1
|
Chen Y, Gao R, Fang J, Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int J Biol Macromol 2024; 277:134448. [PMID: 39102922 DOI: 10.1016/j.ijbiomac.2024.134448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Polysaccharides are one of the most important and widely used bioactive components of natural products, which can be used to treat metabolic diseases. Natural polysaccharides (NPs) have been the subject of much study and research in the field of treating obesity in recent years. Studies in the past have demonstrated that mitochondria are important for the initiation, progression, and management of obesity. Additionally, NPs have the ability to improve mitochondrial dysfunction via a variety of mechanisms. This review summarized the relationship between the structure of NPs and their anti-obesity activity, focusing on the anti-obesity effects of these compounds at the mitochondrial level. We discussed the association between the structure and anti-obesity action of NPs, including molecular weight, monosaccharide composition, glycosidic linkage, conformation and extraction methods. Furthermore, NPs can demonstrate a range of functions in adipose tissue, including but not limited to improving the mitochondrial oxidative respiratory chain, inhibiting oxidative stress, and maintaining mitochondrial mass homeostasis. The purpose of this work is to acquire a thorough understanding of the function that mitochondria play in the anti-obesity effects of NPs and to offer fresh insights for the investigation of how NPs prevent obesity and the creation of natural anti-obesity medications.
Collapse
Affiliation(s)
- Yongchao Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Rong Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Molica F, Ehrlich A, Pelli G, Rusiecka OM, Montessuit C, Chanson M, Kwak BR. Cold Exposure Rejuvenates the Metabolic Phenotype of Panx1-/- Mice. Biomolecules 2024; 14:1058. [PMID: 39334824 PMCID: PMC11430693 DOI: 10.3390/biom14091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Pannexin1 (Panx1) ATP channels are important in adipocyte biology, potentially influencing energy storage and expenditure. We compared the metabolic phenotype of young (14 weeks old) and mature (20 weeks old) wild-type (WT) and Panx1-/- mice exposed or not to cold (6 °C) during 28 days, a condition promoting adipocyte browning. Young Panx1-/- mice weighed less and exhibited increased fat mass, improved glucose tolerance, and lower insulin sensitivity than WT mice. Their energy expenditure and respiratory exchange ratio (RER) were increased, and their fatty acid oxidation decreased. These metabolic effects were no longer observed in mature Panx1-/- mice. The exposure of mature mice to cold exacerbated their younger metabolic phenotype. The white adipose tissue (WAT) of cold-exposed Panx1-/- mice contained more small-sized adipocytes, but, in contrast to WT mice, white adipocytes did not increase their expression of Ucp1 nor of other markers of browning adipocytes. Interestingly, Glut4 expression was already enhanced in the WAT of young Panx1-/- mice kept at 22 °C as compared to WT mice. Thus, Panx1 deletion exerts overall beneficial metabolic effects in mice that are pre-adapted to chronic cold exposure. Panx1-/- mice show morphological characteristics of WAT browning, which are exacerbated upon cold exposure, an effect that appears to be associated with Ucp1-independent thermogenesis.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Avigail Ehrlich
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Graziano Pelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| | - Christophe Montessuit
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
| | - Marc Chanson
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (A.E.); (G.P.); (O.M.R.); (C.M.); (B.R.K.)
- Geneva Center for Inflammation Research, CH-1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Li Y, Zheng W, Li X, Lue Z, Liu Y, Wu J, Zhang X. The autophagic regulation of rosiglitazone-promoted adipocyte browning. Front Pharmacol 2024; 15:1412520. [PMID: 38895627 PMCID: PMC11184087 DOI: 10.3389/fphar.2024.1412520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Objective: Browning of white adipocytes is considered an efficient approach to combat obesity. Rosiglitazone induces the thermogenetic program of white adipocytes, but the underlying mechanisms remain elusive. Methods: Expression levels of browning and autophagy flux markers were detected by real-time PCR and immunoblotting. H&E and Oil Red O staining were performed to evaluate the lipid droplets area. Nuclear protein extraction and immunoprecipitation were used to detect the proteins interaction. Results: In this study, we reported that rosiglitazone promoted adipocyte browning and inhibited autophagy. Rapamycin, an autophagy inducer, reversed adipocyte browning induced by rosiglitazone. Autophagy inhibition by rosiglitazone does not prevent mitochondrial clearance, which was considered to promote adipose whitening. Instead, autophagy inhibition increased p62 nuclear translocation and stabilized the PPARγ-RXRα heterodimer, which is an essential transcription factor for adipocyte browning. We found that rosiglitazone activated NRF2 in mature adipocytes. Inhibition of NRF2 by ML385 reversed autophagy inhibition and the pro-browning effect of rosiglitazone. Conclusion: Our study linked autophagy inhibition with rosiglitazone-promoted browning of adipocytes and provided a mechanistic insight into the pharmacological effects of rosiglitazone.
Collapse
Affiliation(s)
- Yue Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Wanqing Zheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Xinhang Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Zhengwei Lue
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Yun Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Jiaying Wu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
4
|
Shao H, Zhang H, Jia D. The Role of Exerkines in Obesity-Induced Disruption of Mitochondrial Homeostasis in Thermogenic Fat. Metabolites 2024; 14:287. [PMID: 38786764 PMCID: PMC11122964 DOI: 10.3390/metabo14050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
There is a notable correlation between mitochondrial homeostasis and metabolic disruption. In this review, we report that obesity-induced disruption of mitochondrial homeostasis adversely affects lipid metabolism, adipocyte differentiation, oxidative capacity, inflammation, insulin sensitivity, and thermogenesis in thermogenic fat. Elevating mitochondrial homeostasis in thermogenic fat emerges as a promising avenue for developing treatments for metabolic diseases, including enhanced mitochondrial function, mitophagy, mitochondrial uncoupling, and mitochondrial biogenesis. The exerkines (e.g., myokines, adipokines, batokines) released during exercise have the potential to ameliorate mitochondrial homeostasis, improve glucose and lipid metabolism, and stimulate fat browning and thermogenesis as a defense against obesity-associated metabolic diseases. This comprehensive review focuses on the manifold benefits of exercise-induced exerkines, particularly emphasizing their influence on mitochondrial homeostasis and fat thermogenesis in the context of metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Hui Shao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
- Graduate School of Harbin Sport University, Harbin Sport University, Harbin 150006, China
| | - Huijie Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| | - Dandan Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (H.S.); (H.Z.)
| |
Collapse
|
5
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Mitophagy suppression by miquelianin-rich lotus leaf extract induces 'beiging' of white fat via AMPK/DRP1-PINK1/PARKIN signaling axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2597-2609. [PMID: 37991930 DOI: 10.1002/jsfa.13143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Delgado-Anglés A, Blasco-Roset A, Godoy-Nieto FJ, Cairó M, Villarroya F, Giralt M, Villarroya J. Parkin depletion prevents the age-related alterations in the FGF21 system and the decline in white adipose tissue thermogenic function in mice. J Physiol Biochem 2024; 80:41-51. [PMID: 37914970 PMCID: PMC10808413 DOI: 10.1007/s13105-023-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023]
Abstract
Parkin is an ubiquitin-E3 ligase that is involved in cellular mitophagy and was recently shown to contribute to controlling adipose tissue thermogenic plasticity. We found that Parkin expression is induced in brown (BAT) and white (WAT) adipose tissues of aged mice. We determined the potential role of Parkin in the aging-associated decline in the thermogenic capacity of adipose tissues by analyzing subcutaneous WAT, interscapular BAT, and systemic metabolic and physiological parameters in young (5 month-old) and aged (16 month-old) mice with targeted invalidation of the Parkin (Park2) gene, and their wild-type littermates. Our data indicate that suppression of Parkin prevented adipose accretion, increased energy expenditure and improved the systemic metabolic derangements, such as insulin resistance, seen in aged mice. This was associated with maintenance of browning and reduction of the age-associated induction of inflammation in subcutaneous WAT. BAT in aged mice was much less affected by Parkin gene invalidation. Such protection was associated with a dramatic prevention of the age-associated induction of fibroblast growth factor-21 (FGF21) levels in aged Parkin-invalidated mice. This was associated with a parallel reduction in FGF21 gene expression in adipose tissues and liver in aged Parkin-invalidated mice. Additionally, Parkin invalidation prevented the protein down-regulation of β-Klotho (a key co-receptor mediating FGF21 responsiveness in tissues) in aged adipose tissues. We conclude that Parkin down-regulation leads to improved systemic metabolism in aged mice, in association with maintenance of adipose tissue browning and FGF21 system functionality.
Collapse
Affiliation(s)
- Alejandro Delgado-Anglés
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Francisco J Godoy-Nieto
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular and Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red "Fisiopatología de la Obesidad y Nutrición", Madrid, Spain.
- Institut de Recerca Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
7
|
Wang M, Sun Z, Ou Y, Ge W, Yuan M, Xu B. Electroacupuncture Mediates Fat Metabolism and Autophagy via a Sirt3-Dependent Mechanism in Mice Fed High-Fat Diet. Adv Biol (Weinh) 2024; 8:e2300370. [PMID: 37840428 DOI: 10.1002/adbi.202300370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Indexed: 10/17/2023]
Abstract
This study investigates the therapeutic potential of electroacupuncture (EA) on obesity, focusing on its influence on autophagy and energy metabolism, utilizing a high-fat diet (HFD)-induced mouse model. Treatment with EA significantly reduces body weight, fat deposition, and lipid accumulation in HFD-fed mice. Additionally, EA effectively ameliorates metabolic imbalances, reducing blood glucose levels and plasma markers of liver function. At the molecular level, EA enhances the expression of thermogenesis-associated genes in brown adipose tissue and decreases p53 expression, suggesting a decrease in apoptosis. Autophagy in white adipose tissue is inhibited by EA, as demonstrated by the suppression of key autophagy-related proteins. Further experiments highlight the critical role of Sirtuin 3 (Sirt3) in EA's anti-obesity effects. Sirt3 supplementation combined with EA results in reduced body weight, fat deposition, and lipid accumulation, along with modulations in key metabolic indicators. Moreover, EA's modulatory effect on uncoupling protein 1 (Ucp1), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α), and p53 is found to be Sirt3 dependent. In conclusion, EA exerts beneficial effects against obesity through Sirt3-dependent modulation of autophagy and energy metabolism, indicating a potential therapeutic approach for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Zhicheng Sun
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yanggang Ou
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Wei Ge
- Department of Acupuncture and Massage, Geriatric Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Mengqian Yuan
- Department of Acupuncture Rehabilitation, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210024, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
8
|
Yamashita SI, Kanki T. Mitophagy Responds to the Environmental Temperature and Regulates Mitochondrial Mass in Adipose Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:229-243. [PMID: 39289285 DOI: 10.1007/978-981-97-4584-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
There are at least two types of adipose tissues in the body, defined as brown adipose tissues (BATs) and white adipose tissues (WATs). These tissues comprise brown and white adipocytes, respectively. The adipocytes are commonly endowed with mitochondria, but they have diverse characteristics and roles. Brown adipocytes have abundant mitochondria that contribute to the β-oxidation of fatty acids to produce chemical energy and the production of heat via uncoupling of the mitochondrial membrane potential from ATP synthesis. Alternatively, white adipocytes have fewer mitochondria that contribute to the generation of free fatty acids via lipogenesis by providing key intermediates. Besides the described types of adipocytes, brown-like adipocytes, termed beige adipocytes, are developed in WAT depots during cold exposure. Beige adipocytes also contribute to thermogenesis. Notably, beige adipocytes may transform into white-like adipocytes after the withdrawal of cold exposure. This process is marked by the elimination of mitochondria through the activation of mitochondria autophagy (mitophagy). This review aims to describe the mitophagy that occurs during the beige-to-white transition and discuss recent insights into the molecular mechanisms of this transformation. Additionally, we describe the mitophagy monitoring strategy in adipose tissues using three independent reporter systems and discuss the availabilities and limitations of the method.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Yu W, Wang L, Ren WY, Xu HX, Wu NN, Yu DH, Reiter RJ, Zha WL, Guo QD, Ren J. SGLT2 inhibitor empagliflozin alleviates cardiac remodeling and contractile anomalies in a FUNDC1-dependent manner in experimental Parkinson's disease. Acta Pharmacol Sin 2024; 45:87-97. [PMID: 37679644 PMCID: PMC10770167 DOI: 10.1038/s41401-023-01144-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
Recent evidence shows a close link between Parkinson's disease (PD) and cardiac dysfunction with limited treatment options. Mitophagy plays a crucial role in the control of mitochondrial quantity, metabolic reprogramming and cell differentiation. Mutation of the mitophagy protein Parkin is directly associated with the onset of PD. Parkin-independent receptor-mediated mitophagy is also documented such as BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and FUN14 domain containing 1 (FUNDC1) for receptor-mediated mitophagy. In this study we investigated cardiac function and mitophagy including FUNDC1 in PD patients and mouse models, and evaluated the therapeutic potential of a SGLT2 inhibitor empagliflozin. MPTP-induced PD model was established. PD patients and MPTP mice not only displayed pronounced motor defects, but also low plasma FUNDC1 levels, as well as cardiac ultrastructural and geometric anomalies (cardiac atrophy, interstitial fibrosis), functional anomalies (reduced E/A ratio, fractional shortening, ejection fraction, cardiomyocyte contraction) and mitochondrial injury (ultrastructural damage, UCP2, PGC1α, elevated mitochondrial Ca2+ uptake proteins MCU and VDAC1, and mitochondrial apoptotic protein calpain), dampened autophagy, FUNDC1 mitophagy and apoptosis. By Gene set enrichment analysis (GSEA), we found overtly altered glucose transmembrane transport in the midbrains of MPTP-treated mice. Intriguingly, administration of SGLT2 inhibitor empagliflozin (10 mg/kg, i.p., twice per week for 2 weeks) in MPTP-treated mice significantly ameliorated myocardial anomalies (with exception of VDAC1), but did not reconcile the motor defects or plasma FUNDC1. FUNDC1 global knockout (FUNDC1-/- mice) did not elicit any phenotype on cardiac geometry or function in the absence or presence of MPTP insult, but it nullified empagliflozin-caused cardioprotection against MPTP-induced cardiac anomalies including remodeling (atrophy and fibrosis), contractile dysfunction, Ca2+ homeostasis, mitochondrial (including MCU, mitochondrial Ca2+ overload, calpain, PARP1) and apoptotic anomalies. In neonatal and adult cardiomyocytes, treatment with PD neurotoxin preformed fibrils of α-synuclein (PFF) caused cytochrome c release and cardiomyocyte mechanical defects. These effects were mitigated by empagliflozin (10 μM) or MCU inhibitor Ru360 (10 μM). MCU activator kaempferol (10 μM) or calpain activator dibucaine (500 μM) nullified the empagliflozin-induced beneficial effects. These results suggest that empagliflozin protects against PD-induced cardiac anomalies, likely through FUNDC1-mediated regulation of mitochondrial integrity.
Collapse
Affiliation(s)
- Wei Yu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, 437100, China
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, the Air Force Military Medical University, Xi'an, 710032, China
| | - Wei-Ying Ren
- Department of Geriatrics, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Hai-Xia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Dong-Hui Yu
- Xianning Central Hospital, Xianning, 437100, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Wen-Liang Zha
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Qing-Dong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Jun Ren
- Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
10
|
Zhao WL, Xu D, Wang JS. Torachrysone-8-O-β-d-glucoside mediates anti-inflammatory effects by blocking aldose reductase-catalyzed metabolism of lipid peroxidation products. Biochem Pharmacol 2023; 218:115931. [PMID: 37981172 DOI: 10.1016/j.bcp.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Aldose reductase (AR) is an important enzyme involved in the reduction of various aldehyde and carbonyl compounds, including the highly reactive and toxic 4-hydroxynonenal (4-HNE), which has been linked to the progression of various pathologies such as atherosclerosis, hyperglycemia, inflammation, and tumors. AR inhibitors have potential therapeutic benefits for these diseases by reducing lipid peroxidation and mitigating the harmful effects of reactive aldehydes. In this study, we found that torachrysone-8-O-β-d-glucoside (TG), a natural product isolated from Polygonum multiflorum Thunb., functions as an effective inhibitor of AR, exhibiting potent effects in clearing reactive aldehydes and reducing inflammation. TG up-regulated the mRNA levels of several antioxidant factors downstream of NRF2, especially glutathione S-transferase (GST), which is significantly increased, thus detoxifying 4-HNE by facilitating the conjugation of 4-HNE to glutathione, forming glutathione-4-hydroxynonenal (GS-HNE). By employing a combination of molecular docking, cellular thermal shift assay, and enzyme activity experiments, we demonstrated that TG exhibited strong binding affinity with AR and inhibited its activity and blocked the conversion of GS-HNE to glutathionyl-1,4-dihydroxynonene (GS-DHN), thereby preventing the formation of protein adducts and inducing severe cellular damage. This study provides novel insights into the anti-inflammatory mechanisms of AR inhibitors and offers potential avenues for developing therapeutic strategies for AR-related pathologies. Our findings suggest that TG, as an AR inhibitor, may hold promise as a therapeutic agent for treating conditions characterized by excessive lipid peroxidation and inflammation. Further investigations are needed to fully explore the clinical potential of TG and evaluate its efficacy in the treatment and management of these complex diseases.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
11
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Miquelianin in Folium Nelumbinis extract promotes white-to-beige fat conversion via blocking AMPK/DRP1/mitophagy and modulating gut microbiota in HFD-fed mice. Food Chem Toxicol 2023; 181:114089. [PMID: 37804915 DOI: 10.1016/j.fct.2023.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The main purpose of the present study was to investigate the effect of miquelianin (quercetin 3-O-glucuronide, Q3G), one of the main flavonoids in the Folium Nelumbinis extract (FNE), on beige adipocyte formation and its underlying mechanisms. In 3T3-L1 adipocytes Q3G (12.8%)-rich FNE treatment upregulated beige-related markers such as SIRT1, COX2, PGC-1α, TFAM, and UCP1. Furthermore, Q3G enhanced mitochondrial biosynthesis and inhibited mitophagy by downregulating the expression of PINK1, PARKIN, BECLIN1 and LC-3B in 3T3-L1 cells. Moreover, in high-fat-diet (HFD)-fed mice, Q3G markedly inhibited body weight gain, reduced blood glucose/lipid levels, reduced white adipose tissues (WAT) and mitigated hepatic steatosis. Meanwhile, the induced beiging accompanied by suppressed mitophagy was also demonstrated in inguinal WAT (iWAT). Chemical intervention of AMPK activity with Compound C (Com C) and Acadesine (AICAR) revealed that AMPK/DRP1 signaling was involved in Q3G-mediated mitophagy and the beiging process. Importantly, 16S rRNA sequencing analysis showed that Q3G beneficially reshaped gut microbiota structure, specifically inhibiting unclassified_Lachnospiraceae, Faecalibaculum, Roseburia and Colidextribacter while increasing Bacteroides, Akkermansia and Mucispirillum, which may potentially facilitate WAT beiging. Collectively, our findings provide a novel biological function for Folium Nelumbinis and Q3G in the fight against obesity through activating the energy-dissipating capacity of beige fat.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mark Christian
- School of Science and Technology, Trent University, Clifton, Nottingham, NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
12
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
13
|
Chen K, Cheong LY, Gao Y, Zhang Y, Feng T, Wang Q, Jin L, Honoré E, Lam KSL, Wang W, Hui X, Xu A. Adipose-targeted triiodothyronine therapy counteracts obesity-related metabolic complications and atherosclerosis with negligible side effects. Nat Commun 2022; 13:7838. [PMID: 36539421 PMCID: PMC9767940 DOI: 10.1038/s41467-022-35470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Thyroid hormone (TH) is a thermogenic activator with anti-obesity potential. However, systemic TH administration has no obvious clinical benefits on weight reduction. Herein we selectively delivered triiodothyronine (T3) to adipose tissues by encapsulating T3 in liposomes modified with an adipose homing peptide (PLT3). Systemic T3 administration failed to promote thermogenesis in brown and white adipose tissues (WAT) due to a feedback suppression of sympathetic innervation. PLT3 therapy effectively obviated this feedback suppression on adrenergic inputs, and potently induced browning and thermogenesis of WAT, leading to alleviation of obesity, glucose intolerance, insulin resistance, and fatty liver in obese mice. Furthermore, PLT3 was much more effective than systemic T3 therapy in reducing hypercholesterolemia and atherosclerosis in apoE-deficient mice. These findings uncover WAT as a viable target mediating the therapeutic benefits of TH and provide a safe and efficient therapeutic strategy for obesity and its complications by delivering TH to adipose tissue.
Collapse
Affiliation(s)
- Kang Chen
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Lai Yee Cheong
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Tianshi Feng
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qin Wang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leigang Jin
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Honoré
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Karen S. L. Lam
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Dr Li Dak-Sum Research Centre, The University of Hong Kong-Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong China
| | - Xiaoyan Hui
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Laboratory Block, Pokfulam, Hong Kong China ,grid.194645.b0000000121742757Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Moore TM, Cheng L, Wolf DM, Ngo J, Segawa M, Zhu X, Strumwasser AR, Cao Y, Clifford BL, Ma A, Scumpia P, Shirihai OS, Vallim TQDA, Laakso M, Lusis AJ, Hevener AL, Zhou Z. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun 2022; 13:6661. [PMID: 36333379 PMCID: PMC9636263 DOI: 10.1038/s41467-022-34468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Parkin, an E3 ubiquitin ligase, plays an essential role in mitochondrial quality control. However, the mechanisms by which Parkin connects mitochondrial homeostasis with cellular metabolism in adipose tissue remain unclear. Here, we demonstrate that Park2 gene (encodes Parkin) deletion specifically from adipose tissue protects mice against high-fat diet and aging-induced obesity. Despite a mild reduction in mitophagy, mitochondrial DNA content and mitochondrial function are increased in Park2 deficient white adipocytes. Moreover, Park2 gene deletion elevates mitochondrial biogenesis by increasing Pgc1α protein stability through mitochondrial superoxide-activated NAD(P)H quinone dehydrogenase 1 (Nqo1). Both in vitro and in vivo studies show that Nqo1 overexpression elevates Pgc1α protein level and mitochondrial DNA content and enhances mitochondrial activity in mouse and human adipocytes. Taken together, our findings indicate that Parkin regulates mitochondrial homeostasis by balancing mitophagy and Pgc1α-mediated mitochondrial biogenesis in white adipocytes, suggesting a potential therapeutic target in adipocytes to combat obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Timothy M Moore
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Lijing Cheng
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Dane M Wolf
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jennifer Ngo
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Xiaopeng Zhu
- Division of Pediatric Endocrinology, Department of Pediatrics UCLA Children's Discovery and Innovation Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yang Cao
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bethan L Clifford
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Alice Ma
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Philip Scumpia
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Orian S Shirihai
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Thomas Q de Aguiar Vallim
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Los Angeles, CA, USA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
16
|
Choi M, Mukherjee S, Yun JW. Colchicine stimulates browning via antagonism of GABA receptor B and agonism of β3-adrenergic receptor in 3T3-L1 white adipocytes. Mol Cell Endocrinol 2022; 552:111677. [PMID: 35598717 DOI: 10.1016/j.mce.2022.111677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Colchicine has been used for therapeutic purposes and has attracted considerable attention because of its association with tubulin and the inhibition of small tubular polymerization. Although several studies have examined the possible preventive role of colchicine in metabolic diseases, its role in adipocytes is largely unknown. This study examined the novel functional role of colchicine in adipocytes demonstrating that colchicine stimulates browning in cultured white adipocytes. Colchicine stimulates browning by increasing the brown- and beige fat-specific markers in 3T3-L1 white adipocytes. Interestingly, colchicine decreased the expression of the main lipolytic proteins (ATGL, p-HSL) while it activated Ces3, suggesting a possibility for supplying essential fatty acids for inducing thermogenesis. Molecular docking analysis showed that colchicine has a strong affinity against GABA-BR and β3-AR, and its binding activity with GABA-BR (-26.52 kJ/mol) was stronger than β3-AR (-20.71 kJ/mol). Mechanistic studies were conducted by treating the cells separately with agonists and antagonists of GABA-BR and β3-AR to understand the molecular mechanism underlying the browning effect of colchicine. The results showed that colchicine stimulates browning via the antagonism of GABA-BR and the agonism of β3-AR in 3T3-L1 white adipocytes. The colchicine-mediated activation of β3-AR stimulated the PKA/p38 MAPK signaling pathway, where consequently ATF2 acted as a positive regulator, but AFT4 was a negative regulator for the induction of browning.
Collapse
Affiliation(s)
- MinJi Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Laboratory of Metabolic Signaling,Institute of Bioengineering, School of Life Sciences, EPFL, CH-1015 Lausanne, Switzerland.
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
17
|
Mitophagy Mediates the Beige to White Transition of Human Primary Subcutaneous Adipocytes Ex Vivo. Pharmaceuticals (Basel) 2022; 15:ph15030363. [PMID: 35337160 PMCID: PMC8948887 DOI: 10.3390/ph15030363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Brown and beige adipocytes have multilocular lipid droplets, express uncoupling protein (UCP) 1, and promote energy expenditure. In rodents, when the stimulus of browning subsides, parkin-dependent mitophagy is activated and dormant beige adipocytes persist. In humans, however, the molecular events during the beige to white transition have not been studied in detail. In this study, human primary subcutaneous abdominal preadipocytes were differentiated to beige for 14 days, then either the beige culture conditions were applied for an additional 14 days or it was replaced by a white medium. Control white adipocytes were differentiated by their specific cocktail for 28 days. Peroxisome proliferator-activated receptor γ-driven beige differentiation resulted in increased mitochondrial biogenesis, UCP1 expression, fragmentation, and respiration as compared to white. Morphology, UCP1 content, mitochondrial fragmentation, and basal respiration of the adipocytes that underwent transition, along with the induction of mitophagy, were similar to control white adipocytes. However, white converted beige adipocytes had a stronger responsiveness to dibutyril-cAMP, which mimics adrenergic stimulus, than the control white ones. Gene expression patterns showed that the removal of mitochondria in transitioning adipocytes may involve both parkin-dependent and -independent pathways. Preventing the entry of beige adipocytes into white transition can be a feasible way to maintain elevated thermogenesis and energy expenditure.
Collapse
|
18
|
Rosiglitazone Ameliorates Spinal Cord Injury via Inhibiting Mitophagy and Inflammation of Neural Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5583512. [PMID: 35028008 PMCID: PMC8752267 DOI: 10.1155/2022/5583512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/03/2021] [Accepted: 11/14/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, and traumatic brain and spinal cord injury (SCI) are prevalent in clinical practice. Inhibition of hyperactive inflammation and proliferation of endogenous neural stem cells (NSCs) is a promising treatment strategy for SCI. Our previous studies demonstrated the beneficial effects of rosiglitazone (Rosi) on SCI, but its roles in inflammation inhibition and proliferation of NSCs are unknown. METHODS SCI in a rat model was established, and the effects of Rosi on motor functions were assessed. The effects of Rosi on NSC proliferation and the underlying mechanisms were explored in details. RESULTS We showed that Rosi ameliorated impairment of moto functions in SCI rats, inhibited inflammation, and promoted proliferation of NSCs in vivo. Rosi increased ATP production through enhancing glycolysis but not oxidative phosphorylation. Rosi reduced mitophagy by downregulating PTEN-induced putative kinase 1 (PINK1) transcription to promote NSC proliferation, which was effectively reversed by an overexpression of PINK1 in vitro. Through KEGG analysis and experimental validations, we discovered that Rosi reduced the expression of forkhead box protein O1 (FOXO1) which was a critical transcription factor of PINK1. Three FOXO1 consensus sequences (FCSs) were found in the first intron of the PINK1 gene, which could be potentially binding to FOXO1. The proximal FCS (chr 5: 156680169-156680185) from the translation start site exerted a more significant influence on PINK1 transcription than the other two FCSs. The overexpression of FOXO1 entirely relieved the inhibition of PINK1 transcription in the presence of Rosi. CONCLUSIONS Besides inflammation inhibition, Rosi suppressed mitophagy by reducing FOXO1 to decrease the transcription of PINK1, which played a pivotal role in accelerating the NSC proliferation.
Collapse
|
19
|
Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, Lv Y, Li H, Wang C, Ma Q, Li Y, Li P, Du H, Zhao B. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021; 10:48-65. [PMID: 33403891 PMCID: PMC7801117 DOI: 10.1080/21623945.2020.1870060] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Long Cheng
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Jingkang Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Hongyu Dai
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yuhui Duan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yinglan Lv
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Huimin Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Yaqi Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Pengfei Li
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing China
| | - Haifeng Du
- The Third Municipal Hospital of Chengde, Chengde, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing China
| |
Collapse
|
20
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
21
|
Ng SP, Nomura W, Takahashi H, Inoue K, Kawada T, Goto T. Methylglyoxal attenuates isoproterenol-induced increase in uncoupling protein 1 expression through activation of JNK signaling pathway in beige adipocytes. Biochem Biophys Rep 2021; 28:101127. [PMID: 34527816 PMCID: PMC8430270 DOI: 10.1016/j.bbrep.2021.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Methylglyoxal (MG) is a metabolite derived from glycolysis whose levels in the blood and tissues of patients with diabetes are higher than those of healthy individuals, suggesting that MG is associated with the development of diabetic complications. However, it remains unknown whether high levels of MG are a cause or consequence of diabetes. Here, we show that MG negatively affects the expression of uncoupling protein 1 (UCP1), which is involved in thermogenesis and the regulation of systemic metabolism. Decreased Ucp1 expression is associated with obesity and type 2 diabetes. We found that MG attenuated the increase in Ucp1 expression following treatment with isoproterenol in beige adipocytes. However, MG did not affect protein kinase A signaling, the core coordinator of isoproterenol-induced Ucp1 expression. Instead, MG activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases. We found that JNK inhibition, but not p38, recovered isoproterenol-stimulated Ucp1 expression under MG treatment. Altogether, these results suggest an inhibitory role of MG on the thermogenic function of beige adipocytes through the JNK signaling pathway.
Collapse
Key Words
- BBGC, S-p-bromobenzylglutathione cyclopentyl diester
- Beige adipocytes
- CREB, cAMP response element-binding protein
- ERK, extracellular receptor kinase
- HSL, hormone-sensitive lipase
- JNK
- JNK, c-Jun N-terminal kinase
- MG, methylglyoxal
- Methylglyoxal
- NAC, N-acetyl-l-cysteine
- NEFA, non-esterified fatty acids
- PKA, protein kinase A
- SEM, standard error of the mean
- Ucp1
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Su-Ping Ng
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8317, Japan
- Corresponding author. Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
22
|
Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, Duan Y, Ajoolabady A, Sowers JR, Fang Y, Cao F, Xu H, Bi Y, Wang S, Ren J. FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 2021; 122:154840. [PMID: 34331963 DOI: 10.1016/j.metabol.2021.154840] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ferroptosis is indicated in cardiovascular diseases. Given the prominent role of mitophagy in the governance of ferroptosis and our recent finding for FUN14 domain containing 1 (FUNDC1) in obesity anomalies, this study evaluated the impact of FUNDC1 deficiency in high fat diet (HFD)-induced cardiac anomalies. METHODS AND MATERIALS WT and FUNDC1-/- mice were fed HFD (45% calorie from fat) or low fat diet (LFD, 10% calorie from fat) for 10 weeks in the presence of the ferroptosis inhibitor liproxstatin-1 (LIP-1, 10 mg/kg, i.p.). RESULTS RNAseq analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis and mitophagy in obese rat hearts, which was validated in obese rodent and human hearts. Although 10-week HFD intake did not alter global metabolism, cardiac geometry and function, ablation of FUNDC1 unmasked metabolic derangement, pronounced cardiac remodeling, contractile, intracellular Ca2+ and mitochondrial anomalies upon HFD challenge, the effects of which with exception of global metabolism were attenuated or mitigated by LIP-1. FUNDC1 ablation unmasked HFD-evoked rises in fatty acid synthase ACSL4, necroptosis, inflammation, ferroptosis, mitochondrial O2- production, and mitochondrial injury as well as dampened autophagy and DNA repair enzyme 8-oxoG DNA glycosylase 1 (OGG1) but not apoptosis, the effect of which except ACSL4 and its regulator SP1 was reversed by LIP-1. In vitro data noted that arachidonic acid, an ACSL4 substrate, provoked cytochrome C release, cardiomyocyte defect, and lipid peroxidation under FUNDC1 deficiency, the effects were interrupted by inhibitors of SP1, ACSL4 and ferroptosis. CONCLUSIONS These data suggest that FUNDC1 deficiency sensitized cardiac remodeling and dysfunction with short-term HFD exposure, likely through ACSL4-mediated regulation of ferroptosis.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China.
| | - Yandong Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Suqin Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China; Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Jin
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Yuanfei Luo
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Mingming Sun
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yan Fang
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Haixia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai University School of Medicine, Shanghai 200044, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Induced Beige Adipocytes Improved Fat Graft Retention by Promoting Adipogenesis and Angiogenesis. Plast Reconstr Surg 2021; 148:549-558. [PMID: 34292915 DOI: 10.1097/prs.0000000000008227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fat grafting is commonly used in treating soft-tissue defects. However, the basic biology behind fat grafting is still not fully understood. Evidence of adipose browning into beige adipose tissue after fat grafting was revealed, but its role in fat grafting remains unclear. METHODS Induced beige adipocytes and adipose-derived stem cells were obtained from human lipoaspirates and labeled with green fluorescent protein. Nude mice were each injected with 300 mg of human lipoaspirate containing green fluorescent protein-labeled adipose-derived stem cells, green fluorescent protein-labeled induced beige adipocytes, or phosphate-buffered saline. Grafted fat was harvested after 1, 4, 8, and 12 weeks for immunohistochemistry and histologic examination. Graft retention, vascularization, and adipogenic gene expression were compared. RESULTS After 7 days' induction, adipocytes achieved browning with multilocular lipid droplets, increased mitochondria, and up-regulated browning gene expression. Fat graft retention rates at week 12 were significantly higher after injection of induced beige adipocytes than after injection of phosphate-buffered saline (46.0 ± 4.9 percent versus 31.0 ± 3.6 percent; p = 0.01), but were similar after injection of induced beige adipocytes and adipose-derived stem cells (p > 0.05). Induced beige adipocytes underwent rewhitening into white adipocytes and showed up-regulation of peroxisome proliferator-activated receptor-γ expression. Induced beige adipocytes enhanced angiogenesis, but were not active in forming vessel structures. CONCLUSIONS Induced beige adipocytes and adipose-derived stem cells were comparable in improving fat graft retention rates. Induced beige adipocytes promote angiogenesis in a paracrine manner and are prone to rewhitening after fat grafting.
Collapse
|
24
|
Sass F, Schlein C, Jaeckstein MY, Pertzborn P, Schweizer M, Schinke T, Ballabio A, Scheja L, Heeren J, Fischer AW. TFEB deficiency attenuates mitochondrial degradation upon brown adipose tissue whitening at thermoneutrality. Mol Metab 2021; 47:101173. [PMID: 33516944 PMCID: PMC7903014 DOI: 10.1016/j.molmet.2021.101173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) thermogenesis offers the potential to improve metabolic health in mice and humans. However, humans predominantly live under thermoneutral conditions, leading to BAT whitening, a reduction in BAT mitochondrial content and metabolic activity. Recent studies have established mitophagy as a major driver of mitochondrial degradation in the whitening of thermogenic brite/beige adipocytes, yet the pathways mediating mitochondrial breakdown in whitening of classical BAT remain largely elusive. The transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy belonging to the MiT family of transcription factors, is the only member of this family that is upregulated during whitening, pointing toward a role of TFEB in whitening-associated mitochondrial breakdown. METHODS We generated brown adipocyte-specific TFEB knockout mice, and induced BAT whitening by thermoneutral housing. We characterized gene and protein expression patterns, BAT metabolic activity, systemic metabolism, and mitochondrial localization using in vivo and in vitro approaches. RESULTS Under low thermogenic activation conditions, deletion of TFEB preserves mitochondrial mass independently of mitochondriogenesis in BAT and primary brown adipocytes. However, this does not translate into elevated thermogenic capacity or protection from diet-induced obesity. Autophagosomal/lysosomal marker levels are altered in TFEB-deficient BAT and primary adipocytes, and lysosomal markers co-localize and co-purify with mitochondria in TFEB-deficient BAT, indicating trapping of mitochondria in late stages of mitophagy. CONCLUSION We identify TFEB as a driver of BAT whitening, mediating mitochondrial degradation via the autophagosomal and lysosomal machinery. This study provides proof of concept that interfering with the mitochondrial degradation machinery can increase mitochondrial mass in classical BAT under human-relevant conditions. However, it must be considered that interfering with autophagy may result in accumulation of non-functional mitochondria. Future studies targeting earlier steps of mitophagy or target recognition are therefore warranted.
Collapse
Affiliation(s)
- Frederike Sass
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Pertzborn
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Medical and Translational Sciences, Medical Genetics, Federico II University, Naples, Italy; Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Adipocyte-Mineralocorticoid Receptor Alters Mitochondrial Quality Control Leading to Mitochondrial Dysfunction and Senescence of Visceral Adipose Tissue. Int J Mol Sci 2021; 22:ijms22062881. [PMID: 33809055 PMCID: PMC8001019 DOI: 10.3390/ijms22062881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfunction and cellular senescence in the visceral AT of obese db/db mice. Our hypothesis is that adipocyte-MR overactivation triggers mitochondrial dysfunction and cellular senescence, through increased mitochondrial oxidative stress (OS). Using the Adipo-MROE mice with conditional adipocyte-MR expression, we evaluated the specific effects of adipocyte-MR on global and mitochondrial OS, as well as on OS-induced damage. Mitochondrial function was assessed by high throughput respirometry. Molecular mechanisms were probed in AT focusing on mitochondrial quality control and senescence markers. Adipo-MROE mice exhibited increased mitochondrial OS and altered mitochondrial respiration, associated with reduced biogenesis and increased fission. This was associated with OS-induced DNA-damage and AT premature senescence. In conclusion, targeted adipocyte-MR overexpression leads to an imbalance in mitochondrial dynamics and regeneration, to mitochondrial dysfunction and to ageing in visceral AT. These data bring new insights into the MR-dependent AT dysfunction in obesity.
Collapse
|
26
|
Paul S, Pickrell AM. Hidden phenotypes of PINK1/Parkin knockout mice. Biochim Biophys Acta Gen Subj 2021; 1865:129871. [PMID: 33571581 DOI: 10.1016/j.bbagen.2021.129871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
PINK1, a serine/threonine ubiquitin kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target damaged mitochondria to the lysosome in a process called mitophagy. This review will cover what we have learned from PINK1 and Parkin knockout (KO) mice. Systemic PINK1 and Parkin KO mouse models haven't faithfully recapitulated early onset forms of Parkinson's disease found in humans with recessive mutations in these genes. However, the utilization of these mouse models has given us insight into how PINK1 and Parkin contribute to mitochondrial quality control and function in different tissues beyond the brain such as in heart and adipose tissue. Although PINK1 and Parkin KO mice have been generated over a decade ago, these models are still being used today to creatively elucidate cell-type specific functions. Recently, these mouse models have uncovered that these proteins contribute to innate immunity and cancer phenotypes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24601, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
27
|
Zhang Y, Sun Y, Wu Z, Xiong X, Zhang J, Ma J, Xiao S, Huang L, Yang B. Subcutaneous and intramuscular fat transcriptomes show large differences in network organization and associations with adipose traits in pigs. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1732-1746. [PMID: 33527326 DOI: 10.1007/s11427-020-1824-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/28/2022]
Abstract
Subcutaneous fat (SCF) and intramuscular fat (IMF) deposition is relevant to health in humans, as well as meat production and quality in pigs. In this study, we generated RNA sequence data for 122 SCF, 120 IMF, and 87 longissimus dorsi muscle (LDM) samples using 155 F6 pigs from a specially designed heterogeneous population generated by intercrossing four highly selected European commercial breeds and four indigenous Chinese pig breeds. The phenotypes including waist back fat thickness and intramuscular fat content were also measured in the 155 F6 pigs. We found that the genes in SCF and IMF differed largely in both expression levels and network connectivity, and highlighted network modules that exhibited strongest gain of connectivity in SCF and IMF, containing genes that were associated with the immune process and DNA double-strand repair, respectively. We identified 215 SCF genes related to kinase inhibitor activity, mitochondrial fission, and angiogenesis, and 90 IMF genes related to lipolysis and fat cell differentiation, displayed a tissue-specific association with back fat thickness and IMF content, respectively. We found that cis-expression QTL for trait-associated genes in the two adipose tissues tended to have tissue-dependent predictability for the two adipose traits. Alternative splicing of genes was also found to be associated with SCF or IMF deposition, but the association was much less extensive than that based on expression levels. This study provides a better understanding of SCF and IMF gene transcription and network organization and identified critical genes and network modules that displayed tissue-specific associations with subcutaneous and intramuscular fat deposition. These features are helpful for designing breeding programs to genetically improve the two adipose traits in a balanced way.
Collapse
Affiliation(s)
- Yifeng Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingchun Sun
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhongzi Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
28
|
Wang Z, Zhang X, Lu X. Parkin-mediated mitophagy in beige adipose tissue. Metabolism 2020; 112:154372. [PMID: 32926896 DOI: 10.1016/j.metabol.2020.154372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Zihang Wang
- School of Life Science, Changchun Normal University, Changchun 130011, China; Department of Trauma Orthopedics, First Affiliated Hospital of Jilin University, Changchun 130021, China
| | - Xiaofang Zhang
- School of Life Science, Changchun Normal University, Changchun 130011, China; Medical Research Center, Jilin Province General Hospital, Changchun 130021, China; School of Clinical Medicine, Changchun Chinese Medicine University, Changchun 130021, China
| | - Xiaodan Lu
- School of Life Science, Changchun Normal University, Changchun 130011, China; Medical Research Center, Jilin Province General Hospital, Changchun 130021, China; School of Clinical Medicine, Changchun Chinese Medicine University, Changchun 130021, China.
| |
Collapse
|
29
|
Thermogenic Activation Downregulates High Mitophagy Rate in Human Masked and Mature Beige Adipocytes. Int J Mol Sci 2020; 21:ijms21186640. [PMID: 32927882 PMCID: PMC7555361 DOI: 10.3390/ijms21186640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Thermogenic brown and beige adipocytes oxidize metabolic substrates producing heat, mainly by the mitochondrial uncoupling protein UCP1, and can thus counteract obesity. Masked beige adipocytes possess white adipocyte-like morphology, but can be made thermogenic by adrenergic stimuli. We investigated the regulation of mitophagy upon thermogenic activation of human masked and mature beige adipocytes. Human primary abdominal subcutaneous adipose-derived stromal cells (hASCs) and Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes were differentiated to white and beige adipocytes, then their cAMP-induced thermogenic potential was assessed by detecting increased expressions of UCP1, mitochondrial DNA content and respiratory chain complex subunits. cAMP increased the thermogenic potential of white adipocytes similarly to beige ones, indicating the presence of a masked beige population. In unstimulated conditions, a high autophagic flux and mitophagy rates (demonstrated by LC3 punctae and TOM20 co-immunostaining) were observed in white adipocytes, while these were lower in beige adipocytes. Silencing and gene expression experiments showed that the ongoing mitophagy was Parkin-independent. cAMP treatment led to the downregulation of mitophagy through PKA in both types of adipocytes, resulting in more fragmented mitochondria and increased UCP1 levels. Our data indicates that mitophagy is repressed upon encountering a short-term adrenergic stimulus, as a fast regulatory mechanism to provide high mitochondrial content for thermogenesis.
Collapse
|
30
|
Zhou Z, Moore TM, Drew BG, Ribas V, Wanagat J, Civelek M, Segawa M, Wolf DM, Norheim F, Seldin MM, Strumwasser AR, Whitney KA, Lester E, Reddish BR, Vergnes L, Reue K, Rajbhandari P, Tontonoz P, Lee J, Mahata SK, Hewitt SC, Shirihai O, Gastonbury C, Small KS, Laakso M, Jensen J, Lee S, Drevon CA, Korach KS, Lusis AJ, Hevener AL. Estrogen receptor α controls metabolism in white and brown adipocytes by regulating Polg1 and mitochondrial remodeling. Sci Transl Med 2020; 12:eaax8096. [PMID: 32759275 PMCID: PMC8212422 DOI: 10.1126/scitranslmed.aax8096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/04/2019] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Obesity is heightened during aging, and although the estrogen receptor α (ERα) has been implicated in the prevention of obesity, its molecular actions in adipocytes remain inadequately understood. Here, we show that adipose tissue ESR1/Esr1 expression inversely associated with adiposity and positively associated with genes involved in mitochondrial metabolism and markers of metabolic health in 700 Finnish men and 100 strains of inbred mice from the UCLA Hybrid Mouse Diversity Panel. To determine the anti-obesity actions of ERα in fat, we selectively deleted Esr1 from white and brown adipocytes in mice. In white adipose tissue, Esr1 controlled oxidative metabolism by restraining the targeted elimination of mitochondria via the E3 ubiquitin ligase parkin. mtDNA content was elevated, and adipose tissue mass was reduced in adipose-selective parkin knockout mice. In brown fat centrally involved in body temperature maintenance, Esr1 was requisite for both mitochondrial remodeling by dynamin-related protein 1 (Drp1) and uncoupled respiration thermogenesis by uncoupled protein 1 (Ucp1). In both white and brown fat of female mice and adipocytes in culture, mitochondrial dysfunction in the context of Esr1 deletion was paralleled by a reduction in the expression of the mtDNA polymerase γ subunit Polg1 We identified Polg1 as an ERα target gene by showing that ERα binds the Polg1 promoter to control its expression in 3T3L1 adipocytes. These findings support strategies leveraging ERα action on mitochondrial function in adipocytes to combat obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Brian G Drew
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Vicent Ribas
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mete Civelek
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Dane M Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Frode Norheim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marcus M Seldin
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alexander R Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kate A Whitney
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ellen Lester
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Britany R Reddish
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jason Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sylvia C Hewitt
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Craig Gastonbury
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE17EH, UK
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland
| | - Jorgen Jensen
- Department of Physical Performance, Norwegian School of Sport Science, Oslo 0806, Norway
| | - Sindre Lee
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Christian A Drevon
- University Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0316, Norway
| | - Kenneth S Korach
- Receptor Biology Section, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Aldons J Lusis
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, CA 90095, USA.
- Iris Cantor-UCLA Women's Health Research Center, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Rahman MS, Kim YS. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism 2020; 107:154228. [PMID: 32289346 DOI: 10.1016/j.metabol.2020.154228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mangiferin (MF), a xanthonoid derived from Mangifera indica, has shown therapeutic effects on various human diseases including cancer, diabetes, and obesity. Nonetheless, the influence of MF on non-shivering thermogenesis and its underlying mechanism in browning remains unclear. Here, our aim was to investigate the effects of MF on browning and its molecular mechanisms in murine C3H10T1/2 mesenchymal stem cells (MSCs). MATERIALS/METHODS To determine the function of MF on browning, murine C3H10T1/2 MSCs were treated with MF in an adipogenic differentiation cocktail and the thermogenic and correlated metabolic responses were assessed using MF-mediated signalling. Human adipose-derived MSCs were differentiated and treated with MF to confirm its role in thermogenic induction. RESULTS MF treatment induced the expression of a brown-fat signature, UCP1, and reduced triglyceride (TG) in C3H10T1/2 MSCs. MF also induced the expression of major thermogenesis regulators: PGC1α, PRDM16, and PPARγ and up-regulated the expression of beiging markers CD137, HSPB7, TBX1, and COX2 in both murine C3H10T1/2 MSCs and human adipose-derived mesenchymal stem cells (hADMSC). We also observed that MF treatment increased the mitochondrial DNA and improved mitochondrial homeostasis by regulating mitofission-fusion plasticity via suppressing PINK1-PRKN-mediated mitophagy. Furthermore, MF treatment improved mitochondrial respiratory function by increasing mitochondrial oxygen consumption and expression of oxidative-phosphorylation (OXPHOS)-related proteins. Chemical-inhibition and gene knockdown experiments revealed that β3-AR-dependent PKA-p38 MAPK-CREB signalling is crucial for MF-mediated brown-fat formation via suppression of mitophagy in C3H10T1/2 MSCs. CONCLUSIONS MF promotes the brown adipocyte phenotype by suppressing mitophagy, which is regulated by PKA-p38MAPK-CREB signalling in C3H10T1/2 MSCs. Thus, we propose that MF may be a good browning inducer that can ameliorate obesity.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, South Korea; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, South Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, South Korea; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, South Korea.
| |
Collapse
|
32
|
Mooli RGR, Mukhi D, Watt M, Edmunds L, Xie B, Capooci J, Reslink M, Eze C, Mills A, Stolz DB, Jurczak M, Ramakrishnan SK. Sustained mitochondrial biogenesis is essential to maintain caloric restriction-induced beige adipocytes. Metabolism 2020; 107:154225. [PMID: 32275973 PMCID: PMC7284285 DOI: 10.1016/j.metabol.2020.154225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Caloric restriction (CR) delays the onset of metabolic and age-related disorders. Recent studies have demonstrated that formation of beige adipocytes induced by CR is strongly associated with extracellular remodeling in adipose tissue, decrease in adipose tissue inflammation, and improved systemic metabolic homeostasis. However, beige adipocytes rapidly transition to white upon CR withdrawal through unclear mechanisms. MATERIALS AND METHODS Six-week old C57BL6 mice were fed with 40% CR chow diet for 6 weeks. Subsequently, one group of mice was switched back to ad libitum chow diet, which was continued for additional 2 weeks. Adipose tissues were assessed histologically and biochemically for beige adipocytes. RESULTS Beige adipocytes induced by CR rapidly transition to white adipocytes when CR is withdrawn independent of parkin-mediated mitophagy. We demonstrate that the involution of mitochondria during CR withdrawal is strongly linked with a decrease in mitochondrial biogenesis. We further demonstrate that beige-to-white fat transition upon β3-AR agonist-withdrawal could be attenuated by CR, partly via maintenance of mitochondrial biogenesis. CONCLUSION In the model of CR, our study highlights the dominant role of mitochondrial biogenesis in the maintenance of beige adipocytes. We propose that loss of beige adipocytes upon β3-AR agonist withdrawal could be attenuated by CR.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Mikayla Watt
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Lia Edmunds
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Bingxian Xie
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Joseph Capooci
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Matthew Reslink
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Chetachukwu Eze
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Amanda Mills
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Donna B Stolz
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Michael Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15262., United States of America.
| |
Collapse
|
33
|
Clemente-Postigo M, Tinahones A, El Bekay R, Malagón MM, Tinahones FJ. The Role of Autophagy in White Adipose Tissue Function: Implications for Metabolic Health. Metabolites 2020; 10:metabo10050179. [PMID: 32365782 PMCID: PMC7281383 DOI: 10.3390/metabo10050179] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
White adipose tissue (WAT) is a highly adaptive endocrine organ that continuously remodels in response to nutritional cues. WAT expands to store excess energy by increasing adipocyte number and/or size. Failure in WAT expansion has serious consequences on metabolic health resulting in altered lipid, glucose, and inflammatory profiles. Besides an impaired adipogenesis, fibrosis and low-grade inflammation also characterize dysfunctional WAT. Nevertheless, the precise mechanisms leading to impaired WAT expansibility are yet unresolved. Autophagy is a conserved and essential process for cellular homeostasis, which constitutively allows the recycling of damaged or long-lived proteins and organelles, but is also highly induced under stress conditions to provide nutrients and remove pathogens. By modulating protein and organelle content, autophagy is also essential for cell remodeling, maintenance, and survival. In this line, autophagy has been involved in many processes affected during WAT maladaptation, including adipogenesis, adipocyte, and macrophage function, inflammatory response, and fibrosis. WAT autophagy dysregulation is related to obesity and diabetes. However, it remains unclear whether WAT autophagy alteration in obese and diabetic patients are the cause or the consequence of WAT malfunction. In this review, current data regarding these issues are discussed, focusing on evidence from human studies.
Collapse
Affiliation(s)
- Mercedes Clemente-Postigo
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Edificio IMIBIC, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Correspondence: (M.C.-P.); (F.J.T.); Tel.: +34-957213728 (M.C.-P.); +34-951032648 (F.J.T.)
| | - Alberto Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
| | - Rajaa El Bekay
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Regional de Málaga), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)-Reina Sofia University Hospital, University of Cordoba, Edificio IMIBIC, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Unidad de Gestión Clínica de Endocrinología y Nutrición (Hospital Universitario Virgen de la Victoria), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Campus Teatinos s/n, 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (M.C.-P.); (F.J.T.); Tel.: +34-957213728 (M.C.-P.); +34-951032648 (F.J.T.)
| |
Collapse
|
34
|
Cairó M, Villarroya J. The role of autophagy in brown and beige adipose tissue plasticity. J Physiol Biochem 2019; 76:213-226. [PMID: 31811543 DOI: 10.1007/s13105-019-00708-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023]
Abstract
Since the rediscovery of active brown and beige adipose tissues in humans a decade ago, great efforts have been made to identify the mechanisms underlying the activation and inactivation of these tissues, with the hope of designing potential strategies to fight against obesity and associated metabolic disorders such as type 2 diabetes. Active brown/beige fat increases the energy expenditure and is associated with reduced hyperglycemia and hyperlipidemia, whereas its atrophy and inactivation have been associated with obesity and aging. Autophagy, which is the process by which intracellular components are degraded within the lysosomes, has recently emerged as an important regulatory mechanism of brown/beige fat plasticity. Studies have shown that autophagy participates in the intracellular remodeling events that occur during brown/beige adipogenesis, thermogenic activation, and inactivation. The autophagic degradation of mitochondria appears to be important for the inactivation of brown fat and the transition from beige-to-white adipose tissue. Moreover, autophagic dysregulation in adipose tissues has been associated with obesity. Thus, understanding the regulatory mechanisms that control autophagy in the physiology and pathophysiology of adipose tissues might suggest novel treatments against obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Montserrat Cairó
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) Fisiopatologia de la Obesidad y Nutrición, 28029, Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Avda Diagonal 643, 08028, Barcelona, Spain.
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain.
| |
Collapse
|
35
|
Lyra-Leite DM, Andres AM, Cho N, Petersen AP, Ariyasinghe NR, Kim SS, Gottlieb RA, McCain ML. Matrix-guided control of mitochondrial function in cardiac myocytes. Acta Biomater 2019; 97:281-295. [PMID: 31401347 PMCID: PMC6801042 DOI: 10.1016/j.actbio.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes. STATEMENT OF SIGNIFICANCE: Cardiac development and disease are associated with remodeling of the extracellular matrix coincident with metabolic rewiring of cardiac myocytes. However, little is known about the direct impact of the biochemical and mechanical properties of the extracellular matrix on the metabolic function of cardiac myocytes. In this study, oxygen consumption rates were measured in neonatal rat ventricular myocytes maintained on several commonly-used biomaterial substrates to reveal new relationships between the extracellular matrix and cardiac myocyte metabolism. Several mitochondrial parameters were enhanced on gelatin hydrogels compared to synthetic PDMS substrates. These data are important for comprehensively understanding matrix-regulation of cardiac myocyte physiology. Additionally, these data should be considered when selecting scaffolds for engineering in vitro cardiac tissue models.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Allen M Andres
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Suyon Sarah Kim
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Roberta A Gottlieb
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles CA, 90033, United States.
| |
Collapse
|
36
|
Abstract
Significance: Alterations in adipose tissue function have profound consequences on whole body energy homeostasis because this tissue is central for fat accumulation, energy expenditure, glucose and insulin metabolism, and hormonal regulation. With the obesity reaching epidemic proportions globally, it is important to understand the mechanisms leading to adipose tissue malfunction. Recent Advances: Autophagy has originally been viewed as an adaptive response to cellular stress, but in recent years this process was shown to regulate important cellular processes. In adipose tissue, autophagy is a key regulator of white adipose tissue (WAT) and brown adipose tissue (BAT) adipogenesis, and dysregulated autophagy impairs fat accumulation both in vitro and in vivo. Animal studies have also suggested an important role for autophagy and mitophagy during the transition from beige to white fat. Human studies have provided evidence for altered autophagy in WAT, and these alterations correlated with the degree of insulin resistance. Critical Issues: Despite these important advances in the study of autophagy in adipose tissue, we still do not understand the physiological role of autophagy in mature white and brown adipocytes. Furthermore, several human studies involving autophagy assessment were performed on whole adipose tissue, which complicates the interpretation of the results considering the cellular heterogeneity of this tissue. Future Directions: Future studies will undoubtedly expand our understanding of the role of autophagy in fully differentiated adipocytes, and uncover novel cross-talks between this tissue and other organs in regulating lipid metabolism, redox signaling, energy homeostasis, and insulin sensitivity.
Collapse
Affiliation(s)
- Maroua Ferhat
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Sihem Boudina
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| |
Collapse
|
37
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
38
|
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab 2019; 29:803-826. [PMID: 30943392 PMCID: PMC6450419 DOI: 10.1016/j.cmet.2019.03.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved lysosome- or vacuole-dependent catabolic pathway in eukaryotes. Autophagy functions basally for cellular quality control and is induced to act as an alternative source of basic metabolites during nutrient deprivation. These functions of autophagy are intimately connected to the regulation of metabolism, and the metabolic status of the cell in turn controls the nature and extent of autophagic induction. Here, we highlight the co-regulation of autophagy and metabolism with a special focus on selective autophagy that, along with bulk autophagy, plays a central role in regulating and rewiring metabolic circuits. We outline the metabolic signals that activate these pathways, the mechanisms involved, and the downstream effects and implications while recognizing yet unanswered questions. We also discuss the role of autophagy in the development and maintenance of adipose tissue, an emerging player in systemic metabolic homeostasis, and describe what is currently known about the complex relationship between autophagy and cancer.
Collapse
|
39
|
Corsa CAS, Pearson GL, Renberg A, Askar MM, Vozheiko T, MacDougald OA, Soleimanpour SA. The E3 ubiquitin ligase parkin is dispensable for metabolic homeostasis in murine pancreatic β cells and adipocytes. J Biol Chem 2019; 294:7296-7307. [PMID: 30877201 DOI: 10.1074/jbc.ra118.006763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
The E3 ubiquitin ligase parkin is a critical regulator of mitophagy and has been identified as a susceptibility gene for type 2 diabetes (T2D). However, its role in metabolically active tissues that precipitate T2D development is unknown. Specifically, pancreatic β cells and adipocytes both rely heavily on mitochondrial function in the regulation of optimal glycemic control to prevent T2D, but parkin's role in preserving quality control of β cell or adipocyte mitochondria is unclear. Although parkin has been reported previously to control mitophagy, here we show that, surprisingly, parkin is dispensable for glucose homeostasis in both β cells and adipocytes during diet-induced insulin resistance in mice. We observed that insulin secretion, β cell formation, and islet architecture were preserved in parkin-deficient β cells and islets, suggesting that parkin is not necessary for control of β cell function and islet compensation for diet-induced obesity. Although transient parkin deficiency mildly impaired mitochondrial turnover in β cell lines, parkin deletion in primary β cells yielded no deficits in mitochondrial clearance. In adipocyte-specific deletion models, lipid uptake and β-oxidation were increased in cultured cells, whereas adipose tissue morphology, glucose homeostasis, and beige-to-white adipocyte transition were unaffected in vivo In key metabolic tissues where mitochondrial dysfunction has been implicated in T2D development, our experiments unexpectedly revealed that parkin is not an essential regulator of glucose tolerance, whole-body energy metabolism, or mitochondrial quality control. These findings highlight that parkin-independent processes maintain β cell and adipocyte mitochondrial quality control in diet-induced obesity.
Collapse
Affiliation(s)
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Aaron Renberg
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Matthew M Askar
- From the Department of Molecular and Integrative Physiology and
| | - Tracy Vozheiko
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Ormond A MacDougald
- From the Department of Molecular and Integrative Physiology and .,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and .,the Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan 48105
| |
Collapse
|
40
|
Ro SH, Jang Y, Bae J, Kim IM, Schaecher C, Shomo ZD. Autophagy in Adipocyte Browning: Emerging Drug Target for Intervention in Obesity. Front Physiol 2019; 10:22. [PMID: 30745879 PMCID: PMC6360992 DOI: 10.3389/fphys.2019.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy through targeted deletion of autophagy genes in mice improved anti-obesity phenotypes. In addition, active mitochondria clearance through activation of autophagy was required for beige/brown fat whitening – that is, conversion to white fat. However, inhibition of autophagy seemed detrimental in hypermetabolic conditions such as hepatic steatosis, atherosclerosis, thermal injury, sepsis, and cachexia through an increase in free fatty acid and glycerol release from WAT. The emerging concept of white fat browning–conversion to beige/brown fat–has been controversial in its anti-obesity effect through facilitation of weight loss and improving metabolic health. Thus, proper regulation of autophagy activity fit to an individual metabolic profile is necessary to ensure balance in adipose tissue metabolism and function, and to further prevent metabolic disorders such as obesity and diabetes. In this review, we summarize the effect of autophagy in adipose tissue browning in the context of obesity prevention and its potential as a promising target for the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Yura Jang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiyoung Bae
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Isaac M Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Cameron Schaecher
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zachery D Shomo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
41
|
Crupi AN, Nunnelee JS, Taylor DJ, Thomas A, Vit JP, Riera CE, Gottlieb RA, Goodridge HS. Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging (Albany NY) 2018; 10:3327-3352. [PMID: 30449736 PMCID: PMC6286850 DOI: 10.18632/aging.101643] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023]
Abstract
Preservation of mitochondrial function, which is dependent on mitochondrial homeostasis (biogenesis, dynamics, disposal/recycling), is critical for maintenance of skeletal muscle function. Skeletal muscle performance declines upon aging (sarcopenia) and is accompanied by decreased mitochondrial function in fast-glycolytic muscles. Oxidative metabolism promotes mitochondrial homeostasis, so we investigated whether mitochondrial function is preserved in oxidative muscles. We compared tibialis anterior (predominantly glycolytic) and soleus (oxidative) muscles from young (3 mo) and old (28-29 mo) C57BL/6J mice. Throughout life, the soleus remained more oxidative than the tibialis anterior and expressed higher levels of markers of mitochondrial biogenesis, fission/fusion and autophagy. The respiratory capacity of mitochondria isolated from the tibialis anterior, but not the soleus, declined upon aging. The soleus and tibialis anterior exhibited similar aging-associated changes in mitochondrial biogenesis, fission/fusion, disposal and autophagy marker expression, but opposite changes in fiber composition: the most oxidative fibers declined in the tibialis anterior, while the more glycolytic fibers declined in the soleus. In conclusion, oxidative muscles are protected from mitochondrial aging, probably due to better mitochondrial homeostasis ab initio and aging-associated changes in fiber composition. Exercise training aimed at enriching oxidative fibers may be valuable in preventing mitochondria-related aging and its contribution to sarcopenia.
Collapse
Affiliation(s)
- Annunziata N. Crupi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jordan S. Nunnelee
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David J. Taylor
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Amandine Thomas
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Celine E. Riera
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roberta A. Gottlieb
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Equal contribution
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Equal contribution
| |
Collapse
|
42
|
Lefranc C, Friederich-Persson M, Palacios-Ramirez R, Nguyen Dinh Cat A. Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. J Endocrinol 2018; 238:R143-R159. [PMID: 29875164 DOI: 10.1530/joe-18-0163] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Obesity is a multifaceted, chronic, low-grade inflammation disease characterized by excess accumulation of dysfunctional adipose tissue. It is often associated with the development of cardiovascular (CV) disorders, insulin resistance and diabetes. Under pathological conditions like in obesity, adipose tissue secretes bioactive molecules called 'adipokines', including cytokines, hormones and reactive oxygen species (ROS). There is evidence suggesting that oxidative stress, in particular, the ROS imbalance in adipose tissue, may be the mechanistic link between obesity and its associated CV and metabolic complications. Mitochondria in adipose tissue are an important source of ROS and their dysfunction contributes to the pathogenesis of obesity-related type 2 diabetes. Mitochondrial function is regulated by several factors in order to preserve mitochondria integrity and dynamics. Moreover, the renin-angiotensin-aldosterone system is over-activated in obesity. In this review, we focus on the pathophysiological role of the mineralocorticoid receptor in the adipose tissue and its contribution to obesity-associated metabolic and CV complications. More specifically, we discuss whether dysregulation of the mineralocorticoid system within the adipose tissue may be the upstream mechanism and one of the early events in the development of obesity, via induction of oxidative stress and mitochondrial dysfunction, thus impacting on systemic metabolism and the CV system.
Collapse
Affiliation(s)
- Clara Lefranc
- INSERMUMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | | | - Roberto Palacios-Ramirez
- INSERMUMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| | - Aurelie Nguyen Dinh Cat
- INSERMUMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University, Paris, France
| |
Collapse
|
43
|
Lu Y, Fujioka H, Joshi D, Li Q, Sangwung P, Hsieh P, Zhu J, Torio J, Sweet D, Wang L, Chiu SY, Croniger C, Liao X, Jain MK. Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge. Sci Rep 2018; 8:8251. [PMID: 29844467 PMCID: PMC5974273 DOI: 10.1038/s41598-018-26394-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Brown adipose tissue (BAT) is a specialized thermogenic organ in mammals. The ability of BAT mitochondria to generate heat in response to cold-challenge to maintain core body temperature is essential for organismal survival. While cold activated BAT mitochondrial biogenesis is recognized as critical for thermogenic adaptation, the contribution of mitochondrial quality control to this process remains unclear. Here, we show mitophagy is required for brown adipocyte mitochondrial homeostasis during thermogenic adaptation. Mitophagy is significantly increased in BAT from cold-challenged mice (4 °C) and in β-agonist treated brown adipocytes. Blockade of mitophagy compromises brown adipocytes mitochondrial oxidative phosphorylation (OX-PHOS) capacity, as well as BAT mitochondrial integrity. Mechanistically, cold-challenge induction of BAT mitophagy is UCP1-dependent. Furthermore, our results indicate that mitophagy coordinates with mitochondrial biogenesis, maintaining activated BAT mitochondrial homeostasis. Collectively, our in vivo and in vitro findings identify mitophagy as critical for brown adipocyte mitochondrial homeostasis during cold adaptation.
Collapse
Affiliation(s)
- Yuan Lu
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| | - Hisashi Fujioka
- Electron Microscopy Facility, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dinesh Joshi
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qiaoyuan Li
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Capital Medical University, Beijing, China
| | - Panjamaporn Sangwung
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Paishiun Hsieh
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Jiyun Zhu
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Jose Torio
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - David Sweet
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Lan Wang
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shing Yan Chiu
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Colleen Croniger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Xudong Liao
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mukesh K Jain
- Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
44
|
Lu X, Altshuler-Keylin S, Wang Q, Chen Y, Henrique Sponton C, Ikeda K, Maretich P, Yoneshiro T, Kajimura S. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci Signal 2018; 11:11/527/eaap8526. [PMID: 29692364 DOI: 10.1126/scisignal.aap8526] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy.
Collapse
Affiliation(s)
- Xiaodan Lu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Medical Diagnostic Research Center, Jilin Province People's Hospital, Changchun, Jilin 130021, China.,Department of Immunology, Jilin University, Changchun, Jilin 130021, China
| | - Svetlana Altshuler-Keylin
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Qiang Wang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Chen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Sao Paulo 13084-970, Brazil
| | - Kenji Ikeda
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pema Maretich
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Inhibition of parkin might be a novel therapeutic target for ‘Browning’ the cardiac adipose tissues. Int J Cardiol 2018; 256:34. [DOI: 10.1016/j.ijcard.2017.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
|
46
|
Lyra-Leite DM, Andres AM, Petersen AP, Ariyasinghe NR, Cho N, Lee JA, Gottlieb RA, McCain ML. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. Am J Physiol Heart Circ Physiol 2017; 313:H757-H767. [PMID: 28733449 DOI: 10.1152/ajpheart.00290.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 01/20/2023]
Abstract
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease.NEW & NOTEWORTHY A new methodology has been developed to measure O2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Allen M Andres
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jezell A Lee
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Roberta A Gottlieb
- Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, California; and
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California; .,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, California
| |
Collapse
|