1
|
Miranda E Castor RG, Bruno AS, Pereira CA, Bello FLM, Rodrigues YB, Silva MG, Bernardes SS, E Castor MGM, Ferreira AJ, Tostes RDC, Cau S. Glibenclamide reverses cardiac damage and NLRP3 inflammasome activation associated with a high refined sugar diet. Eur J Pharmacol 2024; 984:177035. [PMID: 39369873 DOI: 10.1016/j.ejphar.2024.177035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Increased energy intake from carbohydrates has been associated with major cardiovascular outcomes. Mice fed a highly-refined carbohydrate (HC) diet develop cardiac hypertrophy and inflammation. During cardiac injury, NLRP3 inflammasome is activated which results in a local inflammatory response. In this study, we hypothesized that a nom-hypoglycemic dose of glibenclamide may reverses sugar diet-induced cardiac damage by NRLP3 inflammasome inhibition. Mice were fed the HC diet for eight weeks and divided into a group treated with glibenclamide (20 mg/kg, gavage) and another with vehicle for four weeks. Afterward, hearts were excised for morphometric analysis and ex vivo function determination. NLRP3 inflammasome activation was investigated by western blotting and in situ fluorescent detection of reactive oxygen species (ROS) and active caspase-1. The HC diet promotes heart hypertrophy and collagen deposition, which were reverted by glibenclamide without ameliorating HC diet-induced insulin resistance. Changes in cardiac performance were observed in vivo by invasive catheterization and in Langendorff-perfused hearts due to the HC diet, which were prevented by glibenclamide. Hearts from HC diet mice had increased levels of NLRP3 and cleaved IL-1β. Glibenclamide reversed ROS production and caspase-1 activity induced by HC diet. These findings suggest glibenclamide's cardioprotective effects on heart damage caused by the HC diet are related to its inhibitory action on the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Alexandre Santos Bruno
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Camila André Pereira
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | | | - Yuri Blanc Rodrigues
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Mychel Gonçalves Silva
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, MG, Brazil
| | - Sara Santos Bernardes
- Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | - Anderson Jose Ferreira
- Medicine Faculty, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Rita de Cassia Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, SP, Brazil
| | - Stêfany Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
2
|
Zhao D, Tian Z, Kuang H, Xu Y, Zheng Y, Zhong Z, Liang L, Yang Y. Associations between Long-Term Dietary Coenzyme Q10 Intake and New-Onset Hypertension in Adults: Insights from a Nationwide Prospective Cohort Study. Nutrients 2024; 16:2478. [PMID: 39125357 PMCID: PMC11313835 DOI: 10.3390/nu16152478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Coenzyme Q10 (CoQ10) supplementation appears to be associated with a lower blood pressure. Nevertheless, it remains unclear whether food-sourced CoQ10 will affect new-onset hypertension in general adults. This study investigated the relationship between dietary CoQ10 intake and new-onset hypertension among the general population. Participants without hypertension at baseline from the China Health and Nutrition Survey (CHNS) prospective cohort study were included (n = 11,428). Dietary CoQ10 intake was collected by validated dietary recalls and the food weighing method. Linear and non-linear relationships between dietary CoQ10 intake and new-onset hypertension were analyzed using multivariable Cox proportional hazards models and restricted cubic splines. During follow-up (median: 6 years), 4006 new-onset hypertension cases were documented. Compared with non-consumers, the hazard ratio (HR) and 95% confidence interval (CI) from quintile 2 to 4 total dietary CoQ10 were 0.83 (0.76, 0.91), 0.86 (0.78, 0.94) and 1.01 (0.92, 1.11); total plant-derived CoQ10 were 0.80 (0.73, 0.88), 1.00 (0.91, 1.09) and 1.10 (1.00, 1.20); and animal-derived CoQ10 were 0.65 (0.59, 0.71), 0.58 (0.53, 0.64) and 0.68 (0.62, 0.75). The lowest risk was found at moderate intake, with a non-linear relationship (P nonlinearity < 0.05). Furthermore, the overall inverse association was stronger among individuals without alcohol consumption or eating a low-fat diet. Moderate long-term dietary CoQ10 intake might be protective against new-onset hypertension. However, it follows a non-linear relationship and excessive intake may increase the risk of new-onset hypertension in the Chinese population.
Collapse
Affiliation(s)
- Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiying Kuang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yixuan Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiqi Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zepei Zhong
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lihan Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China (L.L.)
- Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Wiśniewska-Ślepaczuk K, Żak-Kowalska K, Moskal A, Kowalski S, Al-Wathinani AM, Alhajlah M, Goniewicz K, Goniewicz M. Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort. Metabolites 2024; 14:252. [PMID: 38786729 PMCID: PMC11122850 DOI: 10.3390/metabo14050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the relationship between dietary habits and metabolic health among women, emphasizing the role of anthropometric parameters as proxies for insulin resistance. We analyzed data from 443 women categorized into two groups based on the presence or absence of clinically diagnosed insulin resistance. Our assessments included dietary quality, socio-demographic characteristics, and a series of anthropometric measurements such as body weight, Body Mass Index (BMI), Waist-Hip Ratio (WHR), Abdominal Volume Index (AVI), and Body Adiposity Index (BAI). The results indicated significant disparities in these parameters, with the insulin-resistant group exhibiting higher average body weight (78.92 kg vs. 65.04 kg, p < 0.001), BMI (28.45 kg/m2 vs. 23.17 kg/m2, p < 0.001), and other related measures, suggesting a strong influence of dietary patterns on body composition and metabolic risk. The study underscores the importance of dietary management in addressing insulin resistance, advocating for personalized dietary strategies to improve metabolic health outcomes in women. This approach highlights the need for integrating dietary changes with lifestyle modifications and socio-demographic considerations to combat metabolic risks effectively.
Collapse
Affiliation(s)
| | - Karolina Żak-Kowalska
- New Medical Techniques Specialist Hospital of the Holy Family, 36-060 Rudna Mała, Poland;
| | - Adrian Moskal
- Hospital Emergency Department, Voivodship Hospital in Krosno, 38-400 Krosno, Poland;
| | - Sebastian Kowalski
- Department of Emergency Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ahmed M. Al-Wathinani
- Department of Emergency Medical Services, Prince Sultan bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mousa Alhajlah
- Applied of Computer Science College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Krzysztof Goniewicz
- Department of Security Studies, Polish Air Force University, 08-521 Deblin, Poland;
| | - Mariusz Goniewicz
- Department of Emergency Medicine, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
4
|
Zanetti GDO, Pessoa PWM, Vieira TS, Garcia RDA, Santos Barbosa NH, Arantes RME, Kettelhut IDC, Navegantes LCC, Wanner SP, Soares DD, Gonçalves DAP. Long-term heat acclimation training in mice: Similar metabolic and running performance adaptations despite a lower absolute intensity than training at temperate conditions. J Therm Biol 2024; 119:103797. [PMID: 38340467 DOI: 10.1016/j.jtherbio.2024.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
This study investigated the impact of long-term heat acclimation (HA) training on mouse thermoregulation, metabolism, and running performance in temperate (T) and hot (H) environments. Male Swiss mice were divided into 1) Sedentary (SED) mice kept in T (22 °C; SED/T), 2) Endurance Trained mice (ET, 1 h/day, 5 days/week, 8 weeks, 60 % of maximum speed) in T (ET/T), 3) SED kept in H (32 °C; SED/H), and 4) ET in H (ET/H). All groups performed incremental load tests (ILT) in both environments before (pre-ET) and after four and eight weeks of ET. In the pre-ET period, H impaired (∼30 %) performance variables (maximum speed and external work) and increased (1.3 °C) maximum abdominal body temperature compared with T. In T, after four weeks, although ET/H exercised at a lower (∼30 %) absolute intensity than ET/T, performance variables and aerobic power (peak oxygen uptake, VO2peak) were similarly increased in both ET groups compared with SED/T. After eight weeks, the external work was higher in both ET groups compared with SED/T. Only ET/T significantly increased VO2peak (∼11 %) relative to its pre-ET period. In H, only after eight weeks, both ET groups improved (∼19 %) maximum speed and reduced (∼46 %) post-ILT blood lactate concentrations compared with their respective pre-ET values. Liver glycogen content increased (34 %) in both ET groups and SED/H compared with SED/T. Thus, ET/H was performed at a lower absolute intensity but promoted similar effects to ET/T on metabolism, aerobic power, and running performance. Our findings open perspectives for applying HA training as part of a training program or orthopedic and metabolic rehabilitation programs in injured or even obese animals, reducing mechanical load with equivalent or higher physiological demand.
Collapse
Affiliation(s)
- Gustavo de Oliveira Zanetti
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Pedro William Martins Pessoa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tales Sambrano Vieira
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo de Almeida Garcia
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nicolas Henrique Santos Barbosa
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa Maria Esteves Arantes
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isis do Carmo Kettelhut
- Departments of Biochemistry & Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Samuel Penna Wanner
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danusa Dias Soares
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Dawit Albieiro Pinheiro Gonçalves
- Exercise Physiology Laboratory (LAFISE), School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Section of Sports Physiology (SFE), Sports Training Center (CTE), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Lacerda DR, Nunes-Silva A, Silveira ALM, Costa KA, Rodrigues DF, Moraes MM, Pinho V, Menezes GB, Teixeira MM, Wanner SP, Soares DD, Ferreira AVM. Acute exercise modulates the inflammatory response in adipose tissue in both lean and obese mice. Nutrition 2023; 115:112092. [PMID: 37549454 DOI: 10.1016/j.nut.2023.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES Acute physical exercise acts as a metabolic stressor, promoting activation of the immune system, and this response could be relevant in the adipose tissue remodeling process. In addition, some cytokines have important functions in lipolysis. Because chronic exercise improves obesity-related metabolic and inflammatory dysfunction, herein we investigated the effect of acute exercise on the inflammatory responses in the adipose tissues of lean and obese mice. METHODS Lean mice were fed a standard chow diet, whereas obese mice were fed a high-refined carbohydrate diet for 8 wk. Both groups were subjected to 60 min of moderate-intensity exercise. RESULTS In the epididymal adipose tissue of lean mice, exercise enhanced interleukin (IL)-6 and tumor necrosis factor-α levels, which correlated positively with increased serum free fatty acid concentrations. In vivo confocal imaging of epididymal adipose tissue vessels revealed higher recruitment of neutrophils after exercise. Also, the number of leukocytes expressing CD11b+F480- was elevated 6 h after exercise. Similarly, the chemokine (C-X-C motif) ligand 1 level increased at 6 h and remained high until 24 h after exercise. Myeloperoxidase activity was increased at 6, 12, and 24 h after exercise. Surprisingly, however, no changes were observed in epididymal adipose tissue from obese mice, considering proinflammatory cytokines (IL-6 and tumor necrosis factor-α). On the other hand, IL-13, IL-4, and IL-10 levels were higher in obese mice after exercise. CONCLUSIONS These data suggest that acute exercise promotes an inflammatory response in the adipose tissue of lean mice that is observed as part of its role in adipose tissue remodeling. In contrast, acute exercise promotes an antiinflammatory response in adipose tissue from obese mice, likely as an important tool for restoring homeostasis.
Collapse
Affiliation(s)
- Débora Romualdo Lacerda
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Albená Nunes-Silva
- Department of Physical Education, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | | | - Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Fernandes Rodrigues
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Michele Macedo Moraes
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Penna Wanner
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danusa Dias Soares
- Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Coêlho LF, Casaro MB, Ribeiro WR, Mendes E, Murata G, Xander P, Lino-dos-Santos-Franco A, Oliveira FA, Ferreira CM. A short-term high-sugar diet is an aggravating factor in experimental allergic contact dermatitis. Heliyon 2023; 9:e21225. [PMID: 38034704 PMCID: PMC10682547 DOI: 10.1016/j.heliyon.2023.e21225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Allergic contact dermatitis (ACD) is an inflammatory skin reaction whose incidence has increased and has been associated with a dietary pattern rich in saturated fats and refined sugars. Considering the increased incidence of ACD and the lack of research about the influence of a short-term high-sugar diet on dermatitis, our aim is to improve understanding of the influence of a high-sugar diet on ACD. We introduced a diet rich in sugar fifteen days before inducing contact dermatitis with oxazolone, in mice, and maintained it until the end of the experiment, which lasted three weeks in total. The dermatitis model increased cholesterol and triglycerides in the liver, and the combination of diet and dermatitis increased weight and worsened liver cholesterol measurements. Furthermore, the high-sugar diet increased the production of IL-6, IFN-γ and TNF-α in the skin, which may be involved in the increase in epithelial skin thickness observed in experimental ACD.
Collapse
Affiliation(s)
- Leila F. Coêlho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Mateus B. Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Willian R. Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Gilson Murata
- Nephrology Division, Medical Investigation Laboratory-29 (LIM-29), Medical School, University of São Paulo (FM-USP), São Paulo, Brazil
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Fernando A. Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC) - Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Caroline M. Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Costa KA, Oliveira MCD, Cordeiro LMDS, Val CH, Machado FS, Fernandes SOA, Cardoso VN, Teixeira MM, Silveira ALM, Ferreira AVM. Effect of high-refined carbohydrate diet on intestinal integrity. Nutrition 2023; 113:112084. [PMID: 37354649 DOI: 10.1016/j.nut.2023.112084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES One of the leading causes of obesity is the consumption of excess nutrients. Obesity is characterized by adipose tissue expansion, chronic low-grade inflammation, and metabolic alterations. Although consumption of a high-fat diet has been demonstrated to be a diet-induced obesity model associated with gut disorders, the same effect is not well explored in a mild-obesity model induced by high-refined carbohydrate (HC) diet intake. The intestinal tract barrier comprises mucus, epithelial cells, tight junctions, immune cells, and gut microbiota. This system is susceptible to dysfunction by excess dietary components that could increase intestinal permeability and bacterial translocation. The aim of this study was to evaluate whether an HC diet and the alterations resulting from its intake are linked to small intestine changes. METHODS Male BALB/c mice were fed a chow or an HC diet for 8 wk. RESULTS Although differences in body weight gain were not observed between the groups, mice fed the HC diet showed increased adiposity associated with metabolic alterations. The interferon-γ expression and myeloperoxidase levels were increased in the small intestine in mice fed an HC diet. However, the intestinal villi length, the expression of tight junctions (zonula occludens-1 and claudin-4) and tumor necrosis factor-α cytokine, and the percentage of intraepithelial lymphocytes did not differ in the jejunum or ileum between the groups. We did not observe differences in intestinal permeability and bacterial translocation. CONCLUSION Metabolic alterations caused by consumption of an HC diet lead to a mild obesity state that does not necessarily involve significant changes in intestinal integrity.
Collapse
Affiliation(s)
- Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina Chaves de Oliveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cynthia Honorato Val
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Letícia Malheiros Silveira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene Versiani Matos Ferreira
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
8
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
9
|
de Oliveira MC, Silveira ALM, de Oliveira ACC, Lana JP, Costa KA, Vieira ÉLM, Pinho V, Teixeira MM, Merabtene F, Marcelin G, Clément K, Ferreira AVM. Eosinophils protect from metabolic alterations triggered by obesity. Metabolism 2023:155613. [PMID: 37295715 DOI: 10.1016/j.metabol.2023.155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Eosinophils are generally related to helminth infections or allergies. Their association with metabolic alterations and adipose tissue (AT) remodeling has been demonstrated mainly in animal models of obesity. However, their physiological role in driving metabolic features has not yet been well described. Herein, we aimed to evaluate the participation of eosinophils in metabolic and adipose tissue homeostasis in mice and humans, focusing on a translational perspective. MATERIAL AND METHODS Male BALB/c wild-type (WT) mice and GATA-1 knockout (Δdb/GATA-1-/-) mice were followed until 16-week-age in a regular diet or were fed with a high-refined-carbohydrate (HC) diet or high-fat (HF) diet for eight weeks. In subjects with obesity, clinical parameters and omental AT gene expression were evaluated. RESULTS Eosinophils lack in mice fed a regular diet induced insulin resistance and increased adiposity. Their adipose tissue showed augmented cytokine levels, which could be attributed to increased leukocytes in the tissue, such as neutrophils and pro-inflammatory macrophages. Bone marrow transplant from WT mice to Δdb/GATA-1-/- mice showed some improvement in glucose metabolism with lower adipose tissue mass accretion. Upon an unhealthy diet challenge, Δdb/GATA-1-/- mice fed HC diet showed a mild degree of adiposity and glucose metabolic dysfunction severe in those mice fed HF diet. The expression of eosinophil markers in omental AT from humans with severe obesity was positively correlated to eosinophil cytokines and insulin sensitivity surrogate markers and negatively correlated to systemic insulin, HOMA-IR, and android fat mass. CONCLUSIONS Eosinophils seem to have a physiological role by controlling systemic and adipose tissue metabolic homeostasis by modulating glucose metabolism, inflammation, and visceral fat expansion, even in lean mice. Indeed, eosinophils also seem to modulate glucose homeostasis in human obesity.
Collapse
Affiliation(s)
- Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Letícia Malheiros Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda Carla Clemente de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jaqueline Pereira Lana
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kátia Anunciação Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fatiha Merabtene
- Sorbonne University, INSERM, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, F-75013 Paris, France
| | - Geneviève Marcelin
- Sorbonne University, INSERM, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, F-75013 Paris, France
| | - Karine Clément
- Sorbonne University, INSERM, Nutrition and Obesities: Systemic Approaches Research Unit, NutriOmics, F-75013 Paris, France; Assistance Publique hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Adaliene Versiani Matos Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Bruno AS, Castor RGM, Berg B, Dos Reis Costa DEF, Monteiro ALL, Scalzo S, Oliveira KCM, Bello FLM, Aguiar GC, Melo MB, Santos RAS, Bonaventura D, Guatimosim S, Castor MGM, Ferreira AJ, Cau SBA. Cardiac disturbances and changes in tissue cytokine levels in mice fed with a high-refined carbohydrate diet. Cytokine 2023; 166:156192. [PMID: 37054665 DOI: 10.1016/j.cyto.2023.156192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023]
Abstract
AIMS The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-β, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.
Collapse
Affiliation(s)
- Alexandre Santos Bruno
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Renata Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Bárbara Berg
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | - André Luis Lima Monteiro
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Sérgio Scalzo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | | | | | - Grazielle Cordeiro Aguiar
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marcos Barrouin Melo
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Robson Augusto Souza Santos
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Daniella Bonaventura
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Silvia Guatimosim
- Departments of Physiology & Biophysics, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Marina Gomes Miranda Castor
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Anderson Jose Ferreira
- Departments of Morphology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil
| | - Stefany Bruno Assis Cau
- Departments of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
11
|
Guimarães VHD, Lelis DDF, Oliveira LP, Borém LMA, Guimarães FAD, Farias LC, de Paula AMB, Guimarães ALS, Santos SHS. Comparative study of dietary fat: lard and sugar as a better obesity and metabolic syndrome mice model. Arch Physiol Biochem 2023; 129:449-459. [PMID: 33176505 DOI: 10.1080/13813455.2020.1835986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diet macronutrient heterogeneity hinders animal studies' data extrapolation from metabolic disorders to human diseases. OBJECTIVE The present study aimed to evaluate different fat-diet compositions' effect on inducing lipid/glucose metabolism alterations in mice. METHODS Swiss male mice were fed for 12 weeks with five different diets: Standard Diet (ST), American Institute of Nutrition 93 for growth (AIN93G) high-butter/high-sugar (HBHS), high-lard/high-sugar (HLHS), and high-oil/high-sugar diet (soybean oil) (HOHS). Several parameters, such as serum biochemistry, histology, and liver mRNA expression, were accessed. RESULTS The main findings revealed that the HLHS diet dramatically altered liver metabolism inducing hepatic steatosis and increased total cholesterol, triglycerides, VLDL, increasing liver CCAAT/enhancer binding protein (CEBP-α), Acetyl-CoA carboxylase (ACC) and Catalase (CAT) mRNA expression. Moreover, the HLHS diet increased glucose intolerance and reduced insulin sensitivity. CONCLUSIONS High-fat/high-sugar diets are efficient to induce obesity and metabolic syndrome-associated alterations, and diets enriched with lard and sugar showed more effective results.
Collapse
Affiliation(s)
- Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Luis Paulo Oliveira
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | | | - Felipe Alberto Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Alfredo Mauricio Batista de Paula
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brasil
- Institute of Agricultural Sciences (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brasil
| |
Collapse
|
12
|
Yavari M, Ramalingam L, Harris BN, Kahathuduwa CN, Chavira A, Biltz C, Mounce L, Maldonado KA, Scoggin S, Zu Y, Kalupahana NS, Yosofvand M, Moussa H, Moustaid-Moussa N. Eicosapentaenoic Acid Protects against Metabolic Impairments in the APPswe/PS1dE9 Alzheimer's Disease Mouse Model. J Nutr 2023; 153:1038-1051. [PMID: 36781072 PMCID: PMC10273166 DOI: 10.1016/j.tjnut.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by amyloid-β (Aβ) plaques. Systemic inflammation and obesity may exacerbate AD pathogenesis. We previously reported anti-inflammatory and anti-obesity effects of EPA in mice. OBJECTIVES We aimed to determine whether EPA reduces obesity-associated metabolic dysfunctions and Aβ accumulation in AD amyloidogenic mice. METHODS Two-mo-old APPswe/PS1dE9 transgenic (TG) mice and non-TG littermates were randomly assigned to low fat (LF; 10% kcal fat), high fat (HF; 45% kcal fat), or EPA (36 g/kg)-supplemented HF diets. Body composition, glucose tolerance, and energy expenditure were measured, and serum and brain metabolic markers were tested 38 wk postintervention. Outcomes were statistically analyzed via 3-factor ANOVA, modeling genotype, sex, and diet interactions. RESULTS HF-fed males gained more weight than females (Δ = 61 mg; P < 0.001). Compared with LF, HF increased body weights of wild-type (WT) males (Δ = 31 mg; P < 0.001). EPA reduced HF-induced weight gain in WT males (Δ = 24 mg; P = 0.054) but not in females. HF mice showed decreased glucose clearance and respiratory energy compared with LF-fed groups (Δ = -1.31 g/dL; P < 0.001), with no significant effects of EPA. However, EPA conferred metabolic improvements by decreasing serum leptin and insulin (Δ = -2.51 g/mL and Δ = -0.694 ng/mL, respectively compared with HF, P ≤ 0.05) and increasing adiponectin (Δ = 21.6 ng/mL; P < 0.001). As we expected, TG mice expressed higher serum and brain Aβ than WT mice (Δ = 0.131 ng/mL; P < 0.001 and Δ = 0.56%; P < 0.01, respectively), and EPA reduced serum Aβ1-40 in TG males compared with HF (Δ = 0.053 ng/mL; P ≤ 0.05). CONCLUSIONS To our knowledge, this is the first report that EPA reduces serum Aβ1-40 in obese AD male mice, warranting further investigations into tissue-specific mechanisms of EPA in AD.
Collapse
Affiliation(s)
- Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Breanna N Harris
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Chanaka Nadeeshan Kahathuduwa
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Laboratory Science and Primary Care, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Angela Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA; Department of Physiology, University of Peradeniya, Sri Lanka
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Institute, Office of Research & Innovation, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
13
|
Silva MCR, Amaro LBR, Lima AT, Ferreira AC, de Farias Lelis D, Andrade JMO, Guimarães ALS. Light-emitting diode (LED) photobiomodulation regulates thermogenesis and lipogenesis markers in adipose tissue and improves anthropometric and metabolic parameters in obese mice. Lasers Med Sci 2023; 38:85. [PMID: 36920639 DOI: 10.1007/s10103-023-03743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
To evaluate the effects of Light-Emitting Diode (LED) irradiation on the expression of thermogenesis and lipogenesis-associated markers in adipose tissue and metabolic parameters of obese mice. Twenty-four male mice were divided into four groups: i) ST fed standard diet; ii) HCD fed hyperglycemic diet; iii) LED + I fed hyperglycemic diet and irradiated with LED in the interscapular region; iv) LED + A fed hyperglycemic diet and irradiated with LED in the abdominal region. The first phase of the study comprehended the induction of obesity for 12 weeks. Next, the animals were submitted to six irradiation sessions (days 1, 3, 7, 10, 14, and 21) using a 660-nm LED (5.77 J/cm2 at 48,1 mW/cm2). Anthropometric, biochemical, and histological parameters and the expression of thermogenesis and lipogenesis-associated markers were assessed in adipose tissue. There was diminished weight gain between the HCD and LED + A groups (ST: 0.37 ± 0.65; HCD: 3.10 ± 0.89; LED + I: -1.26 ± 0.83; LED + A: -2.07 ± 1.27 g; p < 0.018). There was a 33.3% and 23.8% reduction in epidydimal adipose tissue weight and a 25% and 10.7% in the visceral adiposity for the LED + I and LED + A groups, respectively, when compared with HCD. There was a decreased accumulation of fat droplets in adipose tissue in LED + A and LED + I groups. Additionally, LED irradiation was associated with increased mRNA expression of uncoupling protein 1 (UCP1) in the brown adipose tissue (ST: 2.27 ± 0.19; HCD: 1.54 ± 0.12; LED + I: 2.44 ± 0.22; p = 0.014) and decreased fatty acid synthetase (FAS) expression in epidydimal adipose tissue (ST: 0.79 ± 0.13; HCD: 1.59 ± 0.13; LED + A: 0.85 ± 0.04; p = 0.0008). LED treatment improved anthropometric parameters, possibly associated with the histological alterations, thermogenesis and lipogenesis markers in white adipose tissue, and expression modulation in brown adipose tissue.
Collapse
Affiliation(s)
- Mauro Célio Ribeiro Silva
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Angeliny Tamiarana Lima
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | | | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil. .,Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil. .,Department of Nursing, State University of Montes Claros (Unimontes), Campus Universitário Prof. Darcy Ribeiro, Av. Prof. Rui Braga, s/n - Vila Mauriceia, Montes Claros, Minas Gerais, 39401-089, Brazil.
| | - André Luiz Sena Guimarães
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil. .,Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil. .,Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Santos ACC, Amaro LBR, Batista Jorge AH, Lelis SDF, Lelis DDF, Guimarães ALS, Santos SHS, Andrade JMO. Curcumin improves metabolic response and increases expression of thermogenesis-associated markers in adipose tissue of male offspring from obese dams. Mol Cell Endocrinol 2023; 563:111840. [PMID: 36592923 DOI: 10.1016/j.mce.2022.111840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Maternal obesity and dietary style in the pregnancy-lactation period may result in long-term effects on the metabolic health of the offspring, thus increasing the risk of diseases, such as obesity, diabetes, and cardiovascular diseases. Curcumin is a natural polyphenolic compound that has beneficial properties on metabolism. Accordingly, this study is intended to evaluate the effects of curcumin supplementation in pregnant and lactating female mice on the anthropometric, metabolic and molecular parameters of the offspring fed a hyperglycemic diet. The study was conducted with 24 male mice randomized into three groups: i) control group (SD) originating from dams fed a standard diet; ii) hyperglycemic group (HGD) originating from dams fed a hyperglycemic diet; iii) curcumin group (CUR) originating from dams fed a hyperglycemic diet and supplemented with curcumin in the pregnancy-lactation period. All offspring groups were fed a hyperglycemic diet for 12 weeks. Anthropometricand biochemical parameters were measured, as well as the expression of thermogenesis-associated markers in the interscapular brown and inguinal white adipose tissues. The results showed less weight gain in the CUR group, with a concomitant reduction in food consumption compared to the HGD group. Biochemical parameters indicated lower levels of total cholesterol, glucose, and insulin for the CUR group, in addition to improved glucose tolerance and insulin sensitivity. The molecular evaluation indicated increased mRNA expression levels of UCP1 and PRDM16 in the brown and white adipose tissues. It is concluded that curcumin supplementation in the pregnancy-lactation period in dams with diet-induced obesity may lead to improvements in the offspring's metabolic phenotype, even if they are submitted to an obesogenic environment, possibly via thermogenesis activation.
Collapse
Affiliation(s)
| | - Lílian Betânia Reis Amaro
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | | | - Sarah de Farias Lelis
- Graduation Course in Medical Science, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil
| | | | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (PPGCS). State University of Montes Claros, Minas Gerais, Brazil; Department of Nursing. State University of Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Wang F, Niu Y, Chen K, Yuan X, Qin Y, Zheng F, Cui Z, Lu W, Wu Y, Xia D. Extracellular Vesicle-Packaged circATP2B4 Mediates M2 Macrophage Polarization via miR-532-3p/SREBF1 Axis to Promote Epithelial Ovarian Cancer Metastasis. Cancer Immunol Res 2023; 11:199-216. [PMID: 36512324 PMCID: PMC9896028 DOI: 10.1158/2326-6066.cir-22-0410] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/07/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is one of the most common gynecologic malignancies with a highly immunosuppressive tumor microenvironment (TME) and poor prognosis. Circular RNA (circRNA) is a type of noncoding RNA with high stability, which has been shown to play an important role in biological processes and TME reprogramming in a variety of tumors. The biological function of a novel circRNA, circATP2B4, in epithelial ovarian cancer (EOC) was detected and evaluated. Transmission electron microscopy, differential ultracentrifugation and qRT-PCR were used to verify the existence of extracellular vesicles (EV)-packaged circATP2B4. Macrophage uptake of circATP2B4 was determined by EVs tracing. Dual luciferase reporter, FISH, Western blotting, and flow cytometry assays were used to investigate the interactions between circATP2B4 and miR-532-3p as well as sterol regulatory element-binding factor 1 (SREBF1) expression in macrophages. CircATP2B4 was upregulated in EOC tissues and positively correlated with ovarian cancer progression. Functionally, circATP2B4 promoted carcinogenic progression and metastasis of EOC both in vitro and in vivo. Mechanistically, EV-packaged circATP2B4 in EOC could be transmitted to infiltrated macrophages and acted as competing endogenous RNA of miR-532-3p to relieve the repressive effect of miR-532-3p on its target SREBF1. Furthermore, circATP2B4 induced macrophage M2 polarization by regulating the miR-532-3p/SREBF1/PI3Kα/AKT axis, thereby leading to immunosuppression and ovarian cancer metastasis. Collectively, these data indicate that circATP2B4-containing EVs generated by EOC cells promoted M2 macrophages polarization and malignant behaviors of EOC cells. Thus, targeting EVs-packaged circATP2B4 may provide a potential diagnosis and treatment strategy for ovarian cancer.
Collapse
Affiliation(s)
- Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Qin
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Patel R, Parmar N, Palit SP, Rathwa N, Begum R. A novel combination of sitagliptin and melatonin ameliorates T2D manifestations: studies on experimental diabetic models. J Endocrinol Invest 2023:10.1007/s40618-023-02014-6. [PMID: 36692817 DOI: 10.1007/s40618-023-02014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Type 2 diabetes (T2D) is an endocrine disorder characterized by hyperglycemia, insulin resistance, dysregulated glucose and lipid metabolism, reduced pancreatic β-cell function and mass, and a reduced incretin effect. Circadian rhythm disruption is associated with increased T2D risk. We have investigated the therapeutic potential of a combination of melatonin (M) and sitagliptin (S), a dipeptidyl peptidase IV (DPP-IV) inhibitor, in the amelioration of T2D manifestations in high-fat diet (HFD) induced T2D mouse model and also on β-cell proliferation under gluco-lipotoxicity stress in vitro. METHODS For in vivo study, mice were fed with HFD for 25 weeks to induce T2D and were treated with monotherapies and S + M for four weeks. For the in vitro study, primary mouse islets were exposed to normal glucose and high glucose + palmitate to induce gluco-lipotoxic stress. RESULTS Our results suggest that monotherapies and S + M improve metabolic parameters and glyco-lipid metabolism in the liver and adipose tissue, respectively, and improve mitochondrial function in the skeletal muscle. Moreover, it increases peripheral insulin sensitivity. Our in vitro and in vivo studies suggest that β-cell mass was preserved in all the drug-treated groups. CONCLUSION The combination treatment is superior to monotherapies in the management of T2D.
Collapse
Affiliation(s)
- R Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - N Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - S P Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - N Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
17
|
Hildebrand Budke CR, Thomaz DMC, Oliveira RJD, Guimarães RDCA, Ramires AD, Dourado DM, Santos EFD, Menezes ACG, Antoniolli-Silva ACMB. Effect of Fiber Supplementation on Systemic Inflammation and Liver Steatosis in Mice Fed with High-Carbohydrate Diets. Metab Syndr Relat Disord 2022; 20:558-566. [PMID: 36318486 DOI: 10.1089/met.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: High consumption of carbohydrates can trigger metabolic and inflammatory disorders in the body. Thus, the aim of this study was to evaluate the effect of fiber supplementation on inflammation and hepatic steatosis in mice fed high-carbohydrate diets. Methods: Swiss male mice were distributed into two control groups and two experimental groups that received isocaloric diet rich in starch (55%) or rich in fructose (55%). In the last 4 weeks of the experiment, the animals received 5% fructo-oligosaccharide (FOS) supplementation via gavage, or water in the control groups. After 16 weeks, biochemical analyses, inflammatory cytokines, and histology of the liver of the animals were performed. Results: The animals that received fructose had higher weight at the end of the experiment as well as liver weight, consumed more feed, had higher levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein-1 (MCP-1), and a higher degree of hepatic steatosis when compared with the animals that received starch. However, the animals that received starch showed a higher inflammatory process. FOS supplementation was efficient in reducing liver weight and hepatic steatosis degree in animals fed with fructose diet but showed more degeneration of liver tissue and high levels of inflammatory cytokines. FOS reduced the levels of urea and total cholesterol in the starch-fed animals. Conclusions: Diets rich in carbohydrates such as starch and fructose cause deleterious effects in animals, and fiber supplementation can bring beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Amariles Diniz Ramires
- Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul/UFMS, Campo Grande, Brazil
| | - Doroty Mesquita Dourado
- Histologia, Universidade para o Desenvolvimento do Estado e Região do Pantanal/Uniderp, Campo Grande, Brazil
| | | | | | | |
Collapse
|
18
|
Marçal AP, Soares N, Asth L, Moreira FA, Ferreira AVM, Aguiar DC. Cannabidiol ameliorates the anxiogenic and compulsive-like behaviors induced by chronic consumption of a high-carbohydrate diet in male mice. Metab Brain Dis 2022; 37:2711-2718. [PMID: 36040711 DOI: 10.1007/s11011-022-01071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022]
Abstract
The excessive consumption of ultra-processed foods and the development of obesity has been associated with several comorbidities, including psychiatric disorders. Excess fat tissue promotes a low-intensity inflammatory state, mainly in the white tissue, which is essential in developing metabolic alterations and influences brain homeostasis. In this scenario, Cannabidiol (CBD), a compound from Cannabis sativa, has presented anxiolytic and anti-inflammatory effects in murine models. This study verified whether CBD treatment would ameliorate the compulsive-like and anxiety-like behaviors observed after mice's chronic consumption of a high-refined carbohydrate (HC) diet. BALB/c male mice received a control or HC diet for 12 weeks followed by vehicle and CBD (30 mg/Kg, i.p.) administration, and their behavior was evaluated in the Marble Burying test (MB) and Novel Suppressing Feeding test (NSF). The sub-chronic, but not acute, treatment with CBD attenuated the compulsive-like and anxiogenic-like behavior induced by the HC diet. Our data reinforced the harmful effects of the HC diet's chronic consumption on compulsive and anxious behaviors and the potential of CBD as a drug treatment for psychiatric disorders associated with obesity.
Collapse
Affiliation(s)
- Anna Paula Marçal
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Nícia Soares
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Protective Effect of Virgin Coconut Oil on Osteopenia Induced by High Refined Carbohydrate-Containing Diet in Mice. Foods 2022; 11:foods11182800. [PMID: 36140928 PMCID: PMC9498055 DOI: 10.3390/foods11182800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Obesity leads to chronic low-grade inflammation, promoting detrimental effects on bone. The consumption of virgin coconut oil (VCO) is associated with benefits related to meta-inflammation. We evaluated the effect of VCO supplementation on osteopenia promoted by diet-induced obesity in mice. Methods: Male BALB/c mice were fed a control (C) or highly refined carbohydrate-containing (HC) diet for eight weeks. After that, the HC diet group was supplemented with three doses of VCO for four weeks. Results: The HC diet increased the adiposity and leptin levels associated with augmented systemic inflammatory cells improved with VCO supplementation. The HC diet reduced the trabecular bone in the tibia, lumbar vertebrae, distal and proximal femur, as well as the bone mineral density of the femur and alveolar bone. The VCO supplementation reverted bone osteopenia by increasing the trabecular bone in different sites and improving femur and alveolar bone microarchitecture. Although the reduced number of osteoblasts in the alveolar bone of the HC diet group was not significantly enhanced by VCO supplementation, the reduced Alp expression in the HC diet group was enhanced in the VCO group. These beneficial effects were associated with lowering the Rankl/Opg ratio. Conclusion: VCO supplementation might be an effective strategy to attenuate bone osteopenic effects induced by obesity.
Collapse
|
20
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
21
|
Beukema M, Jermendi É, Oerlemans M, Logtenberg M, Akkerman R, An R, van den Berg M, Zoetendal E, Koster T, Kong C, Faas M, Schols H, de Vos P. The level and distribution of methyl-esters influence the impact of pectin on intestinal T cells, microbiota, and Ahr activation. Carbohydr Polym 2022; 286:119280. [DOI: 10.1016/j.carbpol.2022.119280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 12/16/2022]
|
22
|
Real-Time Monitoring the Cytotoxic Effect of Andrographolide on Human Oral Epidermoid Carcinoma Cells. BIOSENSORS 2022; 12:bios12050304. [PMID: 35624605 PMCID: PMC9138648 DOI: 10.3390/bios12050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Andrographolide is an active diterpenoid compound extracted from Andrographis paniculata. It exhibits antiinflammatory and anticancer effects. Previous studies show that it is non-toxic to experimental animals. The leading causes of cancer are chronic inflammation and high blood glucose. This study determines the cytotoxic effect of andrographolide on cellular morphology, viability, and migration for human oral epidermoid carcinoma cell Meng-1 (OEC-M1). We use electric cell-substrate impedance sensing (ECIS) to measure the subsequent overall impedance changes of the cell monolayer in response to different concentrations of andrographolide for 24 h (10–100 µM). The results for exposure of OEC-M1 cells to andrographolide (10–100 µM) for 24 h show a concentration-dependent decrease in the overall measured resistance at 4 kHz. AlamarBlue cell viability assay and annexin V also show the apoptotic effect of andrographolide on OEC-M1 cells. A reduction in wound-healing recovery rate is observed for cells treated with 30 μM andrographolide. This study demonstrates that ECIS can be used for the in vitro screening of anticancer drugs. ECIS detects the cytotoxic effect of drugs earlier than traditional biochemical assays, and it is more sensitive and shows more detail.
Collapse
|
23
|
Barrea L, Caprio M, Watanabe M, Cammarata G, Feraco A, Muscogiuri G, Verde L, Colao A, Savastano S. Could very low-calorie ketogenic diets turn off low grade inflammation in obesity? Emerging evidence. Crit Rev Food Sci Nutr 2022; 63:8320-8336. [PMID: 35373658 DOI: 10.1080/10408398.2022.2054935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an emerging non-communicable disease associated with chronic low-grade inflammation and oxidative stress, compounded by the development of many obesity-related diseases, such as cardiovascular disease, type 2 diabetes mellitus, and a range of cancers. Originally developed for the treatment of epilepsy in drug non-responder children, the ketogenic diet (KD) is being increasingly used in the treatment of many diseases, including obesity and obesity-related conditions. The KD is a dietary pattern characterized by high fat intake, moderate to low protein consumption, and very low carbohydrate intake (<50 g) that has proved to be an effective and weight-loss tool. In addition, it also appears to be a dietary intervention capable of improving the inflammatory state and oxidative stress in individuals with obesity by means of several mechanisms. The main activity of the KD has been linked to improving mitochondrial function and decreasing oxidative stress. β-hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species, improving mitochondrial respiration. In addition, KDs exert anti-inflammatory activity through several mechanisms, e.g., by inhibiting activation of the nuclear factor kappa-light-chain-enhancer of activated B cells, and the inflammatory nucleotide-binding, leucine-rich-containing family, pyrin domain-containing-3, and inhibiting histone deacetylases. Given the rising interest in the topic, this review looks at the underlying anti-inflammatory and antioxidant mechanisms of KDs and their possible recruitment in the treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Cammarata
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI) and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
24
|
Chaves IDM, Zicker MC, Laranjeira ADO, Silveira ALM, Aguiar DCD, Barrioni BR, Ferreira AVDM, Teixeira MM, Silva TAD, Souza DDGD, Madeira MFM. Dysbiotic oral microbiota contributes to alveolar bone loss associated with obesity in mice. J Appl Oral Sci 2022; 30:e20220238. [DOI: 10.1590/1678-7757-2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
|
25
|
Costa KA, Lacerda DR, Silveira ALM, Martins LB, Oliveira MC, Rezende BM, Menezes-Garcia Z, Mügge FLB, Silva AM, Teixeira MM, Rouault C, Pinho V, Marcelin G, Clément K, Ferreira AVM. PAF signaling plays a role in obesity-induced adipose tissue remodeling. Int J Obes (Lond) 2022; 46:68-76. [PMID: 34493775 DOI: 10.1038/s41366-021-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Platelet-activating factor receptor (PAFR) activation controls adipose tissue (AT) expansion in animal models. Our objective was twofold: (i) to check whether PAFR signaling is involved in human obesity and (ii) investigate the PAF pathway role in hematopoietic or non-hematopoietic cells to control adipocyte size. MATERIALS/SUBJECTS AND METHODS Clinical parameters and adipose tissue gene expression were evaluated in subjects with obesity. Bone marrow (BM) transplantation from wild-type (WT) or PAFR-/- mice was performed to obtain chimeric PAFR-deficient mice predominantly in hematopoietic or non-hematopoietic-derived cells. A high carbohydrate diet (HC) was used to induce AT remodeling and evaluate in which cell compartment PAFR signaling modulates it. Also, 3T3-L1 cells were treated with PAF to evaluate fat accumulation and the expression of genes related to it. RESULTS PAFR expression in omental AT from humans with obesity was negatively correlated to different corpulence parameters and more expressed in the stromal vascular fraction than adipocytes. Total PAFR-/- increased adiposity compared with WT independent of diet-induced obesity. Differently, WT mice receiving PAFR-/--BM exhibited similar adiposity gain as WT chimeras. PAFR-/- mice receiving WT-BM showed comparable augmentation in adiposity as total PAFR-/- mice, demonstrating that PAFR signaling modulates adipose tissue expansion through non-hematopoietic cells. Indeed, the PAF treatment in 3T3-L1 adipocytes reduced fat accumulation and expression of adipogenic genes. CONCLUSIONS Therefore, decreased PAFR signaling may favor an AT accumulation in humans and animal models. Importantly, PAFR signaling, mainly in non-hematopoietic cells, especially in adipocytes, appears to play a significant role in regulating diet-induced AT expansion.
Collapse
Affiliation(s)
- Kátia A Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora R Lacerda
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L M Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laís B Martins
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara M Rezende
- Department of Basic Nursing, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zélia Menezes-Garcia
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda L B Mügge
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóbolo M Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geneviève Marcelin
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Adaliene V M Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Beukema M, Akkerman R, Jermendi É, Koster T, Laskewitz A, Kong C, Schols HA, Faas MM, de Vos P. Pectins that Structurally Differ in the Distribution of Methyl-Esters Attenuate Citrobacter rodentium-Induced Colitis. Mol Nutr Food Res 2021; 65:e2100346. [PMID: 34369649 PMCID: PMC9285458 DOI: 10.1002/mnfr.202100346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pectins have anti-inflammatory properties on intestinal immunity through direct interactions on Toll-like receptors (TLRs) in the small intestine or via stimulating microbiota-dependent effects in the large intestine. Both the degree of methyl-esterification (DM) and the distribution of methyl-esters (degree of blockiness; DB) of pectins contribute to this influence on immunity, but whether and how the DB impacts immunity through microbiota-dependent effects in the large intestine is unknown. Therefore, this study tests pectins that structurally differ in DB in a mouse model with Citrobacter rodentium induced colitis and studies the impact on the intestinal microbiota composition and associated attenuation of inflammation. METHODS AND RESULTS Both low and high DB pectins induce a more rich and diverse microbiota composition. These pectins also lower the bacterial load of C. rodentium in cecal digesta. Through these effects, both low and high DB pectins attenuate C. rodentium induced colitis resulting in reduced intestinal damage, reduced numbers of Th1-cells, which are increased in case of C. rodentium induced colitis, and reduced levels of GATA3+ Tregs, which are related to tissue inflammation. CONCLUSION Pectins prevent C. rodentium induced colonic inflammation by lowering the C. rodentium load in the caecum independently of the DB.
Collapse
Affiliation(s)
- Martin Beukema
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Renate Akkerman
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Éva Jermendi
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Taco Koster
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Anne Laskewitz
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Chunli Kong
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Henk A. Schols
- Laboratory of Food ChemistryWageningen University and ResearchWageningenThe Netherlands
| | - Marijke M. Faas
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Paul de Vos
- ImmunoendocrinologyDivision of Medical BiologyDepartment of Pathology and Medical BiologyUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
28
|
de Souza JA, Pinto ABG, de Oliveira EC, Coelho DB, Totou NL, de Lima WG, Becker LK. Aerobic exercise training prevents impairment in renal parameters and in body composition of rats fed a high sucrose diet. BMC Res Notes 2021; 14:378. [PMID: 34565460 PMCID: PMC8474763 DOI: 10.1186/s13104-021-05790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the effect of swimming training (T) on the renal system and body composition parameters in young animals treated with a high sucrose diet (SUD) during 12 weeks. RESULTS The SUD impaired the physical performance, increased the body adiposity index (BAI), Lee index (LI) and retroperitoneal adipose tissue (RAT) weight, plasma creatinine and number renal cells nuclei, decreased urinary volume and urinary creatinine excretion besides creatinine clearance. The T reversed the increased the BAI, LI, RAT weight, plasma and urinary creatinine, creatinine clearance and number renal cells nuclei in addition to promoting decrease in urinary protein excretion. This study found that eight weeks of swimming physical training protected renal function and restored normal glomerular filtration rate (GFR) values. Swimming training also contributed to prevention of the onset of a renal inflammatory process and caused a decrease in the risk of development of obesity promoted by SUD decreasing the body composition parameters (BAI, LI, and RAT weight).
Collapse
Affiliation(s)
- Jaqueline A de Souza
- Dept. of Pharmacology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Emerson C de Oliveira
- Physical Education School, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35,400-000, Brazil
| | - Daniel B Coelho
- Physical Education School, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35,400-000, Brazil
| | - Nádia L Totou
- Dept. of Biological Sciences-ICEB, UFOP, Ouro Preto, MG, Brazil
| | | | - Lenice K Becker
- Physical Education School, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35,400-000, Brazil.
| |
Collapse
|
29
|
Wróblewski A, Strycharz J, Świderska E, Balcerczyk A, Szemraj J, Drzewoski J, Śliwińska A. Chronic and Transient Hyperglycemia Induces Changes in the Expression Patterns of IL6 and ADIPOQ Genes and Their Associated Epigenetic Modifications in Differentiating Human Visceral Adipocytes. Int J Mol Sci 2021; 22:ijms22136964. [PMID: 34203452 PMCID: PMC8268546 DOI: 10.3390/ijms22136964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Adipokines secreted by hypertrophic visceral adipose tissue (VAT) instigate low-grade inflammation, followed by hyperglycemia (HG)-related metabolic disorders. The latter may develop with the participation of epigenetic modifications. Our aim was to assess how HG influences selected epigenetic modifications and the expression of interleukin 6 (IL-6) and adiponectin (APN; gene symbol ADIPOQ) during the adipogenesis of human visceral preadipocytes (HPA-v). Adipocytes (Ads) were chronically or transiently HG-treated during three stages of adipogenesis (proliferation, differentiation, maturation). We measured adipokine mRNA, protein, proven or predicted microRNA expression (RT-qPCR and ELISA), and enrichment of H3K9/14ac, H3K4me3, and H3K9me3 at gene promoter regions (chromatin immunoprecipitation). In chronic HG, we detected different expression patterns of the studied adipokines at the mRNA and protein levels. Chronic and transient HG-induced changes in miRNA (miR-26a-5p, miR-26b-5p, let-7d-5p, let-7e-5p, miR-365a-3p, miR-146a-5p) were mostly convergent to altered IL-6 transcription. Alterations in histone marks at the IL6 promoter were also in agreement with IL-6 mRNA. The open chromatin marks at the ADIPOQ promoter mostly reflected the APN transcription during NG adipogenesis, while, in the differentiation stage, HG-induced changes in all studied marks were in line with APN mRNA levels. In summary, HG dysregulated adipokine expression, promoting inflammation. Epigenetic changes coexisted with altered expression of adipokines, especially for IL-6; therefore, epigenetic marks induced by transient HG may act as epi-memory in Ads. Such changes in the epigenome and expression of adipokines could be instrumental in the development of inflammation and metabolic deregulation of VAT.
Collapse
Affiliation(s)
- Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
- Correspondence: (A.W.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Ewa Świderska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (J.S.); (E.Ś.); (J.S.)
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acids Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (A.Ś.)
| |
Collapse
|
30
|
Zanol JF, Niño OMS, da Costa CS, Freitas-Lima LC, Miranda-Alves L, Graceli JB. Tributyltin and high-refined carbohydrate diet lead to metabolic and reproductive abnormalities, exacerbating premature ovary failure features in the female rats. Reprod Toxicol 2021; 103:108-123. [PMID: 34102259 DOI: 10.1016/j.reprotox.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to the obesogen tributyltin (TBT) alone or high carbohydrate diet (HCD) alone leads to obesity and reproductive complications, such as premature ovary failure (POF) features. However, little is known about interactions between TBT and nutrition and their combined impact on reproduction. In this study, we assessed whether acute TBT and HCD exposure results in reproductive and metabolic irregularities. Female rats were treated with TBT (100 ng/kg/day) and fed with HCD for 15 days and metabolic and reproductive outcomes were assessed. TBT and HCD rats displayed metabolic impairments, such as increased adiposity, abnormal lipid profile and triglyceride and glucose (TYG) index, worsening adipocyte hypertrophy in HCD-TBT rats. These metabolic consequences were linked with reproductive disorders. Specifically, HCD-TBT rats displayed irregular estrous cyclicity, high follicle-stimulating hormone (FSH) levels, low anti-Müllerian hormone (AMH) levels, reduction in ovarian reserve, and corpora lutea (CL) number, with increases in atretic follicles, suggesting that HCD-TBT exposure exacerbated POF features. Further, strong negative correlations were observed between adipocyte hypertrophy and ovarian reserve, CL number and AMH levels. HCD-TBT exposure resulted in reproductive tract inflammation and fibrosis. Collectively, these data suggest that TBT plus HCD exposure leads to metabolic and reproductive abnormalities, exacerbating POF features in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar M S Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil; Bachelor of Physical Education and Sports, Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| |
Collapse
|
31
|
Beukema M, Jermendi É, Schols HA, de Vos P. The influence of calcium on pectin's impact on TLR2 signalling. Food Funct 2021; 11:7427-7432. [PMID: 32902547 DOI: 10.1039/d0fo01703e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High intake of dietary fibres and calcium has been correlated to a lower frequency of Western disease such as allergy, asthma and obesity. How the combined higher intake of dietary fibres and calcium reduces the incidence of these diseases is unknown. Dietary fibre pectin can interact with Toll-like receptor (TLR) 2 and calcium in a degree of methyl-esterification (DM)-dependent manner. Low DM pectins interact stronger with TLR2 than high DM pectins. Since low DM pectin are known to bind calcium strongly, we investigated how calcium influences the DM-dependent impact of pectins on TLR2 signalling. We tested TLR2 activating, inhibiting and binding properties of pectins with DM18, DM52 and DM69 under 0 mM, 1 mM and 10 mM calcium conditions. None of the pectins activated TLR2, but pectins inhibited TLR2. Under 0 mM calcium conditions, especially DM18 and DM52 strongly inhibited TLR2 and bound strongly to TLR2. Addition of 1 and 10 mM calcium to these pectins reduced TLR2 inhibition and TLR2 binding. Our study shows that calcium reduces inhibition of TLR2 by low and intermediate DM pectins, but calcium has lower impact on TLR2 inhibition by high DM pectins. Calcium may therefore beneficially influence the impact of pectin on TLR2 signalling and contribute to an improved intestinal barrier function. A combined higher intake of pectin and calcium may therefore contribute to a lower incidence of Western diseases.
Collapse
Affiliation(s)
- Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - Éva Jermendi
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Paulus de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
32
|
Wang Q, Du L, Hong J, Chen Z, Liu H, Li S, Xiao X, Yan S. Molecular mechanism underlying the hypolipidemic effect of Shanmei Capsule based on network pharmacology and molecular docking. Technol Health Care 2021; 29:239-256. [PMID: 33682762 PMCID: PMC8150495 DOI: 10.3233/thc-218023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND: Shanmei Capsule is a famous preparation in China. However, the related mechanism of Shanmei Capsule against hyperlipidemia has yet to be revealed. OBJECTIVE: To elucidate underlying mechanism of Shanmei Capsule against hyperlipidemia through network pharmacology approach and molecular docking. METHODS: Active ingredients, targets of Shanmei Capsule as well as targets for hyperlipidemia were screened based on database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed via Database for Annotation, Visualization, and Integrated Discovery (DAVID) 6.8 database. Ingredient-target-disease-pathway network was visualized utilizing Cytoscape software and molecular docking was performed by Autodock Vina. RESULTS: Seventeen active ingredients in Shanmei Capsule were screened out with a closely connection with 34 hyperlipidemia-related targets. GO analysis revealed 40 biological processes, 5 cellular components and 29 molecular functions. A total of 15 signal pathways were enriched by KEGG pathway enrichment analysis. The docking results indicated that the binding activities of key ingredients for PPAR-α are equivalent to that of the positive drug lifibrate. CONCLUSIONS: The possible molecular mechanism mainly involved PPAR signaling pathway, Bile secretion and TNF signaling pathway via acting on MAPK8, PPARγ, MMP9, PPARα, FABP4 and NOS2 targets.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.,Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Jiana Hong
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Zhenlin Chen
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Huijian Liu
- Shanxi Taihang Pharmaceutical Co., Ltd, Changzhi, Shanxi 046000, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Shikai Yan
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Dos Reis Costa DEF, Silveira ALM, Campos GP, Nóbrega NRC, de Araújo NF, de Figueiredo Borges L, Dos Santos Aggum Capettini L, Ferreira AVM, Bonaventura D. High-Carbohydrate Diet Enhanced the Anticontractile Effect of Perivascular Adipose Tissue Through Activation of Renin-Angiotensin System. Front Physiol 2021; 11:628101. [PMID: 33519529 PMCID: PMC7845559 DOI: 10.3389/fphys.2020.628101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The perivascular adipose tissue (PVAT) is an active endocrine organ responsible for release several substances that influence on vascular tone. Increasing evidence suggest that hyperactivation of the local renin-angiotensin system (RAS) in the PVAT plays a pivotal role in the pathogenesis of cardiometabolic diseases. However, the local RAS contribution to the PVAT control of vascular tone during obesity is still not clear. Since the consumption of a high-carbohydrate diet (HC diet) contributes to obesity inducing a rapid and sustained increase in adiposity, so that the functional activity of PVAT could be modulated, we aimed to evaluate the effect of HC diet on the PVAT control of vascular tone and verify the involvement of RAS in this effect. For that, male Balb/c mice were fed standard or HC diet for 4 weeks. Vascular reactivity, histology, fluorescence, and immunofluorescence analysis were performed in intact thoracic aorta in the presence or absence of PVAT. The results showed that HC diet caused an increase in visceral adiposity and also in the PVAT area. Phenylephrine-induced vasoconstriction was significantly reduced in the HC group only in the presence of PVAT. The anticontractile effect of PVAT induced by HC diet was lost when aortic rings were previously incubated with angiotensin-converting enzyme inhibitor, Mas, and AT2 receptors antagonists, PI3K, nNOS, and iNOS inhibitors, hydrogen peroxide (H2O2) decomposing enzyme or non-selective potassium channels blocker. Immunofluorescence assays showed that both Mas and AT2 receptors as well as nNOS and iNOS isoforms were markedly expressed in the PVAT of the HC group. Furthermore, the PVAT from HC group also exhibited higher nitric oxide (NO) and hydrogen peroxide bioavailability. Taken together, these findings suggest that the anticontractile effect of PVAT induced by HC diet involves the signaling cascade triggered by the renin-angiotensin system through the activation of Mas and AT2 receptors, PI3K, nNOS, and iNOS, leading to increased production of nitric oxide and hydrogen peroxide, and subsequently opening of potassium channels. The contribution of PVAT during HC diet-induced obesity could be a compensatory adaptive characteristic in order to preserve the vascular function.
Collapse
Affiliation(s)
| | - Ana Letícia Malheiros Silveira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gianne Paul Campos
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Natália Ferreira de Araújo
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciano de Figueiredo Borges
- Department of Biological Sciences, Morphophysiology & Pathology Sector, Federal University of São Paulo, São Paulo, Brazil
| | | | - Adaliene Versiani Matos Ferreira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Bonaventura
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Malheiros RT, Delgado HO, Felber DT, Kraus SI, Dos Santos ARS, Manfredini V, da Silva MD. Mood disorders are associated with the reduction of brain derived neurotrophic factor in the hypocampus in rats submitted to the hipercaloric diet. Metab Brain Dis 2021; 36:145-151. [PMID: 33025299 DOI: 10.1007/s11011-020-00625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue accumulation, resulting from the consumption of hypercaloric foods, can cause a dysfunction of the endocrine system. Such endocrine changes can influence the expression of various neurochemicals including brain-derived neurotrophic factor (BDNF) - associated with cognitive and emotional problems. Here, we investigated the effects of a hypercaloric diet on depression- and anxiety-like behaviors in young rats along with concomitant changes in BDNF expression levels in the hippocampus. Eight week-old Wistar rats (n = 20) were divided in: control diet (CD) group which received industrial food (n = 8) and hypercaloric diet (HD) group which received animal fat and soybean oil (n = 12). After 45 days on the diet, the animals were evaluated: body weight and blood biochemical analisys. Changes in mood disposition were evaluated using forced swim test and the elevated plus-maze, whereas hippocampal BDNF expression levels were quantified by ELISA. After 45 weeks, the CD group showed a significant increase in body weight relative to the HD group. However, the HD rats had a body fat percentage and exhibited increased level of the biochemical markers. Furthermore, the animals in the HD group presented increased immobility time in the forced swimming test, as well as reduced response to plus-maze test suggesting a depression- and anxiety-like emotional state. In addition, the HD group also showed lower BDNF expression levels in the hippocampus. This study demonstrates that a hypercaloric diet induced increase in adipose tissue concentration in young rats was associated with reduced hippocampal BDNF expression and resulted in an increase in depression- and anxiety-like behaviors. Graphical abstract.
Collapse
Affiliation(s)
- Rafael Tamborena Malheiros
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Helena Oliveira Delgado
- Graduation of Physiotherapy, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Daniel Tassinari Felber
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Scheila Iria Kraus
- Post-graduate Program in Neurosciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adair Roberto Soares Dos Santos
- Post-graduate Program in Neurosciences, Center for Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Vanusa Manfredini
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil
| | - Morgana Duarte da Silva
- Multicentric Program of Post-graduation in Physiological Sciences, Federal University of Pampa, University Campus, BR 472, Km 92, Uruguaiana, RS, 97500-970, Brazil.
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
35
|
Luo H, Wu H, Tan X, Ye Y, Huang L, Dai H, Mei L. Osteopenic effects of high-fat diet-induced obesity on mechanically induced alveolar bone remodeling. Oral Dis 2020; 27:1243-1256. [PMID: 32989808 DOI: 10.1111/odi.13651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the effect of obesity on the tissue and molecular reactions of alveolar bone in response to orthodontic force and its underlying mechanisms. METHODS Sixty-four rats were randomly divided into normal diet (ND) and high-fat diet (HFD) groups for eight weeks of dietary treatment. OTM was induced using nickel-titanium springs between the upper left first molar and incisor. After 1, 3, 7, and 14 days of OTM, the maxillary alveolar bone and gingival tissues were harvested and analyzed. RESULTS Compared with the ND rats, the HFD rats had greater OTM distance, serum levels of tartrate-resistant acid phosphatase (TRAP), and tumor necrosis factor α (TNF-α), as well as significant alveolar bone loss and bone architecture deterioration on both the compression and tension sides (p < .05 for all). This response was linked to the increased osteoclast numbers and functional activity and decreased osteoblast activity in the periodontal ligament, gingival tissue, and alveolar bone. CONCLUSIONS HFD-induced obesity promoted mechanically induced alveolar bone remodeling and detrimental changes in alveolar bone microstructure by increasing osteoclastogenesis and regulating inflammatory cytokine expression. The increased alveolar bone remodeling in the obese rats lead to an accelerated OTM.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyan Wu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Tan
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yusi Ye
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongwei Dai
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Beukema M, Jermendi É, van den Berg MA, Faas MM, Schols HA, de Vos P. The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses. Carbohydr Polym 2020; 251:117093. [PMID: 33152851 DOI: 10.1016/j.carbpol.2020.117093] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/26/2023]
Abstract
Pectins have anti-inflammatory effects via Toll-like receptor (TLR) inhibition in a degree of methyl-esterification-(DM)-dependent manner. However, pectins also vary in distribution of methyl-esters over the galacturonic-acid (GalA) backbone (Degree of Blockiness - DB) and impact of this on anti-inflammatory capacity is unknown. Pectins mainly inhibit TLR2-1 but magnitude depends on both DM and DB. Low DM pectins (DM18/19) with both low (DB86) and high DB (DB94) strongly inhibit TLR2-1. However, pectins with intermediate DM (DM43/DM49) and high DB (DB60), but not with low DB (DB33), inhibit TLR2-1 as strongly as low DM. High DM pectins (DM84/88) with DB71 and DB91 do not inhibit TLR2-1 strongly. Pectin-binding to TLR2 was confirmed by capture-ELISA. In human macrophages, low DM and intermediate DM pectins with high DB inhibited TLR2-1 induced IL-6 secretion. Both high number and blockwise distribution of non-esterified GalA in pectins are responsible for the anti-inflammatory effects via inhibition of TLR2-1.
Collapse
Affiliation(s)
- M Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - É Jermendi
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands.
| | - M A van den Berg
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX, Delft, the Netherlands.
| | - M M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - H A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands.
| | - P de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
37
|
Lew LC, Hor YY, Jaafar MH, Lau ASY, Lee BK, Chuah LO, Yap KP, Azlan A, Azzam G, Choi SB, Liong MT. Lactobacillus Strains Alleviated Hyperlipidemia and Liver Steatosis in Aging Rats via Activation of AMPK. Int J Mol Sci 2020; 21:ijms21165872. [PMID: 32824277 PMCID: PMC7461503 DOI: 10.3390/ijms21165872] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5′ adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and β-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.
Collapse
Affiliation(s)
- Lee-Ching Lew
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Yan-Yan Hor
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Mohamad-Hafis Jaafar
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amy-Sie-Yik Lau
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Boon-Kiat Lee
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Li-Oon Chuah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
| | - Kien-Pong Yap
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Azali Azlan
- School of Biological Science, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Ghows Azzam
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
- School of Biological Science, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Sy-Bing Choi
- School of Data Sciences, Perdana University, MARDI Complex, Selangor 43400, Malaysia
- Correspondence: (S.-B.C.); (M.-T.L.); Tel.: +603-89418646 (S.-B.C.); +604-653-2114 (M.-T.L.); Fax: +603-894107661 (S.-B.C.); +604-653-6375 (M.-T.L.)
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (L.-C.L.); (Y.-Y.H.); (M.-H.J.); (A.-S.-Y.L.); (B.-K.L.); (L.-O.C.)
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.-B.C.); (M.-T.L.); Tel.: +603-89418646 (S.-B.C.); +604-653-2114 (M.-T.L.); Fax: +603-894107661 (S.-B.C.); +604-653-6375 (M.-T.L.)
| |
Collapse
|
38
|
Oliveira MC, Pieters BCH, Guimarães PB, Duffles LF, Heredia JE, Silveira ALM, Oliveira ACC, Teixeira MM, Ferreira AVM, Silva TA, van de Loo FAJ, Macari S. Bovine Milk Extracellular Vesicles Are Osteoprotective by Increasing Osteocyte Numbers and Targeting RANKL/OPG System in Experimental Models of Bone Loss. Front Bioeng Biotechnol 2020; 8:891. [PMID: 32850743 PMCID: PMC7411003 DOI: 10.3389/fbioe.2020.00891] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Studying effects of milk components on bone may have a clinical impact as milk is highly associated with bone maintenance, and clinical studies provided controversial associations with dairy consumption. We aimed to evaluate the impact of milk extracellular vesicles (mEVs) on the dynamics of bone loss in mice. MEVs are nanoparticles containing proteins, mRNA and microRNA, and were supplemented into the drinking water of mice, either receiving diet-induced obesity or ovariectomy (OVX). Mice receiving mEVs were protected from the bone loss caused by diet-induced obesity. In a more severe model of bone loss, OVX, higher osteoclast numbers in the femur were found, which were lowered by mEV treatment. Additionally, the osteoclastogenic potential of bone marrow-derived precursor cells was lowered in mEV-treated mice. The reduced stiffness in the femur of OVX mice was consequently reversed by mEV treatment, accompanied by improvement in the bone microarchitecture. In general, the RANKL/OPG ratio increased systemically and locally in both models and was rescued by mEV treatment. The number of osteocytes, as primary regulators of the RANKL/OPG system, raised in the femur of the OVX mEVs-treated group compared to OVX non-treated mice. Also, the osteocyte cell line treated with mEVs demonstrated a lowered RANKL/OPG ratio. Thus, mEVs showed systemic and local osteoprotective properties in two mouse models of bone loss reflected in reduced osteoclast presence. Data reveal mEV potential in bone modulation, acting via osteocyte enhancement and RANKL/OPG regulation. We suggest that mEVs could be a therapeutic candidate for the treatment of bone loss.
Collapse
Affiliation(s)
- Marina C Oliveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bartijn C H Pieters
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Polianna B Guimarães
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Letícia F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joyce E Heredia
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana L M Silveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Amanda C C Oliveira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adaliene V M Ferreira
- Laboratory of Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tarcilia A Silva
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Soraia Macari
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
39
|
High-refined carbohydrate diet leads to polycystic ovary syndrome-like features and reduced ovarian reserve in female rats. Toxicol Lett 2020; 332:42-55. [PMID: 32629074 DOI: 10.1016/j.toxlet.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Obesity is associated with several female reproductive complications, such as polycystic ovary syndrome (PCOS). The exact mechanism of this relationship remains unclear. Few previous studies using diet containing refined carbohydrate (HCD) leading to obesity have been performed and it is unclear if HCD is linked with reproductive dysfunctions. In this investigation, we assessed whether subchronic HCD exposure results in reproductive and other irregularities. Female rats were fed with HCD for 15 days and metabolic outcomes and reproductive tract morphophysiology were assessed. We further assessed reproductive tract inflammation, oxidative stress (OS) and fibrosis. HCD rats displayed metabolic impairments, such as an increase in body weight/adiposity, adipocyte hypertrophic, abnormal lipid profile, glucose tolerance and insulin resistance (IR) and hyperleptinemia. Improper functioning of the HCD reproductive tract was observed. Specifically, irregular estrous cyclicity, high LH levels and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. Improper follicular development and a reduction in antral follicles, corpora lutea and granulosa layer area together with an increase in cystic follicles were apparent. Uterine atrophy and reduction in endometrial gland (GE) number was observed in HCD rats. Reproductive tract inflammation, OS and fibrosis were seen in HCD rats. Further, strong positive correlations were observed between body weight/adiposity and IR with estrous cycle length, cystic follicles, ovarian reserve, GE and other abnormalities. Thus, these data suggest that the subchronic HCD exposure led to PCOS-like features, impaired ovarian reserve, GE number, and other reproductive abnormalities in female rats.
Collapse
|
40
|
Liu M, Lycett K, Moreno-Betancur M, Wong TY, He M, Saffery R, Juonala M, Kerr JA, Wake M, Burgner DP. Inflammation mediates the relationship between obesity and retinal vascular calibre in 11-12 year-olds children and mid-life adults. Sci Rep 2020; 10:5006. [PMID: 32193466 PMCID: PMC7081237 DOI: 10.1038/s41598-020-61801-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/18/2020] [Indexed: 11/29/2022] Open
Abstract
Obesity predicts adverse microvasculature from childhood, potentially via inflammatory pathways. We investigated whether inflammation mediates associations between obesity and microvascular parameters. In 1054 children (mean age 11 years) and 1147 adults (44 years) from a cross-sectional study, we measured BMI (z-scores for children) and WHtR, Glycoprotein acetyls (GlycA), an inflammatory marker, and retinal arteriolar and venular calibre. Causal mediation analysis methods decomposed a "total effect" into "direct" and "indirect" components via a mediator, considering continuous and categorical measures and adjusting for potential confounders. Compared to normal-weight BMI children, those with overweight or obesity had narrower arteriolar calibre (total effects -0.21 to -0.12 standard deviation (SD)): direct (not mediated via GlycA) effects were similar. Children with overweight or obesity had 0.25 to 0.35 SD wider venular calibre, of which 19 to 25% was mediated via GlycA. In adults, those with obesity had 0.07 SD greater venular calibre, which was completely mediated by GlycA (indirect effect: 0.07 SD, 95% CI -0.01 to 0.16). Similar findings were obtained with other obesity measures. Inflammation mediated associations between obesity and retinal venules, but not arterioles from mid-childhood, with higher mediation effects observed in adults. Interventions targeting inflammatory pathways may help mitigate adverse impacts of obesity on the microvasculature.
Collapse
Affiliation(s)
- Mengjiao Liu
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kate Lycett
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Centre for Social & Early Emotional Development, Deakin University, Melbourne, VIC, Australia
| | - Margarita Moreno-Betancur
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Tien Yin Wong
- The University of Melbourne, Melbourne, VIC, Australia.
- Department of Ophthalmic Epidemiology, Centre for Eye Research Australia, The University of Melbourne, Melbourne, Australia.
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.
| | - Mingguang He
- The University of Melbourne, Melbourne, VIC, Australia
- Department of Ophthalmic Epidemiology, Centre for Eye Research Australia, The University of Melbourne, Melbourne, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Richard Saffery
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jessica A Kerr
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Melissa Wake
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - David P Burgner
- The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, Monash University, Melbourne, Australia
- Infectious Diseases, Royal Children's Hospital, Melbourne, Australia
| |
Collapse
|
41
|
Lacerda DR, Soares DD, Costa KA, Nunes-Silva A, Rodrigues DF, Sabino JL, Silveira ALM, Pinho V, Vieira ÉLM, Menezes GB, Antunes MM, Teixeira MM, Ferreira AVM. Mechanisms underlying fat pad remodeling induced by fasting: role of PAF receptor. Nutrition 2020; 71:110616. [DOI: 10.1016/j.nut.2019.110616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/24/2019] [Accepted: 10/05/2019] [Indexed: 01/09/2023]
|
42
|
Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition 2020; 70:110486. [DOI: 10.1016/j.nut.2019.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/03/2019] [Indexed: 12/24/2022]
|
43
|
Gomes JAS, Silva JF, Marçal AP, Silva GC, Gomes GF, de Oliveira ACP, Soares VL, Oliveira MC, Ferreira AVM, Aguiar DC. High-refined carbohydrate diet consumption induces neuroinflammation and anxiety-like behavior in mice. J Nutr Biochem 2019; 77:108317. [PMID: 32004874 DOI: 10.1016/j.jnutbio.2019.108317] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
Consumption of poor nutrients diets is associated with fat tissue expansion and with a central and peripheral low-grade inflammation. In this sense, the microglial cells in the central nervous system are activated and release pro-inflammatory cytokines that up-regulate the inducible nitric oxide synthase (iNOS), promoting Nitric Oxide (NO) production. The excess of NO has been proposed to facilitate anxious states in humans and rodents. We evaluated whether consumption of a high-refined carbohydrate-containing diet (HC) in mice induced anxiety-like behavior in the Novelty Suppressed Feeding Test (NFST) trough facilitation of NO, in the prefrontal cortex (PFC) and hippocampus (HIP). We also verified if HC diet induces activation of microglial cells, alterations in cytokine and leptin levels in such regions. Male BALB/c mice received a standard diet or a HC diet for 3 days or 12 weeks. The chronic consumption of HC diet, but not acute, induced an anxiogenic-like effect in the NSF test and an increase in the nitrite levels in the PFC and HIP. The preferential iNOS inhibitor, aminoguanidine (50 mg/kg, i.p.), attenuated such effects. Moreover, microglial cells in the HIP and PFC were activated after chronic consumption of HC diet. Finally, the expression of iNOS in the PFC and TNF, IL6 and leptin levels in HIP were higher in chronically HC fed mice. Taken together, our data reinforce the notion that diets containing high-refined carbohydrate facilitate anxiety-like behavior, mainly after a long period of consumption. The mechanisms involve, at least in part, the augmentation of neuroinflammatory processes in brain areas responsible for anxiety control.
Collapse
Affiliation(s)
- Julia A S Gomes
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil; Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas, MG, Brazil
| | - Josiane F Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Paula Marçal
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Grazielle C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanni F Gomes
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Antonio C P de Oliveira
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | - Virginia L Soares
- Department of Physiology and Biophysics, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina C Oliveira
- Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
44
|
Val CH, de Oliveira MC, Lacerda DR, Barroso A, Batista NV, Menezes-Garcia Z, de Assis DRR, Cramer AT, Brant F, Teixeira MM, Glória Souza D, Ferreira AM, Machado FS. SOCS2 modulates adipose tissue inflammation and expansion in mice. J Nutr Biochem 2019; 76:108304. [PMID: 31816561 DOI: 10.1016/j.jnutbio.2019.108304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Obesity is usually triggered by a nutrient overload that favors adipocyte hypertrophy and increases the number of pro-inflammatory cells and mediators into adipose tissue. These mediators may be regulated by suppressors of cytokine signaling (SOCS), such as SOCS2, which is involved in the regulation of the inflammatory response of many diseases, but its role in obesity is not yet known. We aimed to investigate the role of SOCS2 in metabolic and inflammatory dysfunction induced by a high-refined carbohydrate-containing diet (HC). MATERIAL AND METHODS Male C57BL/6 wild type (WT) and SOCS2 deficient (SOCS2-/-) mice were fed chow or an HC diet for 8 weeks. RESULTS In general, SOCS2 deficient mice, independent of the diet, showed higher adipose tissue mass compared with their WT counterparts that were associated with decreased lipogenesis rate in adipose tissue, lipolysis in adipocyte culture and energy expenditure. An anti-inflammatory profile was observed in adipose tissue of SOCS2-/- by reduced secretion of cytokines, such as TNF and IL-6, and increased M2-like macrophages and regulatory T cells compared with WT mice. Also, SOCS2 deficiency reduced the differentiation/expansion of pro-inflammatory cells in the spleen but increased Th2 and Treg cells compared with their WT counterparts. CONCLUSION The SOCS2 protein is an important modulator of obesity that regulates the metabolic pathways related to adipocyte size. Additionally, SOCS2 is an inflammatory regulator that appears to be essential for controlling the release of cytokines and the differentiation/recruitment of cells into adipose tissue during the development of obesity.
Collapse
Affiliation(s)
- Cynthia Honorato Val
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | - Andreia Barroso
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | - Fátima Brant
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
45
|
Lacerda DR, Costa KA, Silveira ALM, Rodrigues DF, Silva AN, Sabino JL, Pinho V, Menezes GB, Soares DD, Teixeira MM, Ferreira AVM. Role of adipose tissue inflammation in fat pad loss induced by fasting in lean and mildly obese mice. J Nutr Biochem 2019; 72:108208. [PMID: 31473506 DOI: 10.1016/j.jnutbio.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/18/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023]
Abstract
Inflammation induced by obesity contributes to insulin resistance and atherosclerosis. Indeed, high levels of proinflammatory cytokines trigger chronic low-grade inflammation and promote detrimental metabolic effects in the adipose tissue. On the other hand, inflammation seems to control fat pad expansion and to have important functions on lipolysis and glucose metabolism. Thus, it is possible that inflammation may also drive fat pad loss, as seen during long-fast periods. Herein, we have used fasting as a strategy to induce weight loss and evaluate the possible role of inflammation on adipose tissue remodeling. Male BALB-c mice were fed with chow diet (lean mice) or with high-carbohydrate refined diet (mildly obese mice) for 8 weeks. After that, animals were subjected to 24 h of fasting. There was a 63% reduction of adiposity in lean mice following fasting. Furthermore, the adipose tissue was enriched of immune cells and had a higher content of IL-6, TNF-alpha, IL-10, TGF-β and CXCL-1. Interestingly, mildly obese mice, subjected to the same 24-h fasting period, lost only 33% of their adiposity. Following fasting, these mice did not show any increment in leukocyte recruitment and cytokine levels, as did lean mice. Our findings indicate that inflammation participates in fat mass loss induced by fasting. Although the chronic low-grade inflammation seen in obesity is associated with metabolic diseases, a lower inflammatory response triggered by fasting in mildly obese mice impairs fat pad mobilization.
Collapse
Affiliation(s)
- Débora Romualdo Lacerda
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Kátia Anunciação Costa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ana Letícia Malheiros Silveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Débora Fernandes Rodrigues
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Albena Nunes Silva
- Sport Center, Universidade Federal de Ouro Preto (CEDUFOP), Ouro Preto Minas Gerais, Brazil.
| | - Josiana Lopes Sabino
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Gustavo Batista Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Danusa Dias Soares
- Department of Physical Education School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
46
|
Lacerda DR, Moraes MM, Nunes-Silva A, Costa KA, Rodrigues DF, Sabino JL, Cordeiro LMDS, Pinho V, Teixeira MM, Wanner SP, Soares DD, Ferreira AVM. Aerobic training reduces immune cell recruitment and cytokine levels in adipose tissue in obese mice. Appl Physiol Nutr Metab 2019; 44:512-520. [PMID: 30304638 DOI: 10.1139/apnm-2018-0523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity is associated with an energy imbalance that results from excessive energy intake, low diet quality, and a sedentary lifestyle. The increased consumption of a high-refined carbohydrate (HC) diet is strongly related to higher adiposity and low-grade inflammation. Aerobic training is a well-known nonpharmacological intervention to treat obesity and metabolic disturbances. However, the mechanisms through which aerobic training ameliorates the low-grade inflammation induced by an HC diet should be further investigated. Our hypothesis herein was that aerobic training would decrease the recruitment of leukocytes in adipose tissue, thereby reducing the levels of cytokines and improving metabolism in mice fed an HC diet. Male Balb/c mice were assigned to the following groups: control diet/nontrained (C-NT), control diet/trained (C-T), high-refined carbohydrate diet/nontrained (HC-NT), and high-refined carbohydrate diet/trained (HC-T). Mice were submitted to moderate-intensity training sessions that consisted of running 60 min per day for 8 weeks. An intravital microscopy technique was performed in vivo in anesthetized mice to visualize the microvasculature of the adipose tissue. The HC diet induced obesity and increased the influx of immune cells into the adipose tissue. In contrast, HC-T mice presented a lower adiposity and adipocyte area. Furthermore, relative to HC-NT mice, HC-T mice showed increased resting energy expenditure, decreased recruitment of immune cells in the adipose tissue, reduced cytokine levels, and ameliorated hyperglycemia and fatty liver deposition. Collectively, our data enhance understanding about the anti-inflammatory effect of aerobic training and shed light on the adipose tissue-mediated mechanisms by which training promotes a healthier metabolic profile.
Collapse
Affiliation(s)
- Débora Romualdo Lacerda
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Michele Macedo Moraes
- b Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Albená Nunes-Silva
- c Sport Center, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - Kátia Anunciação Costa
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Débora Fernandes Rodrigues
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Josiana Lopes Sabino
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Letícia Maria de Souza Cordeiro
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Vanessa Pinho
- d Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Mauro Martins Teixeira
- d Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Samuel Penna Wanner
- b Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Danusa Dias Soares
- b Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Adaliene Versiani Matos Ferreira
- a Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Alfredo Balena, 190, Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| |
Collapse
|
47
|
Chemical characterization, antihyperlipidaemic and antihyperglycemic effects of Brazilian bitter quina species in mice consuming a high-refined carbohydrate diet. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
48
|
Rodrigues AC, Leal TF, Costa AJLD, Silva FDJ, Soares LL, Brum PC, Hermsdorff HHM, Peluzio MDCG, Prímola-Gomes TN, Natali AJ. Effects of aerobic exercise on the inflammatory cytokine profile and expression of lipolytic and thermogenic genes in β 1-AR -/- mice adipose tissue. Life Sci 2019; 221:224-232. [PMID: 30771314 DOI: 10.1016/j.lfs.2019.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
AIM Investigate the effects of moderate continuous aerobic exercise (MCAE) on the inflammatory cytokine profile and expression of lipolytic and thermogenic genes in β1-AR-/- mice adipose tissue. MAIN METHODS Four- to five-month-old male wild type (WT) and β1-AR-/- mice were divided into groups: WT control (WTc) and trained (WTt); and β1-AR-/- control (β1-AR-/-c) and trained (β1-AR-/-t). Animals from trained groups were submitted to a MCAE regimen (60 min/day; 60% of maximal speed, 5 days/week) on a treadmill, for 8 weeks. After euthanasia, white epididymal (eWAT) and inguinal (iWAT) and brown (BAT) adipose tissues were dissected and used to determine: adiposity index; adipocyte histomorphometry; cytokine concentration; and gene expression. The content of fat, protein and water of the empty carcass was determined. KEY FINDINGS MCAE reduced body weight, fat mass as well as iWAT and BAT adipocyte area in β1-AR-/- animals. Aerobic exercise also diminished the concentrations of pro-inflammatory (IL-12p70, TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines in adipose tissue (iWAT, eWAT or BAT) of β1-AR-/- mice. However, MCAE had no effect on the expression lipolytic and thermogenic genes in β1-AR-/- mice adipose tissue. SIGNIFICANCE Alongside reductions in body weight, fat mass and adipocyte area eight weeks of MCAE improves the profile of inflammatory cytokines in β1-AR-/- mice adipose tissue, despite no change in Lipolytic and thermogenic gene expression.
Collapse
Affiliation(s)
- Aurora Corrêa Rodrigues
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Tiago Ferreira Leal
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Leôncio Lopes Soares
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Patrícia Chakur Brum
- School of Physical Education and Sport, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
49
|
Oliveira CT, Lacerda DR, Zicker MC, Martins LB, Teixeira MM, de Araujo RLB, Ferreira AVM. Ginger (Zingiber officinale Rosc.) Ameliorated Metabolic and Inflammatory Dysfunction Induced by High-Refined Carbohydrate-Containing Diet in Mice. J Med Food 2019; 22:38-45. [PMID: 30362875 DOI: 10.1089/jmf.2018.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study aimed to evaluate the effects and the mechanisms of ginger extract intake in the adiposity gain, metabolic and inflammatory disturbances induced by a high-refined carbohydrate (HC) diet in mice. Ginger extract at doses of 200, 600, and 1800 mg/kg was supplemented in the daily food of obese Balb/c mice during an 8-week experiment. Our findings indicate that consumption of high doses of ginger extracts prevents the increase of adiposity induced by HC diet, improves lipid profile, and promotes decrease of inflammatory markers in mice. We showed that ginger addition to HC diet leads to decrease in the recruitment of cells visualized in vivo in the microvasculature of adipose tissue, decrease of inflammatory cytokines, and increase of adiponectin serum levels. These results indicate that the consumption of ginger decreases the negative metabolic consequences induced by HC diet.
Collapse
Affiliation(s)
- Cíntia Tarabal Oliveira
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Débora Romualdo Lacerda
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina Campos Zicker
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laís Bhering Martins
- 1 Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- 2 Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | |
Collapse
|
50
|
Nakagaki BN, Mafra K, de Carvalho É, Lopes ME, Carvalho-Gontijo R, de Castro-Oliveira HM, Campolina-Silva GH, de Miranda CDM, Antunes MM, Silva ACC, Diniz AB, Alvarenga DM, Lopes MAF, de Souza Lacerda VA, Mattos MS, Araújo AM, Vidigal PVT, Lima CX, Mahecha GAB, Madeira MFM, Fernandes GR, Nogueira RF, Moreira TG, David BA, Rezende RM, Menezes GB. Immune and metabolic shifts during neonatal development reprogram liver identity and function. J Hepatol 2018; 69:1294-1307. [PMID: 30171870 DOI: 10.1016/j.jhep.2018.08.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS The liver is the main hematopoietic site in embryos, becoming a crucial organ in both immunity and metabolism in adults. However, how the liver adapts both the immune system and enzymatic profile to challenges in the postnatal period remains elusive. We aimed to identify the mechanisms underlying this adaptation. METHODS We analyzed liver samples from mice on day 0 after birth until adulthood. Human biopsies from newborns and adults were also examined. Liver immune cells were phenotyped using mass cytometry (CyTOF) and expression of several genes belonging to immune and metabolic pathways were measured. Mortality rate, bacteremia and hepatic bacterial retention after E. coli challenge were analyzed using intravital and in vitro approaches. In a set of experiments, mice were prematurely weaned and the impact on gene expression of metabolic pathways was evaluated. RESULTS Human and mouse newborns have a sharply different hepatic cellular composition and arrangement compared to adults. We also found that myeloid cells and immature B cells primarily compose the neonatal hepatic immune system. Although neonatal mice were more susceptible to infections, a rapid evolution to an efficient immune response was observed. Concomitantly, newborns displayed a reduction of several macronutrient metabolic functions and the normal expression level of enzymes belonging to lipid and carbohydrate metabolism was reached around the weaning period. Interestingly, early weaning profoundly disturbed the expression of several hepatic metabolic pathways, providing novel insights into how dietary schemes affect the metabolic maturation of the liver. CONCLUSION In newborns, the immune and metabolic profiles of the liver are dramatically different to those of the adult liver, which can be explained by the differences in the liver cell repertoire and phenotype. Also, dietary and antigen cues may be crucial to guide liver development during the postnatal phase. LAY SUMMARY Newborns face major challenges in the extra-uterine life. In fact, organs need to modify their cellular composition and gene expression profile in order to adapt to changes in both microbiota and diet throughout life. The liver is interposed between the gastrointestinal system and the systemic circulation, being the destination of all macronutrients and microbial products from the gut. Therefore, it is expected that delicately balanced mechanisms govern the transformation of a neonatal liver to a key organ in adults.
Collapse
Affiliation(s)
- Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Kassiana Mafra
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Érika de Carvalho
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mateus Eustáquio Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Raquel Carvalho-Gontijo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Hortência Maciel de Castro-Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Henrique Campolina-Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Camila Dutra Moreira de Miranda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ana Carolina Carvalho Silva
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Maria Alice Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Viviane Aparecida de Souza Lacerda
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Matheus Silvério Mattos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alan Moreira Araújo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Paula Vieira Teixeira Vidigal
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Cristiano Xavier Lima
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Germán A B Mahecha
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | | | - Thais Garcias Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|