1
|
Parida L, Paul A, Mohanty J, Sahoo PK. Molecular insights into septin 2 protein in rohu (Labeo rohita): revealing expression dynamics, antimicrobial activity and functional characteristics. Int J Biol Macromol 2025; 293:139353. [PMID: 39743099 DOI: 10.1016/j.ijbiomac.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Septins are evolutionarily conserved GTP-binding proteins mediating innate immunity, autophagy and inflammation in higher animals; however, they are yet to be fully characterized in fish. The study encompasses cloning of complete septin 2 cDNA from the rohu carp (Labeo rohita) that consisted of an open reading frame of 1050 bp and phylogenetic amino acid similarity of 99.43 % to cyprinid Onychostoma macrolepis. Septin 2 was ubiquitously expressed in different tissues of healthy rohu, and during early developmental stages. Septin 2 transcript levels were increased in response to three infection models i.e. Aeromonas hydrophila, poly I:C, and Argulus siamensis, indicating its role in immunity. A synthetic antimicrobial peptide derived from the septin 2 gene revealed in vitro bactericidal activity. A produced recombinant protein of septin 2 (~40 kDa) when injected into rohu modulated the expression of various immune-related genes. Further, in vivo studies of this protein demonstrated protection against A. hydrophila (71 % relative percent survival) and delayed mortality against ectoparasite A. siamensis. A developed sandwich ELISA revealed enhanced septin 2 level post A. hydrophila infection. The present study provides a new understanding of the septin 2 gene's multifunctional role in rohu and its importance in fish antimicrobial defence.
Collapse
Affiliation(s)
- Lopamudra Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Pramoda Kumar Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India.
| |
Collapse
|
2
|
Seah MKY, Han BY, Huang Y, Rasmussen LJH, Stäubli AJ, Bello-Rodríguez J, Chan ACH, Gasnier M, Wollmann H, Guccione E, Messerschmidt DM. Maternal PRDM10 activates essential genes for oocyte-to-embryo transition. Nat Commun 2025; 16:1939. [PMID: 39994175 PMCID: PMC11850896 DOI: 10.1038/s41467-025-56991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
PR/SET domain-containing (PRDM) proteins are metazoan-specific transcriptional regulators that play diverse roles in mammalian development and disease. Several members such as PRDM1, PRDM14 and PRDM9, have been implicated in germ cell specification and homoeostasis and are essential to fertility-related processes. Others, such as PRDM14, PRDM15 and PRDM10 play a role in early embryogenesis and embryonic stem cell maintenance. Here, we describe the first PRDM family member with a maternal effect. Absence of maternal Prdm10 results in catastrophic failure of oocyte-to-embryo transition and complete arrest at the 2-cell stage. We describe multiple defects in oocytes, zygotes and 2-cell stage embryos relating to the failure to accumulate PRDM10 target gene transcripts in the egg. Transcriptomic analysis and integration of genome-wide chromatin-binding data reveals new and essential PRDM10 targets, including the cytoskeletal protein encoding gene Septin11. We demonstrate that the failure to express maternal Septin11, in the absence of maternal PRDM10, disrupts Septin-complex assembly at the polar body extrusion site in MII oocytes. Our study sheds light into the essentiality of maternal PRDM10, the requirement of the maternal Septin-complex and the likely evolutionary conservation of this regulatory axis in human female germ cells.
Collapse
Affiliation(s)
- Michelle K Y Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Yong Loo Lin School of Medicine, Department of Obstetrics & Gynaecology, National University of Singapore, Singapore, Singapore
| | - Brenda Y Han
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Huang
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise J H Rasmussen
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Andrina J Stäubli
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Judith Bello-Rodríguez
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Chi-Ho Chan
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Heike Wollmann
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT) Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel M Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Institute for Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Bhatti A, Ravat S, Desai K, Shekhar BR, Menon SR, Kumbhar BV, Kunwar A, Jain N, Das DK. Spectrum of Clinical Variability with SEPT9 Gene Mutation in Hereditary Neuralgic Amyotrophy: Understanding the Pathogenesis Using Molecular Dynamics Simulation Study. Neurol India 2024; 72:1021-1026. [PMID: 39428775 DOI: 10.4103/neurol-india.ni_823_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 08/18/2020] [Indexed: 10/22/2024]
Abstract
BACKGROUND Hereditary Neuralgic Amyotrophy (HNA) is an autosomal dominant disorder characterized by episodes of severe pain and amyotrophy affecting the brachial plexus as well as other sites. Mutations in the SEPTIN9 gene have been identified as genetic abnormality for HNA. Although the genetic mutations are known, their pathogenesis for the causation of this disorder is not exactly elucidated. OBJECTIVE In this study, we have investigated the phenotypic and genetic features in a large pedigree with HNA. METHODS We report the clinical spectrum and genetic analysis of a family with 9 affected members. Clinical heterogeneity has been reported in the individuals having mutations in SEPTIN9 gene. After taking informed consent, we have done genetic analysis of 6 affected and 4 unaffected members of the family to identify the molecular abnormalities of SEPTIN9 gene. RESULTS AND CONCLUSIONS Genetic analysis has identified the presence of NM_001113491.2:p.Arg106Trp mutation in SEPTIN9 gene. The same mutation has been identified in 6 affected members of the family. Molecular simulation study has revealed that the mutation has significantly altered the conformation of septin-9 protein, thereby impairing the microtubule binding and bundling ability. Although the affected members shared a common recurrent mutation, they have a wide spectrum of clinical variability. This may be due to the variable penetrance of the mutation and different epigenetic influences in the family. This is the first genetically confirmed case series of HNA reported from India.
Collapse
Affiliation(s)
- Amit Bhatti
- Department of Neurology, Seth GS Medical College and KEM Hospital, Acharya Donde Marg, Maharashtra, India
| | - Sangeeta Ravat
- Department of Neurology, Seth GS Medical College and KEM Hospital, Acharya Donde Marg, Maharashtra, India
| | - Karan Desai
- Department of Neurology, Seth GS Medical College and KEM Hospital, Acharya Donde Marg, Maharashtra, India
| | - Bipin R Shekhar
- Department of Genetics, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Jahangir Merwanji Street, Maharashtra, India
| | - Shyla R Menon
- Department of Genetics, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Jahangir Merwanji Street, Maharashtra, India
| | - Bajarang V Kumbhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Neeraj Jain
- Department of Neurology, Seth GS Medical College and KEM Hospital, Acharya Donde Marg, Maharashtra, India
| | - Dhanjit K Das
- Department of Genetics, ICMR-National Institute for Research in Reproductive Health (ICMR-NIRRH), Jahangir Merwanji Street, Maharashtra, India
| |
Collapse
|
5
|
Huang M, Deng S, Li M, Yang Z, Guo J, Deng Y, Chen D, Yan B. Clinical diagnostic value of methylated SEPT9 combined with NLR, PLR and LMR in colorectal cancer. BMC Gastroenterol 2024; 24:240. [PMID: 39075402 PMCID: PMC11287835 DOI: 10.1186/s12876-024-03332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE This study aimed to investigate clinical diagnostic values of mSEPT9 combined with NLR, PLR and LMR in CRC. METHODS 329 subjects composed of 120 CRC patients, 105 polyps patients and 104 healthy participants were prospectively recruited. Clinicopathologic features were collected and analyzed. Plasma samples were collected for mSEPT9, NLR, PLR and LMR test. The sensitivity, specificity and AUC of each biomarker separately or in combination were estimated by the ROC curve. RESULTS The levels of NLR, PLR and the PDR of mSEPT9 in CRC patients were significantly higher than those in non-CRC subjects, while LMR was the opposite. The PDR of mSEPT9 in CRC patients was significantly correlated with age, tumor size, tumor stage and M stage. ROC curve analysis demonstrated moderate diagnostic values of mSEPT9, NLR, PLR and LMR in CRC patients with AUC of 0.78 (Se = 0.68, and Sp = 0.89), 0.78 (Se = 0.68, and Sp = 0.83), 0.80 (Se = 0.68, and Sp = 0.81), and 0.77 (Se = 0.72, and Sp = 0.73), respectively. Moreover, combination of these four biomarkers dramatically enhanced the diagnostic accuracy of CRC (AUC = 0.92, Se = 0.90, and Sp = 0.87), especially for CRC patients with large tumors (AUC = 0.95) or distal metastasis (AUC = 0.95). CONCLUSION mSEPT9, NLR, PLR and LMR showed the potential to be reliable biomarkers for the diagnosis of CRC. And the combined application of these biomarkers further improved the diagnostic accuracy of CRC significantly.
Collapse
Affiliation(s)
- Meiyuan Huang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Shuang Deng
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Ming Li
- Trauma Center, ZhuZhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Zhenyu Yang
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Jiaxing Guo
- Department of Hematology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Yi Deng
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China
| | - Dongliang Chen
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China.
| | - Bokang Yan
- Department of Pathology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412007, China.
| |
Collapse
|
6
|
Léger T, Alilat S, Ferron PJ, Dec L, Bouceba T, Lanceleur R, Huet S, Devriendt-Renault Y, Parinet J, Clément B, Fessard V, Le Hégarat L. Chlordecone-induced hepatotoxicity and fibrosis are mediated by the proteasomal degradation of septins. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135177. [PMID: 39018595 DOI: 10.1016/j.jhazmat.2024.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Chlordecone (CLD) is a pesticide persisting in soils and contaminating food webs. CLD is sequestered in the liver and poorly metabolized into chlordecol (CLDOH). In vitro liver cell models were used to investigate the fate and mechanistic effects of CLD and CLDOH using multiomics. A 3D-cell model was used to investigate whether CLD and CLDOH can affect susceptibility to the metabolic dysfunction-associated steatotic liver disease (MASLD). Hepatocytes were more sensitive to CLD than CLDOH. CLDOH was intensively metabolized into a glucuronide conjugate, whereas CLD was sequestered. CLD but not CLDOH induced a depletion of Septin-2,- 7,- 9,- 10,- 11 due to proteasomal degradation. Septin binding with CLD and CLDOH was confirmed by surface plasmon resonance. CLD disrupted lipid droplet size and increased saturated long-chain dicarboxylic acid production by inhibiting stearoyl-CoA desaturase (SCD) abundance. Neither CLD nor CLDOH induced steatosis, but CLD induced fibrosis in the 3D model of MASLD. To conclude, CLD hepatoxicity is specifically driven by the degradation of septins. CLDOH, was too rapidly metabolized to induce septin degradation. We show that the conversion of CLD to CLDOH reduced hepatotoxicity and fibrosis in liver organoids. This suggests that protective strategies could be explored to reduce the hepatotoxicity of CLD.
Collapse
Affiliation(s)
- Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France.
| | - Sarah Alilat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Pierre-Jean Ferron
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Léonie Dec
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Tahar Bouceba
- Sorbonne University, CNRS, Institut de Biologie Paris-Seine (IBPS), Protein Engineering Platform, Molecular Interaction Service, Paris, France
| | - Rachelle Lanceleur
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Yoann Devriendt-Renault
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Julien Parinet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Pesticides and Marine Biotoxins (PBM) unit, Maison-Alfort Laboratory, 94701 Maison-Alfort CEDEX, France
| | - Bruno Clément
- INSERM, University of Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, Previtox Network, 35000 Rennes, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Toxicology of Contaminants Unit, Fougères Laboratory, 35306 Fougères CEDEX, France
| |
Collapse
|
7
|
Marquardt J, Chen X, Bi E. Reciprocal regulation by Elm1 and Gin4 controls septin hourglass assembly and remodeling. J Cell Biol 2024; 223:e202308143. [PMID: 38448162 PMCID: PMC10913813 DOI: 10.1083/jcb.202308143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
The septin cytoskeleton is extensively regulated by posttranslational modifications, such as phosphorylation, to achieve the diversity of architectures including rings, hourglasses, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here, we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This mutual control between Gin4 and Elm1 ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Liu X, Lu B, Huang H. Investigation of the shared biological mechanisms and common biomarker APTAF1 of sleep deprivation and mild cognitive impairment using integrated bioinformatics analysis. Front Pharmacol 2024; 15:1387569. [PMID: 38694919 PMCID: PMC11061425 DOI: 10.3389/fphar.2024.1387569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: The relationship between sleep loss and cognitive impairment has long been widely recognized, but there is still a lack of complete understanding of the underlying mechanisms and potential biomarkers. The purpose of this study is to further explore the shared biological mechanisms and common biomarkers between sleep loss and cognitive impairment. Methods: The mitochondria-related genes and gene expression data were downloaded from the MitoCarta3.0 and Gene Expression Omnibus (GEO) databases. We identified the differentially expressed mitochondrial-related genes by combing the differentially expressed genes (DEGs) in sleep deprivation (SD) and mild cognitive impairment (MCI) datasets with mitochondria-related gene lists. Shared DEGs were then further analyzed for enrichment analysis. Next, the common biomarker was identified using two machine learning techniques and further validated using two independent GEO datasets. Then GSEA and GSVA were conducted to analyze the functional categories and pathways enriched for the common biomarker. Finally, immune infiltration analysis was used to investigate the correlation of immune cell infiltration with the common biomarker in SD and MCI. Results: A total of 32 mitochondrial-related differentially expressed genes were identified in SD and MCI. GO analysis indicated that these genes were significantly enriched for mitochondrial transport, and KEGG analysis showed they were mainly involved in pathways of neurodegenerative diseases. In addition, ATPAF1, which was significantly down-regulated in both SD and MCI, was identified through machine learning algorithms as the common biomarker with favorable diagnostic performance. GSEA and GSVA revealed that ATPAF1 was mainly involved in metabolic pathways, such as oxidative phosphorylation, acetylcholine metabolic process, valine, leucine and isoleucine degradation. Immune infiltration analysis showed that the expression of ATPAF1 was correlated with changes in immune cells, especially those key immune cell types associated with SD and MCI. Discussion: This study firstly revealed that mitochondrial dysfunction may be the common pathogenesis of sleep loss and mild cognitive impairment and identified ATPAF1 as a possible biomarker and therapeutic target involved in SD and MCI.
Collapse
Affiliation(s)
- Xiaolan Liu
- Wuhan Mental Health Center, Wuhan, Hubei, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Baili Lu
- Wuhan Mental Health Center, Wuhan, Hubei, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| | - Hui Huang
- Wuhan Mental Health Center, Wuhan, Hubei, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei, China
| |
Collapse
|
9
|
Weiler SME, Bissinger M, Rose F, von Bubnoff F, Lutz T, Ori A, Schirmacher P, Breuhahn K. SEPTIN10-mediated crosstalk between cytoskeletal networks controls mechanotransduction and oncogenic YAP/TAZ signaling. Cancer Lett 2024; 584:216637. [PMID: 38242197 DOI: 10.1016/j.canlet.2024.216637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The transcriptional co-activators of the Hippo pathway, YAP and TAZ, are regulated by mechanotransduction, which depends on dynamic actin cytoskeleton remodeling. Here, we identified SEPTIN10 as a novel cytoskeletal protein, which is transcriptionally regulated by YAP/TAZ and whose overexpression correlates with poor survival and vascular invasion in hepatocellular carcinoma (HCC) patients. Functional characterization demonstrated that SEPTIN10 promotes YAP/TAZ-dependent cell viability, migration and invasion of liver cancer cells. Mechanistically, SEPTIN10 interacts with actin and microtubule filaments supporting actin stress fiber formation and intracellular tension through binding to CAPZA2 while concurrently inhibiting microtubule polymerization through the blockage of MAP4 function. This functional antagonism is important for cytoskeleton-dependent feedback activation of YAP/TAZ, as microtubule depolymerization induces actin stress fiber formation and subsequently YAP/TAZ activity. Importantly, the crosstalk between microfilaments and microtubules is mediated by SEPTIN10 as its loss abrogates actin stress fiber formation after microtubule disruption. Together, the YAP/TAZ target gene SEPTIN10 controls the dynamic interplay between actin and microtubule filaments, which feeds back on Hippo pathway activity in HCC cells and thus acts as molecular switch with impact on oncogenic signaling and cancer cell biology.
Collapse
Affiliation(s)
- Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Fabian von Bubnoff
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Teresa Lutz
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Marquardt J, Chen X, Bi E. Elucidating the Synergistic Role of Elm1 and Gin4 Kinases in Regulating Septin Hourglass Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566235. [PMID: 37986786 PMCID: PMC10659281 DOI: 10.1101/2023.11.08.566235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The septin cytoskeleton is extensively regulated by post-translational modifications such as phosphorylation to achieve the diversity of architectures including rings, hourglass, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This unique synergy ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Sala RJ, Ery J, Cuesta-Peredo D, Muedra V, Rodilla V. Complete Blood Count Alterations Prior to the Diagnosis of Colorectal Cancer May Help in the Detection of Synchronous Liver Metastases. J Clin Med 2023; 12:6540. [PMID: 37892677 PMCID: PMC10607722 DOI: 10.3390/jcm12206540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Background and Aims: Colorectal cancer (CRC) represents 10% of all cancers worldwide with the highest incidence in developed countries; its incidence is also increasing in middle- and low-income countries. Population screening programs facilitate early diagnosis of the disease. When the diagnosis is carried out in advanced stages, approximately 80% of patients with liver metastases (LM) are considered unresectable at the time of diagnosis. In our study, variations in blood counts prior to CRC diagnosis were analyzed to assess whether they could be useful in identifying smaller, more manageable metastases at earlier stages for more effective treatment. Methods: A study was carried out using complete blood counts (CBCs) from CRC patients, obtained from primary health centers and the La Ribera University Hospital within La Ribera Health Department, Valencian Community, Spain, between July 2012 and September 2020. Data from CRC patients who presented synchronous liver metastasis (CRLM) were compared with those with CRC without LM at diagnosis (CRC patients). Results: Our analysis shows that at least 15 months before CRC diagnosis, a progressive alteration was observed in CBC parameters in both groups. A higher incidence of anemia (p < 0.001) was observed among CRLM patients in the three months prior to CRC diagnosis than in CRC patients showing no LM. Conclusions: A statistically significant deterioration of CBC was observed in patients with advanced-stage CRC and synchronous or early LM (CRLM) in the three months prior to diagnosis. The primary goal of incorporating CBC variations into predictive models is to identify individuals who are at a greater risk of developing metastatic colon cancer, leading to early diagnosis. Our research improves these models by highlighting a more pronounced and rapid decline in hemoglobin levels among CRLM patients. Identification of metastases at an earlier stage when they are smaller, more manageable, and more amenable to treatment may be a valuable tool to prevent their further progression.
Collapse
Affiliation(s)
- Rafael J. Sala
- Department of General and Digestive Surgery, La Ribera University Hospital, 46600 Alzira, Spain;
- Department of Medicine and Surgery, Faculty of Health Sciences, CEU Cardenal Herrera University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain;
| | - John Ery
- RiskLab, ETH Zürich, 8092 Zürich, Switzerland;
| | - David Cuesta-Peredo
- Department of Quality Management, La Ribera University Hospital, 46600 Alzira, Spain;
| | - Vicente Muedra
- Department of Medicine and Surgery, Faculty of Health Sciences, CEU Cardenal Herrera University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain;
- Department of Anesthesiology, Critical Care and Pain Therapy, La Ribera University Hospital, 46600 Alzira, Spain
| | - Vicent Rodilla
- Department of Pharmacy, Faculty of Health Sciences, CEU Cardenal Herrera University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
12
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
13
|
Gabbert AM, Campanale JP, Mondo JA, Mitchell NP, Myers A, Streichan SJ, Miolane N, Montell DJ. Septins regulate border cell surface geometry, shape, and motility downstream of Rho in Drosophila. Dev Cell 2023; 58:1399-1413.e5. [PMID: 37329886 PMCID: PMC10519140 DOI: 10.1016/j.devcel.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Septins self-assemble into polymers that bind and deform membranes in vitro and regulate diverse cell behaviors in vivo. How their in vitro properties relate to their in vivo functions is under active investigation. Here, we uncover requirements for septins in detachment and motility of border cell clusters in the Drosophila ovary. Septins and myosin colocalize dynamically at the cluster periphery and share phenotypes but, surprisingly, do not impact each other. Instead, Rho independently regulates myosin activity and septin localization. Active Rho recruits septins to membranes, whereas inactive Rho sequesters septins in the cytoplasm. Mathematical analyses identify how manipulating septin expression levels alters cluster surface texture and shape. This study shows that the level of septin expression differentially regulates surface properties at different scales. This work suggests that downstream of Rho, septins tune surface deformability while myosin controls contractility, the combination of which governs cluster shape and movement.
Collapse
Affiliation(s)
- Allison M Gabbert
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Joseph P Campanale
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James A Mondo
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Adele Myers
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sebastian J Streichan
- Physics Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nina Miolane
- Electrical and Computer Engineering Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
14
|
K S V Castro D, V D Rosa H, Mendonça DC, Cavini IA, P U Araujo A, Garratt RC. Dissecting the binding interface of the septin polymerization enhancer Borg BD3. J Mol Biol 2023; 435:168132. [PMID: 37121395 DOI: 10.1016/j.jmb.2023.168132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.
Collapse
Affiliation(s)
- Danielle K S V Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Deborah C Mendonça
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
15
|
Performance of circulating methylated Septin9 gene DNA in diagnosis and recurrence monitoring of colorectal cancer in Western China. Clin Chim Acta 2022; 537:118-126. [DOI: 10.1016/j.cca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
|
16
|
Methylated Septin 9 as a Promising Biomarker in the Diagnosis and Recurrence Monitoring of Colorectal Cancer. DISEASE MARKERS 2022; 2022:7087885. [PMID: 35818587 PMCID: PMC9271001 DOI: 10.1155/2022/7087885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
Purpose. The clinical utility of plasma methylated septin 9 (mSEPT9) DNA in screening and recurrence monitoring for colorectal cancer (CRC) is highly promising. The present study was performed to determine the diagnostic value of mSEPT9 in CRC detection and recurrence monitoring in Chinese patients. Methods. Overall, 616 patients newly diagnosed with CRC and 122 individuals with no evidence of disease were recruited from October 1, 2019, to May 31, 2021, at Fujian Medical University Union Hospital. Plasma and serum samples were collected for analyzing mSEPT9, carcinoembryonic antigen (CEA), and carbohydrate antigen-19-9 (CA19-9). Data on clinicopathological characteristics were collected and analyzed. Sensitivity and specificity were calculated to evaluate the diagnostic potential of each marker; the receiver operating characteristic (ROC) curve was applied for the assessment of diagnostic value, and comparisons among mSEPT9, CEA, CA19-9, and their combination were assessed via ROC curves. Results. mSEPT9 achieved an overall sensitivity and specificity of 72.94% and 81.97%, respectively, with an area under the curve (AUC) value of 0.826, which were higher than those of CEA (sensitivity: 43.96%; specificity: 96.72%; AUC: 0.789) and CA19-9 (sensitivity: 14.99%; specificity: 96.61%; AUC: 0.590). The combination of mSEPT9, CEA, and CA19-9 further improved sensitivity, specificity, and AUC value (sensitivity: 78.43%; specificity: 86.07%; AUC: 0.878), respectively. Notably, the mSEPT9 positivity rate was significantly associated with TNM stage, T stage, N stage, tumor size, vascular invasion, and nerve invasion among patients with CRC. A 100% correlation was observed between the positive results of the mSEPT9 test and recurrence or metastasis in patients after therapeutic intervention. Conclusion. Our findings suggest that mSEPT9 may represent a potential biomarker for the diagnosis and prognosis of CRC compared with CEA and CA19-9. Postoperative mSEPT9 status may represent the first noninvasive marker of CRC recurrence or metastasis.
Collapse
|
17
|
Sohn MY, Choi KM, Joo MS, Kang G, Woo WS, Kim KH, Son HJ, Lee JH, Kim DH, Park CI. Molecular characterization and expression analysis of septin gene family and phagocytic function of recombinant septin 2, 3 and 8 of starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:251-262. [PMID: 35577319 DOI: 10.1016/j.fsi.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Septin is an evolutionarily conserved family of GTP-binding proteins. Septins are known to be involved in a variety of cellular processes, including cell division, chromosome separation, cell polarity, motility, membrane dynamics, exocytosis, apoptosis, phagocytosis, DNA damage responses, and other immune responses. In this study, the sequences of the septin gene family of starry flounder were obtained using NGS sequencing, and the integrity of the sequences was verified through cloning and sequencing. At first, the amino acid sequence was annotated using the cDNA sequence, and then, the gene sequence was verified through multiple sequence alignment and phylogenetic analyses using the related conserved sequences. The septin gene family was classified into three subgroups based on the phylogenetic analysis. High conservation within the domain and homology between the genes reported in different species were confirmed. The expression level of septin gene family mRNA in each tissue of healthy starry flounder was evaluated to confirm the tissue- and gene-specific expression levels. Additionally, as a result of the analysis of mRNA expression after simulated pathogen infection, significant expression changes and characteristics were confirmed upon infection with bacteria (Streptococcus parauberis PH0710) and virus (VHSV). Based on the current results and that of previous studies, to confirm the immunological function, Septin 2, 3, and 8 were produced as recombinant proteins based on the amino acid sequences, and their role in phagocytosis was further investigated. The results of this study indicate that septin gene family plays a complex and crucial role in the host immune response to pathogens of starry flounder.
Collapse
Affiliation(s)
- Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jeong-Ho Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, South Korea.
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
18
|
Lu DC, Zhang QF, Li L, Luo XK, Liang B, Lu YH, Hu BL, Jiang HX. Methylated Septin9 has moderate diagnostic value in colorectal cancer detection in Chinese population: a multicenter study. BMC Gastroenterol 2022; 22:232. [PMID: 35546391 PMCID: PMC9097435 DOI: 10.1186/s12876-022-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The detection rate of methylated Septin9 (mSEPT9) in colorectal cancer (CRC) is varied greatly across the studies. This study aimed to evaluate the diagnostic ability of mSEPT9 in CRC, and compare the diagnostic efficacy with fecal immunochemical test (FIT). METHODS 326 subjects from four centers were prospectively recruited, including 179 CRC and 147 non-CRC subjects. The plasma was collected for mSEPT9 and CEA, AFP, CA125, CA153 and CA199 test, and fecal samples for FIT tests. Sensitivity, specificity and area under the curve (AUC) of receiver operating characteristic curve were calculated to evaluate the diagnostic value of each biomarker. RESULTS The positive rate in mSEPT9 and FIT, and the level of CEA, CA125 and CA199 were significantly higher in CRC compared with non-CRC subjects. The mSEPT9 positive rate was not associated with TNM stage and tumor stage. The sensitivity, specificity and AUC of mSEPT9 in diagnostic CRC were 0.77, 0.88 and 0.82, respectively, while the value in FIT was 0.88, 0.80 and 0.83, respectively. mSEPT9 and FIT have higher AUC value than that of CEA, CA125 and CA199. Combination of both mSEPT9 and FIT positive increased sensitivity and AUC to 0.98 and 0.83, respectively, but the specificity was declined. mSEPT9 has a slightly low sensitivity in diagnosis of colon cancer (0.87) compared with rectal cancer (0.93). CONCLUSION mSEPT9 demonstrated moderate diagnostic value in CRC detection, which was similar to the FIT but superior to the CEA, CA125 and CA199. Combination of mSEPT9 and FIT further improved diagnostic sensitivity in CRC. TRIAL REGISTRATION ChiCTR2000038319.
Collapse
Affiliation(s)
- Dong-Cheng Lu
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi, China
| | - Qi-Fang Zhang
- Department of Gastroenterology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, 541002, China
| | - Li Li
- Department of Gastroenterology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xian-Ke Luo
- Department of Gastroenterology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530001, China
| | - Bin Liang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi, China
| | - Yi-Han Lu
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Hedi Road 71, Nanning, 530021, China.
| | - Hai-Xing Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, Guangxi, China.
| |
Collapse
|
19
|
Zou D, Chen Y, Wu N, Zhang Y, Ouyang G, Mu Q. MLL-SEPT5 Fusion Transcript in Myelodysplastic Syndrome Patient With t(11;22)(q23;q11). Front Med (Lausanne) 2021; 8:783229. [PMID: 35004749 PMCID: PMC8729882 DOI: 10.3389/fmed.2021.783229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives: This study aimed to identify unknown mixed lineage leukemia (MLL) translocation partner genes in a de novo patient with myelodysplastic syndrome (MDS) with t(11;22)(q23;q11) and investigate the clinical and molecular features of this patient. Methods: Bone marrow cells were assessed by karyotype analysis to reveal chromosomal abnormalities. Fluorescence in situ hybridization (FISH) was performed to detect MLL gene rearrangement using an MLL-specific break-apart probe. LDI-PCR and RT-PCR were performed, and the PCR products were sequenced using an Illumina MiSeq sequencer (Illumina, San Diego, CA, USA). The sequence data of the PCR products were analyzed using bioinformatics tools. Meanwhile, clinical data were collected to evaluate the prognosis of the patient. Results: Chromosomal karyotype analysis showed that the karyotype of the patient was 46, XX, t(11;22)(q23;q11)[10]/46, XX[1]. Subsequently, FISH data confirmed MLL gene rearrangement in the patient. LDI-PCR precisely showed that SEPT5 was the MLL translocation partner gene. RT-PCR and sequencing analysis disclosed the presence of MLL-SEPT5 fusion transcript and confirmed the fusion between MLL exon 8 and SEPT5 exon 3. Moreover, the patient had a recurrence shortly after allogeneic hematopoietic stem cell transplantation. Conclusion: Although the MLL-SEPT5 fusion transcript was occasionally described in acute myeloid leukemia, it was first identified in MDS. Patients with MLL-SEPT5 fusion gene exhibited a poor prognosis even with an aggressive treatment.
Collapse
Affiliation(s)
- Duobing Zou
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| | - Ying Chen
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| | - Ningning Wu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| | - Yi Zhang
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, China
- *Correspondence: Guifang Ouyang
| | - Qitian Mu
- Laboratory of Stem Cell Transplantation, Ningbo First Hospital, Ningbo, China
- Qitian Mu
| |
Collapse
|
20
|
Marquardt J, Chen X, Bi E. Septin Assembly and Remodeling at the Cell Division Site During the Cell Cycle. Front Cell Dev Biol 2021; 9:793920. [PMID: 34901034 PMCID: PMC8656427 DOI: 10.3389/fcell.2021.793920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The septin family of proteins can assemble into filaments that further organize into different higher order structures to perform a variety of different functions in different cell types and organisms. In the budding yeast Saccharomyces cerevisiae, the septins localize to the presumptive bud site as a cortical ring prior to bud emergence, expand into an hourglass at the bud neck (cell division site) during bud growth, and finally “split” into a double ring sandwiching the cell division machinery during cytokinesis. While much work has been done to understand the functions and molecular makeups of these structures, the mechanisms underlying the transitions from one structure to another have largely remained elusive. Recent studies involving advanced imaging and in vitro reconstitution have begun to reveal the vast complexity involved in the regulation of these structural transitions, which defines the focus of discussion in this mini-review.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Neubauer K, Zieger B. Role of Septins in Endothelial Cells and Platelets. Front Cell Dev Biol 2021; 9:768409. [PMID: 34858990 PMCID: PMC8632023 DOI: 10.3389/fcell.2021.768409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Septins are conserved cytoskeletal GTP-binding proteins identified in almost all eukaryotes except higher plants. Mammalian septins comprise 13 family members with either ubiquitous or organ- and tissue-specific expression patterns. They form filamentous oligomers and complexes with other proteins to serve as diffusions barrier and/or multi-molecular scaffolds to function in a physiologically regulated manner. Diverse septins are highly expressed in endothelial cells and platelets, which play an important role in hemostasis, a process to prevent blood loss after vascular injury. Endothelial septins are involved in cellular processes such as exocytosis and in processes concerning organismal level, like angiogenesis. Septins are additionally found in endothelial cell-cell junctions where their presence is required to maintain the integrity of the barrier function of vascular endothelial monolayers. In platelets, septins are important for activation, degranulation, adhesion, and aggregation. They have been identified as mediators of distinct platelet functions and being essential in primary and secondary hemostatic processes. Septin-knockout mouse studies show the relevance of septins in several aspects of hemostasis. This is in line with reports that dysregulation of septins is clinically relevant in human bleeding disorders. The precise function of septins in the biology of endothelial cells and platelets remains poorly understood. The following mini-review highlights the current knowledge about the role of septin cytoskeleton in regulating critical functions in these two cell types.
Collapse
Affiliation(s)
- Katharina Neubauer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Li L, Zhu XM, Su ZZ, Del Poeta M, Liu XH, Lin FC. Insights of roles played by septins in pathogenic fungi. Virulence 2021; 12:1550-1562. [PMID: 34097566 PMCID: PMC8189056 DOI: 10.1080/21505594.2021.1933370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Septins, a conserved family of GTP-binding proteins, are widely recognized as an essential cytoskeletal component, playing important roles in a variety of biological processes, including division, polarity, and membrane remodeling, in different eukaryotes. Although the roles played by septins were identified in the model organism Saccharomyces cerevisiae, their importance in other fungi, especially pathogenic fungi, have recently been determined. In this review, we summarize the functions of septins in pathogenic fungi in the cell cycle, autophagy, endocytosis and invasion host-microbe interactions that were reported in the last two years in the field of septin cell biology. These new discoveries may be expanded to investigate the functions of septin proteins in fungal pathogenesis and may be of wide interest to the readers of Microbiology and Molecular Pathology.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen-Zhu Su
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Hanbuli HME, Amer SII, Ibrahim HA. Expression of Septin 2 and Her2/neu in Colorectal Cancer. J Microsc Ultrastruct 2021; 10:197-203. [PMID: 36687331 PMCID: PMC9846928 DOI: 10.4103/jmau.jmau_38_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 07/05/2021] [Indexed: 01/25/2023] Open
Abstract
Background Colorectal cancer (CRC) is a common and lethal disease. Septin 2 belongs to the same class of GTPases as the RAS oncogenes influence the invasion and metastasis of many types of tumor cells. Furthermore, HER2/neu is involved in the tumor genesis and progression of various types of tumors. The role of both molecules is still questionable in CRC. Aim The aim of the study is to examine the expression of septin 2 and Her2/neu in patients with CRC. Materials and Methods The study was conducted on 2 groups; the first group consisted of 70 paraffin blocks for CRC patients and the second group was formed of 24 blocks from patients diagnosed as colorectal adenoma. For each adenoma and carcinoma case, a section was immunohistochemically stained using antihuman SEPT2 polyclonal antibody. For each carcinoma case, another section was immunostained using monoclonal anti-HER2/neu. The results were statistically analyzed and compared with the collected clinicopathologic data of the cases. Results For the carcinoma patients, there was a significant association between SEPT2 staining intensity and histologic type (P = 0.001) and grade (P < 0.001), tumor T (P = 0.001) and N (P = 0.011) stages and the presence of lymphovascular invasion (P < 0.001) and a significant association between Her2/neu immunoreactivity scores (IRSs) and histologic grade (P = 0.048), tumor T (P < 0.001) and N (P = 0.019) stages and the presence of perineural (P = 0.004) and lymphovascular (P = 0.003) invasion. In colonic adenoma patients, there was a significant relation between septin 2 IRSs and the grade of dysplasia in the adenoma (P < 0.001) and significant relation with its expression in carcinoma group (P < 0.001). Conclusion A potential prognostic role of septin 2 and Her2/neu for patients with CRC is suggested as expression of both markers was associated with many important prognostic clinicopathologic variables in patients of CRC.
Collapse
Affiliation(s)
- Hala M. El Hanbuli
- Department of Pathology, Faculty of Medicine, Fayoum University, Faiyum, Egypt,Address for correspondence: Associate Prof. Hala M. El Hanbuli, Department of Pathology, Faculty of Medicine, Fayoum University, Keman Fares, Fayoum Governorate, Faiyum 63514, Egypt. E-mail:
| | | | | |
Collapse
|
24
|
Ioannou S, Sutherland K, Sussman DA, Deshpande AR. Increasing uptake of colon cancer screening in a medically underserved population with the addition of blood-based testing. BMC Cancer 2021; 21:966. [PMID: 34454457 PMCID: PMC8401245 DOI: 10.1186/s12885-021-08678-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adherence to colorectal cancer screening in the United States is suboptimal, particularly in medically underserved populations due to significant barriers to care. Unique accessible, low-cost, and non-invasive screening tests for this population could greatly benefit current rates. In this article, we assess patient preference and the impact of offering a blood-based test on screening rates in a cost-free health fair setting from April 2017 to April 2019. METHODS Participants who met colorectal cancer screening eligibility criteria set forth by the United States Preventive Services Task Force were recommended to attend the colon cancer screening station. Those participants who elected to attend were offered various, accepted screening methods, and if they declined, were offered alternative blood-based testing. Screening rates, test outcomes, and the rate of follow up completion of colonoscopy were measured and compared with historic screening outcomes. RESULTS Of 1401 participants who were recommended to attend, 640 (45.7%) participants were evaluated at the colon cancer screening station, of whom 460 were eligible for testing. Amongst these, none selected colonoscopy, 30 (6.5%) selected fecal immunochemical testing, and 430 (93.5%) selected blood-based testing. Only 2 participants returned the fecal immunochemical tests. In the blood test cohort, 88 were positive and 20 received a follow up colonoscopy. CONCLUSIONS Based on this assessment, blood-based testing is an effective method to increase screening rates in medically underserved populations, though efforts to further improve access to follow up colonoscopy are necessary.
Collapse
Affiliation(s)
- Stephanie Ioannou
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| | - Kyle Sutherland
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Daniel A Sussman
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Amar R Deshpande
- University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| |
Collapse
|
25
|
Vergara C, Valencia A, Thio CL, Goedert JJ, Mangia A, Piazzolla V, Johnson E, Kral AH, O’Brien TR, Mehta SH, Kirk GD, Kim AY, Lauer GM, Chung RT, Cox AL, Peters MG, Khakoo SI, Alric L, Cramp ME, Donfield SM, Edlin BR, Busch MP, Alexander G, Rosen HR, Murphy EL, Wojcik GL, Taub MA, Thomas DL, Duggal P. A Multiancestry Sex-Stratified Genome-Wide Association Study of Spontaneous Clearance of Hepatitis C Virus. J Infect Dis 2021; 223:2090-2098. [PMID: 33119750 PMCID: PMC8205624 DOI: 10.1093/infdis/jiaa677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Spontaneous clearance of acute hepatitis C virus (HCV) infection is more common in women than in men, independent of known risk factors. METHODS To identify sex-specific genetic loci, we studied 4423 HCV-infected individuals (2903 male, 1520 female) of European, African, and Hispanic ancestry. We performed autosomal, and X chromosome sex-stratified and combined association analyses in each ancestry group. RESULTS A male-specific region near the adenosine diphosphate-ribosylation factor-like 5B (ARL5B) gene was identified. Individuals with the C allele of rs76398191 were about 30% more likely to have chronic HCV infection than individuals with the T allele (OR, 0.69; P = 1.98 × 10-07), and this was not seen in females. The ARL5B gene encodes an interferon-stimulated gene that inhibits immune response to double-stranded RNA viruses. We also identified suggestive associations near septin 6 and ribosomal protein L39 genes on the X chromosome. In box sexes, allele G of rs12852885 was associated with a 40% increase in HCV clearance compared with the A allele (OR, 1.4; P = 2.46 × 10-06). Septin 6 facilitates HCV replication via interaction with the HCV NS5b protein, and ribosomal protein L39 acts as an HCV core interactor. CONCLUSIONS These novel gene associations support differential mechanisms of HCV clearance between the sexes and provide biological targets for treatment or vaccine development.
Collapse
Affiliation(s)
- Candelaria Vergara
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandra Mangia
- Liver Unit IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Valeria Piazzolla
- Liver Unit IRCCS “Casa Sollievo della Sofferenza,” San Giovanni Rotondo, Italy
| | - Eric Johnson
- RTI International, Research Triangle Park, North Carolina, USA
| | - Alex H Kral
- RTI International, Research Triangle Park, North Carolina, USA
| | - Thomas R O’Brien
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gregory D Kirk
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea L Cox
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marion G Peters
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, California, USA
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Rangueil, UMR 152 IRD, Toulouse 3 University, France
| | | | | | - Brian R Edlin
- SUNY Downstate College of Medicine, Brooklyn, New York, USA
| | - Michael P Busch
- University of California and Vitalant Research Institute, San Francisco, California, USA
| | - Graeme Alexander
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, Hampstead, London, United Kingdom
| | | | - Edward L Murphy
- University of California and Vitalant Research Institute, San Francisco, California, USA
| | - Genevieve L Wojcik
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Margaret A Taub
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Priya Duggal
- Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
A systematic review and meta-analysis of the DNA methylation in colorectal cancer among Iranian population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Özkara G, Ersoy Tunali N. SEPTIN12 c.474 G > A polymorphism as a risk factor in teratozoospermic patients. Mol Biol Rep 2021; 48:4073-4081. [PMID: 34057684 DOI: 10.1007/s11033-021-06417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/17/2021] [Indexed: 12/01/2022]
Abstract
Teratozoospermia is a condition related to poor morphologically normal sperm count below the lower reference limit, which could hinder natural conception. Single nucleotide polymorphisms (SNPs) in the genes involved in sperm production and testicular function are proved to be risk factors, resulting in decreased sperm parameters and defects in sperm morphology. c.474 G > A polymorphism in the SEPTIN12 gene which is one of the testis-specific genes creates a novel splice variant and the resulting truncated protein was previously found to be more prevalent in infertile men. We aimed to investigate the association of SEPTIN12 c.474 G > A polymorphism with male infertility in teratozoospermia patients. Forty-eight teratozoospermic patients, diagnosed according to Kruger's criteria and 164 fertile controls who fathered at least 1 child within 3 years without assisted reproductive technologies were included into our prospective randomized controlled study. PCR-RFLP method was used for genotyping. Although no statistical difference was found between teratozoospermic patients and fertile controls in terms of genotype distributions, significance was identified between the genotypes of all and non-smoking teratozoopermic patients in terms of neck defects. SEPTIN12 c.474 G > A polymorphism was shown to be associated with sperm neck defects in teratozoospermic patients using the dominant statistical model. Smoking was identified as a risk factor for the sperm morphology defects in teratozoospermic A allele carriers.
Collapse
Affiliation(s)
- Gülçin Özkara
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, İstanbul University, İstanbul, Turkey
| | - Nagehan Ersoy Tunali
- Department of Molecular Biology Genetics, İstanbul Medeniyet University, İstanbul, Turkey.
| |
Collapse
|
28
|
Nassar FJ, Msheik ZS, Nasr RR, Temraz SN. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021; 13:111. [PMID: 34001239 PMCID: PMC8130320 DOI: 10.1186/s13148-021-01095-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) is a deadly disease whose death rate ranks second among cancers though its incidence ranks third. Early CRC detection is key and is associated with improved survival outcomes. However, existing tests for CRC diagnosis have several weaknesses thus rendering them inefficient. Moreover, reliable prognostic tests that can predict the overall cancer outcome and recurrence of the disease as well as predictive markers that can assess effectiveness of therapy are still lacking. Thus, shifting to noninvasive liquid biopsy or blood-based biomarkers is vital to improving CRC diagnosis, prognosis, and prediction. Methylated circulating tumor DNA (ctDNA) has gained increased attention as a type of liquid biopsy that is tumor-derived fragmented DNA with epigenetic alterations. Methylated ctDNA are more consistently present in blood of cancer patients as compared to mutated ctDNA. Hence, methylated ctDNA serves as a potential biomarker for CRC that is worth investigating. In this review, we explore what has been reported about methylated ctDNA as a biomarker for CRC diagnosis that can distinguish between CRC patients or those having adenoma and healthy controls as validated specifically through ROC curves. We also examine methylated ctDNA as a biomarker for CRC prognosis and prediction as confirmed through robust statistical analyses. Finally, we discuss the major technical challenges that limits the use of methylated ctDNA for clinical application and suggest possible recommendations to enhance its usage.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Zahraa S Msheik
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon
| | - Rihab R Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Sally N Temraz
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
29
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
30
|
Lewin J, Kottwitz D, Aoyama J, deVos T, Garces J, Hasinger O, Kasielke S, Knaust F, Rathi P, Rausch S, Weiss G, Zipprich A, Mena E, Fong TL. Plasma cell free DNA methylation markers for hepatocellular carcinoma surveillance in patients with cirrhosis: a case control study. BMC Gastroenterol 2021; 21:136. [PMID: 33765926 PMCID: PMC7995734 DOI: 10.1186/s12876-021-01714-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of death in patients with cirrhosis, primarily due to failed early detection. HCC screening is recommended among individuals with cirrhosis using biannual abdominal ultrasound, for earlier tumor detection, administration of curative treatment, and improved survival. Surveillance by imaging with or without biomarkers such as alpha-fetoprotein (AFP) remains suboptimal for early stage HCC detection. Here we report on the development and assessment of methylation biomarkers from liquid biopsies for HCC surveillance in cirrhotic patients. METHODS DNA methylation markers including the HCCBloodTest (Epigenomics AG) and a DNA-methylation panel established by next generation sequencing (NGS) were assessed using a training/testing design. The NGS panel algorithm was established in a training study (41 HCC patients; 46 cirrhotic non-HCC controls). For testing, plasma samples were obtained from cirrhotic patients (Child class A or B) with (60) or without (103) early stage HCC (BCLC stage 0, A, B). The assays were then tested using blinded sample sets and analyzed by preset algorithms. RESULTS The HCCBloodTest and the NGS panel exhibited 76.7% and 57% sensitivities at 64.1% and 97% specificity, respectively. In a post-hoc analysis, a combination of the NGS panel with AFP (20 ng/mL) achieved 68% sensitivity at 97% specificity (AUC = 0.9). CONCLUSIONS Methylation biomarkers in cell free plasma DNA provide a new alternative for HCC surveillance. Multiomic panels comprising DNA methylation markers with other biological markers, such as AFP, provide an option to further increase the overall clinical performance of surveillance via minimally invasive blood samples. TRIAL REGISTRATION Test set study-ClinicalTrials.gov (NCT03804593) January 11, 2019, retrospectively registered.
Collapse
Affiliation(s)
- Jörn Lewin
- Epigenomics AG, Geneststr. 5, 10829, Berlin, Germany
| | | | | | - Theo deVos
- Epigenomics Inc., 11055 Flintkote Ave, Suite A, San Diego, CA, 92121, USA.
| | - Jorge Garces
- Epigenomics AG, Geneststr. 5, 10829, Berlin, Germany
| | | | | | | | - Preeti Rathi
- Epigenomics AG, Geneststr. 5, 10829, Berlin, Germany
| | | | - Gunter Weiss
- Epigenomics AG, Geneststr. 5, 10829, Berlin, Germany
| | - Alexander Zipprich
- Universitätsklinik und Poliklinik für Innere Medizin I, UKH Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Edward Mena
- California Liver Research Institute, 301 S. Fair Oaks Avenue, Suite 409, Pasadena, CA, 91105, USA
| | - Tse-Ling Fong
- Keck School of Medicine, USC, 1510 San Pablo Street, 2/F, Los Angeles, CA, 90033, USA
| |
Collapse
|
31
|
Wang P, Zhang X, Huo H, Wang S, Song X, Huo J. Septin14, a gene specifically expressed in the testis and seminal vesicle of the Banna mini-pig inbred line (BMI). Anim Reprod 2021; 17:e20200521. [PMID: 33791027 PMCID: PMC7995261 DOI: 10.1590/1984-3143-ar2020-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Septin14 is an important spermatogenesis related gene involved in the pathogenesis of male infertility that has not been well studied. Here, full-length Septin14 cDNA of the Banna mini-pig inbred line (BMI) was cloned using the RACE method and expressed in pig kidney epithelial cells (PK15) and E. coli Rosetta (DE3) cells. Septin14 expression was identified in somatic tissues and testis in different developmental stages. The pig Septin14 CDS is 1,299 bp long, and encodes a peptide (or protein) of 432 amino acids (MW=50.4 kDa). Phylogenetic analysis indicated that pig Septin14 was highly evolutionarily conserved. Subcellular localization of GFP-tagged Septin14 fusion protein revealed that Septin14 was distributed throughout the testicular cells. Among 34 pig tissues, Septin14 mRNA was found specifically in testis and seminal vesicle. In six different postnatal developmental stages, the testicular level of Septin14 mRNA was barely detectable on day 2, while the highest level occurred on day 75. The spatiotemporal expression profile of Septin14, reported herein for the first time in pig, indicated that Septin14 might be involved in the division, development and apoptosis of germ cells. Furthermore, using a pET prokaryotic expression system, we expressed and isolated recombinant 67.9 kDa Septin14 protein.
Collapse
Affiliation(s)
- Pei Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xia Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hailong Huo
- Teaching Affairs Department, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Shuyan Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xue Song
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinlong Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
32
|
SEPT9 Gene Methylation as a Noninvasive Marker for Hepatocellular Carcinoma. DISEASE MARKERS 2020; 2020:6289063. [PMID: 33178361 PMCID: PMC7647768 DOI: 10.1155/2020/6289063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Background Early detection appears to be the most effective approach to improve the overall survival of patients with hepatocellular carcinoma (HCC). We evaluated the potential performance of plasma SEPT9 methylation (mSEPT9) as a noninvasive biomarker for the diagnosis of patients with HCC. Methods A total of 373 subjects were included, and the group consisted of 104 HCC patients, 95 with an at-risk disease, and 174 healthy controls (HC). The methylation of mSEPT9 was determined using methylation-specific fluorescence quantitative PCR. The diagnostic performance of plasma mSEPT9 for HCC was assessed in a single-blind manner. Results The receiver operating characteristic (ROC) curve showed that plasma mSEPT9 can be used to detect and discriminate HCC with an area under the ROC curve (AUROC) of 0.961, a sensitivity of 82.7%, and specificity of 96.0% from HC. These results showed that plasma mSEPT9 had better diagnostic performance than serum alpha fetoprotein (AFP) (AUROC 0.881, sensitivity 57.7%, and specificity 98.3%). Similar results were noted in the detection of early-stage HCC. When combined with serum AFP, the sensitivity increased to 91.3% and 87.7% for the detection of HCC and early-stage HCC,respectively. Notably, the levels of plasma mSEPT9 dramatically decreased after surgery (P = 0.001). Conclusions Plasma SEPT9 methylation might serve as a useful and noninvasive biomarker for the diagnosis of HCC and can be used to evaluate the therapeutic efficacy of HCC treatment.
Collapse
|
33
|
Ai Y, Tang Z, Zou C, Wei H, Wu S, Huang D. circ_SEPT9, a newly identified circular RNA, promotes oral squamous cell carcinoma progression through miR-1225/PKN2 axis. J Cell Mol Med 2020; 24:13266-13277. [PMID: 33090705 PMCID: PMC7701517 DOI: 10.1111/jcmm.15943] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) represent a newly discovered class of endogenous non-coding RNAs which are widely expressed and play important roles in disease progression. However, the function of circRNAs in oral squamous cell carcinoma (OSCC) still remains largely unknown. In this research, we found that circ_SEPT9 was highly expressed in OSCC cell lines and tumour tissues. Results showed that circ_SEPT9 promoted OSCC proliferation and tumour growth. And, circ_SEPT9 also enhanced the migration and invasion of OSCC cells. Mechanically, we found that circ_SEPT9 acted as a sponge for miR-1225 to rescue PKN2 expression in OSCC cells. Inhibition of circ_SEPT9/miR-1225/PKN2 pathway could effectively block the proliferation and metastasis of OSCC cells. Our study provides strong evidence that circ_SEPT9/miR-1225/PKN2 axis is a promising target for OSCC treatment.
Collapse
Affiliation(s)
- Yilong Ai
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Zhe Tang
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Chen Zou
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Haigang Wei
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| | - Dahong Huang
- Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
34
|
Jiao F, Cannon KS, Lin YC, Gladfelter AS, Scheuring S. The hierarchical assembly of septins revealed by high-speed AFM. Nat Commun 2020; 11:5062. [PMID: 33033254 PMCID: PMC7545167 DOI: 10.1038/s41467-020-18778-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin S Cannon
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yi-Chih Lin
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Garge RK, Laurent JM, Kachroo AH, Marcotte EM. Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes. Genetics 2020; 215:1153-1169. [PMID: 32522745 PMCID: PMC7404242 DOI: 10.1534/genetics.120.303378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Many gene families have been expanded by gene duplications along the human lineage, relative to ancestral opisthokonts, but the extent to which the duplicated genes function similarly is understudied. Here, we focused on structural cytoskeletal genes involved in critical cellular processes, including chromosome segregation, macromolecular transport, and cell shape maintenance. To determine functional redundancy and divergence of duplicated human genes, we systematically humanized the yeast actin, myosin, tubulin, and septin genes, testing ∼81% of human cytoskeletal genes across seven gene families for their ability to complement a growth defect induced by inactivation or deletion of the corresponding yeast ortholog. In five of seven families-all but α-tubulin and light myosin, we found at least one human gene capable of complementing loss of the yeast gene. Despite rescuing growth defects, we observed differential abilities of human genes to rescue cell morphology, meiosis, and mating defects. By comparing phenotypes of humanized strains with deletion phenotypes of their interaction partners, we identify instances of human genes in the actin and septin families capable of carrying out essential functions, but failing to fully complement the cytoskeletal roles of their yeast orthologs, thus leading to abnormal cell morphologies. Overall, we show that duplicated human cytoskeletal genes appear to have diverged such that only a few human genes within each family are capable of replacing the essential roles of their yeast orthologs. The resulting yeast strains with humanized cytoskeletal components now provide surrogate platforms to characterize human genes in simplified eukaryotic contexts.
Collapse
Affiliation(s)
- Riddhiman K Garge
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Jon M Laurent
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York 10016
| | - Aashiq H Kachroo
- The Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montreal, H4B 1R6 Quebec, Canada
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| |
Collapse
|
36
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
37
|
A First Step to a Biomarker of Curative Surgery in Colorectal Cancer by Liquid Biopsy of Methylated Septin 9 Gene. DISEASE MARKERS 2020; 2020:9761406. [PMID: 32566042 PMCID: PMC7293729 DOI: 10.1155/2020/9761406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Objectives To confirm that patients affected by colorectal cancer have the V2 region of Septin 9 (SEPT9) gene hypermethylated in the circulating free DNA from a peripheral blood sample before surgery and to determine if this hypermethylated DNA disappears from the patients after complete resection of the tumour. Methods Plasma from 10 patients with colorectal cancer was collected preoperative and three months after surgery. The analysis of the methylation status of the promoter region of the SEPT9 gene was performed using a 7500 Fast Real-Time PCR System. Results Hypermethylation of SEPT9 gene was detected in 8 out of 10 preoperative samples (one negative result was probed to be a Lynch syndrome) and in 4 out of 10 postoperative samples matching with the cases of recurrence or persistence of disease. This means that, in this sample, the preoperative sensitivity and specificity of the test were 88.9% and 100%, respectively, and there is 100% correlation between the positive results of the SEPT9 test and a recurrence/persistence of the disease in patients after surgical resection. Conclusions Our study shows that circulating hypermethylated SEPT9 is a specific colorectal cancer biomarker. This hypermethylated SEPT9 DNA disappears around three months after surgery and that circulating hypermethylated SEPT9 may be the first noninvasive marker for postsurgical diagnosis; this conclusion must be confirmed with a more significant number of patients.
Collapse
|
38
|
Li J, Wang G, Jiang J, Zhang L, Zhou P, Ren H. MicroRNA-127-3p regulates myoblast proliferation by targeting Sept7. Biotechnol Lett 2020; 42:1633-1644. [PMID: 32382971 DOI: 10.1007/s10529-020-02906-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are highly conserved, endogenous small RNAs that regulate gene expression at the post-transcriptional level. miR-127 plays an essential role in myogenic differentiation in vivo and in vitro. However, it is not clear whether miR-127-3p affects myogenic cell proliferation. METHODS The detailed function of miR-127-3p in proliferative C2C12 cell lines and further identified its regulatory mechanism by qRT-PCR, western blot, flow cytometry analysis and luciferase reporter assay. RESULTS Overexpression of miR-127-3p significantly inhibited proliferation of C2C12 cells and vice versa. Sept7 was a target gene of miR-127-3p using dual-luciferase reporter assay, qRT-PCR, and western blotting. The RNA interference analysis, in which Sept7 was downregulated, showed that Sept7 significantly promoted the proliferation of C2C12 cells. Besides, the expression level of Sept7 was detected analysis in muscle cells and tissues. CONCLUSIONS These findings reveal that miR-127-3p regulates myoblast proliferation by targeting Sept7.
Collapse
Affiliation(s)
- Jie Li
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Gaofu Wang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Jing Jiang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Li Zhang
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Peng Zhou
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Hangxing Ren
- Herbivorous Livestock Institute, Chongqing Academy of Animal Sciences, Chongqing, 402460, China.
| |
Collapse
|
39
|
Zhao X, Feng H, Wang Y, Wu Y, Guo Q, Feng Y, Ma M, Guo W, Song X, Zhang Y, Han S, Cao L. Septin4 promotes cell death in human colon cancer cells by interacting with BAX. Int J Biol Sci 2020; 16:1917-1928. [PMID: 32398959 PMCID: PMC7211164 DOI: 10.7150/ijbs.44429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 01/10/2023] Open
Abstract
Septin4 is a tumor suppressor protein that promotes cell programmed death in various cell types through specifically antagonizing XIAP (X linked inhibitor of apoptosis), little is known its other novel binding partner and role in colorectal cancer. In this study, we found that Septin4 significantly expressed lower in human colon cancer when compared to peri-tumor benign cells, and its low expression was significantly associated with worse prognostic outcomes. Furthermore, Septin4 participated in DOX-induced colon cancer cell death in vitro. Septin4-overexpressing colon cancer cells displayed augmented apoptotic cell death and ROS production. Additionally, Septin4-knockdown cells revealed a resistance of DOX-induced cell death and reduced ROS production. Importantly, we first identified that BAX is a novel Septin4 binding partner and the interaction is enhanced under DOX treatment. Finally, Septin4-knockdown promoted colon cells growth in vivo. These observations suggest that Septin4 as an essential molecule contribute to the occurrence and development of human colon cancer and provide new technical approaches for targeted treatment of this disease.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hao Feng
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Wang
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province, China
| | - Yanmei Wu
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province, China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Yanling Feng
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Mengtao Ma
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Wendong Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
40
|
Hissong E, Pittman ME. Colorectal carcinoma screening: Established methods and emerging technology. Crit Rev Clin Lab Sci 2019; 57:22-36. [PMID: 31603697 DOI: 10.1080/10408363.2019.1670614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Colorectal carcinoma screening programs have shown success in lowering both the incidence and mortality rate of colorectal carcinoma at a population level, in part because this carcinoma is relatively slow growing and has an identifiable premalignant lesion. Still, many patients do not undergo the recommended screening for colorectal carcinoma, and of those who do, a subset may be over- or under-diagnosed by the currently available testing methods. The primary purpose of this article is to review the data regarding currently available colorectal cancer screening modalities, which include fecal occult blood testing, direct colonic visualization, and noninvasive imaging techniques. In addition, readers will be introduced to a variety of biomarkers that may serve as stand-alone or adjunct tests in the future. Finally, there is a brief discussion of the current epidemiologic considerations that public health officials must address as they create population screening guidelines. The data we provide as laboratory physicians and scientists are critical to the construction of appropriate recommendations that ultimately decrease the burden of disease from colorectal carcinoma.
Collapse
Affiliation(s)
- Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Meredith E Pittman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| |
Collapse
|
41
|
Shen N, Wang T, Li D, Zhu Y, Xie H, Lu Y. Hypermethylation of the SEPT9 Gene Suggests Significantly Poor Prognosis in Cancer Patients: A Systematic Review and Meta-Analysis. Front Genet 2019; 10:887. [PMID: 31608117 PMCID: PMC6761278 DOI: 10.3389/fgene.2019.00887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Aberrant hypermethylation of the Septin 9 (SEPT9) is an early event in several human cancers, and increasing studies have reported good performance of methylated SEPT9 (mSEPT9) in cancer diagnosis. Recent studies further focused on its value in cancer prognosis, but results are not clearly elucidated. Methods: A comprehensive search to identify relevant studies about the association between mSEPT9 and cancer prognosis was conducted through the EMBASE, PubMed, and Web of Science databases (up to January 2019). The main outcomes were overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) and 95% confidence interval (CI) for OS and DFS were extracted from each included study and pooled using a random-effects model. Results: Ten eligible studies comprising 1,266 cancer patients were included. Results demonstrated that mSEPT9 was associated with poor OS (HR = 2.07, 95% CI = 1.40–3.06). Specially, mSEPT9 detected in preoperative plasma predicted worse OS in cancer patients (HR = 3.25, 95% CI = 1.93–5.48). In addition, we also identified a significant association of mSEPT9 with decreased DFS of cancer (HR = 3.24, 95% CI = 1.81–5.79). Conclusion: Our meta-analysis supports that mSEPT9 is associated with reduced OS and DFS in cancer patients. Moreover, detection of mSEPT9 using plasma appears to be a convenient and promising way to predict long-term survival of cancer patients.
Collapse
Affiliation(s)
- Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Delei Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Xie
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Hu J, Hu B, Gui YC, Tan ZB, Xu JW. Diagnostic Value and Clinical Significance of Methylated SEPT9 for Colorectal Cancer: A Meta-Analysis. Med Sci Monit 2019; 25:5813-5822. [PMID: 31378778 PMCID: PMC6691747 DOI: 10.12659/msm.915472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background This meta-analysis aimed to clarify the diagnostic role of plasma methylated SEPT9 (mSEPT9) in colorectal cancer (CRC) and examined its association with CRC. Material/Methods A systematic review was conducted prior to July 2018. Summary sensitivity, specificity, and positive and negative likelihood ratio (PLR/NLR) were calculated for the diagnostic value of mSEPT9 for CRC. The areas under the receiver operating curves (AUCs) were used to summarize the overall test performance. Results Twenty-two studies with 2271 CRC patients were enrolled. The summary sensitivity, specificity, PLR, NLR, DOR, and AUC of the overall analysis of mSEPT9 were 0.69, 0.92, 8.1, 0.34, 24, and 0.89, respectively. Subgroup and meta-regression analyses demonstrated that the diagnostic value was higher for the Epi proColon 2.0 assay, Asian ethnicity, and mSEPT9 test combined with fecal occult blood test (FOBT) or fecal immunochemical test (FIT) than for other test methods, white ethnicity, and mSEPT9 test alone. The rate of mSEPT9 positivity was higher in advanced CRC cases compared with early-stage CRC cases, and was higher in CRC cases than in adenoma cases. No significant difference in mSEPT9 positivity rate was found between left- and right-sided CRC. Conclusions Plasma mSEPT9 has a high diagnostic value for CRC, especially on the newly developed Epi proColon test 2.0 method. The diagnostic sensitivity is superior among Asians compared to whites, and the combination of mSEPT9 and FOBT/FIT has a better performance than mSEPT9 alone. Finally, the expression of mSEPT9 is associated with CRC stage but not with location.
Collapse
Affiliation(s)
- Jincui Hu
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Bangli Hu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yu-Chang Gui
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhi-Biao Tan
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jian-Wen Xu
- Department of Physical Medicine and Rehabilitation, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
43
|
Desterke C, Gassama-Diagne A. Protein-protein interaction analysis highlights the role of septins in membrane enclosed lumen and mRNA processing. Adv Biol Regul 2019; 73:100635. [PMID: 31420262 DOI: 10.1016/j.jbior.2019.100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Septins are a family of GTP-binding proteins that assemble into non-polar filaments which can be recruited to negatively charged membranes and serve as a scaffold to recruit cytosolic proteins and cytoskeletal elements such as microtubules and actin so that they can perform their important biological functions. Human septins consist of four groups, each with 13 members, and filaments formation usually involve members from each group in specific positions. However, little is known about the molecular mechanisms that drive the binding of septins to membranes and its importance to their biological functions. Here we have built a protein-protein interaction (PPI) network around human septins and highlighted the connections with 170 partners. Functional enrichment by inference of the network of septins and their partners revealed their participation in functions consistent with some of the roles described for septins, including cell cycle, cell division and cell shape, but we also identified septin partners in these functions that had not previously been described. Interestingly, we identified important and multiple connections between septins and mRNA processing and their export from the nucleus. Analysis of the enrichment of gene ontology cellular components highlighted some important interactions between molecules involved in the spliceosome with septin 2 and septin 7 in particular. RNA splicing regulates gene expression, and through it, cell fate, development and physiology. Mutations in components of the in the splicing machinery is linked to several diseases including cancer, thus taken together, the different analyses presented here open new perspectives to elucidate the pathobiological role of septins.
Collapse
Affiliation(s)
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, Villejuif, F-94800, France; Université Paris-Sud, UMR-S 1193, Villejuif, F-94800, France.
| |
Collapse
|
44
|
Kawai H, Matsushita H, Suzuki R, Kitamura Y, Ogawa Y, Kawada H, Ando K. Overcoming Tyrosine Kinase Inhibitor Resistance in Transformed Cell Harboring SEPT9-ABL1 Chimeric Fusion Protein. Neoplasia 2019; 21:788-801. [PMID: 31276931 PMCID: PMC6611969 DOI: 10.1016/j.neo.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Hematological malignancies harboring various ABL1 fusions are expected to be sensitive to tyrosine kinase inhibitors (TKIs), similar to those with BCR-ABL1. However, SEPT9-ABL1 exhibits TKI resistance both in vitro and in vivo. SEPT9-ABL1 has the same ABL1 region as seen in BCR-ABL1 but no point mutation in its kinase domain, which is one of the main mechanisms underlying TKI resistance in the leukemic cells harboring BCR-ABL1. The purpose of this study was to reveal the mechanism underlying TKI resistance induced by SEPT9-ABL1. We focused on the TP53 status because TKI-induced apoptosis in BCR-ABL1–positive cells is achieved through TP53. Mouse TP53 homologue TRP53 was downregulated and less phosphorylated in the cells expressing SEPT9-ABL1 than in those with BCR-ABL1, resulting in the prevention of apoptosis induced by TKIs. The CRM1 inhibitor KPT-330 accumulated nuclear TRP53 and NFKB1A (also known as IκBα), which is thought to capture TRP53 in the cytoplasm, and induced apoptosis in the hematopoietic cells expressing SEPT9-ABL1. In addition, the combination treatment of KPT-330 and imatinib, which induced the marked nuclear accumulation of PP2A and SET, reactivated PP2A through its dephosphorylation and inhibited SET expression, resulting in the effective induction of the apoptosis in the cells expressing SEPT9-ABL1. The combination treatment with KPT-330 and imatinib successfully reduced the subcutaneous masses expressing SEPT9-ABL1 and extended the survival of the mice intraperitoneally transplanted with SEPT9-ABL1–expressing cells. These results show that therapy with CRM1 inhibitors may be effective for overcoming TKI resistance induced by SEPT9-ABL1.
Collapse
Affiliation(s)
- Hidetsugu Kawai
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiromichi Matsushita
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.
| | - Rikio Suzuki
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuka Kitamura
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Research Center for Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
45
|
Kumagai PS, Martins CS, Sales EM, Rosa HV, Mendonça DC, Damalio JCP, Spinozzi F, Itri R, Araujo APU. Correct partner makes the difference: Septin G-interface plays a critical role in amyloid formation. Int J Biol Macromol 2019; 133:428-435. [DOI: 10.1016/j.ijbiomac.2019.04.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
|
46
|
Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, Tulassay Z, Igaz P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19:477-498. [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Screening methods for one of the most frequently diagnosed malignancy, colorectal cancer (CRC), have limitations. Circulating cell-free nucleic acids (cfNA) hold clinical relevance as screening, prognostic and therapy monitoring markers. Area covered: In this review, we summarize potential CRC-specific cfNA biomarkers, the recently developed sample preparation techniques, their applications, and pitfalls. Expert opinion: Automated extraction of cfDNA is highly reproducible, however, cfDNA yield is less compared to manual isolation. Quantitative and highly sensitive detection techniques (e.g. digital PCR, NGS) can be applied to analyze genetic and epigenetic changes. Detection of DNA mutations or methylation in cfDNA and related altered levels of mRNA, miRNA, and lncRNA may improve early cancer recognition, based on specific, CRC-related patterns. Detection of cfDNA mutations (e.g. TP53, KRAS, APC) has limited diagnostic sensitivity (40-60%), however, methylated DNA including SEPT9, SFRP1, SDC2 can be applied with higher sensitivity (up to 90%) for CRC. Circulating miRNAs (e.g. miR-21, miR-92, miR-141) provide comparably high sensitivity for CRC as the circulating tumor cell mRNA markers (e.g. EGFR, CK19, CK20, CEA). Automation of cfNA isolation coupled with quantitative analysis of CRC-related, highly sensitive biomarkers may enhance CRC screening and early detection in the future.
Collapse
Affiliation(s)
- Béla Molnár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Orsolya Galamb
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Alexandra Kalmár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Barbara Kinga Barták
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsófia Brigitta Nagy
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Tóth
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsolt Tulassay
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Péter Igaz
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Magdolna Dank
- c Department of Oncology , Semmelweis University , Budapest , Hungary
| |
Collapse
|
47
|
Abstract
Septins are widely recognized as a component of the cytoskeleton that is essential for cell division, and new work has shown that septins can recognise cell shape by assembling into filaments on membrane regions that display micrometer-scale curvature (e.g. at the cytokinetic furrow). Moreover, infection biology studies have illuminated important roles for septins in mediating the outcome of host-microbe interactions. In this Review, we discuss a selection of mechanistic insights recently gained from studying three infection paradigms: the rice blast fungus Magnaporthe oryzae, the poxvirus family member vaccinia virus and the Gram-negative bacterium Shigella flexneri These studies have respectively discovered that higher-order septin assemblies enable fungal invasion into plant cells, entrap viral particles at the plasma membrane and recognize dividing bacterial cells for delivery to lysosomes. Collectively, these insights illustrate how studying septin biology during microbial infection can provide fundamental advances in both cell and infection biology, and suggest new concepts underlying infection control.
Collapse
Affiliation(s)
- Hoan Van Ngo
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Serge Mostowy
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
48
|
Grigoryev PN, Khisamieva GA, Zefirov AL. Septin Polymerization Slows Synaptic Vesicle Recycling in Motor Nerve Endings. Acta Naturae 2019; 11:54-62. [PMID: 31413880 PMCID: PMC6643342 DOI: 10.32607/20758251-2019-11-2-54-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Septins are GTP-binding proteins recognized as a component of the cytoskeleton. Despite the fact that septins are highly expressed by neurons and can interact with the proteins that participate in synaptic vesicle exocytosis and endocytosis, the role of septins in synaptic transmission and the synaptic vesicle recycling mechanisms is poorly understood. In this study, neurotransmitter release and synaptic vesicle exocytosis and endocytosis were investigated by microelectrode intracellular recording of end-plate potentials and fluorescent confocal microscopy in mouse diaphragm motor nerve endings during septin polymerization induced by forchlorfenuron application. It was shown that forchlorfenuron application reduces neurotransmission during prolonged high-frequency (20 and 50 pulses/s) stimulation. Application of pairs of short high-frequency stimulation trains showed that forchlorfenuron slows the replenishment of the readily releasable pool. Forchlorfenuron enhanced FM 1-43 fluorescent dye loading by synaptic vesicle endocytosis but decreased dye unloading from the preliminarily stained nerve endings by synaptic vesicle exocytosis. It was concluded that the septin polymerization induced by forchlorfenuron application slows the rate of synaptic vesicle recycling in motor nerve endings due to the impairment of synaptic vesicle transport.
Collapse
Affiliation(s)
- P. N. Grigoryev
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - G. A. Khisamieva
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| | - A. L. Zefirov
- Kazan State Medical University, Butlerova Str. 49, Kazan, 420012, Russia
| |
Collapse
|
49
|
Li L, Fu K, Zhou W, Snyder M. Applying circulating tumor DNA methylation in the diagnosis of lung cancer. PRECISION CLINICAL MEDICINE 2019; 2:45-56. [PMID: 35694699 PMCID: PMC8985769 DOI: 10.1093/pcmedi/pbz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Low dose computed tomography (LDCT) is commonly used for disease screening, with identified candidate cancerous regions further diagnosed using tissue biopsy. However, existing techniques are all invasive and unavoidably cause multiple complications. In contrast, liquid biopsy is a noninvasive, ideal surrogate for tissue biopsy that can identify circulating tumor DNA (ctDNA) containing tumorigenic signatures. It has been successfully implemented to assist treatment decisions and disease outcome prediction. ctDNA methylation, a type of lipid biopsy that profiles critical epigenetic alterations occurring during carcinogenesis, has gained increasing attention. Indeed, aberrant ctDNA methylation occurs at early stages in lung malignancy and therefore can be used as an alternative for the early diagnosis of lung cancer. In this review, we give a brief synopsis of the biological basis and detecting techniques of ctDNA methylation. We then summarize the latest progress in use of ctDNA methylation as a diagnosis biomarker. Lastly, we discuss the major issues that limit application of ctDNA methylation in the clinic, and propose possible solutions to enhance its usage.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, China
| | - Kai Fu
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
50
|
Suzuki R, Warita T, Nakamura Y, Kitamura Y, Aoyama Y, Ogawa Y, Kawada H, Ando K. A case of double-refractory multiple myeloma with both the IgH-MMSET fusion protein and the congenital abnormality t(11;22). Int J Hematol 2019; 109:731-736. [PMID: 30680670 DOI: 10.1007/s12185-019-02603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
A 67-year-old female was referred to our hospital with a sternal fracture in March 2008. She received a diagnosis of multiple myeloma (MM) BJP-κ type (ISS stage III). G-banding karyotype revealed 46, XX, t(11;22)(q23.3;q11.2) (Hubacek, Gene 592:193-9, 2016), which was later confirmed to be congenital. After repeated rounds of chemotherapy with bortezomib and lenalidomide, she obtained a very good partial response in August 2014, and she was followed up with no treatment. However, she relapsed in February 2016. At that time, fluorescence in situ hybridization identified del(13q) and t(4;14)(p16;q32), which are associated with a poor prognosis. Furthermore, PCR analysis showed that the chromosome 11 breakpoint was at the APOA5/APOA4 locus at 11q23.3, which is associated with malignancy, and that the chromosome 22 breakpoint was at the SEPT5 intron 1 locus, which also plays a role in leukemogenesis through formation of a fusion gene with MLL. Although she was treated with three further lines of therapy, she died from disease progression in August 2017. Synergism between t(11;22) and t(4;14) may have induced the double-refractory phenotype to proteasome inhibitor and lenalidomide, at least during the chemorefractory phase. We present a biological analysis of this case and a review of the literature.
Collapse
Affiliation(s)
- Rikio Suzuki
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Takayuki Warita
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuka Kitamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yasuyuki Aoyama
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan. .,Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|