1
|
Lin X, Han H, Wang N, Wang C, Qi M, Wang J, Liu G. The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. Int J Mol Sci 2024; 25:7175. [PMID: 39000282 PMCID: PMC11241073 DOI: 10.3390/ijms25137175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a global health challenge that has received increasing attention in contemporary research. The gut microbiota has been implicated in the development of obesity, primarily through its involvement in regulating various host metabolic processes. Recent research suggests that epigenetic modifications may serve as crucial pathways through which the gut microbiota and its metabolites contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact of obesity on the host. This review primarily focuses on the understanding of the relationship between the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in developing therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic characteristics of obesity.
Collapse
Affiliation(s)
- Xingtong Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Hui Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Gang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.L.); (H.H.); (N.W.); (C.W.); (M.Q.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Käver L, Hinney A, Rajcsanyi LS, Maier HB, Frieling H, Steiger H, Voelz C, Beyer C, Trinh S, Seitz J. Epigenetic alterations in patients with anorexia nervosa-a systematic review. Mol Psychiatry 2024:10.1038/s41380-024-02601-w. [PMID: 38849516 DOI: 10.1038/s41380-024-02601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Anorexia nervosa (AN) is a complex metabolic and psychological disorder that is influenced by both heritable genetic components and environmental factors. Exposure to various environmental influences can lead to epigenetically induced changes in gene expression. Epigenetic research in AN is still in its infancy, and studies to date are limited in determining clear, valid links to disease onset and progression are limited. Therefore, the aim of this systematic review was to compile and critically evaluate the available results of epigenetic studies specifically in AN and to provide recommendations for future studies. In accordance with the PRISMA guidelines, a systematic literature search was performed in three different databases (PubMed, Embase, and Web of Science) through May 2023. Twenty-three original papers or conference abstracts on epigenetic studies in AN were collected. Epigenome-wide association studies (EWASs), which analyze DNA methylation across the genome in patients with AN and identify potential disease-relevant changes in promoter/regulatory regions of genes, are the most promising for future research. To date, five EWASs on AN have been published, suggesting a potential reversibility of malnutrition-induced epigenetic changes once patients recover. Hence, determining differential DNA methylation levels could serve as a biomarker for disease status or early diagnosis and might be involved in disease progression or chronification. For future research, EWASs with a larger sample size, longitudinal study design and uniform methods should be performed to contribute to the understanding of the pathophysiology of AN, the development of individual interventions and a better prognosis for affected patients.
Collapse
Affiliation(s)
- Larissa Käver
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
- Center for Translational and Behavioral Neuroscience, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Hannah Benedictine Maier
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Helge Frieling
- Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Howard Steiger
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Neuenhofer Weg 21, 52074, Aachen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LVR University Hospital Essen, Virchowstrasse 174, 45147, Essen, Germany
| |
Collapse
|
3
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
5
|
Hatton AA, Hillary RF, Bernabeu E, McCartney DL, Marioni RE, McRae AF. Blood-based genome-wide DNA methylation correlations across body-fat- and adiposity-related biochemical traits. Am J Hum Genet 2023; 110:1564-1573. [PMID: 37652023 PMCID: PMC10502853 DOI: 10.1016/j.ajhg.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The recent increase in obesity levels across many countries is likely to be driven by nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to explore this, as it is sensitive to both genetic and environmental exposures. While the relationship between DNAm and body-fat traits has been extensively studied, there is limited literature on the shared associations of DNAm variation across such traits. Akin to genetic correlation estimates, here, we introduce an approach to evaluate the similarities in DNAm associations between traits: DNAm correlations. As DNAm can be both a cause and consequence of complex traits, DNAm correlations have the potential to provide insights into trait relationships above that currently obtained from genetic and phenotypic correlations. Utilizing 7,519 unrelated individuals from Generation Scotland with DNAm from the EPIC array, we calculated DNAm correlations between body-fat- and adiposity-related traits by using the bivariate OREML framework in the OSCA software. For each trait, we also estimated the shared contribution of DNAm between sexes. We identified strong, positive DNAm correlations between each of the body-fat traits (BMI, body-fat percentage, and waist-to-hip ratio, ranging from 0.96 to 1.00), finding larger associations than those identified by genetic and phenotypic correlations. We identified a significant deviation from 1 in the DNAm correlations for BMI between males and females, with sex-specific DNAm changes associated with BMI identified at eight DNAm probes. Employing genome-wide DNAm correlations to evaluate the similarities in the associations of DNAm with complex traits has provided insight into obesity-related traits beyond that provided by genetic correlations.
Collapse
Affiliation(s)
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, Brisbane, Australia.
| |
Collapse
|
6
|
Ruiz-Ojeda FJ, Anguita-Ruiz A, Rico MC, Leis R, Bueno G, Moreno LA, Gil-Campos M, Gil Á, Aguilera CM. Serum levels of the novel adipokine isthmin-1 are associated with obesity in pubertal boys. World J Pediatr 2023; 19:864-872. [PMID: 36595188 PMCID: PMC10423122 DOI: 10.1007/s12519-022-00665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To evaluate whether there is an association between the serum levels of the novel insulin-like adipokine isthmin-1 (ISM1) and obesity-related phenotypes in a population of Spanish children and to investigate the plausible molecular alterations behind the alteration of the serum levels of this protein in children with obesity. METHODS The study population is a sub-cohort of the PUBMEP research project, consisting of a cross-sectional population of 119 pubertal children with overweight (17 boys, 19 girls), obesity (20 boys, 25 girls), and normal weight (17 boys, 21 girls). All subjects were classified into experimental groups according to their sex, obesity, and insulin resistance (IR) status. They were counted anthropometry, glucose and lipid metabolism, inflammation and cardiovascular biomarkers as well as isthmin-1 (ISM1) serum levels. This population was intended as a discovery population to elucidate the relationship between obesity and ISM1 levels in children. Furthermore, the study population had blood whole-genome DNA methylation examined, allowing deepening into the obesity-ISM1 molecular relationship. RESULTS Higher serum ISM1 levels were observed in boys with obesity than in normal weight (P = 0.004) and overweight (P = 0.007) boys. ISM1 serum levels were positively associated with body mass index (BMI) Z-score (P = 0.005) and fat mass (P = 0.058) and negatively associated with myeloperoxidase (MPO) (P = 0.043) in boys. Although we did not find associations between ISM1 serum levels and metabolic outcomes in girls, which may indicate a putative sexual dimorphism, fat mass was positively associated in all children, including boys and girls (P = 0.011). DNA methylation levels in two-enhancer-related CpG sites of ISM1 (cg03304641 and cg14269097) were associated with serum levels of ISM1 in children. CONCLUSIONS ISM1 is associated with obesity in boys at the pubertal stage, elucidating how this protein might be of special relevance as a new biomarker of obesity in children. Further studies including a longitudinal design during puberty are needed.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain.
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Center Munich, 85764, Munich, Germany.
| | - Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain.
- Barcelona Institute for Global Health, ISGlobal, 08003, Barcelona, Spain.
| | - Maria C Rico
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
| | - Rosaura Leis
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Unit of Investigation in Human Nutrition, Growth and Development of Galicia (GALINUT), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Pediatric Nutrition Research Group, Institute of Sanitary Research of Santiago de Compostela (IDIS) CHUS-USC, 15706, Santiago de Compostela, Spain
- Unit of Pediatric Gastroenterology, Hepatology and Nutritio, Pediatric Service, University Clinical Hospital of Santiago (CHUS), 15706, Santiago de Compostela, Spain
| | - Gloria Bueno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- GENUD Research group, Institute of Sanitary Research of Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Unit of Pediatric Endocrinology, University Clinical Hospital Lozano Blesa, 50009, Zaragoza, Spain
| | - Luis A Moreno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- GENUD Research group, Institute of Sanitary Research of Aragón (IIS Aragón), University of Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Mercedes Gil-Campos
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Metabolism and Investigation Unit, Reina Sofia University Hospital, Maimónides Institute of Biomedicine Research of Córdoba (IMIBIC), University of Córdoba, 14071, Córdoba, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento S/N. 18016 Armilla, Granada, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
7
|
Torti C, Olimpieri PP, Bonfanti P, Tascini C, Celant S, Tacconi D, Nicastri E, Tacconelli E, Cacopardo B, Perrella A, Buccoliero GB, Parruti G, Bassetti M, Biagetti C, Giacometti A, Erne EM, Frontuto M, Lanzafame M, Summa V, Spagnoli A, Vestri A, Di Perri G, Russo P, Palù G. Real-life comparison of mortality in patients with SARS-CoV-2 infection at risk for clinical progression treated with molnupiravir or nirmatrelvir plus ritonavir during the Omicron era in Italy: a nationwide, cohort study. THE LANCET REGIONAL HEALTH. EUROPE 2023; 31:100684. [PMID: 37547273 PMCID: PMC10398591 DOI: 10.1016/j.lanepe.2023.100684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023]
Abstract
Background Comparative data on mortality in COVID-19 patients treated with molnupiravir or with nirmatrelvir plus ritonavir are inconclusive. We therefore compared all-cause mortality in community-dwelling COVID-19 patients treated with these drugs during the Omicron era. Methods Data collected in the nationwide, population-based, cohort of patients registered in the database of the Italian Medicines Agency (AIFA) were used. To increase completeness of the recorded deaths and date correctness, a cross-check with the National Death Registry provided by the Ministry of the Interior was performed. We included in this study all patients infected by SARS-CoV-2 treated within 5 days after the test date and symptom onset between February 8 and April 30, 2022. All-cause mortalities by day 28 were compared between the two treatment groups after balancing for baseline characteristics using weights obtained from a gradient boosting machine algorithm. Findings In the considered timeframe, 17,977 patients treated with molnupiravir and 11,576 patients with nirmatrelvir plus ritonavir were included in the analysis. Most patients (25,617/29,553 = 86.7%) received a full vaccine course including the booster dose. A higher crude incidence rate of all-cause mortality was found among molnupiravir users (51.83 per 100,000 person-days), compared to nirmatrelvir plus ritonavir users (22.29 per 100,000 person-days). However, molnupiravir-treated patients were older than those treated with nirmatrelvir plus ritonavir and differences between the two populations were found as far as types of co-morbidities were concerned. For this reason, we compared the weight-adjusted cumulative incidences using the Aalen estimator and found that the adjusted cumulative incidence rates were 1.23% (95% CI 1.07%-1.38%) for molnupiravir-treated and 0.78% (95% CI 0.58%-0.98%) for nirmatrelvir plus ritonavir-treated patients (adjusted log rank p = 0.0002). Moreover, the weight-adjusted mixed-effect Cox model including Italian regions and NHS centers as random effects and treatment as the only covariate confirmed a significant reduced risk of death in patients treated with nirmatrelvir plus ritonavir. Lastly, a significant reduction in the risk of death associated with nirmatrelvir plus ritonavir was confirmed in patient subgroups, such as in females, fully vaccinated patients, those treated within day 2 since symptom onset and patients without (haemato)-oncological diseases. Interpretation Early initiation of nirmatrelvir plus ritonavir was associated for the first time with a significantly reduced risk of all-cause mortality by day 28 compared to molnupiravir, both in the overall population and in patient subgroups, including those fully vaccinated with the booster dose. Funding This study did not receive funding.
Collapse
Affiliation(s)
- Carlo Torti
- Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Pier Paolo Olimpieri
- Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Bonfanti
- Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - Carlo Tascini
- Department of Medicine (DAME), Infectious Diseases Clinic, Udine University Hospital, Udine, Italy
| | - Simone Celant
- Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy
| | - Danilo Tacconi
- Department of Specialised and Internal Medicine, Infectious Diseases Unit, San Donato Hospital, Arezzo, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Disease Lazzaron Spallanzani, IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Evelina Tacconelli
- Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy
| | - Bruno Cacopardo
- Department of Internal and Experimental Medicine, University of Catania School of Medicine, Catania, Italy
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, D. Cotugno Hospital, 80131 Naples, Italy
| | | | - Giustino Parruti
- Department of Medicine, Infectious Disease Unit, Pescara General Hospital, Pescara, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, Policlinico San Martino Hospital—IRCCS, Genoa, Italy
| | - Carlo Biagetti
- Unit of Infectious disease Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Andrea Giacometti
- Azienda Ospedaliera Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Elke Maria Erne
- Department of Infectious Disease, Azienda Sanitaria dell’Alto Adige, Central Hospital of Bolzano, Italy
| | - Maria Frontuto
- Infectious Diseases Unit, A.O.R. San Carlo, Potenza, Italy
| | | | - Valentina Summa
- Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy
| | - Alessandra Spagnoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annarita Vestri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giovanni Di Perri
- Department of Medical Sciences at the Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, Torino, Italy
| | - Pierluigi Russo
- Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy
| | - Giorgio Palù
- Italian Medicines Agency, Via del Tritone 181, 00187 Rome, Italy
| |
Collapse
|
8
|
Lechner L, Opitz R, Silver MJ, Krabusch PM, Prentice AM, Field MS, Stachelscheid H, Leitão E, Schröder C, Fernandez Vallone V, Horsthemke B, Jöckel KH, Schmidt B, Nöthen MM, Hoffmann P, Herms S, Kleyn PW, Megges M, Blume-Peytavi U, Weiss K, Mai K, Blankenstein O, Obermayer B, Wiegand S, Kühnen P. Early-set POMC methylation variability is accompanied by increased risk for obesity and is addressable by MC4R agonist treatment. Sci Transl Med 2023; 15:eadg1659. [PMID: 37467315 DOI: 10.1126/scitranslmed.adg1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Increasing evidence points toward epigenetic variants as a risk factor for developing obesity. We analyzed DNA methylation of the POMC (pro-opiomelanocortin) gene, which is pivotal for satiety regulation. We identified sex-specific and nongenetically determined POMC hypermethylation associated with a 1.4-fold (confidence interval, 1.03 to 2.04) increased individual risk of developing obesity. To investigate the early embryonic establishment of POMC methylation states, we established a human embryonic stem cell (hESC) model. Here, hESCs (WA01) were transferred into a naïve state, which was associated with a reduction of DNA methylation. Naïve hESCs were differentiated via a formative state into POMC-expressing hypothalamic neurons, which was accompanied by re-establishment of DNA methylation patterning. We observed that reduced POMC gene expression was associated with increased POMC methylation in POMC-expressing neurons. On the basis of these findings, we treated POMC-hypermethylated obese individuals (n = 5) with an MC4R agonist and observed a body weight reduction of 4.66 ± 2.16% (means ± SD) over a mean treatment duration of 38.4 ± 26.0 weeks. In summary, we identified an epigenetic obesity risk variant at the POMC gene fulfilling the criteria for a metastable epiallele established in early embryonic development that may be addressable by MC4R agonist treatment to reduce body weight.
Collapse
Affiliation(s)
- Lara Lechner
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Robert Opitz
- Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Matt J Silver
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Philipp M Krabusch
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Andrew M Prentice
- Medical Research Council Unit, Gambia at the London School of Hygiene and Tropical Medicine, Fajara, Banjul, PO Box 273, Gambia
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Harald Stachelscheid
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | | | - Valeria Fernandez Vallone
- Berlin Institute of Health, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, BIH Core Unit Stem Cells and Organoids, 13353 Berlin, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, 45147 Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, 45147 Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | | | - Matthias Megges
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Venerology and Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Katja Weiss
- Klinik für Angeborene Herzfehler - Kinderkardiologie, Deutsches Herzzentrum der Charité, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes, and Nutrition and Charité Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Center for Diabetes Research, 85764 München-Neuherberg, Germany
| | - Oliver Blankenstein
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
- Department Endocrinology and Metabolism, Labor Berlin-Charité Vivantes GmbH, 13353 Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health/Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Susanna Wiegand
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, 13353 Berlin, Germany
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany
| |
Collapse
|
9
|
Mas-Parés B, Xargay-Torrent S, Gómez-Vilarrubla A, Carreras-Badosa G, Prats-Puig A, De Zegher F, Ibáñez L, Bassols J, López-Bermejo A. Gestational Weight Gain Relates to DNA Methylation in Umbilical Cord, Which, In Turn, Associates with Offspring Obesity-Related Parameters. Nutrients 2023; 15:3175. [PMID: 37513594 PMCID: PMC10386148 DOI: 10.3390/nu15143175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Excessive gestational weight gain (GWG) has a negative impact on offspring's health. Epigenetic modifications mediate these associations by causing changes in gene expression. We studied the association between GWG and DNA methylation in umbilical cord tissue; and determined whether the DNA methylation and the expression of corresponding annotated genes were associated with obesity-related parameters in offspring at 6 years of age. The methylated CpG sites (CpGs) associated with GWG were identified in umbilical cord tissue by genome-wide DNA methylation (n = 24). Twelve top CpGs were validated in a wider sample by pyrosequencing (n = 87), and the expression of their 5 annotated genes (SETD8, TMEM214, SLIT3, RPTOR, and HOXC8) was assessed by RT-PCR. Pyrosequencing results validated the association of SETD8, SLIT3, and RPTOR methylation with GWG and showed that higher levels of SETD8 and RPTOR methylation and lower levels of SLIT3 methylation relate to a higher risk of obesity in the offspring. The association of SETD8 and SLIT3 gene expression with offspring outcomes paralleled the association of methylation levels in opposite directions. Epigenetic changes in the umbilical cord tissue could explain, in part, the relationship between GWG and offspring obesity risk and be early biomarkers for the prevention of overweight and obesity in childhood.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Ariadna Gómez-Vilarrubla
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Anna Prats-Puig
- University School of Health and Sport (EUSES), University of Girona, 17190 Salt, Spain
| | - Francis De Zegher
- Department of Development & Regeneration, University of Leuven, 3000 Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology Department, Research Institute Sant Joan de Déu, University of Barcelona, 08950 Esplugues, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Judit Bassols
- Materno-Fetal Metabolic Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, (Girona Biomedical Research Institute) IDIBGI, 17190 Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, 17007 Girona, Spain
- Department of Medical Sciences, University of Girona, 17003 Girona, Spain
| |
Collapse
|
10
|
Oliva M, Demanelis K, Lu Y, Chernoff M, Jasmine F, Ahsan H, Kibriya MG, Chen LS, Pierce BL. DNA methylation QTL mapping across diverse human tissues provides molecular links between genetic variation and complex traits. Nat Genet 2023; 55:112-122. [PMID: 36510025 PMCID: PMC10249665 DOI: 10.1038/s41588-022-01248-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
Studies of DNA methylation (DNAm) in solid human tissues are relatively scarce; tissue-specific characterization of DNAm is needed to understand its role in gene regulation and its relevance to complex traits. We generated array-based DNAm profiles for 987 human samples from the Genotype-Tissue Expression (GTEx) project, representing 9 tissue types and 424 subjects. We characterized methylome and transcriptome correlations (eQTMs), genetic regulation in cis (mQTLs and eQTLs) across tissues and e/mQTLs links to complex traits. We identified mQTLs for 286,152 CpG sites, many of which (>5%) show tissue specificity, and mQTL colocalizations with 2,254 distinct GWAS hits across 83 traits. For 91% of these loci, a candidate gene link was identified by integration of functional maps, including eQTMs, and/or eQTL colocalization, but only 33% of loci involved an eQTL and mQTL present in the same tissue type. With this DNAm-focused integrative analysis, we contribute to the understanding of molecular regulatory mechanisms in human tissues and their impact on complex traits.
Collapse
Affiliation(s)
- Meritxell Oliva
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| | - Kathryn Demanelis
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yihao Lu
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Meytal Chernoff
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
- Institute for Population and Precision Health, University of Chicago, Chicago, IL, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
12
|
Breton E, Fotso Soh J, Booij L. Immunoinflammatory processes: Overlapping mechanisms between obesity and eating disorders? Neurosci Biobehav Rev 2022; 138:104688. [PMID: 35594735 DOI: 10.1016/j.neubiorev.2022.104688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Obesity and eating disorders are conditions that involve eating behaviors and are sometimes comorbid. Current evidence supports alterations in immunoinflammatory processes in both obesity and eating disorders. A plausible hypothesis is that immunoinflammatory processes may be involved in the pathophysiology of obesity and eating disorders. The aim of this review is to highlight the link between obesity and eating disorders, with a particular focus on immunoinflammatory processes. First, the relation between obesity and eating disorders will be presented, followed by a brief review of the literature on their association with immunoinflammatory processes. Second, developmental factors will be discussed to clarify the link between obesity, eating disorders, and immunoinflammatory processes. Genetic and epigenetic risk factors as well as the potential roles of stress pathways and early life development will be presented. Finally, implications of these findings for future research are discussed. This review highlighted biological and developmental aspects that overlap between obesity and EDs, emphasizing the need for biopsychosocial research approaches to advance current knowledge and practice in these fields.
Collapse
Affiliation(s)
- E Breton
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - J Fotso Soh
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada
| | - L Booij
- Sainte-Justine Hospital Research Centre, Montreal, Canada; Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada; Department of Psychology, Concordia University, Montreal, Canada.
| |
Collapse
|
13
|
Noronha NY, Barato M, Sae-Lee C, Pinhel MADS, Watanabe LM, Pereira VAB, Rodrigues GDS, Morais DA, de Sousa WT, Souza VCDO, Plaça JR, Salgado W, Barbosa F, Plösch T, Nonino CB. Novel Zinc-Related Differentially Methylated Regions in Leukocytes of Women With and Without Obesity. Front Nutr 2022; 9:785281. [PMID: 35369101 PMCID: PMC8967318 DOI: 10.3389/fnut.2022.785281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Nutriepigenetic markers are predictive responses associated with changes in “surrounding” environmental conditions of humans, which may influence metabolic diseases. Although rich in calories, Western diets could be linked with the deficiency of micronutrients, resulting in the downstream of epigenetic and metabolic effects and consequently in obesity. Zinc (Zn) is an essential nutrient associated with distinct biological roles in human health. Despite the importance of Zn in metabolic processes, little is known about the relationship between Zn and epigenetic. Thus, the present study aimed to identify the epigenetic variables associated with Zn daily ingestion (ZnDI) and serum Zinc (ZnS) levels in women with and without obesity. Materials and Methods This is a case-control, non-randomized, single-center study conducted with 21 women allocated into two groups: control group (CG), composed of 11 women without obesity, and study group (SG), composed of 10 women with obesity. Anthropometric measurements, ZnDI, and ZnS levels were evaluated. Also, leukocyte DNA was extracted for DNA methylation analysis using 450 k Illumina BeadChips. The epigenetic clock was calculated by Horvath method. The chip analysis methylation pipeline (ChAMP) package selected the differentially methylated regions (DMRs). Results The SG had lower ZnS levels than the CG. Moreover, in SG, the ZnS levels were negatively associated with the epigenetic age acceleration. The DMR analysis revealed 37 DMRs associated with ZnDI and ZnS levels. The DMR of PM20D1 gene was commonly associated with ZnDI and ZnS levels and was hypomethylated in the SG. Conclusion Our findings provide new information on Zn's modulation of DNA methylation patterns and bring new perspectives for understanding the nutriepigenetic mechanisms in obesity.
Collapse
Affiliation(s)
- Natália Yumi Noronha
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mariana Barato
- Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Lígia Moriguchi Watanabe
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Déborah Araújo Morais
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Wellington Tavares de Sousa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vanessa Cristina de Oliveira Souza
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, São Paulo, Brazil
| | - Wilson Salgado
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, SãoPaulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carla Barbosa Nonino
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carla Barbosa Nonino
| |
Collapse
|
14
|
Depression and obesity among females, are sex specificities considered? Arch Womens Ment Health 2021; 24:851-866. [PMID: 33880649 DOI: 10.1007/s00737-021-01123-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to systematically review the relationship of obesity-depression in the female sex. We carried out a systematic search (PubMed, MEDLINE, Embase) to quantify the articles (controlled trials and randomized controlled trials) regarding obesity and depression on a female population or a mixed sample. Successively, we established whether the sex specificities were studied by the authors and if they reported on collecting data regarding factors that may contribute to the evolution of obesity and depression and that could be responsible for the greater susceptibility of females to those conditions. After applying the inclusion and exclusion criteria, we found a total of 20 articles with a female sample and 54 articles with a mixed sample. More than half of all articles (51.35%, n = 38) evaluated the relationship between depression and obesity, but only 20 (27.03%) evaluated this relationship among females; still, 80% of those (n = 16) presented supporting results. However, few articles considered confounding factors related to female hormones (12.16%, n = 9) and none of the articles focused on factors responsible for the binomial obesity-depression in the female sex. The resulting articles also supported that depression (and related impairments) influencing obesity (and related impairments) is a two-way road. This systematic review supports the concurrency of obesity-depression in females but also shows how sex specificities are ultimately under-investigated. Female sex specificity is not being actively considered when studying the binomial obesity-depression, even within a female sample. Future studies should focus on trying to understand how the female sex and normal hormonal variations influence these conditions.
Collapse
|
15
|
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev 2021; 22:e13319. [PMID: 34278703 DOI: 10.1111/obr.13319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Obesity is associated with widespread differential DNA methylation (DNAm) patterns, though there have been limited overlap in the obesity-associated cytosine-guanine nucleotide pair (CpG) sites that have been identified in the literature. We systematically searched four databases for studies published until January 2020. Eligible studies included cross-sectional, longitudinal, or intervention studies examining adiposity and genome-wide DNAm in non-pregnant adults aged 18-75 in all tissue types. Study design and results were extracted in the descriptive review. Blood-based DNAm results in body mass index (BMI) and waist circumference (WC) were meta-analyzed using weighted sum of Z-score meta-analysis. Of the 10,548 studies identified, 46 studies were included in the systematic review with 18 and nine studies included in the meta-analysis of BMI and WC, respectively. In the blood, 77 and four CpG sites were significant in three or more studies of BMI and WC, respectively. Using a genome-wide threshold for significance, 52 blood-based CpG sites were significantly associated with BMI. These sites have previously been associated with many obesity-related diseases including type 2 diabetes, cardiovascular disease, Crohn's disease, and depression. Our study shows that DNAm at 52 CpG sites represent potential mediators of obesity-associated chronic diseases and may be novel intervention or therapeutic targets to protect against obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jazib Gohar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karla I Galaviz
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Xie T, Gorenjak V, Stathopoulou MG, Dadé S, Marouli E, Masson C, Murray H, Lamont J, Fitzgerald P, Deloukas P, Visvikis-Siest S. Epigenome-wide association study detects a novel loci associated with central obesity in healthy subjects. BMC Med Genomics 2021; 14:233. [PMID: 34556110 PMCID: PMC8459469 DOI: 10.1186/s12920-021-01077-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/06/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND AND AIMS Central obesity is a condition that poses a significant risk to global health and requires the employment of novel scientific methods for exploration. The objective of this study is to use DNA methylation analysis to detect DNA methylation loci linked to obesity phenotypes, i.e. waist circumference and waist-to-hip ratio adjusted for BMI. METHODS AND RESULTS Two-hundred and ten healthy European participants from the STANISLAS Family Study (SFS), comprising 73 nuclear families, were comprehensively assessed for methylation status using Illumina Infinium HumanMethylation450 BeadChip. An epigenome-wide association study was performed, which identified a CpG site cg16170243 located on chromosome 18q21.2 significantly associated with waist circumference, after adjusting for BMI (β = 2.32, SE = 0.41, Padj = 0.048). Cg16170243 corresponds to a 50 bp-length human methylation oligoprobe located within the AC090241.2 gene that overlaps ST8SIA5 gene. No significant association was observed with waist-to-hip ratio adjusted for BMI (Padj > 0.05). CONCLUSIONS A novel association between DNA methylation and WC was identified, which is demonstrating that epigenetic mechanisms may have a significant impact on waist circumference ratio in healthy individuals. Further studies are warranted to address the causal effects of this association.
Collapse
Affiliation(s)
- Ting Xie
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
- CRCT, INSERM U1037, 31037, Toulouse, France
- Université Paul Sabatier III', 31400, Toulouse, France
| | - Vesna Gorenjak
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | - Maria G Stathopoulou
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
- 'Université Côte d'Azur', INSERM U1065, C3M, 06204, Nice, France
| | - Sébastien Dadé
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | | | - Christine Masson
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France
| | | | | | | | | | - Sophie Visvikis-Siest
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000, Nancy, France.
| |
Collapse
|
17
|
Cifuentes L, Hurtado A. MD, Eckel-Passow J, Acosta A. Precision Medicine for Obesity. DIGESTIVE DISEASE INTERVENTIONS 2021; 5:239-248. [PMID: 36203650 PMCID: PMC9534386 DOI: 10.1055/s-0041-1729945] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Obesity is a multifactorial disease with a variable and underwhelming weight loss response to current treatment approaches. Precision medicine proposes a new paradigm to improve disease classification based on the premise of human heterogeneity, with the ultimate goal of maximizing treatment effectiveness, tolerability, and safety. Recent advances in high-throughput biochemical assays have contributed to the partial characterization of obesity's pathophysiology, as well as to the understanding of the role that intrinsic and environmental factors, and their interaction, play in its development and progression. These data have led to the development of biological markers that either are being or will be incorporated into strategies to develop personalized lines of treatment for obesity. There are currently many ongoing initiatives aimed at this; however, much needs to be resolved before precision obesity medicine becomes common practice. This review aims to provide a perspective on the currently available data of high-throughput technologies to treat obesity.
Collapse
Affiliation(s)
- Lizeth Cifuentes
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Maria Daniela Hurtado A.
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Department of Medicine, Mayo Clinic Health System La Crosse, Rochester, Minnesota
| | - Jeanette Eckel-Passow
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
18
|
Chen N, Miao L, Lin W, Zou D, Huang L, Huang J, Shi W, Li L, Luo Y, Liang H, Pan S, Peng J. Integrated DNA Methylation and Gene Expression Analysis Identified S100A8 and S100A9 in the Pathogenesis of Obesity. Front Cardiovasc Med 2021; 8:631650. [PMID: 34055926 PMCID: PMC8163519 DOI: 10.3389/fcvm.2021.631650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Background: To explore the association of DNA methylation and gene expression in the pathology of obesity. Methods: (1) Genomic DNA methylation and mRNA expression profile of visceral adipose tissue (VAT) were performed in a comprehensive database of gene expression in obese and normal subjects. (2) Functional enrichment analysis and construction of differential methylation gene regulatory networks were performed. (3) Validation of the two different methylation sites and corresponding gene expression was done in a separate microarray dataset. (4) Correlation analysis was performed on DNA methylation and mRNA expression data. Results: A total of 77 differentially expressed mRNAs matched with differentially methylated genes. Analysis revealed two different methylation sites corresponding to two unique genes—s100a8-cg09174555 and s100a9-cg03165378. Through the verification test of two interesting different expression positions [differentially methylated positions (DMPs)] and their corresponding gene expression, we found that methylation in these genes was negatively correlated to gene expression in the obesity group. Higher S100A8 and S100A9 expressions in obese subjects were validated in a separate microarray dataset. Conclusion: This study confirmed the relationship between DNA methylation and gene expression and emphasized the important role of S100A8 and S100A9 in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Ningyuan Chen
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital, Guangxi Medical University, Liuzhou, China
| | - Wei Lin
- Department of Neurological Rehabilitation, Guangxi Jiangbin Hospital, Nanning, China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Huang
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Jia Huang
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Wanxin Shi
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Lilin Li
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Yuxing Luo
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Hao Liang
- The First Clinical Medical School, Guangxi Medical University, Nanning, China
| | - Shangling Pan
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Junhua Peng
- Department of Pathophysiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. CURRENT GENETIC MEDICINE REPORTS 2021. [DOI: 10.1007/s40142-021-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Zaghlool SB, Sharma S, Molnar M, Matías-García PR, Elhadad MA, Waldenberger M, Peters A, Rathmann W, Graumann J, Gieger C, Grallert H, Suhre K. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat Commun 2021; 12:1279. [PMID: 33627659 PMCID: PMC7904950 DOI: 10.1038/s41467-021-21542-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Blood circulating proteins are confounded readouts of the biological processes that occur in different tissues and organs. Many proteins have been linked to complex disorders and are also under substantial genetic control. Here, we investigate the associations between over 1000 blood circulating proteins and body mass index (BMI) in three studies including over 4600 participants. We show that BMI is associated with widespread changes in the plasma proteome. We observe 152 replicated protein associations with BMI. 24 proteins also associate with a genome-wide polygenic score (GPS) for BMI. These proteins are involved in lipid metabolism and inflammatory pathways impacting clinically relevant pathways of adiposity. Mendelian randomization suggests a bi-directional causal relationship of BMI with LEPR/LEP, IGFBP1, and WFIKKN2, a protein-to-BMI relationship for AGER, DPT, and CTSA, and a BMI-to-protein relationship for another 21 proteins. Combined with animal model and tissue-specific gene expression data, our findings suggest potential therapeutic targets further elucidating the role of these proteins in obesity associated pathologies.
Collapse
Affiliation(s)
- Shaza B Zaghlool
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Megan Molnar
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
| | - Pamela R Matías-García
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed A Elhadad
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Biometrics and Epidemiology, German Diabetes Center, Düsseldorf, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
21
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
22
|
Epigenetic signatures associated with maternal body mass index or gestational weight gain: a systematic review. J Dev Orig Health Dis 2020; 12:373-383. [PMID: 32873364 DOI: 10.1017/s2040174420000811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal body mass index (BMI) and gestational weight gain (GWG) impacts both the mother's and the child's health, and epigenetic modifications have been suggested to mediate some of these effects in offspring. This systematic review aimed to summarize the current literature on associations between maternal BMI and GWG and epigenetic marks. We performed systematic searches in PubMed and EMBASE and manual searches of reference lists. We included 49 studies exploring the association between maternal BMI and/or GWG and DNA methylation or miRNA; 7 performed in maternal tissues, 13 in placental tissue and 38 in different offspring tissues. The most consistent findings were reported for the relationship between maternal BMI, in particular pre-pregnant BMI, and expression of miRNA Let-7d in both maternal blood and placental tissue, methylation of the gene HIF3A in umbilical cord blood and umbilical tissue, and with expression in the miR-210 target gene, BDNF in placental tissue and cord blood. Correspondingly, methylation of BDNF was also found in placental tissue and cord blood. The current evidence suggests that maternal BMI is associated with some epigenetic signatures in the mother, the placenta and her offspring, which could indicate that some of the effects proposed by the Developmental Origins of Health and Disease-hypothesis may be mediated by epigenetic marks. In conclusion, there is a need for large, well-designed studies and meta-analyses that can clarify the relationship between BMI, GWG and epigenetic changes.
Collapse
|
23
|
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife 2020; 9:59053. [PMID: 32730204 PMCID: PMC7392603 DOI: 10.7554/elife.59053] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
24
|
Shi S, Zhou Z, Liao JJ, Yang YH, Wu JS, Zheng S, He SS. The impact and distinction of 'lipid healthy but obese' and 'lipid abnormal but not obese' phenotypes on lumbar disc degeneration in Chinese. J Transl Med 2020; 18:211. [PMID: 32456662 PMCID: PMC7251844 DOI: 10.1186/s12967-020-02382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background Lipid abnormality and obesity have been proposed to be associated with lumbar disc degeneration, but little is known about the effect of ‘lipid healthy but obese’ (LH-O) and ‘lipid abnormal but not obese’ (LA-NO) phenotypes on lumbar disc degeneration in Chinese. The study aims to determine the impact and distinction of LH-O and LA-NO phenotypes on lumbar disc degeneration in Chinese, and to identify the association of related factors with risk of lumbar disc degeneration. Methods A total of 678 individuals were included with lumbar magnetic resonance imaging, serum lipid levels and anthropometric measurements. Obesity was defined on the basis of body mass index or waist to hip ratio (WHR). Pfirrmann score and Weishaupt’s scale were utilized to assess the degree of disc degeneration and facet joint degeneration. Results The incidence of the LH-O and LA-NO phenotypes were 11.4% and 18.1%, respectively. LA-NO phenotype demonstrates a high incidence for disc degeneration (P < 0.05), while LH-O phenotype confers a severe disc degeneration grade (P < 0.05). No statistical difference in the percentage of severe facet joint degeneration grade in each group (P > 0.05). Elevated triglycerides and greater WHR may be the risk factors for lumbar disc degeneration in Chinese. Conclusion LH-O and LA-NO phenotypes are common with different status of disc degeneration in Chinese. Elevated triglycerides and abdominal obesity appear to play crucial roles in the development of lumbar disc degeneration.
Collapse
Affiliation(s)
- Sheng Shi
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China.,Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Zhi Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China.,Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Jun-Jun Liao
- Department of Orthopedics, Fuzhou First People's Hospital, Nanchang University, Fuzhou, 344000, People's Republic of China
| | - Yue-Hua Yang
- Department of Orthopedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, People's Republic of China
| | - Jun-Song Wu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Shuang Zheng
- School of Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Shi-Sheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, People's Republic of China. .,Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
25
|
Anguita-Ruiz A, Mendez-Gutierrez A, Ruperez AI, Leis R, Bueno G, Gil-Campos M, Tofe I, Gomez-Llorente C, Moreno LA, Gil Á, Aguilera CM. The protein S100A4 as a novel marker of insulin resistance in prepubertal and pubertal children with obesity. Metabolism 2020; 105:154187. [PMID: 32084430 DOI: 10.1016/j.metabol.2020.154187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND S100A4 is a metastasis-associated protein also reported as a promising marker for dysfunctional white adipose tissue (WAT) and insulin resistance (IR) in adult and adolescent populations. OBJECTIVE We aimed to evaluate the association between the protein S100A4 and obesity and IR in children and during pubertal development. DESIGN AND METHODS The study design consisted of three cross-sectional populations of 249, 11 and 19 prepubertal children respectively (named study population 1, 2 and 3), and a longitudinal population of 53 girls undergoing sexual maturation (study population 4). All subjects were classified into experimental groups according to their sex, obesity and IR status. All study populations counted on anthropometry, glucose, and lipid metabolism, inflammation and cardiovascular biomarkers as well as S100A4 plasma levels measured. The study population 1 was intended as the discovery population in which to elucidate the relationship between Obesity-IR and S100A4 plasma levels in prepubertal children. The cross-sectional populations 2 and 3 further counted on WAT gene expression data for investigating the molecular basis of this association. Instead, the longitudinal study population 4 presented blood whole-genome DNA methylation data at each temporal record, allowing deepening into the Obesity-IR-S1004 relationship during puberty as well as deciphering plausible epigenetic mechanisms altering S100A4 plasma levels. RESULTS S100A4 plasma levels were strongly associated with several metabolic and anthropometric outcomes, namely IR, in prepubertal non-diabetic obese children. We also found highly significant positive associations during the course of puberty between the increase in S100A4 levels and the increase in HOMA-IR (P = 0.0003, FDR = 0.005) and insulin levels (P = 0.0003, FDR = 0.005). Methylation in two-enhancer related CpG sites of the S100A4 region (cg07245635 and cg10447638) was associated with IR biomarkers at the prepubertal stage and with longitudinal changes in these measurements. We further reported an association between visceral WAT (vWAT) S100A4 expression and HOMA-IR, insulin levels and BMI Z-Score, but not with circulating S100A4. CONCLUSIONS We report for the first time the association of S100A4 with IR and WAT dysfunction in prepubertal populations as well as how the change in plasma S100A4 levels accompanies longitudinal trajectories of IR in children during pubertal development. Moreover, we propose epigenetic changes in two methylation sites and an altered S100A4 vWAT expression as plausible molecular mechanisms underlying this disturbance in obesity.
Collapse
Affiliation(s)
- Augusto Anguita-Ruiz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Azahara I Ruperez
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Rosaura Leis
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; Unit of Investigation in Nutrition, Growth and Human Development of Galicia, Pediatric Department (USC), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Gloria Bueno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Mercedes Gil-Campos
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; Department of Pediatric Endocrinology, Reina Sofia University Clinical Hospital, Institute Maimónides of Biomedicine Investigation of Córdoba (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Inés Tofe
- Department of Pediatric Endocrinology, Reina Sofia University Clinical Hospital, Institute Maimónides of Biomedicine Investigation of Córdoba (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Carolina Gomez-Llorente
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Luis A Moreno
- CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain; Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2) and Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; CIBEROBN, (Physiopathology of Obesity and Nutrition CB12/03/30038), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain.
| |
Collapse
|
26
|
Makrinou E, Drong AW, Christopoulos G, Lerner A, Chapa-Chorda I, Karaderi T, Lavery S, Hardy K, Lindgren CM, Franks S. Genome-wide methylation profiling in granulosa lutein cells of women with polycystic ovary syndrome (PCOS). Mol Cell Endocrinol 2020; 500:110611. [PMID: 31600550 PMCID: PMC7116598 DOI: 10.1016/j.mce.2019.110611] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/20/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder amongst women of reproductive age, whose aetiology remains unclear. To improve our understanding of the molecular mechanisms underlying the disease, we conducted a genome-wide DNA methylation profiling in granulosa lutein cells collected from 16 women suffering from PCOS, in comparison to 16 healthy controls. Samples were collected by follicular aspiration during routine egg collection for IVF treatment. Study groups were matched for age and BMI, did not suffer from other disease and were not taking confounding medication. Comparing women with polycystic versus normal ovarian morphology, after correcting for multiple comparisons, we identified 106 differentially methylated CpG sites with p-values <5.8 × 10-8 that were associated with 88 genes, several of which are known to relate either to PCOS or to ovarian function. Replication and validation of the experiment was done using pyrosequencing to analyse six of the identified differentially methylated sites. Pathway analysis indicated potential disruption in canonical pathways and gene networks that are, amongst other, associated with cancer, cardiogenesis, Hedgehog signalling and immune response. In conclusion, these novel findings indicate that women with PCOS display epigenetic changes in ovarian granulosa cells that may be associated with the heterogeneity of the disorder.
Collapse
Affiliation(s)
- E Makrinou
- Imperial College London, Faculty of Medicine, Institute of Reproductive and Developmental Biology, London, W12 0NN, UK.
| | - A W Drong
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - G Christopoulos
- IVF Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0NN, UK
| | - A Lerner
- Imperial College London, Faculty of Medicine, Institute of Reproductive and Developmental Biology, London, W12 0NN, UK
| | - I Chapa-Chorda
- Imperial College London, Faculty of Medicine, Institute of Reproductive and Developmental Biology, London, W12 0NN, UK
| | - T Karaderi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - S Lavery
- IVF Unit, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0NN, UK
| | - K Hardy
- Imperial College London, Faculty of Medicine, Institute of Reproductive and Developmental Biology, London, W12 0NN, UK
| | - C M Lindgren
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - S Franks
- Imperial College London, Faculty of Medicine, Institute of Reproductive and Developmental Biology, London, W12 0NN, UK
| |
Collapse
|
27
|
Replicating associations between DNA methylation and body mass index in a longitudinal sample of older twins. Int J Obes (Lond) 2019; 44:1397-1405. [PMID: 31801962 DOI: 10.1038/s41366-019-0498-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND There is an important interplay between epigenetic factors and body weight, and previous work has identified ten sites where DNA methylation is robustly associated with body mass index (BMI) cross-sectionally. However, interpretation of the associations is complicated by the substantial changes in BMI often occurring in late-life, and the fact that methylation is often driven by genetic variation. This study therefore investigated the longitudinal association between these ten sites and BMI from midlife to late-life, and whether associations persist after controlling for genetic factors. METHODS We used data from 535 individuals (mean age 68) in the Swedish Adoption/Twin Study of Aging (SATSA) with longitudinal measures of both DNA methylation from blood samples and BMI, spanning up to 20 years. Methylation levels were measured with the Infinium Human Methylation 450K or Infinium MethylationEpic array, with seven of the ten sites passing quality control. Latent growth curve models were applied to investigate longitudinal associations between methylation and BMI, and between-within models to study associations within twin pairs, thus adjusting for genetic factors. RESULTS Baseline DNA methylation levels at five of the seven sites were associated with BMI level at age 65 (cg00574958 [CPT1A]; cg11024682 [SREBF1]), and/or change (cg06192883 [MYO5C]; cg06946797 [RMI2]; cg08857797 [VPS25]). For four of the five sites, the associations remained comparable within twin pairs. However, the effects of cg06192883 were substantially attenuated within pairs. No change in DNA methylation was detected for any of the seven evaluated sites. CONCLUSION Five of the seven sites investigated were associated with late-life level and/or change in BMI. The effects for four of the sites remained similar when examined within twin pairs, indicating that the associations are mainly environmentally driven. However, the substantial attenuation in the association between cg06192883 and late-life BMI within pairs points to the importance of genetic factors in this association.
Collapse
|
28
|
Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019; 11:nu11112690. [PMID: 31703257 PMCID: PMC6893459 DOI: 10.3390/nu11112690] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, obesity is one of the most prevalent human health problems. Research from the last 30 years has clarified the role of the imbalance between energy intake and expenditure, unhealthy lifestyle, and genetic variability in the development of obesity. More recently, the composition and metabolic functions of gut microbiota have been proposed as being able to affect obesity development. Here, we will report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity. There is evidence for the association between gut bacteria and obesity both in infancy and in adults. There are several genetic, metabolic, and inflammatory pathophysiological mechanisms involved in the interplay between gut microbes and obesity. Microbial changes in the human gut can be considered a factor involved in obesity development in humans. The modulation of the bacterial strains in the digestive tract can help to reshape the metabolic profile in the human obese host as suggested by several data from animal and human studies. Thus, a deep revision of the evidence pertaining to the use probiotics, prebiotics, and antibiotics in obese patients is conceivable
Collapse
|
29
|
Arpón A, Milagro FI, Ramos-Lopez O, Mansego ML, Riezu-Boj JI, Martínez JA. Methylome-Wide Association Study in Peripheral White Blood Cells Focusing on Central Obesity and Inflammation. Genes (Basel) 2019; 10:E444. [PMID: 31212707 PMCID: PMC6627499 DOI: 10.3390/genes10060444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic signatures such as DNA methylation may be associated with specific obesity traits in different tissues. The onset and development of some obesity-related complications are often linked to visceral fat accumulation. The aim of this study was to explore DNA methylation levels in peripheral white blood cells to identify epigenetic methylation marks associated with waist circumference (WC). DNA methylation levels were assessed using Infinium Human Methylation 450K and MethylationEPIC beadchip (Illumina) to search for putative associations with WC values of 473 participants from the Methyl Epigenome Network Association (MENA) project. Statistical analysis and Ingenuity Pathway Analysis (IPA) were employed for assessing the relationship between methylation and WC. A total of 669 CpGs were statistically associated with WC (FDR < 0.05, slope ≥ |0.1|). From these CpGs, 375 CpGs evidenced a differential methylation pattern between females with WC ≤ 88 and > 88 cm, and 95 CpGs between males with WC ≤ 102 and > 102 cm. These differentially methylated CpGs are located in genes related to inflammation and obesity according to IPA. Receiver operating characteristic (ROC) curves of the top four significant differentially methylated CpGs separated by sex discriminated individuals with presence or absence of abdominal fat. ROC curves of all the CpGs from females and one CpG from males were validated in an independent sample (n = 161). These methylation results add further insights about the relationships between obesity, adiposity-associated comorbidities, and DNA methylation where inflammation processes may be involved.
Collapse
Affiliation(s)
- Ana Arpón
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
| | - Omar Ramos-Lopez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Maria L Mansego
- Department of Bioinformatics, Making Genetics S.L., 31002, Pamplona, Spain.
| | - José-Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
- Precision Nutrition and Cardiometabolic Health Program, Madrid Institute for Advanced Studies (IMDEA), IMDEA Food, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Luna RCP, Dos Santos Nunes MK, Monteiro MGCA, da Silva CSO, do Nascimento RAF, Lima RPA, Pimenta FCF, de Oliveira NFP, Persuhn DC, de Almeida ATC, da Silva Diniz A, Pissetti CW, Vianna RPT, de Lima Ferreira FEL, Rodrigues Gonçalves MDC, de Carvalho Costa MJ. α-Tocopherol influences glycaemic control and miR-9-3 DNA methylation in overweight and obese women under an energy-restricted diet: a randomized, double-blind, exploratory, controlled clinical trial. Nutr Metab (Lond) 2018; 15:49. [PMID: 30008789 PMCID: PMC6042339 DOI: 10.1186/s12986-018-0286-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background Excess weight is a strong risk factor for the development of dysglycaemia. It has been suggested that changes in the metabolism microRNAs, small non-coding RNAs that regulate gene expression, could precede late glycaemic changes. Vitamin E in turn may exert important functions in methylation and gene expression processes. This study aimed to determine the effect of α-tocopherol on glycaemic variables and miR-9-1 and miR-9-3 promoter DNA methylation in overweight women. Methods A randomized, double-blind, exploratory, placebo-controlled study was conducted in overweight and obese adult women (n = 44) who ingested synthetic vitamin E (all-rac-α-tocopherol), natural source vitamin E (RRR-rac-α-tocopherol) or placebo capsules and were followed up for a period of 8 weeks. Supplemented groups also received dietary guidance for an energy-restricted diet. An additional group that received no supplementation and did not follow an energy-restricted diet was also followed up. The intervention effect was evaluated by DNA methylation levels (quantitative real-time PCR assay) and anthropometric and biochemical variables (fasting plasma glucose, haemoglobin A1C, insulin, and vitamin E). Results Increased methylation levels of the miR-9-3 promoter region (P < 0.001) and reduced haemoglobin A1C (P < 0.05) were observed in the natural source vitamin E group after intervention. Increased fasting plasma glucose was observed in the synthetic vitamin E group, despite the significant reduction of anthropometric variables compared to the other groups. Conclusions α-Tocopherol from natural sources increased methylation levels of the miR-9-3 promoter region and reduced haemoglobin A1C in overweight women following an energy-restricted diet. These results provide novel information about the influence of vitamin E on DNA methylation. Trial registration ClinicalTrials.gov, NCT02922491. Registered 4 October, 2016. Electronic supplementary material The online version of this article (10.1186/s12986-018-0286-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafaella Cristhine Pordeus Luna
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,10Postgraduate in Nutrition Sciences, Health Sciences Center, Health and Nutrition Studies Interdisciplinary Center (NIESN), Federal University of Paraíba (Universidade Federal da Paraíba), Castelo Branco, João Pessoa, Paraíba 58051-900 Brazil
| | - Mayara Karla Dos Santos Nunes
- 2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Mussara Gomes Cavalcante Alves Monteiro
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Cássia Surama Oliveira da Silva
- 3Health and Nutrition Studies Interdisciplinary Center, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Rayner Anderson Ferreira do Nascimento
- 2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Raquel Patrícia Ataíde Lima
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Flávia Cristina Fernandes Pimenta
- 4Department of Internal Medicine, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Naila Francis Paulo de Oliveira
- 5Departament of Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, 58059-900 Paraíba Brasil
| | - Darlene Camati Persuhn
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,2Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil.,5Departament of Molecular Biology, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, 58059-900 Paraíba Brasil
| | - Aléssio Tony Cavalcanti de Almeida
- 6Department of Economics, Postgraduate Program in Applied Economics and Economics of the Public Sector, Center for Applied Social Sciences, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58059-900 Brazil
| | - Alcides da Silva Diniz
- 7Department of Nutrition, Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco 50670901 Brazil
| | - Cristina Wide Pissetti
- 8Department of Obstetrics and Gynecology, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Rodrigo Pinheiro Toledo Vianna
- 9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Flavia Emília Leite de Lima Ferreira
- 9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Maria da Conceição Rodrigues Gonçalves
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| | - Maria José de Carvalho Costa
- 1Postgraduate in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil.,9Department of Nutrition, Graduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba), João Pessoa, Paraíba 58051-900 Brazil
| |
Collapse
|
31
|
Yang SA. Lack of association between glutathione s-transferase mu 1 ( GSTM1) gene polymorphisms and obesity. J Exerc Rehabil 2017; 13:608-612. [PMID: 29114537 PMCID: PMC5667609 DOI: 10.12965/jer.1735128.564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/12/2017] [Indexed: 01/24/2023] Open
Abstract
Recent researches suggested that personal individual’s genetic background is contributed to the susceptibility to obesity. The present of this study is to investigate whether single nucleotide polymorphisms (SNPs) of glutathione s-transferase mu 1 (GSTM1) gene are susceptibility to obesity in Korean population. In present study, two SNPs (rs1056806 [Asp142Asp], rs3815029 [promoter]) of GSTM1 gene were genotyped in 117 overweight/obese subjects with a body mass index (BMI)≥23 kg/m2 and 125 nonoverweight/obese with a BMI of 18.5–23.0 kg/m2. Genotyping of two SNPs (rs1056806 and rs3815029) was determined by sequencing after polymerase chain reaction. Logistic regression models (codominant, dominant, recessive, and log-additive models) and allele analysis were used to calculate odds ratio, 95% confidence interval, and P-values. Significant association was considered at P<0.05. Tested two SNPs in GSTM1 genes did not show any significant association with obesity (rs1056806, P=0.24 in codominant 1 model; rs3815029, P=0.59 in codominant 1, P=0.09 in codominant 2, P=0.16 in dominant, P=0.09 in recessive, and P=0.07 in log-additive models). In summary, these results indicate that SNPs of GSTM1 gene did not associated with susceptibility of obesity in the Korean population.
Collapse
Affiliation(s)
- Seung-Ae Yang
- College of Nursing, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
32
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
33
|
Rabhi N, Hannou SA, Froguel P, Annicotte JS. Cofactors As Metabolic Sensors Driving Cell Adaptation in Physiology and Disease. Front Endocrinol (Lausanne) 2017; 8:304. [PMID: 29163371 PMCID: PMC5675844 DOI: 10.3389/fendo.2017.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Chromatin architectures and epigenetic fingerprint regulation are fundamental for genetically determined biological processes. Chemical modifications of the chromatin template sensitize the genome to intracellular metabolism changes to set up diverse functional adaptive states. Accumulated evidence suggests that the action of epigenetic modifiers is sensitive to changes in dietary components and cellular metabolism intermediates, linking nutrition and energy metabolism to gene expression plasticity. Histone posttranslational modifications create a code that acts as a metabolic sensor, translating changes in metabolism into stable gene expression patterns. These observations support the notion that epigenetic reprograming-linked energy input is connected to the etiology of metabolic diseases and cancer. In the present review, we introduce the role of epigenetic cofactors and their relation with nutrient intake and we question the links between epigenetic regulation and the development of metabolic diseases.
Collapse
Affiliation(s)
- Nabil Rabhi
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Sarah Anissa Hannou
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Philippe Froguel
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jean-Sébastien Annicotte
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: Jean-Sébastien Annicotte,
| |
Collapse
|