valid physiological data as possible. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Using QCS enabled rapid identification of subjects with data anomalies, allowing the user to correct the data series or reject them partially or entirely, as well as identify fully valid datasets. Overall, the use of the QCS resulted in the automatic classification of 45% of the subjects, including 58 participants who had data with no criterion violation and 21 participants with violations that resulted in the rejection of all dynamic data. The remaining datasets were inspected manually with guidance, allowing acceptance of full datasets from an additional 80 participants and recovery phase data from an additional 16 subjects. Overall, more anomalies occurred with patient data (35% of datasets) compared with healthy controls (15% of datasets). In conclusion, the QCS ensures a standardized data rejection procedure and rigorous objective analysis of dynamic 31 P-MRS data obtained from patients. This methodology contributes to efforts made to standardize 31 P-MRS practices that have been underway for a decade, with the goal of making it an empowered tool for clinical research.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM - Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Etienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Etienne, France
| |
Collapse
|
30
|
Naëgel A, Ratiney H, Karkouri J, Kennouche D, Royer N, Slade JM, Morel J, Croisille P, Viallon M. Alteration of skeletal muscle energy metabolism assessed by 31 P MRS in clinical routine: Part 2. Clinical application. NMR IN BIOMEDICINE 2023; 36:e5031. [PMID: 37797947 DOI: 10.1002/nbm.5031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 10/07/2023]
Abstract
In this second part of a two-part paper, we intend to demonstrate the impact of the previously proposed advanced quality control pipeline. To understand its benefit and challenge the proposed methodology in a real scenario, we chose to compare the outcome when applying it to the analysis of two patient populations with significant but highly different types of fatigue: COVID-19 and multiple sclerosis (MS). 31 P-MRS was performed on a 3 T clinical MRI, in 19 COVID-19 patients, 38 MS patients, and 40 matched healthy controls. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Long and short TR acquisitions were also made at rest for T1 correction. The advanced data quality control pipeline presented in Part 1 is applied to the selected patient cohorts to investigate its impact on clinical outcomes. We first used power and sample size analysis to estimate objectively the impact of adding the quality control score (QCS). Then, comparisons between patients and healthy control groups using the validated QCS were performed using unpaired t tests or Mann-Whitney tests (p < 0.05). The application of the QCS resulted in increased statistical power, changed the values of several outcome measures, and reduced variability (standard deviation). A significant difference was found between the T1PCr and T1Pi values of MS patients and healthy controls. Furthermore, the use of a fixed correction factor led to systematically higher estimated concentrations of PCr and Pi than when using individually corrected factors. We observed significant differences between the two patient populations and healthy controls for resting [PCr]-MS only, [Pi ], [ADP], [H2 PO4 - ], and pH-COVID-19 only, and post-exercise [PCr], [Pi ], and [H2 PO4 - ]-MS only. The dynamic indicators τPCr , τPi , ViPCr , and Vmax were reduced for COVID-19 and MS patients compared with controls. Our results show that QCS in dynamic 31 P-MRS studies results in smaller data variability and therefore impacts study sample size and power. Although QCS resulted in discarded data and therefore reduced the acceptable data and subject numbers, this rigorous and unbiased approach allowed for proper assessment of muscle metabolites and metabolism in patient populations. The outcomes include an increased metabolite T1 , which directly affects the T1 correction factor applied to the amplitudes of the metabolite, and a prolonged τPCr , indicating reduced muscle oxidative capacity for patients with MS and COVID-19.
Collapse
Affiliation(s)
- Antoine Naëgel
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
| | - Hélène Ratiney
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Jabrane Karkouri
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Siemens Healthcare SAS, Saint-Denis, France
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | - Djahid Kennouche
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM-Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Nicolas Royer
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- LIBM-Laboratoire Interuniversitaire de Biologie de la Motricité, Villeurbanne, France
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jérôme Morel
- Anaesthetics and Intensive Care Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Pierre Croisille
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| | - Magalie Viallon
- Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
- Radiology Department, UJM-Saint-Étienne, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France
| |
Collapse
|
31
|
Wijma AG, Driessens H, Jeneson JAL, Janssen-Heijnen MLG, Willems TP, Klaase JM, Bongers BC. Cardiac and intramuscular adaptations following short-term exercise prehabilitation in unfit patients scheduled to undergo hepatic or pancreatic surgery: study protocol of a multinuclear MRI study. BMJ Open Gastroenterol 2023; 10:e001243. [PMID: 37996121 PMCID: PMC10668156 DOI: 10.1136/bmjgast-2023-001243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Short-term exercise prehabilitation programmes have demonstrated promising results in improving aerobic capacity of unfit patients prior to major abdominal surgery. However, little is known about the cardiac and skeletal muscle adaptations explaining the improvement in aerobic capacity following short-term exercise prehabilitation. METHODS AND ANALYSIS In this single-centre study with a pretest-post-test design, 12 unfit patients with a preoperative oxygen uptake (VO2) at the ventilatory anaerobic threshold ≤13 mL/kg/min and/or VO2 at peak exercise ≤18 mL/kg/min, who are scheduled to undergo hepatopancreatobiliary surgery at the University Medical Center Groningen (UMCG), the Netherlands, will be recruited. As part of standard care, unfit patients are advised to participate in a home-based exercise prehabilitation programme, comprising high-intensity interval training and functional exercises three times per week, combined with nutritional support, during a 4-week period. Pre-intervention and post-intervention, patients will complete a cardiopulmonary exercise test. Next to this, study participants will perform additional in-vivo exercise cardiac magnetic resonance (MR) imaging and phosphorus 31-MR spectroscopy of the quadriceps femoris muscle before and after the intervention to assess the effect on respectively cardiac and skeletal muscle function. ETHICS AND DISSEMINATION This study was approved in May 2023 by the Medical Research Ethics Committee of the UMCG (registration number NL83611.042.23, March 2023) and is registered in the ClinicalTrials.gov register. Results of this study will be submitted for presentation at (inter)national congresses and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05772819.
Collapse
Affiliation(s)
- Allard G Wijma
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Heleen Driessens
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jeroen A L Jeneson
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, The Netherlands
- Department of Epidemiology, School for Oncology and Reproduction (GROW), Maastricht University, Maastricht, The Netherlands
| | - Tineke P Willems
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost M Klaase
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart C Bongers
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Surgery, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Dubský M, Husáková J, Sojáková D, Fejfarová V, Jude EB. Cell Therapy of Severe Ischemia in People with Diabetic Foot Ulcers-Do We Have Enough Evidence? Mol Diagn Ther 2023; 27:673-683. [PMID: 37740111 PMCID: PMC10590286 DOI: 10.1007/s40291-023-00667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 09/24/2023]
Abstract
This current opinion article critically evaluates the efficacy of autologous cell therapy (ACT) for chronic limb-threatening ischemia (CLTI), especially in people with diabetes who are not candidates for standard revascularization. This treatment approach has been used in 'no-option' CLTI in the last two decades and more than 1700 patients have received ACT worldwide. Here we analyze the level of published evidence of ACT as well as our experience with this treatment method. Many studies have shown that ACT is safe and an effective method for patients with the most severe lower limb ischemia. However, some trials did not show any benefit of ACT, and there is some heterogeneity in the types of injected cells, route of administration and assessed endpoints. Nevertheless, we believe that ACT plays an important role in a comprehensive treatment of patients with diabetic foot and severe ischemia.
Collapse
Affiliation(s)
- Michal Dubský
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic.
| | - Jitka Husáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | - Dominika Sojáková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles Universtiy, Prague, Czech Republic
| | | | - Edward B Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton Under Lyne, UK.
- University of Manchester, Lancashire, UK.
| |
Collapse
|
33
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
34
|
Zapata Bustos R, Coletta DK, Galons JP, Davidson LB, Langlais PR, Funk JL, Willis WT, Mandarino LJ. Nonequilibrium thermodynamics and mitochondrial protein content predict insulin sensitivity and fuel selection during exercise in human skeletal muscle. Front Physiol 2023; 14:1208186. [PMID: 37485059 PMCID: PMC10361819 DOI: 10.3389/fphys.2023.1208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.
Collapse
Affiliation(s)
- Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
- Department of Physiology, The University of Arizona, Tucson, AZ, United States
| | - Jean-Philippe Galons
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Lisa B. Davidson
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Jett S, Boneu C, Zarate C, Carlton C, Kodancha V, Nerattini M, Battista M, Pahlajani S, Williams S, Dyke JP, Mosconi L. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1183228. [PMID: 37273652 PMCID: PMC10232902 DOI: 10.3389/fnagi.2023.1183228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aβ) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Vibha Kodancha
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michael Battista
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
36
|
Finnigan LEM, Cassar MP, Koziel MJ, Pradines J, Lamlum H, Azer K, Kirby D, Montgomery H, Neubauer S, Valkovič L, Raman B. Efficacy and tolerability of an endogenous metabolic modulator (AXA1125) in fatigue-predominant long COVID: a single-centre, double-blind, randomised controlled phase 2a pilot study. EClinicalMedicine 2023; 59:101946. [PMID: 37223439 PMCID: PMC10102537 DOI: 10.1016/j.eclinm.2023.101946] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023] Open
Abstract
Background 'Long COVID' describes persistent symptoms, commonly fatigue, lasting beyond 12 weeks following SARS-CoV-2 infection. Potential causes include reduced mitochondrial function and cellular bioenergetics. AXA1125 has previously increased β-oxidation and improved bioenergetics in preclinical models along with certain clinical conditions, and therefore may reduce fatigue associated with Long COVID. We aimed to assess the efficacy, safety and tolerability of AXA1125 in Long COVID. Methods Patients with fatigue-dominant Long COVID were recruited in this single-centre, double-blind, randomised controlled phase 2a pilot study completed in the UK. Patients were randomly assigned (1:1) using an Interactive Response Technology to receive either AXA1125 or matching placebo in a clinical-based setting. Each dose (33.9 g) of AXA1125 or placebo was administered orally in a liquid suspension twice daily for four weeks with a two-week follow-up period. The primary endpoint was the mean change from baseline to day 28 in the phosphocreatine (PCr) recovery rate following moderate exercise, assessed by 31P-magnetic resonance spectroscopy (MRS). All patients were included in the intention to treat analysis. This trial was registered at ClinicalTrials.gov, NCT05152849. Findings Between December 15th 2021, and May 23th 2022, 60 participants were screened, and 41 participants were randomised and included in the final analysis. Changes in skeletal muscle phosphocreatine recovery time constant (τPCr) and 6-min walk test (6MWT) did not significantly differ between treatment (n = 21) and placebo group (n = 20). However, treatment with AXA1125 was associated with significantly reduced day 28 Chalder Fatigue Questionnaire [CFQ-11] fatigue score when compared with placebo (least squares mean difference [LSMD] -4.30, 95% confidence interval (95% CI) -7.14, -1.47; P = 0.0039). Eleven (52.4%, AXA1125) and four (20.0%, placebo) patients reported treatment-emergent adverse events; none were serious or led to treatment discontinuation. Interpretation Although treatment with AXA1125 did not improve the primary endpoint (τPCr-measure of mitochondrial respiration), when compared to placebo, there were significant improvements in fatigue-based symptoms among patients living with Long COVID following a four-week treatment period. Further multicentre studies are needed to validate our findings in a larger cohort of patients with fatigue-dominant Long COVID. Funding Axcella Therapeutics.
Collapse
Affiliation(s)
- Lucy E M Finnigan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Mark Philip Cassar
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | - Hanan Lamlum
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Karim Azer
- Axcella Therapeutics, Cambridge, MA, USA
| | - Dan Kirby
- Axcella Therapeutics, Cambridge, MA, USA
| | | | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| |
Collapse
|
37
|
Reiter DA, Bellissimo MP, Zhou L, Boebinger S, Wells GD, Jones DP, Ziegler TR, Alvarez JA, Fleischer CC. Increased adiposity is associated with altered skeletal muscle energetics. J Appl Physiol (1985) 2023; 134:1083-1092. [PMID: 36759162 PMCID: PMC10125027 DOI: 10.1152/japplphysiol.00387.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The objective of this pilot study was to characterize relationships between skeletal muscle energy metabolism and body composition in healthy adults with varied amounts and distribution of adipose tissue. In vivo muscle energetics were quantified using dynamic 31P magnetic resonance spectroscopy with knee extension exercise standardized to subject lean body mass. Spearman's correlation analysis examined relationships between muscle metabolism indices and measures of adiposity including body mass index (BMI), total body fat, and quadriceps intermuscular adipose tissue (IMAT). Post hoc partial correlations were examined controlling for additional body composition measures. Kruskal-Wallis tests with Dunn-Sidak post hoc comparisons evaluated group differences in energy metabolism based on body composition profiles (i.e., lean, normal-weight obese, and overweight-obese) and IMAT tertiles. BMI negatively correlated with end-exercise muscle pH after correcting for IMAT and total body fat (r = -0.46, P = 0.034). Total adiposity negatively correlated with maximum oxidative capacity after correcting for IMAT (r = -0.54, P = 0.013). IMAT positively correlated with muscle proton buffering capacity after correcting for total body fat (r = 0.53, P = 0.023). Body composition groups showed differences in end-exercise fall in [PCr] with normalized workload (P = 0.036; post hoc: overweight-obese < lean, P = 0.029) and maximum oxidative capacity (P = 0.021; post hoc: normal-weight obese < lean, P = 0.016). IMAT tertiles showed differences in end-exercise fall in [PCr] with normalized workload (P = 0.035; post hoc: 3rd < 1st, P = 0.047). Taken together, these results support increased adiposity is associated with reduced muscle energetic efficiency with more reliance on glycolysis, and when accompanied with reduced lean mass, is associated with reduced maximum oxidative capacity.NEW & NOTEWORTHY Skeletal muscle energy production is influenced by both lean body mass and adipose tissue but the effect of their distribution on energy metabolism is unclear. This study examined variations in quadriceps muscle energy metabolism in healthy adults with varied relative amounts of lean and adipose tissue. Results suggest increased adiposity is associated with reduced muscle energetic efficiency with more reliance on glycolysis, and when accompanied with reduced lean mass, is associated with reduced maximum oxidative capacity.
Collapse
Affiliation(s)
- David A Reiter
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Orthopedics, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
| | - Moriah P Bellissimo
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Lei Zhou
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Scott Boebinger
- Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
| | - Greg D Wells
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Thomas R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jessica A Alvarez
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Candace C Fleischer
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States
| |
Collapse
|
38
|
Tyler A, Ellis J, Lau JYC, Miller JJ, Bottomley PA, Rodgers CT, Tyler DJ, Valkovič L. Compartment-based reconstruction of 3D acquisition-weighted 31 P cardiac magnetic resonance spectroscopic imaging at 7 T: A reproducibility study. NMR IN BIOMEDICINE 2023; 36:e4950. [PMID: 37046414 PMCID: PMC10658645 DOI: 10.1002/nbm.4950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Even at 7 T, cardiac 31 P magnetic resonance spectroscopic imaging (MRSI) is fundamentally limited by low signal-to-noise ratio (SNR), leading to long scan times and poor temporal and spatial resolutions. Compartment-based reconstruction algorithms such as magnetic resonance spectroscopy with linear algebraic modeling (SLAM) and spectral localization by imaging (SLIM) may improve SNR or reduce scan time without changes to acquisition. Here, we compare the repeatability and SNR performance of these compartment-based methods, applied to three different acquisition schemes at 7 T. Twelve healthy volunteers were scanned twice. Each scan session consisted of a 6.5-min 3D acquisition-weighted (AW) cardiac 31 P phase encode-based MRSI acquisition and two 6.5-min truncated k-space acquisitions with increased averaging (4 × 4 × 4 central k-space phase encodes and fractional SLAM [fSLAM] optimized k-space phase encodes). Spectra were reconstructed using (i) AW Fourier reconstruction; (ii) AW SLAM; (iii) AW SLIM; (iv) 4 × 4 × 4 SLAM; (v) 4 × 4 × 4 SLIM; and (vi) fSLAM acquisition-reconstruction combinations. The phosphocreatine-to-adenosine triphosphate (PCr/ATP) ratio, the PCr SNR, and spatial response functions were computed, in addition to coefficients of reproducibility and variability. Using the compartment-based reconstruction algorithms with the AW 31 P acquisition resulted in a significant increase in SNR compared with previously published Fourier-based MRSI reconstruction methods while maintaining the measured PCr/ATP ratio and improving interscan reproducibility. The alternative acquisition strategies with truncated k-space performed no better than the common AW approach. Compartment-based spectroscopy approaches provide an attractive reconstruction method for cardiac 31 P spectroscopy at 7 T, improving reproducibility and SNR without the need for a dedicated k-space sampling strategy.
Collapse
Affiliation(s)
- Andrew Tyler
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Jane Ellis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Justin Y. C. Lau
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Jack J. Miller
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Physics, Clarendon LaboratoryUniversity of OxfordOxfordUK
- The MR Research Centre & The PET Research CentreAarhus UniversityAarhusDenmark
| | - Paul A. Bottomley
- The Division of MR ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Christopher T. Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Damian J. Tyler
- Department of Physiology, Anatomy & GeneticsUniversity of OxfordOxfordUK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Imaging Methods, Institute of Measurement ScienceSlovak Academy of SciencesBratislavaSlovakia
| |
Collapse
|
39
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
40
|
Barakati N, Bustos RZ, Coletta DK, Langlais PR, Kohler LN, Luo M, Funk JL, Willis WT, Mandarino LJ. Fuel Selection in Skeletal Muscle Exercising at Low Intensity; Reliance on Carbohydrate in Very Sedentary Individuals. Metab Syndr Relat Disord 2023; 21:16-24. [PMID: 36318809 PMCID: PMC9969886 DOI: 10.1089/met.2022.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Resting skeletal muscle in insulin resistance prefers to oxidize carbohydrate rather than lipid, exhibiting metabolic inflexibility. Although this is established in resting muscle, complexities involved in directly measuring fuel oxidation using indirect calorimetry across a muscle bed have limited studies of this phenomenon in working skeletal muscle. During mild exercise and at rest, whole-body indirect calorimetry imperfectly estimates muscle fuel oxidation. We provide evidence that a method termed "ΔRER" can reasonably estimate fuel oxidation in skeletal muscle activated by exercise. Methods: Completely sedentary volunteers (n = 20, age 31 ± 2 years, V̇O2peak 24.4 ± 1.5 mL O2 per min/kg) underwent glucose clamps to determine insulin sensitivity and graded exercise consisting of three periods of mild steady-state cycle ergometry (15, 30, 45 watts, or 10%, 20%, and 30% of maximum power) with measurements of whole-body gas exchange. ΔRER, the RER in working muscle, was calculated as (V̇CO2exercise -V̇CO2rest)/(V̇O2exercise - V̇O2rest), from which the fraction of fuel accounted for by lipid was estimated. Results: Lactate levels were low and stable during steady-state exercise. Muscle biopsies were used to estimate mitochondrial content. The rise of V̇O2 at onset of exercise followed a monoexponential function, with a time constant of 51 ± 7 sec, typical of skeletal muscle; the average O2 cost of work was about 12 mL O2/watt/min, representing a mechanical efficiency of about 24%. At work rates of 30 or 45 watts, active muscle relied predominantly on carbohydrate, independent of insulin sensitivity within this group of very sedentary volunteers. Conclusions: The fraction of muscle fuel oxidation from fat was predicted by power output (P < 0.001) and citrate synthase activity (P < 0.05), indicating that low mitochondrial content may be the main driver of fuel choice in sedentary people, independent of insulin sensitivity.
Collapse
Affiliation(s)
- Neusha Barakati
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
- Department of Physiology, The University of Arizona, Tucson, Arizona, USA
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Lindsay N. Kohler
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
- Department of Health Promotion Sciences, Epidemiology and Biostatistics and The University of Arizona, Tucson, Arizona, USA
- Department of Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona, USA
| | - Moulun Luo
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, Arizona, USA
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Health Sciences, Tucson, Arizona, USA
| |
Collapse
|
41
|
Jett S, Dyke JP, Andy C, Schelbaum E, Jang G, Boneu Yepez C, Pahlajani S, Diaz I, Diaz Brinton R, Mosconi L. Sex and menopause impact 31P-Magnetic Resonance Spectroscopy brain mitochondrial function in association with 11C-PiB PET amyloid-beta load. Sci Rep 2022; 12:22087. [PMID: 36543814 PMCID: PMC9772209 DOI: 10.1038/s41598-022-26573-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence implicates sex and endocrine aging effects on brain bioenergetic aging in the greater lifetime risk of Alzheimer's disease (AD) in women. We conducted 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) to assess the impact of sex and menopause on brain high-energy phosphates [adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi)] and membrane phospholipids [phosphomonoesters/phosphodiesters (PME/PDE)] in 216 midlife cognitively normal individuals at risk for AD, 80% female. Ninety-seven participants completed amyloid-beta (Aβ) 11C-PiB PET. Women exhibited higher ATP utilization than men in AD-vulnerable frontal, posterior cingulate, fusiform, medial and lateral temporal regions (p < 0.001). This profile was evident in frontal cortex at the pre-menopausal and peri-menopausal stage and extended to the other regions at the post-menopausal stage (p = 0.001). Results were significant after multi-variable adjustment for age, APOE-4 status, midlife health indicators, history of hysterectomy/oophorectomy, use of menopause hormonal therapy, and total intracranial volume. While associations between ATP/PCr and Aβ load were not significant, individuals with the highest Aβ load were post-menopausal and peri-menopausal women with ATP/PCr ratios in the higher end of the distribution. No differences in Pi/PCr, Pi/ATP or PME/PDE were detected. Outcomes are consistent with dynamic bioenergetic brain adaptations that are associated with female sex and endocrine aging.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Grace Jang
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Ivan Diaz
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Ellis C, Burns D. All about oxygen: using near-infrared spectroscopy to understand bioenergetics. ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:685-692. [PMID: 36201307 DOI: 10.1152/advan.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The interchange among the energy-providing phosphagen, glycolytic, and aerobic systems during exercise is often poorly understood by beginning students in exercise physiology. Exercise is oftentimes thought of as being aerobic or anaerobic, with the body progressing sequentially from one system to the next, although the energy systems work synergistically to produce energy from the onset of exercise, and all ultimately use oxygen. Traditional methods of teaching these concepts using only indirect calorimetry and a metabolic cart can be misleading. Relatively inexpensive noninvasive monitors of muscle oxygenation levels ([Formula: see text]) provide a useful tool to help students better understand the contribution and timing of these three systems of ATP generation and convey the concept that ultimately all energy production in the human body is oxygen dependent. In this laboratory, students use near-infrared spectroscopy (NIRS) to visualize oxygen utilization by skeletal muscle during exercise by devising three exercise unique protocols, with each designed to stress a different energy system. Students then perform their protocols while using NIRS to measure and analyze [Formula: see text]. Students generate graphs with collected data, allowing them to visualize and appreciate oxygen consumption during all three protocols as well as elevated oxygen consumption after exercise. The students learn that any exercise is really all about oxygen.NEW & NOTEWORTHY Traditional methods of teaching bioenergetics using indirect calorimetry and a metabolic cart may be misleading. Recent advances in technology have made near-infrared spectroscopy (NIRS) a relatively inexpensive, noninvasive means of monitoring muscle oxygen levels during exercise. In this laboratory activity, NIRS devices are used for hands-on exploration of the synergistic nature of the energy systems, allowing students to appreciate the synergistic nature of the energy systems and how all exercise is really all about oxygen.
Collapse
Affiliation(s)
- Carrie Ellis
- Sport and Exercise Physiology Department, DeSales University, Center Valley, Pennsylvania
| | - Douglas Burns
- Sport and Exercise Physiology Department, DeSales University, Center Valley, Pennsylvania
| |
Collapse
|
43
|
Parasoglou P, Osorio RS, Khegai O, Kovbasyuk Z, Miller M, Ho A, Dehkharghani S, Wisniewski T, Convit A, Mosconi L, Brown R. Phosphorus metabolism in the brain of cognitively normal midlife individuals at risk for Alzheimer's disease. NEUROIMAGE. REPORTS 2022; 2:100121. [PMID: 36532654 PMCID: PMC9757821 DOI: 10.1016/j.ynirp.2022.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Background Neurometabolic abnormalities and amyloid-beta plaque deposition are important early pathophysiologic changes in Alzheimer's disease (AD). This study investigated the relationship between high-energy phosphorus-containing metabolites, glucose uptake, and amyloid plaque using phosphorus magnetic resonance spectroscopy (31P-MRS) and positron emission tomography (PET). Methods We measured 31P-MRS, fluorodeoxyglucose (FDG)-PET, and Pittsburgh Compound B (PiB)-PET in a cohort of 20 cognitively normal middle-aged adults at risk for AD. We assessed 31P-MRS reliability by scanning a separate cohort of 13 healthy volunteers twice each. We calculated the coefficient-of-variation (CV) of metabolite ratios phosphocreatine-to-adenosine triphosphate (PCr/α-ATP), inorganic phosphate (Pi)-to-α-ATP, and phosphomonoesters-to-phosphodiesters (PME/PDE), and pH in pre-defined brain regions. We performed linear regression analysis to determine the relationship between 31P measurements and tracer uptake, and Dunn's multiple comparison tests to investigate regional differences in phosphorus metabolism. Finally, we performed linear regression analysis on 31P-MRS measurements in both cohorts to investigate the relationship of phosphorus metabolism with age. Results Most regional 31P metabolite ratio and pH inter- and intra-day CVs were well below 10%. There was an inverse relationship between FDG-SUV levels and metabolite ratios PCr/α-ATP, Pi/α-ATP, and PME/PDE in several brain regions in the AD risk group. There were also several regional differences among 31P metabolites and pH in the AD risk group including elevated PCr/α-ATP, depressed PME/PDE, and elevated pH in the temporal cortices. Increased PCr/α-ATP throughout the brain was associated with aging. Conclusions Phosphorus spectroscopy in the brain can be performed with high repeatability. Phosphorus metabolism varies with region and age, and is related to glucose uptake in adults at risk for AD. Phosphorus spectroscopy may be a valuable approach to study early changes in brain energetics in high-risk populations.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Oleksandr Khegai
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zanetta Kovbasyuk
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Margo Miller
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amanda Ho
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Seena Dehkharghani
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
44
|
Grundler F, Viallon M, Mesnage R, Ruscica M, von Schacky C, Madeo F, Hofer SJ, Mitchell SJ, Croisille P, Wilhelmi de Toledo F. Long-term fasting: Multi-system adaptations in humans (GENESIS) study-A single-arm interventional trial. Front Nutr 2022; 9:951000. [PMID: 36466423 PMCID: PMC9713250 DOI: 10.3389/fnut.2022.951000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Fasting provokes fundamental changes in the activation of metabolic and signaling pathways leading to longer and healthier lifespans in animal models. Although the involvement of different metabolites in fueling human fasting metabolism is well known, the contribution of tissues and organs to their supply remains partly unclear. Also, changes in organ volume and composition remain relatively unexplored. Thus, processes involved in remodeling tissues during fasting and food reintroduction need to be better understood. Therefore, this study will apply state-of-the-art techniques to investigate the effects of long-term fasting (LF) and food reintroduction in humans by a multi-systemic approach focusing on changes in body composition, organ and tissue volume, lipid transport and storage, sources of protein utilization, blood metabolites, and gut microbiome profiles in a single cohort. This is a prospective, single-arm, monocentric trial. One hundred subjects will be recruited and undergo 9 ± 3 day-long fasting periods (250 kcal/day). We will assess changes in the composition of organs, bones and blood lipid profiles before and after fasting, as well as high-density lipoprotein (HDL) transport and storage, untargeted metabolomics of peripheral blood mononuclear cells (PBMCs), protein persulfidation and shotgun metagenomics of the gut microbiome. The first 32 subjects, fasting for 12 days, will be examined in more detail by magnetic resonance imaging (MRI) and spectroscopy to provide quantitative information on changes in organ volume and function, followed by an additional follow-up examination after 1 and 4 months. The study protocol was approved by the ethics board of the State Medical Chamber of Baden-Württemberg on 26.07.2021 and registered at ClinicalTrials.gov (NCT05031598). The results will be disseminated through peer-reviewed publications, international conferences and social media. Clinical trial registration [ClinicalTrials.gov], identifier [NCT05031598].
Collapse
Affiliation(s)
| | - Magalie Viallon
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioHealth Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sarah J. Mitchell
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Pierre Croisille
- UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Université de Lyon, Saint-Étienne, France
- Department of Radiology, University Hospital Saint-Étienne, Saint-Étienne, France
| | | |
Collapse
|
45
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
46
|
Dorst J, Borbath T, Ruhm L, Henning A. Phosphorus transversal relaxation times and metabolite concentrations in the human brain at 9.4 T. NMR IN BIOMEDICINE 2022; 35:e4776. [PMID: 35607903 DOI: 10.1002/nbm.4776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A method to estimate phosphorus (31 P) transversal relaxation times (T2 s) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH and relaxation-corrected metabolite concentrations are reported. Echo time (TE) series of 31 P metabolite spectra were acquired using stimulated echo acquisition mode (STEAM) localization. Spectra were fitted using LCModel with accurately modeled Versatile Simulation, Pulses and Analysis (VeSPA) basis sets accounting for J-evolution of the coupled spin systems. T2 s were estimated by fitting a single exponential two-parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and estimated relaxation times were used to determine the relaxation-corrected brain metabolite concentrations on an assumption of 3 mM γ-ATP. The method was demonstrated in healthy human brain at a field strength of 9.4 T. T2 times of ATP and nicotinamide adenine dinucleotide (NAD) were shortest between 8 and 20 ms, followed by T2 s of inorganic phosphate between 25 and 50 ms, and phosphocreatine with a T2 of 100 ms. Phosphomonoesters and phosphodiesters had the longest T2 s of about 130 ms. The measured T2 s are comparable with literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable with literature values.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
47
|
Yurista SR, Eder RA, Kwon DH, Farrar CT, Yen YF, Tang WHW, Nguyen CT. Magnetic resonance imaging of cardiac metabolism in heart failure: how far have we come? Eur Heart J Cardiovasc Imaging 2022; 23:1277-1289. [PMID: 35788836 PMCID: PMC10202438 DOI: 10.1093/ehjci/jeac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
As one of the highest energy consumer organs in the body, the heart requires tremendous amount of adenosine triphosphate (ATP) to maintain its continuous mechanical work. Fatty acids, glucose, and ketone bodies are the primary fuel source of the heart to generate ATP with perturbations in ATP generation possibly leading to contractile dysfunction. Cardiac metabolic imaging with magnetic resonance imaging (MRI) plays a crucial role in understanding the dynamic metabolic changes occurring in the failing heart, where the cardiac metabolism is deranged. Also, targeting and quantifying metabolic changes in vivo noninvasively is a promising approach to facilitate diagnosis, determine prognosis, and evaluate therapeutic response. Here, we summarize novel MRI techniques used for detailed investigation of cardiac metabolism in heart failure including magnetic resonance spectroscopy (MRS), hyperpolarized MRS, and chemical exchange saturation transfer based on evidence from preclinical and clinical studies and to discuss the potential clinical application in heart failure.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Robert A Eder
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Deborah H Kwon
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Christian T Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - Yi Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, MA 02129, USA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
48
|
Longitudinal associations between blood lysophosphatidylcholines and skeletal muscle mitochondrial function. GeroScience 2022; 44:2213-2221. [PMID: 35389191 PMCID: PMC9616971 DOI: 10.1007/s11357-022-00548-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidylcholines (LPCs) are phospholipids critical in the synthesis of cardiolipin, an essential component of mitochondrial membranes. Lower plasma LPCs have been cross-sectionally associated with lower skeletal muscle mitochondrial function, but whether lower LPCs and their decline over time are longitudinally associated with an accelerated decline of mitochondria function is unknown. We analyzed data from 184 participants in the Baltimore Longitudinal Study of Aging (mean age: 74.5 years, 57% women, 25% black) who had repeated measures of plasma LPCs (16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:3, 20:4, 24:0, and 28:1) by liquid chromatography-tandem mass spectrometry and repeated measures of skeletal muscle oxidative capacity (kPCr) assessed by 31P magnetic resonance spectroscopy over an average of 2.4 years. Rates of change in kPCr and each LPC were first estimated using simple linear regression. In multivariable linear regression models adjusted for baseline demographics and PCr % depletion, lower baseline LPC 16:1 and faster rates of decline in LPC 16:1 and 18:1 were significantly associated with a faster rate of decline in kPCr (B = - 0.169, 95% CI: - 0.328, - 0.010, p = 0.038; B = 0.209, 95% CI: 0.065, 0.352, p = 0.005; B = 0.156, 95% CI: 0.011, 0.301, p = 0.035, respectively). Rates of change in other LPCs were not significantly associated with change in kPCr (all p > 0.05). Lower baseline concentrations and faster decline in selected plasma lysophosphatidylcholines over time are associated with faster decline in skeletal muscle mitochondrial function. Strategies to prevent the decline of plasma LPCs at an early stage may slow down mitochondrial function decline and impairment during aging.
Collapse
|
49
|
Oberdier MT, AlGhatrif M, Adelnia F, Zampino M, Morrell CH, Simonsick E, Fishbein K, Lakatta EG, McDermott MM, Ferrucci L. Ankle-Brachial Index and Energy Production in People Without Peripheral Artery Disease: The BLSA. J Am Heart Assoc 2022; 11:e019014. [PMID: 35253449 PMCID: PMC9075330 DOI: 10.1161/jaha.120.019014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Background Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. Method and Results We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-β=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-β=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-β=0.16; P=0.0122) and body mass index (STD-β=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). Conclusions In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.
Collapse
Affiliation(s)
- Matt T. Oberdier
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Majd AlGhatrif
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
- Department of MedicineJohns Hopkins School of MedicineBaltimoreMD
| | - Fatemeh Adelnia
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Marta Zampino
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Christopher H. Morrell
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Loyola University MarylandBaltimoreMD
| | | | - Kenneth Fishbein
- Laboratory of Clinical InvestigationNational Institute on AgingBaltimoreMD
| | - Edward G. Lakatta
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
| | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Luigi Ferrucci
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| |
Collapse
|
50
|
Kracíková L, Ziółkowska N, Androvič L, Klimánková I, Červený D, Vít M, Pompach P, Konefał R, Janoušková O, Hrubý M, Jirák D, Laga R. Phosphorus-containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for 31 P-Magnetic Resonance Imaging. Macromol Biosci 2022; 22:e2100523. [PMID: 35246950 DOI: 10.1002/mabi.202100523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Indexed: 11/12/2022]
Abstract
31 P-magnetic resonance (MR) is an important diagnostic technique currently used for tissue metabolites assessing, but it also has great potential for visualizing the internal body structures. However, due to the low physiological level of phosphorus-containing biomolecules, precise imaging requires the administration of an exogenous probe. Herein, we describe the synthesis and MR characterization of a pioneering metal-free 31 P-MR probe based on phosphorus-containing polymeric zwitterion. The developed probe (pTMPC) is a well-defined water-soluble macromolecule characterized by a high content of naturally rare phosphorothioate groups providing a high-intensity 31 P-MR signal clearly distinguishable from biological background both in vitro and in vitro. In addition, pTMPC can serve as a sensitive 31 P-MR sensor of pathological conditions in vivo because it undergoes oxidation-induced structural changes in the presence of reactive oxygen species. Add to this the favorable 1 H and 31 P T1 /T2 relaxation times and biocompatibility, pTMPC represents a conceptually new diagnostic, whose discovery opens up new possibilities in the field of 31 P-MR spectroscopy and imaging. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lucie Kracíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic.,Faculty of Chemical Technology, The University of Chemistry and Technology, Technická 5, Prague, 166 28, Czech Republic
| | - Natalia Ziółkowska
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 21, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 1660/32, Prague, 121 08, Czech Republic
| | - Ladislav Androvič
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Iveta Klimánková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - David Červený
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 21, Czech Republic
| | - Martin Vít
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 21, Czech Republic.,Faculty of Mechatronics Informatics and Interdisciplinary Studies, Technical University of Liberec, Hálkova 917, Liberec, 461 17, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology, Czech Academy of Sciences, Průmyslová 595, Vestec, 252 50, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic.,Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 1, Ústí nad Labem, 400 96, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague, 140 21, Czech Republic.,Faculty of Health Studies, Technical University of Liberec, Studentská 1402/2, Liberec, 461 17, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| |
Collapse
|