1
|
Mansour RM, Abdel Mageed SS, Abulsoud AI, Sayed GA, Lutfy RH, Awad FA, Sadek MM, Shaker AAS, Mohammed OA, Abdel-Reheim MA, Elimam H, Doghish AS. From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH. Funct Integr Genomics 2025; 25:30. [PMID: 39888504 DOI: 10.1007/s10142-025-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH. In the current review, the latest development concerned with the activity of complex regulatory networks of miRNA in the incidence as well as the evolution of NAFLD is to be discussed, also conferring about the miRNAs' role in the onset, pathogenesis as well as diagnosis of NAFLD and NASH discussing miRNAs' role as diagnostic biomarkers and their therapeutic effects on NAFLD/NASH.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
2
|
Niu QQ, Xi YT, Zhang CR, Li XY, Li CZ, Wang HD, Li P, Yin YL. Potential mechanism of perillaldehyde in the treatment of nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Eur J Pharmacol 2024; 985:177092. [PMID: 39510336 DOI: 10.1016/j.ejphar.2024.177092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic metabolic liver diseases worldwide. Perillaldehyde (4-propyl-1-en-2-ylcyclohexene-1-aldehyde, PA) is a terpenoid compound extracted from Perilla, which has effective pharmacological activities such as anti-inflammatory, antidepressant, and anticancer. This study aimed to explore the pharmacological effects of PA in intervening with NAFLD and reveal its potential mechanisms. Firstly, we identified the core targets of PA intervention therapy for NAFLD through network pharmacology and molecular docking techniques. After that, in vitro animal experiments such as H&E and Masson staining, immunofluorescence, immunohistochemistry, and Western blot were conducted to validate the results network effectively pharmacology predicted. Network pharmacology analysis suggested that PPAR-α may be the core target of PA intervention in NAFLD. H&E and Masson staining showed that after low-dose (50 mg/kg) PA administration, there was a noticeable improvement in fat deposition in the livers of NAFLD mice, and liver tissue fibrosis was alleviated. Immunohistochemical and immunofluorescence analysis showed that low dose (50 mg/kg) PA could reduce hepatocyte apoptosis, decrease the content of pro-apoptosis protein Bax, and increase the expression of anti-apoptosis protein Bcl-2 in NAFLD mice. Western blot results confirmed that low-dose (50 mg/kg) PA could increase the expression of PPAR-α and inhibit the expression of NF-κB in NAFLD mice. Our study indicated that PA could enhance the activity of PPAR-α and reduce the level of NF-κB in NAFLD mice, which may positively affect the prevention of NAFLD.
Collapse
Affiliation(s)
- Qian-Qian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, 13200, Malaysia
| | - Yu-Ting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Chun-Rui Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Xi-Yue Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Cheng-Zhi Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Hui-Dan Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, 453003, China.
| | - Ya-Ling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Wang Y, Li J, Song C, Zhang J, Liu Z, Zhou W, Huang X, Ji G, Shan Y, Dai L. Effects of the interaction between body mass index and dietary patterns on severe NAFLD incidence: A prospective cohort study. Clin Nutr 2024; 43:92-100. [PMID: 39437570 DOI: 10.1016/j.clnu.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/07/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND It remains unclear whether the associations between dietary patterns and non-alcoholic fatty liver disease (NAFLD) vary by body mass index (BMI). We aimed to explore the association between dietary patterns and severe NAFLD incidence, and further investigate the interaction of BMI with dietary patterns. METHODS In a prospective cohort study using UK Biobank data, we included White participants with baseline food frequency questionnaire (FFQ) information. Principal component analysis (PCA) with varimax rotation was performed to identify major dietary patterns. The primary outcome was severe NAFLD, defined as hospitalization due to NAFLD or non-alcoholic steatohepatitis (NASH). We employed cause-specific Cox regression for competing risks to assess the association and calculated the relative excess risk due to interaction (RERI) to estimate the interaction of BMI. RESULTS This study included 307,130 participants with a median follow-up of 12.68 years. 3104 cases of severe NAFLD were identified. PCA analysis revealed two primary dietary patterns: a prudent diet (RC1) and a meat-based diet (RC2). Multivariate analysis showed a standard deviation (SD) increase in RC1 was associated with lower severe NAFLD risk (HR 0.91 [95 % CI 0.88 to 0.94]), while a SD increase in RC2 was associated with higher risk (1.10 [1.05 to 1.14]). Significant interactions were observed between baseline BMI ≥25 kg/m2 and dietary patterns (RC1: RERI: -0.22 [95 % CI -0.43 to -0.003]; RC2: 0.29 [0.03 to 0.56]). CONCLUSIONS Targeted dietary modifications are vital for specific populations at risk of severe NAFLD, considering the significant interaction observed between BMI and dietary patterns.
Collapse
Affiliation(s)
- Yuxiao Wang
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, PR China; Department of Blood Transfusion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jing Li
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, PR China; Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, PR China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Congying Song
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, PR China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, PR China
| | - Zhidong Liu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, PR China
| | - Wenjun Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, PR China
| | - Xiaoyan Huang
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, PR China; Renal Division, Peking University Shenzhen Hospital, Peking University, Shenzhen, PR China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, PR China.
| | - Ying Shan
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, PR China.
| | - Liang Dai
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China; Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, PR China; Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, PR China.
| |
Collapse
|
4
|
Liao Y, Chen Q, Liu L, Huang H, Sun J, Bai X, Jin C, Li H, Sun F, Xiao X, Zhang Y, Li J, Han W, Fu S. Amino acid is a major carbon source for hepatic lipogenesis. Cell Metab 2024; 36:2437-2448.e8. [PMID: 39461344 DOI: 10.1016/j.cmet.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/24/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024]
Abstract
Increased de novo lipogenesis is a hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD) in obesity, but the macronutrient carbon source for over half of hepatic fatty acid synthesis remains undetermined. Here, we discover that dietary protein, rather than carbohydrates or fat, is the primary nutritional risk factor for MASLD in humans. Consistently, ex vivo tracing studies identify amino acids as a major carbon supplier for the tricarboxylic acid (TCA) cycle and lipogenesis in isolated mouse hepatocytes. In vivo, dietary amino acids are twice as efficient as glucose in fueling hepatic fatty acid synthesis. The onset of obesity further drives amino acids into fatty acid synthesis through reductive carboxylation, while genetic and chemical interventions that divert amino acid carbon away from lipogenesis alleviate hepatic steatosis. Finally, low-protein diets (LPDs) not only prevent body weight gain in obese mice but also reduce hepatic lipid accumulation and liver damage. Together, this study uncovers the significant role of amino acids in hepatic lipogenesis and suggests a previously unappreciated nutritional intervention target for MASLD.
Collapse
Affiliation(s)
- Yilie Liao
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.
| | - Qishan Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Lei Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haipeng Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyun Sun
- Center for Neurometabolism and Regenerative Medicine, Bioland Laboratories, Guangzhou, Guangdong 510530, China
| | - Xiaojie Bai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chenchen Jin
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Honghao Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fangfang Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xia Xiao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yahong Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery (ZIDD), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | - Suneng Fu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China.
| |
Collapse
|
5
|
Zhang YF, Qiao W, Zhuang J, Feng H, Zhang Z, Zhang Y. Association of ultra-processed food intake with severe non-alcoholic fatty liver disease: a prospective study of 143073 UK Biobank participants. J Nutr Health Aging 2024; 28:100352. [PMID: 39340900 DOI: 10.1016/j.jnha.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Previous studies indicate a link between non-alcoholic fatty liver disease (NAFLD) and unhealthy dietary patterns or nutrient intake. However, it remains unclear whether ultra-processed foods (UPF) contribute to an increased risk of NAFLD. This study aimed to explore how ultra-processed food consumption correlates with severe NAFLD using the UK Biobank data. METHODS This prospective cohort study included 143,073 participants from the UK Biobank. UPF consumption levels were determined using the NOVA classification and quantified from 24-h dietary recall data. The association between UPF consumption and severe NAFLD (hospitalization or death) was initially examined using Cox proportional hazards models with intake quartiles. Nonlinear associations were investigated using penalized cubic splines fitted in the Cox proportional hazards models. Adjustments were made for general characteristics, sociodemographic factors, body mass index (BMI), and lifestyle. RESULTS Throughout the median follow-up period of 10.5 years, 1,445 participants developed severe NAFLD. The adjusted models indicated a significant increase in severe NAFLD risk in higher UPF intake groups compared to the lowest quartile (HR: 1.26 [95% CI: 1.11-1.43]). Subgroup analysis revealed that individuals with a BMI of 25 or higher were at greater risk in the highest quartile of UPF consumption. Sensitivity analyses yielded results consistent with these findings. CONCLUSION Higher consumption of UPF is associated with an increased risk of severe NAFLD. Reducing the intake of UPF can be a potential approach to lower the risk of NAFLD.
Collapse
Affiliation(s)
- Yi-Feng Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanning Qiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jinhong Zhuang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hanxiao Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhilan Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Ijoma A, Akanbi SA, Idemudia EA, Aderemi L, Titus VO, Okoye TO, Adeyemo DA, O'dare RA, Okobi OE. Prevention Strategies in Obesity Management: A Systematic Review Comparing Canadian and American Guidelines for Adults. Cureus 2024; 16:e71550. [PMID: 39544584 PMCID: PMC11563449 DOI: 10.7759/cureus.71550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The fast-increasing obesity prevalence rates in children, youths, and adults in the last decade have made obesity prevention a global public health priority. The primary objective of this study is to evaluate the various obesity prevention strategies and guidelines implemented in the United States and Canada. Thus, for this study, a systematic review was performed on various online databases including PubMed, Scopus, Google Scholar, and MEDLINE. The decision to study the obesity prevention strategies in Canada and the United States is a result of the high prevalence rates of obesity in the two countries, alongside the numerous prevention interventions that have been executed to prevent obesity. Additionally, the systematic review used robust methodology that followed the Cochrane guidance and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only studies published between 2014 and 2024, drawn from listed databases, were included in this systematic review. The quality of the included studies was evaluated using the appraisal tool for cross-sectional studies, with the studies being rated moderate to high quality. Therefore, a total of 15 studies met the inclusion criteria and were reviewed. The findings indicate that various obesity prevention interventions have been implemented across the United States and Canada, with diverse degrees of success in obesity prevention and management. Food labeling, regular exercises, portion size regulation, school-based intervention strategies, early childhood Intervention programs, and sugar-sweetened beverage taxation were found to be effective interventions for preventing obesity in children and adults. Based on the findings, there is a need to ensure full execution of the different interventions to ensure significant reduction in obesity prevalence, as well as prevention of obesity in different populations.
Collapse
Affiliation(s)
- Adanna Ijoma
- Anaesthesia, Red Deer Regional Hospital Centre, Red Deer, CAN
| | | | | | - Lara Aderemi
- Family Medicine, Lagos University Teaching Hospital (LUTH), Lagos, NGA
| | | | - Tricia O Okoye
- General Medicine, Ambrose Alli University College of Medicine, Benin City, NGA
| | - Damilola A Adeyemo
- Family Medicine, Texas A&M (Agricultural and Mechanical) University, Corpus Christi, USA
| | - Rachel A O'dare
- Nursing, South University, Savannah, USA
- General Medicine, Medical University of Graz, Graz, AUT
| | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Practice, Belle Glade, USA
- Family Medicine, Larkin Community Hospital Palm Springs Campus, Miami, USA
| |
Collapse
|
7
|
Huang M, Yang J, Wang Y, Wu J. Comparative efficacy of different exercise modalities on metabolic profiles and liver functions in non-alcoholic fatty liver disease: a network meta-analysis. Front Physiol 2024; 15:1428723. [PMID: 39376897 PMCID: PMC11457013 DOI: 10.3389/fphys.2024.1428723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Research evidence suggests that exercise is a potent therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Many investigations have delved into the curative potential of diverse exercise regimens on NAFLD. This investigation synthesizes findings from randomized controlled trials via a network meta-analysis to evaluate the efficacy of exercise-based interventions on NAFLD. Methods We conducted a search across five electronic databases (Web of Science, EMBASE, PubMed, SCOPUS, and CNKI)to identify randomized controlled trials (RCTs) comparing the effects of different exercise modalities on metabolic profiles and liver functions in patients with NAFLD. The literature search was comprehensive up to 15, December 2023. The selected studies were subjected to a rigorous quality appraisal and risk of bias analysis in accordance with the Cochrane Handbook's guidelines, version 5.1.0. We employed Stata/MP 17 for the network meta-analysis, presenting effect sizes as standardized mean differences (SMD). Results This study aggregated results from 28 studies, involving a total of 1,606 participants. The network meta-analysis revealed that aerobic exercise was the most effective intervention for improving BMI in patients with NAFLD, demonstrating a significant decrease in BMI (-0.72, 95%CI: -0.98 to -0.46; p < 0.05; Surface Under the Cumulative Ranking (SUCRA) = 79.8%). HIIT was the top intervention for enhancing HDL-C (0.12, 95% CI: 0.04 to 0.20; p < 0.05; SUCRA = 76.1%). Resistance exercise was the most effective for reducing LDL-C (-0.20, 95% CI: -0.33 to -0.06; p < 0.05; SUCRA = 69.7%). Mind-body exercise showed superior effectiveness in improving TC (-0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 89.7%), TG = -0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 99.6%), AST (-8.07, 95% CI: -12.88 to -3.25; p < 0.05; SUCRA = 76.1%), ALT (-12.56, 95% CI: -17.54 to -7.58; p < 0.05; SUCRA = 99.5%), and GGT (-13.77, 95% CI: -22.00 to -5.54; p < 0.05; SUCRA = 81.8%). Conclusion This network meta-analysis demonstrates that exercise interventions positively affect various metabolic profiles and liver functions in NAFLD patients. Mind-body exercises are particularly effective, surpassing other exercise forms in improving metabolic profiles and liver functions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier registration number CRD42024526332.
Collapse
Affiliation(s)
- Mingming Huang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jiafa Yang
- School of Arts and Sports, Dong-A University, Busan, Republic of Korea
| | - Yihao Wang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jian Wu
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
8
|
Lee JH, Lee HS, Jeon S, Lee JH, Kwon YJ. Association between dairy-rich dietary pattern and metabolic dysfunction-associated steatotic liver disease: Findings from the Korean Genome and Epidemiology Study. Dig Liver Dis 2024; 56:1529-1536. [PMID: 38336494 DOI: 10.1016/j.dld.2024.01.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUNDS Dietary components and the development of metabolic dysfunction-associated liver disease (MASLD) are closely linked, but large-scale studies on dietary patterns and MASLD are scarce, most previous studies having focused on individual nutrients or foods rather than overall dietary patterns. Therefore, we aimed to investigate the association between dietary patterns and MASLD in Koreans. METHODS A total of 6,052 participants from the Korean Genome and Epidemiology Study. Dietary intake was assessed using a validated Korean semiquantitative food frequency questionnaire comprising 106 food items. Principal component analysis was used to determine the major dietary patterns. Cox proportional hazard regression analysis was performed to assess the association between the incidence of MASLD and dietary patterns. RESULTS Four major dietary patterns, namely carnivore, plant-based, dairy-rich, and starch-rich diet patterns, were identified. The carnivore, plant-based, and starch-rich diet patterns showed no significant association with incident MASLD, while the dairy-rich diet pattern was associated with a lower risk of MASLD, also showing significantly lower cumulative incidence of MASLD in the higher adherence to dairy-rich diet pattern. CONCLUSION The dairy-rich diet pattern was significantly associated with a lower risk of MASLD in Koreans. Appropriate dietary guidance based on dietary patterns is crucial for preventing MASLD.
Collapse
Affiliation(s)
- Jong Hee Lee
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul 03277, Republic of Korea
| | - Soyoung Jeon
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03277, Republic of Korea
| | - Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul 01830, Republic of Korea; Department of Medicine, Hanyang University Graduate School of Medicine, Seoul 04763, Republic of Korea.
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Republic of Korea.
| |
Collapse
|
9
|
Deng Q, Lv R, Zou H, Zou T. Beneficial effects of intermittent fasting on nonalcoholic fatty liver disease: a narrative review. EGYPTIAN LIVER JOURNAL 2024; 14:63. [DOI: 10.1186/s43066-024-00368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/15/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractNonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, and it is characterized by a series of fatty liver diseases that can lead to severe liver disease. Although no therapeutic drug has been approved as an effective therapy for NAFLD to date, dietary changes and physical activity are thought to be the cornerstone of NAFLD management. For this reason, some articles are available to analyze the studies done so far using various modifications of intermittent fasting (IF) among animals and patients with NAFLD. Data from preclinical and clinical trials suggested that IF positively impacts inflammatory and metabolic markers in both animals and humans. Inflammation and oxidative stress are the major risk factors involved in the pathogenesis of NAFLD. IF has been shown to have positive benefits in alleviating metabolic disorders, promoting the browning of white tissue, resetting circadian rhythm, and activating autophagy of cells. This review is intended to provide a detailed synopsis of the protocols, potential mechanisms of action, and supporting evidence for IF in NAFLD. We will highlight what is currently known about IF approaches in NAFLD treatments in clinical populations with mechanism insight from animal studies, and the safety concerns in certain patient groups.
Graphical Abstract
The protocols of intermittent fasting (IF) are various. Data from trials suggested that IF positively impacts both humans and animals. IF has been shown to have potential treatments for nonalcoholic fatty liver disease.
Collapse
|
10
|
London A, Richter MM, Sjøberg KA, Wewer Albrechtsen NJ, Považan M, Drici L, Schaufuss A, Madsen L, Øyen J, Madsbad S, Holst JJ, van Hall G, Siebner HR, Richter EA, Kiens B, Lundsgaard A, Bojsen-Møller KN. The impact of short-term eucaloric low- and high-carbohydrate diets on liver triacylglycerol content in males with overweight and obesity: a randomized crossover study. Am J Clin Nutr 2024; 120:283-293. [PMID: 38914224 DOI: 10.1016/j.ajcnut.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Intrahepatic triacylglycerol (liver TG) content is associated with hepatic insulin resistance and dyslipidemia. Liver TG content can be modulated within days under hypocaloric conditions. OBJECTIVES We hypothesized that 4 d of eucaloric low-carbohydrate/high-fat (LC) intake would decrease liver TG content, whereas a high-carbohydrate/low-fat (HC) intake would increase liver TG content, and further that alterations in liver TG would be linked to dynamic changes in hepatic glucose and lipid metabolism. METHODS A randomized crossover trial in males with 4 d + 4 d of LC and HC, respectively, with ≥2 wk of washout. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure liver TG content, with metabolic testing before and after intake of an LC diet (11E% carbohydrate corresponding to 102 ± 12 {mean ± standard deviation [SD]) g/d, 70E% fat} and an HC diet (65E% carbohydrate corresponding to 537 ± 56 g/d, 16E% fat). Stable [6,6-2H2]-glucose and [1,1,2,3,3-D5]-glycerol tracer infusions combined with hyperinsulinemic-euglycemic clamps and indirect calorimetry were used to measure rates of hepatic glucose production and lipolysis, whole-body insulin sensitivity and substrate oxidation. RESULTS Eleven normoglycemic males with overweight or obesity (BMI 31.6 ± 3.7 kg/m2) completed both diets. The LC diet reduced liver TG content by 35.3% (95% confidence interval: -46.6, -24.1) from 4.9% [2.4-11.0] (median interquartile range) to 2.9% [1.4-6.9], whereas there was no change after the HC diet. After the LC diet, fasting whole-body fat oxidation and plasma beta-hydroxybutyrate concentration increased, whereas markers of de novo lipogenesis (DNL) diminished. Fasting plasma TG and insulin concentrations were lowered and the hepatic insulin sensitivity index increased after LC. Peripheral glucose disposal was unchanged. CONCLUSIONS Reduced carbohydrate and increased fat intake for 4 d induced a marked reduction in liver TG content and increased hepatic insulin sensitivity. Increased rates of fat oxidation and ketogenesis combined with lower rates of DNL are suggested to be responsible for lowering liver TG. This trial was registered at clinicaltrials.gov as NCT04581421.
Collapse
Affiliation(s)
- Amalie London
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kim Anker Sjøberg
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michal Považan
- Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Lylia Drici
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Schaufuss
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark; Institute of Marine Research, Bergen, Norway
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Clinical Metabolomics, Rigshospitalet, Denmark
| | - Hartwig Roman Siebner
- Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Annemarie Lundsgaard
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Nyvold Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Cho E, Kim S, Kim S, Kim JY, Kim HJ, Go Y, Lee YJ, Lee H, Gil S, Yoon SK, Chu K. The Effect of Mobile Lifestyle Intervention Combined with High-Protein Meal Replacement on Liver Function in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Pilot Randomized Controlled Trial. Nutrients 2024; 16:2254. [PMID: 39064697 PMCID: PMC11279924 DOI: 10.3390/nu16142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
While many studies have explored dietary substitutes and mobile apps separately, a combined approach to metabolic dysfunction-associated steatotic liver disease (MASLD) has not been investigated. This study evaluated short-term mobile interventions coupled with partial meal replacement in patients with MASLD. Sixty adults with MASLD and a body mass index ≥25 kg/m2 from a health examination center were randomized into an intervention group using a mobile app with partial meal replacements or a control group receiving standard educational materials. Liver enzyme levels, lipid profiles, and anthropometric measurements were assessed at baseline and after 4 weeks. Twenty-five participants in the intervention group and 24 in the control group completed the trial. Significant reductions were observed in the intervention group for alanine aminotransferase (-28.32 versus [vs.] -10.67, p = 0.006) and gamma-glutamyl transferase (-27.76 vs. 2.79, p = 0.014). No significant changes in aspartate aminotransferase, body weight, or waist circumference were noted in the intervention group. Four weeks of mobile lifestyle intervention incorporating partial meal replacements improved liver enzyme profiles in patients with MASLD. This strategy demonstrated the potential for mitigating elevated liver enzyme levels without altering body weight or waist circumference. Comprehensive and longer-term research is needed to substantiate and elaborate these preliminary outcomes.
Collapse
Affiliation(s)
- Eunbyul Cho
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - Sunwoo Kim
- Health Promotion Center, Seoul Bumin Hospital, Seoul 07590, Republic of Korea;
| | - Soonkyu Kim
- Health Promotion Center, Seoul Bumin Hospital, Seoul 07590, Republic of Korea;
| | - Ju Young Kim
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Yumi Go
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Yu Jung Lee
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Haesol Lee
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Siye Gil
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Sung Kwon Yoon
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| | - Keonho Chu
- Bionutrion Corp., Seoul 06097, Republic of Korea; (J.Y.K.); (Y.G.); (Y.J.L.); (H.L.); (S.G.); (S.K.Y.); (K.C.)
| |
Collapse
|
12
|
Qi X, Zhang Y, Liao Q, Xiao Y, Jiang T, Liu S, Zhou L, Li Y. 7-Hydroxyflavone improves nonalcoholic fatty liver disease by acting on STK24. Phytother Res 2024; 38:3444-3458. [PMID: 38685750 DOI: 10.1002/ptr.8207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The escalating incidence of nonalcoholic fatty liver disease (NAFLD) is closely associated with a high-fat diet, leading to a decline in quality of life and significant health impairment. 7-Hydroxyflavone (7-HY) is a flavonoid known for its anti-inflammatory, anticarcinogenic, and antioxidant effects. This study aims to assess the ameliorative effects of 7-HY on NAFLD induced by a high-fat diet and elucidate underlying mechanisms. Oleic acid/palmitic acid-induced HepG2 cells and C57BL/6 mice on a high-fat diet were utilized as in vitro and in vivo models. In animal experiments, 7-HY was utilized as a dietary supplement. The 15-week in vivo experiment monitored body weight, body fat percentage, glucose tolerance, insulin tolerance, and metabolic indexes. Commercial kits assessed triglyceride (TG) and total cholesterol levels in cells, liver tissue, and blood. Discovery Studio identified potential targets of 7-HY, compared with NAFLD-associated targets in the GeneCards database. Results indicated 7-HY mitigated fat accumulation, hepatic steatosis, and oxidative stress induced by a high-fat diet. Furthermore, 7-HY showed potential efficacy in ameliorating abnormal glucose metabolism and promoting energy metabolism. Reverse target finding and molecular docking demonstrated a robust interaction between 7-HY and serine/threonine kinase 24 (STK24). Subsequent experimental results confirmed 7-HY's ability to inhibit TG deposition in HepG2 cells through interaction with STK24. In conclusion, 7-HY demonstrated the capacity to alleviate high-fat diet-induced NAFLD, presenting a novel strategy for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Xinyi Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yurou Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qichao Liao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yang Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tianyu Jiang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Curci R, Bonfiglio C, Franco I, Bagnato CB, Verrelli N, Bianco A. Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study. J Clin Med 2024; 13:3772. [PMID: 38999337 PMCID: PMC11242783 DOI: 10.3390/jcm13133772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) affects 30% of adults worldwide and is associated with obesity and cardiovascular risk factors. If left untreated, it can progress to severe liver disease. Lifestyle changes such as physical activity and weight loss help to reduce the severity and risk of mortality. This study estimated the impact of MASLD and leisure-time physical activity (LTPA) on mortality and examined how gender mediates this effect in a Southern Italian population. Methods: This work is a population-based prospective cohort study of inhabitants of Castellana Grotte (>30 years old) in Southern Italy, which began in 1985. Participants provided general health information, underwent anthropometric measurements and ultrasonography, and completed a validated questionnaire on their food intake and LTPA. The vital status was tracked through local municipalities Results: In total, 1826 participants (39% with MASLD) were enrolled in this study, drawn from 2970 eligible subjects; the mean age was 51.91 (±14.76) years and 56.2% were men. Subjects with MASLD who practiced low LTPA had a significantly higher risk of death than those who did not have MASLD and practiced high LTPA. In addition, subjects with MASLD who practiced low LTPA were about 19% less likely to survive to the age of 82 years. As regards gender, both men and women with MASLD and low LTPA showed a significant risk of death, but this was higher in women. Conclusions: The presence of MASLD, especially in women, increases the risk of death from all causes. LTPA plays a key role in the disease and reduces mortality in these individuals.
Collapse
Affiliation(s)
- Ritanna Curci
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Caterina Bonfiglio
- Laboratory of Epidemiology and Statistics, National Institute of Gastroenterology, IRCCS “S. de Bellis”, 70013 Castellana Grotte, BA, Italy;
| | - Isabella Franco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Claudia Beatrice Bagnato
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Nicola Verrelli
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| | - Antonella Bianco
- Laboratory of Movement and Wellness, National Institute of Gastroenterology, IRCCS “S. de Bellis”, Via Turi, 70013 Castellana Grotte, BA, Italy; (R.C.); (I.F.); (C.B.B.); (N.V.)
| |
Collapse
|
14
|
Che Y, Tang R, Zhang H, Yang M, Geng R, Zhuo L, Wang P, Hu X, Zhou Y, Wang P, Zhan S, Li B. Development of a prediction model for predicting the prevalence of nonalcoholic fatty liver disease in Chinese nurses: the first-year follow data of a web-based ambispective cohort study. BMC Gastroenterol 2024; 24:72. [PMID: 38355421 PMCID: PMC10868006 DOI: 10.1186/s12876-024-03121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is gradually becoming a huge threat to public health. With complex working characteristics, female nurses had been found with high risk of NAFLD. To develop and validate a prediction model to predict the prevalence of NAFLD based on demographic characteristics, work situation, daily lifestyle and laboratory tests in female nurses. METHODS This study was a part of the Chinese Nurse Cohort Study (The National Nurse Health Study, NNHS), and data were extracted from the first-year follow data collected from 1st June to 1st September 2021 by questionnaires and physical examination records in a comprehensive tertiary hospital. The questionnaires included demographic characteristics, work situation and daily lifestyle. Logistic regression and a nomogram were used to develop and validate the prediction model. RESULTS A total of 824 female nurses were included in this study. Living situation, smoking history, monthly night shift, daily sleep time, ALT/AST, FBG, TG, HDL-C, UA, BMI, TBil and Ca were independent risk factors for NAFLD occurance. A prediction model for predicting the prevalence of NAFLD among female nurses was developed and verified in this study. CONCLUSION Living situation, smoking history, monthly night shift, daily sleep time, ALT/AST, FBG, TG, UA, BMI and Ca were independent predictors, while HDL-C and Tbil were independent protective indicators of NAFLD occurance. The prediction model and nomogram could be applied to predict the prevalence of NAFLD among female nurses, which could be used in health improvement. TRIAL REGISTRATION This study was a part of the Chinese Nurse Cohort Study (The National Nurse Health Study, NNHS), which was a ambispective cohort study contained past data and registered at Clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT04572347 ) and the China Cohort Consortium ( http://chinacohort.bjmu.edu.cn/project/102/ ).
Collapse
Affiliation(s)
- Ying Che
- Medical Examination Center, Peking university third hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Rongsong Tang
- Nursing Department, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Heli Zhang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Min Yang
- Nursing Department, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Rongmei Geng
- Nursing Department, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Lin Zhuo
- Center for Clinical Epidemiology Research, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Peng Wang
- Medical Examination Center, Peking university third hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Xianjing Hu
- School of Nursing, Peking university, Xueyuan Road No. 38, Haidian District, Beijing, China
| | - Yujie Zhou
- General surgery department, Peking university third hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Panfeng Wang
- Oncology Radiotherapy Department, Peking university third hospital, Huayuan North Road No.49, Haidian District, Beijing, China
| | - Siyan Zhan
- Center for Clinical Epidemiology Research, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China.
| | - Baohua Li
- Nursing Department, Peking University Third Hospital, Huayuan North Road No.49, Haidian District, Beijing, China.
| |
Collapse
|
15
|
Díez-Sainz E, Aranaz P, Amri EZ, Riezu-Boj JI, Lorente-Cebrián S, Milagro FI. Plant miR8126-3p and miR8126-5p Decrease Lipid Accumulation through Modulation of Metabolic Genes in a Human Hepatocyte Model That Mimics Steatosis. Int J Mol Sci 2024; 25:1721. [PMID: 38338999 PMCID: PMC10855419 DOI: 10.3390/ijms25031721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Plant-based food interventions are promising therapeutic approaches for non-alcoholic fatty liver disease (NAFLD) treatment, and microRNAs (miRNAs) have emerged as functional bioactive components of dietary plants involved in cross-kingdom communication. Deeper investigations are needed to determine the potential impact of plant miRNAs in NAFLD. This study aimed to identify plant miRNAs that could eventually modulate the expression of human metabolic genes and protect against the progression of hepatic steatosis. Plant miRNAs from the miRBase were used to predict human target genes, and miR8126-3p and miR8126-5p were selected as candidates for their potential role in inhibiting glucose and lipid metabolism-related genes. Human HepG2 cells were transfected with plant miRNA mimics and then exposed to a mixture of oleic and palmitic acids to mimic steatosis. miR8126-3p and miR8126-5p transfections inhibited the expression of the putative target genes QKI and MAPKAPK2, respectively, and had an impact on the expression profile of key metabolic genes, including PPARA and SREBF1. Quantification of intrahepatic triglycerides revealed that miR8126-3p and miR8126-5p attenuated lipid accumulation. These findings suggest that plant miR8126-3p and miR8126-5p would induce metabolic changes in human hepatocytes eventually protecting against lipid accumulation, and thus, they could be potential therapeutic tools for preventing and alleviating lipid accumulation.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.); (F.I.M.)
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ez-Zoubir Amri
- CNRS, Inserm, iBV, Université Côte d’Azur, 06107 Nice, France;
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.); (F.I.M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Di Bartolomeo A, George J. Future directions for fatty liver disease. METABOLIC STEATOTIC LIVER DISEASE 2024:297-317. [DOI: 10.1016/b978-0-323-99649-5.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Ali H, Shahzil M, Moond V, Shahzad M, Thandavaram A, Sehar A, Waseem H, Siddiqui T, Dahiya DS, Patel P, Tillmann H. Non-Pharmacological Approach to Diet and Exercise in Metabolic-Associated Fatty Liver Disease: Bridging the Gap between Research and Clinical Practice. J Pers Med 2024; 14:61. [PMID: 38248762 PMCID: PMC10817352 DOI: 10.3390/jpm14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review provides a practical and comprehensive overview of non-pharmacological interventions for metabolic-associated fatty liver disease (MASLD), focusing on dietary and exercise strategies. It highlights the effectiveness of coffee consumption, intermittent fasting, and Mediterranean and ketogenic diets in improving metabolic and liver health. The review emphasizes the importance of combining aerobic and resistance training as a critical approach to reducing liver fat and increasing insulin sensitivity. Additionally, it discusses the synergy between diet and exercise in enhancing liver parameters and the role of gut microbiota in MASLD. The paper underscores the need for a holistic, individualized approach, integrating diet, exercise, gut health, and patient motivation. It also highlights the long-term benefits and minimal risks of lifestyle interventions compared to the side effects of pharmacological and surgical options. The review calls for personalized treatment strategies, continuous patient education, and further research to optimize therapeutic outcomes in MASLD management.
Collapse
Affiliation(s)
- Hassam Ali
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
- Division of Gastroenterology, Hepatology & Nutrition, East Carolina University, Greenville, NC 27834, USA
| | - Muhammad Shahzil
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Vishali Moond
- Department of Internal Medicine, Saint Peter’s University Hospital, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Maria Shahzad
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abhay Thandavaram
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad 500068, Telangana, India
| | - Alina Sehar
- Department of Internal Medicine, University of Alabama at Birmingham-Huntsville Campus, Huntsville, AL 35801, USA
| | - Haniya Waseem
- Department of Internal Medicine, Advent Health Tampa, Tampa, FL 33613, USA
| | - Taha Siddiqui
- Department of Internal Medicine, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA;
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66103, USA
| | - Pratik Patel
- Department of Gastroenterology, Mather Hospital, Hofstra University Zucker School of Medicine, Port Jefferson, NY 11777, USA
| | - Hans Tillmann
- Department of Gastroenterology, Hepatology & Nutrition, ECU Health Medical Center, Brody School of Medicine, Greenville, NC 27834, USA
| |
Collapse
|
18
|
Zhu X, Qucuo N, Zhang N, Tang D, Hu Y, Xie X, Zhao X, Meng Q, Chen L, Jiang X, Zhuoma D, Zeng Q, Xiao X. Dietary patterns and metabolic dysfunction-associated fatty liver disease in China's multi-ethnic regions. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:141. [PMID: 38093350 PMCID: PMC10717100 DOI: 10.1186/s41043-023-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) has been rising rapidly in western China. Diet acts as an effective therapy for MAFLD. However, there has been scarce research on the association between a posteriori diet patterns (DPs) and MAFLD in this region. METHOD We identified three a posteriori DPs which were "Sichuan Basin pattern" characterized by a high intake of fish/seafood, poultry, fresh fruit and vegetables, indicating a balanced and modern DP; the "Yunnan-Guizhou Plateau dietary pattern" characterized mainly by a high intake of animal oil and salt, indicating an agricultural and poor DP; and the "Qinghai-Tibet Plateau dietary pattern" characterized by a high intake of coarse grains, wheat products, tubers and tea, respectively, indicating a high-altitude DP. Then, we performed marginal structural models that combined logistic regression and inverse probability exposure weighting (IPEW) to examine the associations between MAFLD and these a posteriori DPs. RESULT We found the "Yunnan-Guizhou Plateau dietary pattern" revealed stronger positive association (OR = 1.50, 95% CI 1.40-1.60) with MAFLD than that of the "Qinghai-Tibet Plateau dietary pattern" (OR = 1.21, 95% CI 1.14-1.30). In contrast, the "Sichuan Basin dietary pattern" showed no significant association with MAFLD. In the further stratified analysis, we found those above associations were stronger in ethnic minorities and rural residents than their counterparts. CONCLUSION Our study implied the unfavourable effects of "Yunnan-Guizhou Plateau dietary pattern" on MAFLD and provided evidence that reducing the intake of oil and sodium may be optimal for MAFLD control in the multi-ethnic region in western China.
Collapse
Affiliation(s)
| | - Nima Qucuo
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | | | - Dan Tang
- Sichuan University, Chengdu, China
| | - Yifan Hu
- Sichuan University, Chengdu, China
| | | | | | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Liling Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Xiaoman Jiang
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | | | - Qibing Zeng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | | |
Collapse
|
19
|
Afsharfar M, Salimi Z, Aminnezhad kavkani B, Shekari S, Abbastorki S, Majidi N, Gholamalizadeh M, Jarrahi AM, Hajipour A, Shafaei H, Doaei S. Association of nonalcoholic fatty liver disease with the different types of dietary carbohydrates: a cross-sectional study. J Diabetes Metab Disord 2023; 22:1139-1143. [PMID: 37975105 PMCID: PMC10638219 DOI: 10.1007/s40200-023-01223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 11/19/2023]
Abstract
Background Many factors like sedentary lifestyle, metabolic syndrome, and obesity are involved in the increased prevalence of nonalcoholic fatty liver disease (NAFLD). Dietary consumption of carbohydrates may has a role in the risk of NAFLD. This study aimed to investigate the association of NAFLD with the different types of dietary carbohydrates. Methods This cross-sectional study was carried out on 4200 participants including 660 patients with NAFLD and 3540 helathy individuals without NAFLD ages 35 to 70 in sabzevar, Iran. Data on socio-deomgraphic status, anthropomrtric measurments, blood tests, and dietary intake of different types of dietary carbohydrates was collected. Results The patients with NAFLD had a significantly higher dietary intake of glucose (29.38 ± 18.29 vs. 27.42 ± 15.96 g/d, P = 0.01) and fructose (33.99 ± 20.19 vs. 31.95 ± 18.34 g/d, P = 0.01) compared to the healthy people. A positive association was observed between NAFLD with the total intake of carbohydrates after adjustment for age, sex, and BMI (OR: 1.001, CI 95%: 1-1.002, P = 0.04) The association remained significant after further adjustments for for education level, marital status, physical activity, smoking, and drinking alcohol (Model 2) and after additional adjustments for calorie intake (Model 3). Conclusions This study showed a positive association between total dietary carbohydrate and NAFLD. In particular, the amount of dietary of carbohydrates (regardless of the type of carbohydrate) may worsen NAFLD. Further longitudinal studies are warranted.
Collapse
Affiliation(s)
- Maryam Afsharfar
- Department of Nutrition School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Salimi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saheb Abbastorki
- Department of Nutrition Faculty of Nutrition Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Majidi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Hajipour
- School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hanieh Shafaei
- Guilan University of Medical Sciences Shahid Beheshti Nursing and Midwifery School of Rasht, Rasht, Iran
| | - Saeid Doaei
- Department of Community Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Pan H, Liu B, Luo X, Shen X, Sun J, Zhang A. Non-alcoholic fatty liver disease risk prediction model and health management strategies for older Chinese adults: a cross-sectional study. Lipids Health Dis 2023; 22:205. [PMID: 38007441 PMCID: PMC10675849 DOI: 10.1186/s12944-023-01966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition that affects a quarter of the global adult population. To date, only a few NAFLD risk prediction models have been developed for Chinese older adults aged ≥ 60 years. This study presented the development of a risk prediction model for NAFLD in Chinese individuals aged ≥ 60 years and proposed personalised health interventions based on key risk factors to reduce NAFLD incidence among the population. METHODS A cross-sectional survey was carried out among 9,041 community residents in Shanghai. Three NAFLD risk prediction models (I, II, and III) were constructed using multivariate logistic regression analysis based on the least absolute shrinkage and selection operator regression analysis, and random forest model to select individual characteristics, respectively. To determine the optimal model, the three models' discrimination, calibration, clinical application, and prediction capability were evaluated using the receiver operating characteristic (ROC) curve, calibration plot, decision curve analysis, and net reclassification index (NRI), respectively. To evaluate the optimal model's effectiveness, the previously published NAFLD risk prediction models (Hepatic steatosis index [HSI] and ZJU index) were evaluated using the following five indicators: accuracy, precision, recall, F1-score, and balanced accuracy. A dynamic nomogram was constructed for the optimal model, and a Bayesian network model for predicting NAFLD risk in older adults was visually displayed using Netica software. RESULTS The area under the ROC curve of Models I, II, and III in the training dataset was 0.810, 0.826, and 0.825, respectively, and that of the testing data was 0.777, 0.797, and 0.790, respectively. No significant difference was found in the accuracy or NRI between the models; therefore, Model III with the fewest variables was determined as the optimal model. Compared with the HSI and ZJU index, Model III had the highest accuracy (0.716), precision (0.808), recall (0.605), F1 score (0.692), and balanced accuracy (0.723). The risk threshold for Model III was 20%-80%. Model III included body mass index, alanine aminotransferase level, triglyceride level, and lymphocyte count. CONCLUSIONS A dynamic nomogram and Bayesian network model were developed to identify NAFLD risk in older Chinese adults, providing personalized health management strategies and reducing NAFLD incidence.
Collapse
Affiliation(s)
- Hong Pan
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baocheng Liu
- Shanghai Collaborative Innovation Centre of Health Service in Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luo
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinxin Shen
- School of Public Health, Shandong First Medical University, Shandong, China
| | - Jijia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - An Zhang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
21
|
Zhu X, Cai J, Wang Y, Liu X, Chen X, Wang H, Wu Z, Bao W, Fan H, Wu S. A High-Fat Diet Increases the Characteristics of Gut Microbial Composition and the Intestinal Damage Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:16733. [PMID: 38069055 PMCID: PMC10706137 DOI: 10.3390/ijms242316733] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing annually, and emerging evidence suggests that the gut microbiota plays a causative role in the development of NAFLD. However, the role of gut microbiota in the development of NAFLD remains unclear and warrants further investigation. Thus, C57BL/6J mice were fed a high-fat diet (HFD), and we found that the HFD significantly induced obesity and increased the accumulation of intrahepatic lipids, along with alterations in serum biochemical parameters. Moreover, it was observed that the HFD also impaired gut barrier integrity. It was revealed via 16S rRNA gene sequencing that the HFD increased gut microbial diversity, which enriched Colidextribacter, Lachnospiraceae-NK4A136-group, Acetatifactor, and Erysipelatoclostridium. Meanwhile, it reduced the abundance of Faecalibaculum, Muribaculaceae, and Coriobacteriaceae-UCG-002. The predicted metabolic pathways suggest that HFD enhances the chemotaxis and functional activity of gut microbiota pathways associated with flagellar assembly, while also increasing the risk of intestinal pathogen colonization and inflammation. And the phosphotransferase system, streptomycin biosynthesis, and starch/sucrose metabolism exhibited decreases. These findings reveal the composition and predictive functions of the intestinal microbiome in NAFLD, further corroborating the association between gut microbiota and NAFLD while providing novel insights into its potential application in gut microbiome research for NAFLD patients.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Jiajia Cai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Yifu Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xinyu Liu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Xiaolei Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.Z.); (Y.W.); (X.L.); (X.C.); (H.W.); (Z.W.); (W.B.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
22
|
Perez-Diaz-Del-Campo N, Dileo E, Castelnuovo G, Nicolosi A, Guariglia M, Caviglia GP, Rosso C, Armandi A, Bugianesi E. A nutrigenetic precision approach for the management of non-alcoholic fatty liver disease. Clin Nutr 2023; 42:2181-2187. [PMID: 37788561 DOI: 10.1016/j.clnu.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND & AIMS The Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 single nucleotide polymorphism (SNP) is one of the major genetic determinant of non-alcoholic fatty liver disease (NAFLD) and is strongly regulated by changes in energy balance and dietary factors. We aimed to investigate the association between the PNPLA3 rs738409 SNP, nutrient intake and NAFLD severity. METHOD PNPLA3-rs738409 SNP was genotyped in 181 patients with NAFLD who completed the EPIC Food Frequency Questionnaire. Liver steatosis was evaluated by Controlled Attenuation Parameter (CAP) (Fibroscan®530, Echosens). According to the established cut-off, a CAP value ≥ 300 dB/m was used to identify severe steatosis (S3). An independent group of 46 biopsy-proven NAFLD subjects was used as validation cohort. RESULTS Overall, median age was 53 years (range 44; 62) and 60.2% of patients were male. Most subjects (56.3%) had S3 and showed increased liver stiffness (p < 0.001), AST (p = 0.003) and ALT levels (p < 0.001) compared to those with CAP<300 dB/m. At logistic regression analyses we found that the interaction between carbohydrates intake and the carriers of the PNPLA3 G risk allele was significantly associated with S3 (p = 0.001). The same result was confirmed in the validation cohort, were the interaction between high carbohydrate intake (48%) and PNPLA3 SNP was significantly associated with steatosis ≥33% (p = 0.038). CONCLUSION The intake of greater than or equal to 48% carbohydrate in NAFLD patients carriers of the CG/GG allele of PNPLA3 rs738409 may increase the risk of significant steatosis.
Collapse
Affiliation(s)
| | - Eleonora Dileo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Aurora Nicolosi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marta Guariglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Gastroenterology Unit, Città della Salute e della Scienza-Molinette Hospital, 10126 Turin, Italy.
| |
Collapse
|
23
|
Asquith E, Bould K, Catling JC, Day EJ, Holt A. Behaviour regulation and the role of mental health in non-alcoholic fatty liver disease. BMC Gastroenterol 2023; 23:306. [PMID: 37700260 PMCID: PMC10496395 DOI: 10.1186/s12876-023-02941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND AND AIMS Non-alcoholic fatty liver disease (NAFLD) has become the most common cause of chronic liver disease in wealthy societies, and is responsible for a significant rise in liver morbidity and mortality. Current treatments prioritise lifestyle interventions, predominantly diet and exercise management, but patients frequently fail to make the necessary behavioural adjustments. The current study seeks to identify those factors which influence patients' behaviour with respect to adherence to treatment regimes. METHODS Novel areas of interest were investigated; locus of control, behavioural regulation and a range of mental health measures, due to their links to either poor lifestyle choices or abnormal eating as identified in previous literature. Data was gathered using self-report questionnaires, from 96 participants, who were split into three groups, NAFLD patients, non-NAFLD liver disease patients and healthy controls RESULTS: Data was analysed using a MANOVA, and followed up with a Tukey post-hoc test. Three factors were found to be significant by group; cognitive restraint, uncontrolled eating and SAPAS score (a measure of personality disorders). An association between personality disorders and NAFLD was identified. CONCLUSION It is suggested that NAFLD patients are screened for personality disorders and, if identified, treated prior to the commencement of diet and exercise management.
Collapse
Affiliation(s)
- E Asquith
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - K Bould
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J C Catling
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - E J Day
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - A Holt
- Liver Transplant Unit, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
24
|
Yeung AWK, Ksepka N, Matin M, Wang D, Souto EB, Stoyanov J, Echeverría J, Tewari D, Horbańczuk JO, Lucarini M, Durazzo A, Marchewka J, Pirgozliev V, Gan RY, Tzvetkov NT, Wysocki K, Matin FB, Litvinova O, Bishayee A, Devkota HP, El-Demerdash A, Brnčić M, Santini A, Horbańczuk OK, Mickael ME, Ławiński M, Das N, Siddiquea BN, Hrg D, Atanasov AG. Dietary factors in nonalcoholic fatty liver disease: impacts on human and animal health - a review. ANIMAL SCIENCE PAPERS AND REPORTS 2023; 41:179-194. [DOI: 10.2478/aspr-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a clinical syndrome characterized by excessive fat accumulation in liver, predominantly influenced by dietary choices. This study provides an extensive quantitative literature analysis on dietary influences on NAFLD. Bibliometric data were collected through the search string TOPIC = (“NAFLD*” OR “nonalcoholic fatty liver*” OR “non-alcoholic fatty liver*”) AND TOPIC = (“diet*” OR “nutrition*” OR “food*” OR “feed*”), which yielded 12,445 publications indexed within the Web of Science Core Collection. Utilizing VOSviewer software, term maps were generated to visually illustrate recurring phrases alongside citation data. The literature, which has seen exponential growth since the 2010s, predominantly consists of original articles, with a ratio of 4.7:1 compared to reviews. Notably, the significant contributors to this field were China and the United States. The majority of publications were found journals specialized in Gastroenterology & Hepatology, Nutrition & Dietetics, Biochemistry & Molecular Biology, Endocrinology & Metabolism, and Pharmacology & Pharmacy. Key dietary compounds/compounds classes such as resveratrol, polyphenols, curcumin, berberine, quercetin, flavonoids, omega-3 fatty acids, docosahexaenoic acid (DHA), genistein, and palmitic acid were frequently mentioned and cited. Many of them were demonstrated to have some potential benefits on NAFLD, both in human and animal studies.
Collapse
Affiliation(s)
- Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care , Faculty of Dentistry, The University of Hong Kong , Hong Kong , China
- Ludwig Boltzmann Institute Digital Health and Patient Safety , Medical University of Vienna , Vienna , Austria
| | - Natalia Ksepka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research , McMaster University , 1280 Main St. W., Hamilton, ON Canada
| | - Eliana B. Souto
- UCIBIO – Applied Molecular Biosciences Unit , MEDTECH, Laboratory of Pharmaceutical Technology , Department of Drug Sciences, Faculty of Pharmacy , University of Porto , , Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy , University of Porto , , Portugal
| | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland and Institute for Social and Preventive Medicine , University of Bern , Bern , Switzerland
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología , Universidad de Santiago de Chile , Santiago , Chile
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences , Delhi Pharmaceutical Sciences and Research University , , India
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition , Via Ardeatina 546 , , Italy
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition , Via Ardeatina 546 , , Italy
| | - Joanna Marchewka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Vasil Pirgozliev
- The National Institute of Poultry Husbandry , Harper Adams University , Shropshire , UK
| | - Ren-You Gan
- Research Center for Plants and Human Health , Institute of Urban Agriculture , Chinese Academy of Agricultural Sciences, , China
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs ), School of Food and Biological Engineering , Chengdu University , , China
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology „Roumen Tsanev” , Bulgarian Academy of Sciences , Sofia , Bulgaria
| | - Kamil Wysocki
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Farhan Bin Matin
- Department of Pharmacy , East West University , Aftabnagar, Dhaka , Bangladesh
| | - Olena Litvinova
- Ludwig Boltzmann Institute Digital Health and Patient Safety , Medical University of Vienna , Vienna , Austria
- National University of Pharmacy of the Ministry of Health of Ukraine , Kharkiv , Ukraine
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine , Bradenton, FL 34211 , USA
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences , Kumamoto University , 5-1 Oe-honmachi, Chuo-ku , , Kumamoto , Japan
| | - Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, ICSN-CNRS , University of Paris Saclay , France
- Chemistry Department, Faculty of Science , Mansoura University , , Egypt
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology , University of Zagreb , Pierottijeva 6 , , Croatia
| | - Antonello Santini
- Department of Pharmacy , University of Napoli Federico II , Via D. Montesano 49 , , Italy
| | - Olaf. K. Horbańczuk
- Department of Technique and Food Product Development , Warsaw University of Life Sciences , Nowoursynowska 159C , Warsaw , , Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| | - Niranjan Das
- Department of Chemistry , Iswar Chandra Vidyasagar College , India
| | - Bodrun Naher Siddiquea
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine , Monash University , Level 4, 553 St Kilda Road , Melbourne, , Australia
| | - Dalibor Hrg
- Hrg Scientific , Varazdin , Croatia
- Artificial Intelligence and Innovation in Healthcare Lab, AI2H Laboratory , Varazdin , Croatia
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute Digital Health and Patient Safety , Medical University of Vienna , Vienna , Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences , Jastrzębiec, Postepu 36A , Magdalenka , Poland
| |
Collapse
|
25
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
26
|
Kan Changez MI, Mubeen M, Zehra M, Samnani I, Abdul Rasool A, Mohan A, Wara UU, Tejwaney U, Kumar V. Role of microRNA in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a comprehensive review. J Int Med Res 2023; 51:3000605231197058. [PMID: 37676968 PMCID: PMC10492500 DOI: 10.1177/03000605231197058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver condition that affects people who do not overconsume alcohol. Uncertainties exist over how microRNAs (miRNAs) in the blood and liver relate to NAFLD. The aim of this narrative review was to investigate the role of miRNAs in the onset and progression of non-alcoholic steatohepatitis (NASH) from NAFLD, and explore their potential as diagnostic tools and treatment targets for NAFLD patients. Liver miRNA-34a levels were found to accurately represent the degree of liver damage, with lower levels suggesting more damage. In patients with NAFLD and severe liver fibrosis, higher levels of miRNA-193a-5p and miRNA-378d were found. Moreover, miRNA-34a, miRNA-122, and miRNA-192 levels might aid in differentiating NASH from NAFLD. Similar to this, miRNA-21 and miRNA-27 levels in rats were able to distinguish between steatosis and steatohepatitis. High-fat diets enhanced the expression of 15 distinct miRNAs in rats, and there were substantial differences in the miRNA expression patterns between obese and lean people. The results from the present review imply that miRNA microarrays and sequencing may be helpful diagnostic tools, and miRNAs may be a possible treatment target for patients with NAFLD.
Collapse
Affiliation(s)
- Mah I Kan Changez
- Department of Medicine, Quetta Institute of Medical Sciences, Quetta, Pakistan
| | - Maryam Mubeen
- Department of Medicine, Punjab Medical College, Faisalabad, Pakistan
| | - Monezahe Zehra
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Inara Samnani
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | | | - Anmol Mohan
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Um Ul Wara
- Department of Medicine, Karachi Medical & Dental College, Karachi, Pakistan
| | - Usha Tejwaney
- Department of Pharmacy, Valley Health System, New Jersey, USA
| | - Vikash Kumar
- Department of Internal Medicine, The Brooklyn Hospital Center, New York City, NY, USA
| |
Collapse
|
27
|
Petagine L, Zariwala MG, Patel VB. Non-alcoholic fatty liver disease: Immunological mechanisms and current treatments. World J Gastroenterol 2023; 29:4831-4850. [PMID: 37701135 PMCID: PMC10494768 DOI: 10.3748/wjg.v29.i32.4831] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) causes significant global disease burden and is a leading cause of mortality. NAFLD induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of NAFLD is widely recognised, the precise triggers for disease progression are still to be fully elucidated. Furthermore, the propagation to cirrhosis is poorly understood. Whilst some progress in terms of treatment options have been explored, an incomplete understanding of the hepatic cellular and molecular alterations limits their clinical utility. We have therefore reviewed some of the key pathways responsible for the pathogenesis of NAFLD such as innate and adaptative immunity, lipotoxicity and fibrogenesis, and highlighted current trials and treatment options for NAFLD patients.
Collapse
Affiliation(s)
- Lucy Petagine
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| | - Vinood B Patel
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London W1W6UW, United Kingdom
| |
Collapse
|
28
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
29
|
Jamioł-Milc D, Gudan A, Kaźmierczak-Siedlecka K, Hołowko-Ziółek J, Maciejewska-Markiewicz D, Janda-Milczarek K, Stachowska E. Nutritional Support for Liver Diseases. Nutrients 2023; 15:3640. [PMID: 37630830 PMCID: PMC10459677 DOI: 10.3390/nu15163640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a key organ that is responsible for the metabolism of proteins, fats, and carbohydrates and the absorption and storage of micronutrients. Unfortunately, the prevalence of chronic liver diseases at various stages of advancement in the world population is significant. Due to the physiological function of the liver, its dysfunction can lead to malnutrition and sarcopenia, and the patient's nutritional status is an important prognostic factor. This review discusses key issues related to the diet therapy of patients with chronic liver diseases, as well as those qualified for liver transplantation and in the postoperative period.
Collapse
Affiliation(s)
- Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Hołowko-Ziółek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | | | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| |
Collapse
|
30
|
Cui T, Xiao X, Pan Z, Tang K, Zhong Y, Chen Y, Guo J, Duan S, Zhong G, Li T, Li X, Wu X, Lin C, Yang X, Gao Y, Zhang D. Harnessing the Therapeutic Potential of Ginsenoside Rd for Activating SIRT6 in Treating a Mouse Model of Nonalcoholic Fatty Liver Disease. ACS OMEGA 2023; 8:29735-29745. [PMID: 37599957 PMCID: PMC10433470 DOI: 10.1021/acsomega.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid. We explored and confirmed the specific mechanism of ginsenoside Rd-induced hepatic steatosis through experiments involving mice with a liver-specific knockout of SIRT6, a crucial protein involved in metabolic regulation. Our findings revealed that administration of ginsenoside Rd significantly reduced the inflammatory response, reactive oxygen species (ROS) levels, lipid peroxide levels, and mitochondrial stress induced by oleic acid and palmitic acid in primary hepatocytes, thereby mitigating excessive lipid accumulation. Moreover, ginsenoside Rd administration effectively enhanced the mRNA content of key proteins involved in fatty acid oxidation, with a particular emphasis on SIRT6 and its target proteins. We further validated that ginsenoside Rd directly binds to SIRT6, augmenting its deacetylase activity. Notably, we made a significant observation that the protective effect of ginsenoside Rd against hepatic disorders induced by a fatty diet was almost entirely reversed in mice with a liver-specific SIRT6 knockout. Our findings highlight the potential therapeutic impact of Ginsenoside Rd in NAFLD treatment by activating SIRT6. These results warrant further investigation into the development of Ginsenoside Rd as a promising agent for managing this prevalent liver disease.
Collapse
Affiliation(s)
- Tianqi Cui
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxia Xiao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Zhisen Pan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Kaijia Tang
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yadi Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yingjian Chen
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Jingyi Guo
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Siwei Duan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Guangcheng Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Tianyao Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiumei Wu
- Emergency
Department of the First Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Chuanquan Lin
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoying Yang
- Jiangsu
Key Laboratory of Immunity and Metabolism, Department of Pathogen
Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Gao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
| |
Collapse
|
31
|
Yuzbashian E, Fernando DN, Pakseresht M, Eurich DT, Chan CB. Dairy product consumption and risk of non-alcoholic fatty liver disease: A systematic review and meta-analysis of observational studies. Nutr Metab Cardiovasc Dis 2023; 33:1461-1471. [PMID: 37244850 DOI: 10.1016/j.numecd.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS It is unclear whether regular consumption of dairy products is associated with the risk of developing non-alcoholic fatty liver disease (NAFLD). Thus, we conducted a systematic review followed by a meta-analysis of studies reporting on the association of dairy consumption with NAFLD risk. METHODS AND RESULTS We comprehensively searched PubMed, Web of Science, and Scopus for observational studies that evaluated the association between dairy intake and NAFLD likelihood that were published before September 1, 2022. The reported odds ratios (ORs) of fully adjusted models and their 95% confidence intervals (CIs) were pooled using a random-effects model for the meta-analysis. Out of 1206 articles retrieved, 11 observational studies, including 43,649 participants and 11,020 cases, were included. Pooled OR indicated a significant association between dairy intake and NAFLD (OR = 0.90; 95% CI: 0.83, 0.98; I2 = 67.8%, n = 11). Pooled ORs revealed that milk (OR: 0.86; 95% CI: 0.78, 0.95; I2 = 65.7%, n = 6), yogurt (OR: 0.88; 95% CI: 0.82; I2 = 0.0%, n = 4), and high-fat dairy (OR: 0.38; 95% CI: 0.19, 0.75; I2 = 0.0%, n = 5) consumption was inversely associated with NAFLD while cheese was not linked to NAFLD risk. CONCLUSION We observed that consumption of dairy products is linked to a reduced risk of developing NAFLD. Overall, the data in the source articles is of low to moderate quality; therefore, further observational studies are required to support the current findings (PROSPERO Reg. number: CRD42022319028).
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dineli N Fernando
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammadreza Pakseresht
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Alberta Health Services, Edmonton, Alberta, Canada
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
Li L, Sun H, Chen J, Ding C, Yang X, Han H, Sun Q. Mitigation of non-alcoholic steatohepatitis via recombinant Orosomucoid 2, an acute phase protein modulating the Erk1/2-PPARγ-Cd36 pathway. Cell Rep 2023; 42:112697. [PMID: 37355990 DOI: 10.1016/j.celrep.2023.112697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The therapeutic administration of recombinant proteins is utilized in a multitude of research studies for treating various diseases. In this study, we investigate the therapeutic potential of Orosomucoid 2 (Orm2), an acute phase protein predominantly secreted by hepatocytes, for treating non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Our results show that high Orm2 expression prevents high-fat-diet (HFD)-induced obesity in mice. Pharmacological administration of recombinant ORM2 protein ameliorates hepatic steatosis, inflammation, hepatocyte injury, and fibrosis in mouse livers afflicted by NAFLD and NASH under dietary stress. Orm2 knockout mice develop spontaneous obesity under a regular diet and exacerbate HFD-induced steatosis, steatohepatitis, and fibrosis. Mechanistically, Orm2 deletion activates the Erk1/2-PPARγ-Cd36 signaling pathway, increasing fatty acid uptake and absorption in hepatocytes and mice. Overall, our findings underscore the critical role of Orm2 in preventing NASH and associated NAFLD in the context of obesity.
Collapse
Affiliation(s)
- Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoming Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jionghao Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Ding
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hua Han
- Department of Biomedicine, Future Agriculture Institute, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
33
|
Abu Hassan MR, Hj Md Said R, Zainuddin Z, Omar H, Md Ali SM, Aris SA, Chan HK. Effects of one-year supplementation with Phyllanthus niruri on fibrosis score and metabolic markers in patients with non-alcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial. Heliyon 2023; 9:e16652. [PMID: 37313177 PMCID: PMC10258366 DOI: 10.1016/j.heliyon.2023.e16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Background and purpose and purpose: Non-alcoholic fatty liver disease (NAFLD) is a significant global health concern with limited pharmacotherapy options. This study aimed to evaluate the effectiveness of a standardized extract of Phyllanthus niruri in mild-to-moderate NAFLD. Materials and methods This was a 12-month randomized controlled trial, in which adults with a controlled attenuation parameter (CAP) score >250 dB/m and a fibrosis score <10 kPa were randomly assigned to receive a standardized P. niruri extract at a dose of 3,000 mg daily (n = 112) or a placebo (n = 114). The primary outcomes were changes in CAP score and liver enzyme levels, while the secondary outcomes were changes in other metabolic parameters. The analysis was performed on an intention-to-treat basis. Results After 12 months, there was no significant difference in the change of CAP score between the intervention and control groups (-15.05 ± 36.76 dB/m vs. -14.74 ± 41.08 dB/m; p = 0.869). There was also no significant difference in the changes of liver enzyme levels between the two groups. However, the intervention group showed a significant reduction in fibrosis score, which was not observed in the control group (-0.64 ± 1.66 kPa versus 0.10 ± 1.61 kPa; p = 0.001). No major adverse events were reported in either group. Conclusion This study showed that P. niruri did not significantly reduce CAP score and liver enzyme levels in patients with mild-to-moderate NAFLD. However, a significant improvement in fibrosis score was observed. Further research is needed to determine its clinical benefits at different dosages for NAFLD treatment.
Collapse
Affiliation(s)
- Muhammad Radzi Abu Hassan
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Rosaida Hj Md Said
- Medical Department, Hospital Ampang, Jalan Mewah Utara, Taman Pandan Mewah, 68000, Ampang Jaya, Selangor, Malaysia
| | - Zalwani Zainuddin
- Medical Department, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Haniza Omar
- Medical Department, Hospital Selayang, Jalan Lingkaran Tengah 2, 68100 Batu Caves, Selangor, Malaysia
| | - Siti Maisarah Md Ali
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Siti Aishah Aris
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| | - Huan-Keat Chan
- Clinical Research Centre, Hospital Sultanah Bahiyah, Jalan Langgar, 05460, Alor Setar, Kedah, Malaysia
| |
Collapse
|
34
|
Huang Y, Wang C, Wang M, Xiong T, Song X, Sun W, Li J. Oroxin B improves metabolic-associated fatty liver disease by alleviating gut microbiota dysbiosis in a high-fat diet-induced rat model. Eur J Pharmacol 2023; 951:175788. [PMID: 37179040 DOI: 10.1016/j.ejphar.2023.175788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become a common chronic liver disease, but there is no FDA-approved drug for MAFLD treatment. Numerous studies have revealed that gut microbiota dysbiosis exerts a crucial effect on MAFLD progression. Oroxin B is a constituent of the traditional Chinese medicine Oroxylum indicum (L.) Kurz. (O. indicum), which has the characteristics of low oral bioavailability but high bioactivity. However, the mechanism through which oroxin B improves MAFLD by restoring the gut microbiota balance remains unclear. To this end, we assessed the anti-MAFLD effect of oroxin B in HFD-fed rats and investigated the underlying mechanism. Our results indicated that oroxin B administration reduced the lipid levels in the plasma and liver and lowered the lipopolysaccharide (LPS), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels in the plasma. Moreover, oroxin B alleviated hepatic inflammation and fibrosis. Mechanistically, oroxin B modulated the gut microbiota structure in HFD-fed rats by increasing the levels of Lactobacillus, Staphylococcus, and Eubacterium and decreasing the levels of Tomitella, Bilophila, Acetanaerobacterium, and Faecalibaculum. Furthermore, oroxin B not only suppressed Toll-like receptor 4-inhibitor kappa B-nuclear factor kappa-B-interleukin 6/tumor necrosis factor-α (TLR4-IκB-NF-κB-IL-6/TNF-α) signal transduction but also strengthened the intestinal barrier by elevating the expression of zonula occludens 1 (ZO-1) and zonula occludens 2 (ZO-2). In summary, these results demonstrate that oroxin B could alleviate hepatic inflammation and MAFLD progression by regulating the gut microbiota balance and strengthening the intestinal barrier. Hence, our study suggests that oroxin B is a promising effective compound for MAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, People's Republic of China.
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Zhang C, Song Y, Yuan M, Chen L, Zhang Q, Hu J, Meng Y, Li S, Zheng G, Qiu Z. Ellagitannins-Derived Intestinal Microbial Metabolite Urolithin A Ameliorates Fructose-Driven Hepatosteatosis by Suppressing Hepatic Lipid Metabolic Reprogramming and Inducing Lipophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3967-3980. [PMID: 36825491 DOI: 10.1021/acs.jafc.2c05776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects in vivo. Fructose-stimulated HepG2 cells and primary hepatocytes were established for in vitro mechanistic assessment. The results suggested that UroA ameliorated fructose-induced hepatic steatosis in mice. Mechanistically, UroA impaired lipogenesis and enhanced β-oxidation in the livers of fructose-fed mice. Notably, UroA facilitated hepatic lipophagy through the AMPK/ULK1 pathway both in vivo and in vitro, degrading lipid droplets for fueling β-oxidation. This study indicates that UroA alleviates excessive lipid accumulation and restores lipid homeostasis in the livers of fructose-fed mice by suppressing lipid metabolic reprogramming and triggering lipophagy. Therefore, dietary supplementation of UroA or ellagitannins-rich foods may be beneficial for NAFLD individuals with high fructose intake.
Collapse
Affiliation(s)
- Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yingying Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Qianyu Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| |
Collapse
|
37
|
Rhinacanthin C Ameliorates Insulin Resistance and Lipid Accumulation in NAFLD Mice via the AMPK/SIRT1 and SREBP-1c/FAS/ACC Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:6603522. [PMID: 36660274 PMCID: PMC9845057 DOI: 10.1155/2023/6603522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Rhinacanthin C (RC) is a naphthoquinone ester with an anti-inflammatory activity extracted from Rhinacanthus nasutus (L.) Kurz (Rn). It has been proven to improve hyperglycemia and hyperlipidemia, but the prevention and mechanism of RC in nonalcoholic fatty liver disease (NAFLD) are not clear. In the current study, we first extracted RC from Rn using ethyl acetate and identified it by HPLC, MS, and NMR. At the same time, molecular docking analysis of RC with AMPK and SREBP-1c was performed using AutoDock software. In addition, the mouse model of NAFLD was induced by a high-fat diet in vivo, and low, medium, and high concentrations of RC were used for intervention. The results showed that RC significantly reduced the body mass and liver body coefficient of NAFLD mice, inhibited liver inflammation and fat accumulation, and improved insulin resistance. Further studies showed that RC significantly reduced the levels of serum leptin and resistin, upregulated the expression levels of adiponectin and adiponectin receptor in the liver, and inhibited the expression levels of MCP-1, TNF-α, and IL-6. In terms of mechanism, RC upregulates the expression of p-AMPK and SIRT1 and downregulates the expression of p-p65, SREBP-1c, Fas, Acc-α, PPAR-γ, and SCD1. These studies suggest that RC improves insulin resistance and lipid accumulation in NAFLD by activating the AMPK/SIRT1 and SREBP-1c/Fas/ACC pathways, respectively.
Collapse
|
38
|
Zhang N, Tian X, Yan T, Wang H, Zhang D, Lin C, Liu Q, Jiang S. Insights into the role of nucleotide methylation in metabolic-associated fatty liver disease. Front Immunol 2023; 14:1148722. [PMID: 37020540 PMCID: PMC10067741 DOI: 10.3389/fimmu.2023.1148722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease characterized by fatty infiltration of the liver. In recent years, the MAFLD incidence rate has risen and emerged as a serious public health concern. MAFLD typically progresses from the initial hepatocyte steatosis to steatohepatitis and then gradually advances to liver fibrosis, which may ultimately lead to cirrhosis and carcinogenesis. However, the potential evolutionary mechanisms still need to be clarified. Recent studies have shown that nucleotide methylation, which was directly associated with MAFLD's inflammatory grading, lipid synthesis, and oxidative stress, plays a crucial role in the occurrence and progression of MAFLD. In this review, we highlight the regulatory function and associated mechanisms of nucleotide methylation modification in the progress of MAFLD, with a particular emphasis on its regulatory role in the inflammation of MAFLD, including the regulation of inflammation-related immune and metabolic microenvironment. Additionally, we summarize the potential value of nucleotide methylation in the diagnosis and treatment of MAFLD, intending to provide references for the future investigation of MAFLD.
Collapse
Affiliation(s)
- Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Dengtian Zhang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Qingbin Liu, ; Shulong Jiang,
| |
Collapse
|
39
|
Zheng M, Yang X, Wu Q, Gong Y, Pang N, Ge X, Nagaratnam N, Jiang P, Zhou M, Hu T, Hua H, Zheng K, Huang X, Yu Y. Butyrate Attenuates Hepatic Steatosis Induced by a High-Fat and Fiber-Deficient Diet via the Hepatic GPR41/43-CaMKII/HDAC1-CREB Pathway. Mol Nutr Food Res 2023; 67:e2200597. [PMID: 36382553 PMCID: PMC10078002 DOI: 10.1002/mnfr.202200597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/17/2022]
Abstract
SCOPE Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Ning Pang
- Tianjin Third Central HospitalTianjin300170P. R. China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Nathan Nagaratnam
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Tao Hu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Hui Hua
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
- National Experimental Demonstration Center for Basic Medicine EducationXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
| | - Xu‐Feng Huang
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and MetabolismDepartment of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsu221004P. R. China
- Illawarra Health and Medical Research Institute(IHMRI) and School of MedicineUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
40
|
Dong X, Feng Y, Xu D, Zhang M, Wen X, Zhao W, Hu Q, Zhang Q, Fu H, Ping J. Targeting macrophagic 17 β-HSD7 by fenretinide for the treatment of nonalcoholic fatty liver disease. Acta Pharm Sin B 2023; 13:142-156. [PMID: 36815031 PMCID: PMC9939369 DOI: 10.1016/j.apsb.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and macrophage polarization plays an important role in its pathogenesis. However, which molecule regulates macrophage polarization in NAFLD remains unclear. Herein, we showed NAFLD mice exhibited increased 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7) expression in hepatic macrophages concomitantly with elevated M1 polarization. Single-cell RNA sequencing on hepatic non-parenchymal cells isolated from wild-type littermates and macrophage-17β-HSD7 knockout mice fed with high fat diet (HFD) for 6 weeks revealed that lipid metabolism pathways were notably changed. Furthermore, 17β-HSD7 deficiency in macrophages attenuated HFD-induced hepatic steatosis, insulin resistance and liver injury. Mechanistically, 17β-HSD7 triggered NLRP3 inflammasome activation by increasing free cholesterol content, thereby promoting M1 polarization of macrophages and the secretion of pro-inflammatory cytokines. In addition, to help demonstrate that 17β-HSD7 is a potential drug target for NAFLD, fenretinide was screened out from an FDA-approved drug library based on its 17β-HSD7 dehydrogenase inhibitory activity. Fenretinide dose-dependently abrogated macrophage polarization and pro-inflammatory cytokines production, and subsequently inhibited fat deposition in hepatocytes co-cultured with macrophages. In conclusion, our findings suggest that blockade of 17β-HSD7 signaling by fenretinide would be a drug repurposing strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yiting Feng
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Dongqin Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengya Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiao Wen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenhao Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qintong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qinyong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Fu
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China,Corresponding author. Tel.: +86 27 6875 9310; fax: +86 27 8733 1670.
| |
Collapse
|
41
|
Gudan A, Jamioł-Milc D, Hawryłkowicz V, Skonieczna-Żydecka K, Stachowska E. The Prevalence of Small Intestinal Bacterial Overgrowth in Patients with Non-Alcoholic Liver Diseases: NAFLD, NASH, Fibrosis, Cirrhosis-A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14245261. [PMID: 36558421 PMCID: PMC9783356 DOI: 10.3390/nu14245261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial overgrowth in the small intestine (SIBO) is a pathological growth of the intestinal microbiota in the small intestine that causes clinical symptoms and can lead to digestive and absorption disorders. There is increasing evidence that people with NAFLD have a distinct gut microflora profile as well metabolome changes compared to people without NAFLD. Thorough analysis of observational and RCT studies in the current databases (EMBASE, Web of Science, PubMed, Cinahl, Clinical Trials) was conducted from 3 November 2021 to 21 June 2022. The following inclusion criteria were applied: confirmed NAFLD, NASH, LIVER FIBROSIS, CIRRHOSIS due to steatosis; diagnostic methods of liver diseases—biopsy, elastography, transabdominal ultrasound; nonalcoholic fatty liver disease activity score; confirmed SIBO; diagnostic methods of SIBO−breath tests (hydrogen test; methane test and mix test; duodenal and jejunal aspiration before any type of intervention; adults above 18yo; number of participants ≥20; full articles. We excluded review articles, populations with HBV/HCV infection and alcohol etiology and interventions that may affect NAFLD or SIBO treatment. The quality of each study methodology was classified by means of the Cochrane Collaboration’s tool (RCT) and Newcastle—Ottawa Quality Assessment Scale adapted for cross-sectional, cohort and case-control studies. The random effects meta-analysis of outcomes for which ≥2 studies contributed data was conducted. The I2 index to measure heterogeneity and the χ2 test of homogeneity (statistically significant heterogeneity p < 0.05) were applied. For categorical outcome, the pooled event rate (effect size) was calculated. This systematic review was reported according to PRISMA reporting guidelines. We initially identified 6643 studies, from which 18 studies were included in final meta-analysis. The total number of patients was 1263. Accepted SIBO diagnostic methods were both available breath tests (n-total = 15) and aspirate culture (n-total = 3). We found that among patients with non-alcoholic liver diseases, the random overall event rate of SIBO was 0.350 (95% CI, 0.244−0.472), p = 0.017. The subgroup analysis regarding a type of diagnosis revealed that the lowest ER was among patients who developed simultaneously NAFLD, NASH and fibrosis: 0.197 (95% CI, 0.054−0.510) as compared to other annotated subgroups. The highest prevalence of SIBO was observed in the NASH subgroup: 0.411 (95% CI, 0.219−0.634). There were no statistically significant differences in the prevalence of SIBO in different subgroups (p = 0.854). Statistically significant heterogeneity between studies was estimated (I2 = 86.17%, p = 0.00). Egger’s test did not indicate a publication bias (df = 16, p = 0.885). A meta-regression using a random-effects model revealed that higher percentage of males in the population with liver diseases is a predisposing factor toward SIBO (Q = 4.11, df = 1, p = 0.0426 with coefficient = 0.0195, SE = 0.0096, Z = 2.03). We showed that the prevalence of SIBO in patients with chronic non-alcoholic liver diseases can be as high as 35%, and it increases with the percentage of men in the population. The prevalence of SIBO does not differ significantly depending on the type of chronic liver disease. Despite the high heterogeneity and moderate and low quality of included studies, our meta-analysis suggests the existence of a problem of SIBO in the population of patients with non-alcoholic liver diseases, and the presence of SIBO, in turn, determines the therapeutic treatment of such type of patients, which indicates the need for further research in this area. The study protocol was registered with the international Prospective Register of Systematic Reviews (PROSPERO ID: CRD42022341473).
Collapse
Affiliation(s)
- Anna Gudan
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, ul. Władysława Broniewskiego 24, 71-460 Szczecin, Poland
| | - Dominika Jamioł-Milc
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, ul. Władysława Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (D.J.-M.); (K.S.-Ż.); Tel.: +48-91-441-48-06 (D.J.-M. & K.S.-Ż.); Fax: +48-91-441-48-07 (D.J.-M. & K.S.-Ż.)
| | - Victoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, ul. Władysława Broniewskiego 24, 71-460 Szczecin, Poland
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, ul. Władysława Broniewskiego 24, 71-460 Szczecin, Poland
- Correspondence: (D.J.-M.); (K.S.-Ż.); Tel.: +48-91-441-48-06 (D.J.-M. & K.S.-Ż.); Fax: +48-91-441-48-07 (D.J.-M. & K.S.-Ż.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, ul. Władysława Broniewskiego 24, 71-460 Szczecin, Poland
| |
Collapse
|
42
|
Perez-Diaz-del-Campo N, Castelnuovo G, Caviglia GP, Armandi A, Rosso C, Bugianesi E. Role of Circadian Clock on the Pathogenesis and Lifestyle Management in Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14235053. [PMID: 36501083 PMCID: PMC9736115 DOI: 10.3390/nu14235053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Several features of the modern lifestyle, such as weekly schedules or irregular daily eating patterns, have become major drivers of global health problems, including non-alcoholic fatty liver disease (NAFLD). Sleep is an essential component of human well-being, and it has been observed that when circadian rhythms are disrupted, or when sleep quality decreases, an individual's overall health may worsen. In addition, the discrepancy between the circadian and social clock, due to weekly work/study schedules, is called social jetlag and has also been associated with adverse metabolic profiles. Current management of NAFLD is based on dietary intake and physical activity, with circadian preferences and other environmental factors also needing to be taken into account. In this regard, dietary approaches based on chrononutrition, such as intermittent fasting or time-restricted feeding, have proven to be useful in realigning lifestyle behaviors with circadian biological rhythms. However, more studies are needed to apply these dietary strategies in the treatment of these patients. In this review, we focus on the impact of circadian rhythms and the role of sleep patterns on the pathogenesis and development of NAFLD, as well as the consideration of chrononutrition for the precision nutrition management of patients with NAFLD.
Collapse
Affiliation(s)
| | | | | | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence:
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Gastroenterology Unit, Città della Salute e della Scienza—Molinette Hospital, 10126 Turin, Italy
| |
Collapse
|
43
|
Mokhtari Z, Hosseini E, Hekmatdoost A, Haskey N, Gibson DL, Askari G. The effects of fasting diets on nonalcoholic fatty liver disease. Nutr Rev 2022:6809036. [DOI: 10.1093/nutrit/nuac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. There is no confirmed treatment for NAFLD as yet. Recently, fasting regimens and their relationship to NAFLD have drawn a great deal of attention in the literature. We review the current evidence that supports fasting diets as an adjunctive therapeutic strategy for patients with NAFLD and address potential action mechanisms. We reason that the fasting diets might be a promising approach for modulating hepatic steatosis, fibroblast growth factors 19 and 21 signaling, lipophagy, and the metabolic profile.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and, Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences with the , Tehran, Iran
| | - Natasha Haskey
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia—Okanagan Campus are with the , Kelowna, British Columbia, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences are with the , Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences with the , Isfahan, Iran
| |
Collapse
|
44
|
Salavatizadeh M, Soltanieh S, Poustchi H, Yari Z, Shabanpur M, Mansour A, Khamseh ME, Alaei-Shahmiri F, Hekmatdoost A. Dietary total antioxidant capacity is inversely associated with the odds of non-alcoholic fatty liver disease in people with type-2 diabetes. Front Nutr 2022; 9:1037851. [PMID: 36407541 PMCID: PMC9671398 DOI: 10.3389/fnut.2022.1037851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND This study was conducted to evaluate possible associations between Dietary Total Antioxidant Capacity (DTAC) and odds of non-alcoholic fatty liver disease (NAFLD) in people with type-2 diabetes mellitus (T2DM). MATERIALS AND METHODS We recruited two hundred people with T2DM, and evaluated their liver steatosis using Fibroscan. Dietary intakes of participants were assessed using a validated food frequency questionnaire. DTAC was computed via ferric reducing antioxidant power (FRAP). RESULTS In the crude model, no statistically significant association was found between DTAC and the odds of NAFLD in people with diabetes. However, after adjustment for potential confounders including age, gender, diabetes duration, smoking status, physical activity, BMI, waist circumference, and energy, the most reduced adjusted OR was indicated for the third tertile vs. the first one (OR: 0.28, 95% CI: 0.09-0.81, P = 0.02), meaning that diabetic patients in the third tertile of DTAC had 72% decreased risk of NAFLD in comparison to those in the first one. The relationship was remained significant after additional adjustment for HOMA-IR, HbA1c, serum Triglyceride (TG), and low-density lipoprotein-cholesterol (LDL) levels (OR: 0.29, 95% CI: 0.09-0.93, P = 0.03). Importantly, a dose-response pattern was demonstrated for DTAC and risk of NAFLD (P = 0.04). CONCLUSION Higher DTAC was related with a decreased risk of NAFLD in individuals with diabetes.
Collapse
Affiliation(s)
- Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Soltanieh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shabanpur
- Department of Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Pop TL, Sîrbe C, Benţa G, Mititelu A, Grama A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms231810705. [PMID: 36142636 PMCID: PMC9503777 DOI: 10.3390/ijms231810705] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium metabolism, maintaining normal calcium levels and bone health development. The most important compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2, or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concentrations, vitamin D is involved in cell growth and differentiation and immune function. Recently, the association between vitamin D deficiency and the progression of fibrosis in chronic liver disease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver and has the role of binding and transporting vitamin D and its metabolites to the target organs. VDBP also plays an important role in inflammatory response secondary to tissue damage, being involved in the degradation of actin. As intense research during the last decades revealed the possible role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors (VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD, both at the experimental and clinical levels.
Collapse
Affiliation(s)
- Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Gabriel Benţa
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Mititelu
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- 2nd Pediatric Clinic, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
46
|
Ahmad SR. Plant-based diet for obesity treatment. Front Nutr 2022; 9:952553. [PMID: 36159462 PMCID: PMC9493195 DOI: 10.3389/fnut.2022.952553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity rates continue to rise, resulting in a global epidemic that shows no sign of slowing down. Our understanding of this complex disease is also constantly evolving, requiring healthcare providers to stay up to date with best practices. The application of plant-based diets (PBDs) may hold the key to a successful weight-control strategy. PBD refers to any dietary pattern that emphasizes the consumption of plant foods while excluding the consumption of most or all animal products. The purpose of this mini-review is to report on the application of PBDs as a potential treatment for obesity. PBDs have also been shown to be beneficial in the treatment of other non-communicable diseases, such as the prevention and treatment of type 2 diabetes. Many of the reported RCTs were of short duration. Longer-term studies, as well as studies focusing on strict adherence to the PBD regime, are needed. PBD is a beneficial approach to improving health, particularly in obese patients. Benefits include weight loss, improved cardiovascular health, lower blood pressure, and improved glucose metabolism.
Collapse
|
47
|
Zhang A, Luo X, Pan H, Shen X, Liu B, Li D, Sun J. Establishment and evaluation of a risk-prediction model for hypertension in elderly patients with NAFLD from a health management perspective. Sci Rep 2022; 12:15138. [PMID: 36071077 PMCID: PMC9452675 DOI: 10.1038/s41598-022-18718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Elderly patients with nonalcoholic fatty liver disease are at a higher risk of developing. This study established an effective, individualised, early Hypertension risk-prediction model and proposed health management advice for patients over 60 years of age with NAFLD. Questionnaire surveys, physical examinations, and biochemical tests were conducted in 11,136 participants. The prevalence of NAFLD among 11,136 participants was 52.1%. Risk factors were screened using the least absolute shrinkage and selection operator model and random forest model. A risk-prediction model was established using logistic regression analysis and a dynamic nomogram was drawn. The model was evaluated for discrimination, calibration, and clinical applicability using receiver operating characteristic curves, calibration curves, decision curve analysis, net reclassification index (NRI), and external validation. The results suggested that the model showed moderate predictive ability. The area under curve (AUC) of internal validation was 0.707 (95% CI: 0.688-0.727) and the AUC of external validation was 0.688 (95% CI: 0.672-0.705). The calibration plots showed good calibration, the risk threshold of the decision curve was 30-56%, and the NRI value was 0.109. This Hypertension risk factor model may be used in clinical practice to predict the Hypertension risk in NAFLD patients.
Collapse
Affiliation(s)
- An Zhang
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luo
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Pan
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxin Shen
- Department of Health Management, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baocheng Liu
- Shanghai Collaborative Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Dong Li
- Zhangjiang Community Health Service Centers, Pudong New Area, Shanghai, 201203, China.
| | - Jijia Sun
- Shanghai Collaborative Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
48
|
Salehi-sahlabadi A, Teymoori F, Ahmadirad H, Mokhtari E, Azadi M, Seraj SS, Hekmatdoost A. Nutrient patterns and non-alcoholic fatty liver disease in Iranian Adul: A case-control study. Front Nutr 2022; 9:977403. [PMID: 36147306 PMCID: PMC9486204 DOI: 10.3389/fnut.2022.977403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Backgrounds The current literature boasts the importance of diet in preventing or managing liver complications. However, there is limited evidence on the association of nutrient patterns (NP) with these complications. In this case-control study, we aimed to examine the possible relationship between nutrient patterns and the risk of non-alcoholic fatty liver disease (NAFLD) amongst the adult Iranian population. Methods This case-control study is being conducted at the Metabolic Liver Disease Research Center at Isfahan University of Medical Sciences in 2019. The study included 225 newly diagnosed cases of NAFLD and 450 controls. A validated semi-quantitative food frequency questionnaire (FFQ) assessed dietary intake. Principal component analysis using Varimax rotation obtained nutrient patterns. Logistic regression was performed to estimate NAFLD risk. Results We identified four major nutrient patterns. The first nutrient pattern was high in consumption of lactose, animal protein, vitamin D, riboflavin, pantothenic acid, vitamin B12, calcium, phosphorus, zinc, and potassium. The second nutrient pattern included fiber, plant protein, vitamin A, thiamine, niacin, copper, and selenium, while the third featured plant protein, zinc, copper, magnesium, manganese, chromium, and selenium. The fourth was characterized by fructose, vitamin A, pyridoxine, vitamin C, and potassium. After adjusting for confounders, individuals in the highest tertile of NP4 had lower odds of NAFLD (OR: 0.56, 95% CI: 0.32-0.98, P_trend = 0.042); compared to those who were in the lowest tertile. Conclusion High compliance to a nutrient pattern characterized by fructose, vitamin C, vitamin A, pyridoxine, and potassium mainly supplied from fruits, vegetables, and nuts is inversely proportional to the odds of NAFLD. Also our findings indicate a very high fiber intake, a relatively optimal dietary fat profile, and a pretty low sugar intake for cases and controls, unseen in western countries. However, these initial findings need to be approved with further studies to confirm the relationship between nutrient patterns and NAFLD.
Collapse
Affiliation(s)
- Ammar Salehi-sahlabadi
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Azadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Sanjid Seraj
- Walsall Healthcare NHS Trust, Walsall Manor Hospital, West Midlands, Walsall, United Kingdom
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Zhu JY, Chen M, Mu WJ, Luo HY, Guo L. Higd1a facilitates exercise-mediated alleviation of fatty liver in diet-induced obese mice. Metabolism 2022; 134:155241. [PMID: 35750235 DOI: 10.1016/j.metabol.2022.155241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has emerged as the most common liver disease. Exercise is an effective strategy against NAFLD, but its underlying molecular mechanism is not completely understood. METHODS Higd1a, a mitochondrial inner membrane protein, was knocked down or overexpressed in mice livers by tail vein injection of adeno-associated virus (AAV) vectors. High fat diet-induced obese mice were subjected to treadmill training. Alpha mouse liver 12 (AML12) cells were used for in vitro studies. RESULTS Higd1a was upregulated in mice livers after treadmill exercise training. Knockdown of Higd1a in diet-induced obese mice livers impaired exercise-mediated alleviation of hepatic steatosis, liver injury and inflammation. On the contrary, hepatic overexpression of Higd1a ameliorated fatty liver, liver injury and inflammation in synergy with exercise. Mechanistically, deficiency of Higd1a in hepatocytes promoted free fatty acids (FFAs)-induced apoptosis and oxidative stress, and elevated the cytosolic level of oxidized mitochondrial DNA (ox-mtDNA) to activate NLRP3 inflammasome and JNK signaling, leading to decreased expression of critical genes involved in fatty acid oxidation (FAO), such as Ppara, Cpt1a and Acadm. Overexpression of Higd1a in hepatocytes blunted the above effects, which ultimately increased FAO genes expression and alleviated fat accumulation in hepatocytes. CONCLUSION These results identify a Higd1a-mediated inhibition of cytosolic ox-mtDNA/NLRP3 inflammasomes/JNK pathway that facilitates exercise-mediated alleviation of hepatosteatosis.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Min Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Wang-Jing Mu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Hong-Yang Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
50
|
Pan H, Zhou M, Ju Z, Luo J, Jin J, Shen L, Zhou P, Huang R. Potential role of gut microbiota-LCA-INSR axis in high fat-diet-induced non-alcoholic fatty liver dysfunction: From perspective of radiation variation. Curr Res Food Sci 2022; 5:1685-1700. [PMID: 36204709 PMCID: PMC9530674 DOI: 10.1016/j.crfs.2022.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of the liver covering a range of conditions from hepatic steatosis to liver fibrosis. NAFLD could be induced by High-fat-diet(HFD). Ionizing radiation is widely used in medical diagnosis and therapy as well as is a common risk factor in occupational environment. Whether the exposure of various dose of radiation has effects on HFD-induced NAFLD remains unclear. Here, we reported that radiation exposure promoted HFD-induced NAFLD in a dose-response manner. Furthermore, the gut microbiota composition had significant difference among mice with or without radiation treatment. Specifically, the Bacteroidetes/Firmicutes ratio, the abundance of A. muciniphila, Butyricococcus, and Clostridiaceae decreased significantly in the mice with co-exposure of high dose of radiation and HFD treatment. A fecal transplantation trial (FMT) further verified the role of gut microbiota in the regulation of the liver response to co-exposure of high dose of radiation and HFD treatment. Notably, the gut microbiome analysis showed plasma lithocholic acid (LCA) level increased in the mice with co-exposure of high dose of radiation and HFD treatment. Following antibiotic and probiotic treatments there was a significantly decreased LCA bile acid concentration and subsequent promotion of INSR/PI3K/Akt insulin signaling in the liver tissues. Our results demonstrate that the co-exposure of radiation and HFD aggravates the HFD-induced NAFLD through gut microbiota-LCA-INSR axis. Probiotics supplementation is a potential way to protect against co-exposure of radiation and HFD-induced liver damage. Meanwhile, our study provide a new insight that population with potential HFD-induced damage should pay more attention on preventing from liver damage while exposing radiation. Gut microbiota-lithocholic acid-insulin receptor (LCA-INSR) axis involves the promotion effects of radiation on HFD-induced NAFLD. Probiotics improve the liver damage induced by co-exposure of radiation and HFD.
Collapse
Affiliation(s)
- Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Jing Jin
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, China
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China
- Corresponding author.
| |
Collapse
|