1
|
Karmacharya A, Kasai S, Mukai Y, Sato S. Maternal Broccoli Powder Intake Ameliorates Insulin Resistance and Inflammation via AMPK/mTOR Pathway in the Livers of High-Fructose-Fed Male Rat Offspring Exposed to Maternal Protein Restriction. Mol Nutr Food Res 2024:e2400472. [PMID: 39420699 DOI: 10.1002/mnfr.202400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/31/2024] [Indexed: 10/19/2024]
Abstract
SCOPE Sub-optimal prenatal conditions such as maternal undernutrition during pregnancy and lactation posit high risks of adult metabolic diseases. High fructose intake causes insulin resistance and liver inflammation contributing to metabolic diseases. However, food-based preventive measure for these metabolic diseases in the offspring is under-researched. This study aims to investigate the effect of maternal broccoli powder (BP) intake during lactation on insulin resistance and liver inflammation in high-fructose-diet-fed adult male offspring exposed to maternal protein restriction. METHODS AND RESULTS Pregnant Wistar rats are provided normal protein (NP) or low protein (LP) diets and 0% or 0.74% BP-containing NP diets and 0% or 0.74% BP-containing LP diet during lactation. At weaning, offspring receiving water (W) or 10% fructose solution (Fr) are assigned into six groups: NP/NP/W, NP/NP/Fr, NP/NPBP/Fr, LP/LP/W, LP/LP/Fr, and LP/LPBP/Fr. At week 13, plasma insulin, macrophage infiltration, activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) phosphorylation, and autophagy flux markers are examined. LP/LPBP/Fr shows lower insulin levels and Homeostatic model assessment for insulin resistance (HOMA-IR) values than LP/LP/Fr. Liver macrophage infiltration are decreased in LP/LPBP/Fr. LP/LPBP/Fr exhibits upregulated AMPK phosphorylation, downregulated mTOR phosphorylation, and increased Microtubule-associated protein1A/1B-light chain 3B-II (LC3B-II) levels. CONCLUSION Maternal BP intake during lactation ameliorates insulin resistance and inflammation in the livers of adult offspring on a high-fructose diet from LP mothers.
Collapse
Affiliation(s)
- Anishma Karmacharya
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Shiho Kasai
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| | - Yuuka Mukai
- School of Nutrition and Dietetics, Faculty of Health and Social Work, Kanagawa University of Human Services, Kanagawa, 238-8522, Japan
| | - Shin Sato
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, 030-8505, Japan
| |
Collapse
|
2
|
Yao Y, Li Q. The Role of Parvalbumin Interneurons in Autism Spectrum Disorder. J Neurosci Res 2024; 102:e25391. [PMID: 39400385 DOI: 10.1002/jnr.25391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024]
Abstract
As an important subtype of GABAergic interneurons, parvalbumin (PV) interneurons play a critical role in regulating cortical circuits and neural networks. Abnormalities in the development or function of PV interneurons have been linked to autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by social and language deficits. In this review, we focus on the abnormalities of PV interneurons in ASD, including quantity and function and discuss the underlying mechanisms of impairments in PV interneurons in the pathology of ASD. Finally, we propose potential therapeutic approaches targeting PV interneurons, such as transplanting MGE progenitor cells and utilizing optogenetic stimulation in the treatment of ASD.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Li
- Department of Central Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Ramakrishnan M, Fahey JW, Zimmerman AW, Zhou X, Panjwani AA. The role of isothiocyanate-rich plants and supplements in neuropsychiatric disorders: a review and update. Front Nutr 2024; 11:1448130. [PMID: 39421616 PMCID: PMC11484503 DOI: 10.3389/fnut.2024.1448130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Neuroinflammation in response to environmental stressors is an important common pathway in a number of neurological and psychiatric disorders. Responses to immune-mediated stress can lead to epigenetic changes and the development of neuropsychiatric disorders. Isothiocyanates (ITC) have shown promise in combating oxidative stress and inflammation in the nervous system as well as organ systems. While sulforaphane from broccoli is the most widely studied ITC for biomedical applications, ITC and their precursor glucosinolates are found in many species of cruciferous and other vegetables including moringa. In this review, we examine both clinical and pre-clinical studies of ITC on the amelioration of neuropsychiatric disorders (neurodevelopmental, neurodegenerative, and other) from 2018 to the present, including documentation of protocols for several ongoing clinical studies. During this time, there have been 16 clinical studies (9 randomized controlled trials), most of which reported on the effect of sulforaphane on autism spectrum disorder and schizophrenia. We also review over 80 preclinical studies examining ITC treatment of brain-related dysfunctions and disorders. The evidence to date reveals ITC have great potential for treating these conditions with minimal toxicity. The authors call for well-designed clinical trials to further the translation of these potent phytochemicals into therapeutic practice.
Collapse
Affiliation(s)
- Monica Ramakrishnan
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jed W. Fahey
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Institute of Medicine, University of Maine, Orono, ME, United States
| | - Andrew W. Zimmerman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, United States
| | - Xinyi Zhou
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| | - Anita A. Panjwani
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
- Center on Aging and the Life Course, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
4
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Dietary sulforaphane glucosinolate mitigates depression-like behaviors in mice with hepatic ischemia/reperfusion injury: A role of the gut-liver-brain axis. J Psychiatr Res 2024; 176:129-139. [PMID: 38857554 DOI: 10.1016/j.jpsychires.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nutrition has been increasingly recognized for its use in mental health. Depression is commonly observed in patients with chronic liver disease (CLD). Building on our recent findings of depression-like behaviors in mice with hepatic ischemia/reperfusion (HI/R) injury, mediated by the gut-liver-brain axis, this study explored the potential influence of dietary sulforaphane glucosinolate (SGS) on these behaviors. Behavioral assessments for depression-like behaviors were conducted 7 days post either sham or HI/R injury surgery. Dietary intake of SGS significantly prevented splenomegaly, systemic inflammation, depression-like behaviors, and downregulation of synaptic proteins in the prefrontal cortex (PFC) of HI/R-injured mice. Through 16S rRNA analysis and untargeted metabolomic analyses, distinct bacterial profiles and metabolites were identified between control + HI/R group and SGS + HI/R group. Correlations were observed between the relative abundance of gut microbiota and both behavioral outcomes and blood metabolites. These findings suggest that SGS intake could mitigate depression-like phenotypes in mice with HI/R injury, potentially through the gut-liver-brain axis. Additionally, SGS, found in crucial vegetables like broccoli, could offer prophylactic nutritional benefits for depression in patients with CLD.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
5
|
Shore R, Behlen J, McBee D, Prayaga K, Haugen F, Craig L, Shields M, Mustapha T, Harvey N, Johnson N. Lactational transfer of sulforaphane-N-acetylcysteine in vivo and in human breast milk. Toxicol Appl Pharmacol 2024; 482:116796. [PMID: 38145809 PMCID: PMC11005475 DOI: 10.1016/j.taap.2023.116796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Sulforaphane (SFN) is a bioactive phytonutrient found in cruciferous vegetables. There is a lack of detailed information on the lactational transfer of SFN and SFN metabolites, and potential pharmacological effects on breastfeeding infants. We carried out two maternal supplementation studies in a mouse model, wherein lactating dams received either vehicle, 300 or 600 ppm SFN from postnatal day (PND) 1 to 5, or in a second experiment, vehicle or 600 ppm SFN from PND 1 to 14. The parent compound was only detectable in milk and plasma from dams receiving 600 ppm SFN for five days. The predominant metabolite SFN-N-acetylcysteine (SFN-NAC) was readily detected in milk from dams receiving 300 and 600 ppm SFN for five days or 600 ppm for 14 days. Maternal SFN-NAC plasma levels were elevated in both 600 ppm groups. Maternal hepatic and pulmonary expression of NRF2-related genes, Nqo1, Gsta2, Gstm1, and Gstp1, were significantly increased, generally following a dose-response; however, offspring induction varied. PND5 neonates in the 600-ppm group exhibited significantly elevated expression of Nqo1, Gsta2, and Gstp1 in liver, and Gstm1 and Gstp1 in lung. Findings support maternal dietary supplementation with SFN induces NRF2-related gene expression in neonates via lactational transfer of SFN-NAC. However, NQO1 enzyme activity was not significantly elevated, highlighting the need to optimize dosing strategy. Additionally, in a pilot investigation of lactating women consuming a typical diet, without any purified SFN supplementation, 7 out of 8 breast milk samples showed SFN-NAC above the limit of quantification (LOQ). Notably, the one sample below the LOQ was collected from the only participant who reported no consumption of cruciferous vegetables in the past 24 h. The parent compound was not detected in any of the human breast milk samples. Overall, these data indicate lactational transfer of SFN-NAC at dietary relevant levels. Future studies are needed to evaluate pharmacokinetics and pharmacodynamics of lactational transfer for potential preventive or therapeutic effects in breastfeeding children.
Collapse
Affiliation(s)
- Ross Shore
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Behlen
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Dylan McBee
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Keerthana Prayaga
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Faith Haugen
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Lenore Craig
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Michael Shields
- Geochemical & Environmental Research Group, Texas A&M University, College Station, TX 77845, USA
| | - Toriq Mustapha
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
| | - Navada Harvey
- Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA
| | - Natalie Johnson
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA; Department of Environmental & Occupational Health, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
7
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Fields NJ, Palmer KR, Rolnik DL, Yo J, Nold MF, Giles ML, Krishnaswamy S, Serpa Neto A, Hodges RJ, Marshall SA. CO-Sprout-A Pilot Double-Blinded Placebo-Controlled Randomised Trial of Broccoli Sprout Powder Supplementation for Pregnant Women with COVID-19 on the Duration of COVID-19-Associated Symptoms: Study Protocol. Nutrients 2023; 15:3980. [PMID: 37764764 PMCID: PMC10537772 DOI: 10.3390/nu15183980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Since its discovery in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been estimated to be responsible for at least 769.3 million infections and over 6.95 million deaths. Despite significant global vaccination efforts, there are limited therapies that are considered safe and effective for use in the management of COVID-19 during pregnancy despite the common knowledge that pregnant patients have a much higher risk of adverse outcomes. A bioactive compound found in broccoli sprout-sulforaphane-is a potent inducer of phase-II detoxification enzymes promoting a series of potentially beneficial effects notably as an antioxidant, anti-inflammatory, and anti-viral. A pilot, double-blinded, placebo-controlled randomised trial is to be conducted in Melbourne, Australia, across both public and private hospital sectors. We will assess a commercially available broccoli sprout extract in pregnant women between 20+0 and 36+0 weeks gestation with SARS-CoV-2 infection to investigate (i) the duration of COVID-19 associated symptoms, (ii) maternal and neonatal outcomes, and (iii) biomarkers of infection and inflammation. We plan to enrol 60 outpatient women with COVID-19 irrespective of vaccination status diagnosed by PCR swab or RAT (rapid antigen test) within five days and randomised to 14 days of oral broccoli sprout extract (42 mg of sulforaphane daily) or identical microcrystalline cellulose placebo. The primary outcome of this pilot trial will be to assess the feasibility of conducting a larger trial investigating the duration (days) of COVID-19-associated symptoms using a broccoli sprout supplement for COVID-19-affected pregnancies. Pregnant patients remain an at-risk group for severe disease following infection with SARS-CoV-2 and currently unclear consequences for the offspring. Therefore, this study will assess feasibility of using a broccoli sprout supplement, whilst providing important safety data for the use of sulforaphane in pregnancy.
Collapse
Affiliation(s)
- Neville J. Fields
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Kirsten R. Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Daniel L. Rolnik
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Jennifer Yo
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Marcel F. Nold
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Department of Paediatrics, Monash University, Melbourne 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne 3168, Australia
| | - Michelle L. Giles
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | | | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Melbourne 3004, Australia;
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Austin Hospital, Melbourne 3084, Australia
- Department of Intensive Care, Austin Hospital, Melbourne 3084, Australia
- Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil
| | - Ryan J. Hodges
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
- Monash Health, Monash Medical Centre, Melbourne 3168, Australia
| | - Sarah A. Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne 3168, Australia (D.L.R.); (M.F.N.); (M.L.G.); (R.J.H.); (S.A.M.)
| |
Collapse
|
9
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
10
|
Hanson KL, Grant SE, Funk LH, Schumann CM, Bauman MD. Impact of Maternal Immune Activation on Nonhuman Primate Prefrontal Cortex Development: Insights for Schizophrenia. Biol Psychiatry 2022; 92:460-469. [PMID: 35773097 PMCID: PMC9888668 DOI: 10.1016/j.biopsych.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 02/02/2023]
Abstract
Late adolescence is a period of dynamic change in the brain as humans learn to navigate increasingly complex environments. In particular, prefrontal cortical (PFC) regions undergo extensive remodeling as the brain is fine-tuned to orchestrate cognitive control over attention, reasoning, and emotions. Late adolescence also presents a uniquely vulnerable period as neurodevelopmental illnesses, such as schizophrenia, become evident and worsen into young adulthood. Challenges in early development, including prenatal exposure to infection, may set the stage for a cascade of maladaptive events that ultimately result in aberrant PFC connectivity and function before symptoms emerge. A growing body of research suggests that activation of the mother's immune system during pregnancy may act as a disease primer, in combination with other environmental and genetic factors, contributing to an increased risk of neurodevelopmental disorders, including schizophrenia. Animal models provide an invaluable opportunity to examine the course of brain and behavioral changes in offspring exposed to maternal immune activation (MIA). Although the vast majority of MIA research has been carried out in rodents, here we highlight the translational utility of the nonhuman primate (NHP) as a model species more closely related to humans in PFC structure and function. In this review, we consider the protracted period of brain and behavioral maturation in the NHP, describe emerging findings from MIA NHP offspring in the context of rodent preclinical models, and lastly explore the translational relevance of the NHP MIA model to expand understanding of the etiology and developmental course of PFC pathology in schizophrenia.
Collapse
Affiliation(s)
- Kari L Hanson
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California
| | - Simone E Grant
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Lucy H Funk
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California.
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; MIND Institute, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California.
| |
Collapse
|
11
|
Long-lasting beneficial effects of maternal intake of sulforaphane glucosinolate on gut microbiota in adult offspring. J Nutr Biochem 2022; 109:109098. [PMID: 35788394 DOI: 10.1016/j.jnutbio.2022.109098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Mounting evidence suggests the impact of maternal diet on the health of offspring. We reported that maternal diet of sulforaphane glucosinolate (SGS) could prevent behavioral abnormalities in offspring after maternal immune activation. The present study was designed to investigate whether the dietary intake of SGS during pregnancy and lactation influences the composition of gut microbiota in the offspring. The dietary intake of SGS during pregnancy and lactation caused significant changes in the α-diversity and β-diversity of gut microbiota in 3-week-old offspring (SGS-3W group) and 10-week-old offspring (SGS-10W group). The LEfSe algorithm identified several microbes as important phylotypes in the SGS-3W or SGS-10W groups. Predictive functional metagenomes showed that the maternal intake of SGS caused several KEGG pathways alterations with respect to the genetic information processing and metabolism. Furthermore, the plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the SGS-10W group after the injection of lipopolysaccharide (LPS: 0.5 mg/kg) were significantly lower than those of the CON-10W group. It is noteworthy that there were positive correlations between the relative abundance of the genus Blautia and IL-6 (or TNF-α) in adult offspring. Moreover, there were sex differences of gut microbiota composition in offspring. In conclusion, these data suggest that the dietary intake of SGS during pregnancy and lactation might produce long-lasting beneficial effects in adult offspring through the persistent modulation of gut microbiota. It is likely that the modulation of gut microbiota by maternal nutrition may confer resilience versus vulnerability to stress-related psychiatric disorders in the offspring.
Collapse
|
12
|
Tan Y, Fujita Y, Pu Y, Chang L, Qu Y, Wang X, Hashimoto K. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages prevents schizophrenia-relevant phenotypes in adult offspring after maternal immune activation: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 2022; 272:693-701. [PMID: 34977960 PMCID: PMC9095544 DOI: 10.1007/s00406-021-01365-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
Maternal immune activation (MIA) plays a role in the etiology of schizophrenia. MIA by prenatal exposure of polyinosinic:polycytidylic acid [poly(I:C)] in rodents caused behavioral and neurobiological changes relevant to schizophrenia in adult offspring. We investigated whether the novel antidepressant (R)-ketamine could prevent the development of psychosis-like phenotypes in adult offspring after MIA. We examined the effects of (R)-ketamine (10 mg/kg/day, twice weekly for 4 weeks) during juvenile and adolescent stages (P28-P56) on the development of cognitive deficits, loss of parvalbumin (PV)-immunoreactivity in the medial prefrontal cortex (mPFC), and decreased dendritic spine density in the mPFC and hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, we examined the role of TrkB in the prophylactic effects of (R)-ketamine. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages significantly blocked the development of cognitive deficits, reduced PV-immunoreactivity in the prelimbic (PrL) of mPFC, and decreased dendritic spine density in the PrL of mPFC, CA3 and dentate gyrus of the hippocampus from adult offspring after prenatal poly(I:C) exposure. Furthermore, pretreatment with ANA-12 (TrkB antagonist: twice weekly for 4 weeks) significantly blocked the beneficial effects of (R)-ketamine on cognitive deficits of adult offspring after prenatal poly(I:C) exposure. These data suggest that repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages could prevent the development of psychosis in adult offspring after MIA. Therefore, (R)-ketamine would be a potential prophylactic drug for young subjects with high-risk for psychosis.
Collapse
Affiliation(s)
- Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xinming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
13
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
15
|
Abuaish S, Al-Otaibi NM, Aabed K, Abujamel TS, Alzahrani SA, Alotaibi SM, Bhat RS, Arzoo S, El-Ansary A. The role of sex-differentiated variations in stress hormones, antioxidants, and neuroimmune responses in relation to social interaction impairment in a rodent model of autism. Metab Brain Dis 2021; 36:1369-1379. [PMID: 33864573 DOI: 10.1007/s11011-021-00732-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
Males are more likely to develop autism as a neurodevelopmental disorder than females, but the mechanisms underlying male susceptibility are not fully understood. In this paper, we used a well-characterized propionic acid (PPA) rodent model of autism to study sex differences in stress hormones, antioxidants' status, and the neuroimmune response that may contribute to the preponderance of autism in males. Sprague Dawley rats of both sexes were divided into a saline-treated group as controls and PPA-treated groups, receiving 250 mg/kg of PPA per day for three days. Animals' social behavior was examined using the three-chamber social test. Hormones (ACTH, corticosterone, melatonin, and oxytocin), oxidative stress biomarkers (glutathione, glutathione-S-transferase, and ascorbic acid), and cytokines (IL-6, IL-1α, IL-10, and IFNγ) were measured in the brain tissue of all the animals. The results showed a sex dimorphic social response to PPA treatment, where males were more susceptible to the PPA treatment and exhibited a significant reduction in social behavior with no effects observed in females. Also, sex differences were observed in the levels of hormones, antioxidants, and cytokines. Female rats showed significantly higher corticosterone and lower oxytocin, antioxidants, and cytokine levels than males. The PPA treatment later modulated these baseline differences. Our study indicates that the behavioral manifestation of autism in PPA-treated males and not females could be linked to neural biochemical differences between the sexes at baseline, which might play a protective role in females. Our results can contribute to early intervention strategies and treatments used to control autism, an increasingly prevalent disorder.
Collapse
Affiliation(s)
- Sameera Abuaish
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdurahman University, Riyadh, Saudi Arabia
| | - Norah M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saleha Ahmad Alzahrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sohailah Masoud Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaista Arzoo
- Department of Food Science and Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
16
|
Fusar‐Poli P, Correll CU, Arango C, Berk M, Patel V, Ioannidis JP. Preventive psychiatry: a blueprint for improving the mental health of young people. World Psychiatry 2021; 20:200-221. [PMID: 34002494 PMCID: PMC8129854 DOI: 10.1002/wps.20869] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Preventive approaches have latterly gained traction for improving mental health in young people. In this paper, we first appraise the conceptual foundations of preventive psychiatry, encompassing the public health, Gordon's, US Institute of Medicine, World Health Organization, and good mental health frameworks, and neurodevelopmentally-sensitive clinical staging models. We then review the evidence supporting primary prevention of psychotic, bipolar and common mental disorders and promotion of good mental health as potential transformative strategies to reduce the incidence of these disorders in young people. Within indicated approaches, the clinical high-risk for psychosis paradigm has received the most empirical validation, while clinical high-risk states for bipolar and common mental disorders are increasingly becoming a focus of attention. Selective approaches have mostly targeted familial vulnerability and non-genetic risk exposures. Selective screening and psychological/psychoeducational interventions in vulnerable subgroups may improve anxiety/depressive symptoms, but their efficacy in reducing the incidence of psychotic/bipolar/common mental disorders is unproven. Selective physical exercise may reduce the incidence of anxiety disorders. Universal psychological/psychoeducational interventions may improve anxiety symptoms but not prevent depressive/anxiety disorders, while universal physical exercise may reduce the incidence of anxiety disorders. Universal public health approaches targeting school climate or social determinants (demographic, economic, neighbourhood, environmental, social/cultural) of mental disorders hold the greatest potential for reducing the risk profile of the population as a whole. The approach to promotion of good mental health is currently fragmented. We leverage the knowledge gained from the review to develop a blueprint for future research and practice of preventive psychiatry in young people: integrating universal and targeted frameworks; advancing multivariable, transdiagnostic, multi-endpoint epidemiological knowledge; synergically preventing common and infrequent mental disorders; preventing physical and mental health burden together; implementing stratified/personalized prognosis; establishing evidence-based preventive interventions; developing an ethical framework, improving prevention through education/training; consolidating the cost-effectiveness of preventive psychiatry; and decreasing inequalities. These goals can only be achieved through an urgent individual, societal, and global level response, which promotes a vigorous collaboration across scientific, health care, societal and governmental sectors for implementing preventive psychiatry, as much is at stake for young people with or at risk for emerging mental disorders.
Collapse
Affiliation(s)
- Paolo Fusar‐Poli
- Early Psychosis: Interventions and Clinical‐detection (EPIC) Lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK,OASIS Service, South London and Maudsley NHS Foundation TrustLondonUK,Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Christoph U. Correll
- Department of PsychiatryZucker Hillside Hospital, Northwell HealthGlen OaksNYUSA,Department of Psychiatry and Molecular MedicineZucker School of Medicine at Hofstra/NorthwellHempsteadNYUSA,Center for Psychiatric NeuroscienceFeinstein Institute for Medical ResearchManhassetNYUSA,Department of Child and Adolescent PsychiatryCharité Universitätsmedizin BerlinBerlinGermany
| | - Celso Arango
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry and Mental Health, Hospital General Universitario Gregorio MarañónMadridSpain,Health Research Institute (IiGSM), School of MedicineUniversidad Complutense de MadridMadridSpain,Biomedical Research Center for Mental Health (CIBERSAM)MadridSpain
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityBarwon HealthGeelongVICAustralia,Department of PsychiatryUniversity of MelbourneMelbourneVICAustralia,Orygen Youth HealthUniversity of MelbourneMelbourneVICAustralia,Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Vikram Patel
- Department of Global Health and Social MedicineHarvard University T.H. Chan School of Public HealthBostonMAUSA,Department of Global Health and PopulationHarvard T.H. Chan School of Public HealthBostonMAUSA
| | - John P.A. Ioannidis
- Stanford Prevention Research Center, Department of MedicineStanford UniversityStanfordCAUSA,Department of Biomedical Data ScienceStanford UniversityStanfordCAUSA,Department of Epidemiology and Population HealthStanford UniversityStanfordCAUSA
| |
Collapse
|
17
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
18
|
Hashimoto K. Risk of neuropsychiatric disorders in offspring of COVID-19-infected pregnant women and nutritional intervention. Eur Arch Psychiatry Clin Neurosci 2021; 271:387-389. [PMID: 32488522 PMCID: PMC7264960 DOI: 10.1007/s00406-020-01148-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
19
|
Fujita Y, Fujita A, Ishima T, Hirai A, Suzuki S, Suganuma H, Hashimoto K. Dietary intake of glucoraphanin during pregnancy and lactation prevents the behavioral abnormalities in the offspring after maternal immune activation. Neuropsychopharmacol Rep 2020; 40:268-274. [PMID: 32463181 PMCID: PMC7722647 DOI: 10.1002/npr2.12112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
AIM Epidemiological data suggest that maternal immune activation (MIA) plays a role in the etiology of neuropsychiatric disorders including autism spectrum disorder (ASD) and schizophrenia. However, there is no prophylactic nutrition that can prevent the onset of neurodevelopmental disorders in offspring after MIA. The aim of this study was undertaken to examine whether dietary intake of glucoraphanin (GF: the precursor of a natural anti-inflammatory compound sulforaphane) can prevent the onset of behavioral abnormalities in offspring after MIA. METHODS One percent of GF food pellet or normal food pellet was given into female mice during pregnancy and lactation (from E5 to P21). Saline (5 mL/kg/d) or poly(I:C) (5 mg/kg/d) was injected into pregnant mice from E12 to E17. Behavioral tests and immunohistochemistry of parvalbumin (PV) were performed in male offspring. RESULTS Dietary intake of GF during pregnancy and lactation prevented cognitive deficits and social interaction deficits in the juvenile offspring after MIA. Furthermore, dietary intake of GF during pregnancy and lactation prevented cognitive deficits in the adult offspring after MIA. Moreover, dietary intake of GF prevented the reduction of PV immunoreactivity in the medial prefrontal cortex of adult offspring after MIA. CONCLUSION These data suggest that dietary intake of GF during pregnancy and lactation could prevent behavioral abnormalities in offspring after MIA.
Collapse
Affiliation(s)
- Yuko Fujita
- Division of Clinical NeuroscienceChiba University Center for Forensic Mental HealthChibaJapan
| | - Atsuhiro Fujita
- Division of Clinical NeuroscienceChiba University Center for Forensic Mental HealthChibaJapan
| | - Tamaki Ishima
- Division of Clinical NeuroscienceChiba University Center for Forensic Mental HealthChibaJapan
| | - Ayumi Hirai
- Innovation DivisionKagome Co., Ltd.NasushiobaraJapan
| | | | | | - Kenji Hashimoto
- Division of Clinical NeuroscienceChiba University Center for Forensic Mental HealthChibaJapan
| |
Collapse
|