1
|
Xiao Y, Ran L, Xuemin Z, ChenZhi L, Qiang Z, Xiao Y, Dapeng R. Synovial osteoclastogenesis mediated by chondrocyte-secreted TNFα promotes TMJ condylar resorption. Oral Dis 2024; 30:5140-5153. [PMID: 38720613 DOI: 10.1111/odi.14978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 12/05/2024]
Abstract
BACKGROUND Insufficient occlusal support (IOS) frequently causes subchondral bone absorption in temporomandibular joint osteoarthritis, and the underlying mechanism requires further investigation. METHODS An IOS model was established by abrading rat molars. Micro-computed tomography was used to evaluate subchondral bone changes. Osteoclastogenesis of synovium-derived macrophages (SDMs) was confirmed by TRAP staining. Cartilage-specific TNFα depletion was achieved by intra-articular injection of adeno-associated virus carrying shRNA against murine TNFα under control of collagen type II. In vitro, chondrocytes were mechanically compressed and conditioned medium (CM) was collected to detect its ability to induce osteoclastogenesis of SDMs. RESULTS Synovial osteoclastogenesis and condyle resorption were observed following IOS. TNFα level was elevated in hypertrophic chondrocytes after IOS. Synovial Wnt5a level increased, but Wnt3a level decreased after IOS. Depletion of TNFα in chondrocytes alleviated the synovial osteoclastogenesis and condyle bone resorption. In vitro compression of chondrocytes potentiated TNFα expression and secretion. The CM promoted osteoclastogenesis of SDMs, which were partially prohibited by TNFα neutralizing antibody. Furthermore, inhibition of Wnt3a facilitated osteoclastogenesis, whereas inhibition of Wnt5a partially suppressed osteoclastogenesis, of SDMs cultured in CM. CONCLUSION Chondrocyte-secreted TNFα induced by IOS is a critical regulator of synovial osteoclastogenesis and subsequent condylar resorption, partially through non-canonical Wnt5a pathway.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Ran
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zeng Xuemin
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li ChenZhi
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhang Qiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Xiao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ren Dapeng
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet 2024; 51:130-142. [PMID: 38462560 DOI: 10.1111/iji.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linfeng Li
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Song Han
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Slavick A, Furer V, Polachek A, Tzemach R, Elkayam O, Gertel S. Circulating and Synovial Monocytes in Arthritis and Ex-Vivo Model to Evaluate Therapeutic Modulation of Synovial Monocytes. Immunol Invest 2023; 52:832-855. [PMID: 37615125 DOI: 10.1080/08820139.2023.2247438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Monocytes are innate immune cells that play a dual role in protection of host against pathogens and initiation and perpetuation of inflammatory disorders including joint diseases. During inflammation, monocytes migrate from peripheral blood to tissues via chemokine receptors where they produce inflammatory factors. Monocytes are classified into three subsets, namely: classical, intermediate and non-classical, each subset has particular function. Synovium of patients with inflammatory joint diseases, such as rheumatoid arthritis and psoriatic arthritis as well as osteoarthritis, is enriched by monocytes that differ from circulatory ones by distinct subsets distribution. Several therapeutic agents used systemically or locally through intra-articular injections in arthritis management modulate monocyte subsets. This scoping review summarized the existing literature delineating the effect of common therapeutic agents used in arthritis management on circulating and synovial monocytes/macrophages. As certain agents have an inhibitory effect on monocytes, we propose to test their potential to inhibit synovial monocytes via an ex-vivo platform based on cultured synovial fluid mononuclear cells derived from patients with rheumatic diseases. Information obtained from the ex-vivo platform can be applied to explore the therapeutic potential of medications in clinical practice.
Collapse
Affiliation(s)
- Adam Slavick
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Furer
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ari Polachek
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reut Tzemach
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Smadar Gertel
- Department of Rheumatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Jeljeli MM, Adamopoulos IE. Innate immune memory in inflammatory arthritis. Nat Rev Rheumatol 2023; 19:627-639. [PMID: 37674048 PMCID: PMC10721491 DOI: 10.1038/s41584-023-01009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 09/08/2023]
Abstract
The concept of immunological memory was demonstrated in antiquity when protection against re-exposure to pathogens was observed during the plague of Athens. Immunological memory has been linked with the adaptive features of T and B cells; however, in the past decade, evidence has demonstrated that innate immune cells can exhibit memory, a phenomenon called 'innate immune memory' or 'trained immunity'. Innate immune memory is currently being defined and is transforming our understanding of chronic inflammation and autoimmunity. In this Review, we provide an up-to-date overview of the memory-like features of innate immune cells in inflammatory arthritis and the crosstalk between chronic inflammatory milieu and cell reprogramming. Aberrant pro-inflammatory signalling, including cytokines, regulates the metabolic and epigenetic reprogramming of haematopoietic progenitors, leading to exacerbated inflammatory responses and osteoclast differentiation, in turn leading to bone destruction. Moreover, imprinted memory on mature cells including terminally differentiated osteoclasts alters responsiveness to therapies and modifies disease outcomes, commonly manifested by persistent inflammatory flares and relapse following medication withdrawal.
Collapse
Affiliation(s)
- Maxime M Jeljeli
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Iannis E Adamopoulos
- Department of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wang P, Zhang Y, Lei H, Yu J, Zhou Q, Shi X, Zhu Y, Zhang D, Zhang P, Wang K, Dong K, Xing J, Dong Y. Hyaluronic acid-based M1 macrophage targeting and environmental responsive drug releasing nanoparticle for enhanced treatment of rheumatoid arthritis. Carbohydr Polym 2023; 316:121018. [PMID: 37321721 DOI: 10.1016/j.carbpol.2023.121018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Herein, hyaluronic acid (HA) and β-cyclodextrin (β-CD) is used to form targeted drug delivery platform HCPC/DEX NPs with previously prepared carbon dots (CDs) as cross-linker, dexamethasone (DEX) is loaded for rheumatoid arthritis (RA) treatment. The drug loading capacity of β-CD and M1 macrophage targeting of HA were utilized for efficient delivery of DEX to the inflammatory joints. Because of the environmental responsive degradation of HA, DEX can be released in 24 h and inhibit the inflammatory response in M1 macrophages. The drug loading of NPs is 4.79 %. Cellular uptake evaluation confirmed that NPs can specifically target to M1 macrophages via HA ligands, the uptake of M1 macrophages is 3.7 times that of normal macrophages. In vivo experiments revealed that NPs can accumulate in RA joints to alleviate inflammation and accelerate cartilage healing, the accumulation can be observed in 24 h. The cartilage thickness increased to 0.45 mm after HCPC/DEX NPs treatment, indicating its good RA therapeutic effect. Importantly, this study was the first to utilize the potential acid and reactive oxygen species responsiveness of HA to release drug and prepare M1 macrophage targeting nanodrug for RA treatment, which provides a safe and effective RA therapeutic strategy.
Collapse
Affiliation(s)
- Pengchong Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xianpeng Shi
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yaning Zhu
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dan Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ke Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Furuya H, Nguyen CT, Gu R, Hsieh SL, Maverakis E, Adamopoulos IE. Interleukin-23 Regulates Inflammatory Osteoclastogenesis via Activation of CLEC5A(+) Osteoclast Precursors. Arthritis Rheumatol 2023; 75:1477-1489. [PMID: 36787107 PMCID: PMC10423744 DOI: 10.1002/art.42478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVE To investigate the role of interleukin-23 (IL-23) in pathologic bone remodeling in inflammatory arthritis. METHODS In this study we investigated the role of IL-23 in osteoclast differentiation and activation using in vivo gene transfer techniques in wild-type and myeloid DNAX-activation protein 12-associating lectin-1 (MDL-1)-deficient mice, and by performing in vitro and in vivo osteoclastogenesis assays using spectral flow cytometry, micro-computed tomography analysis, Western blotting, and immunoprecipitation. RESULTS Herein, we show that IL-23 induces the expansion of a myeloid osteoclast precursor population and supports osteoclastogenesis and bone resorption in inflammatory arthritis. Genetic ablation of C-type lectin domain family member 5A, also known as MDL-1, prevents the induction of osteoclast precursors by IL-23 that is associated with bone destruction, as commonly observed in inflammatory arthritis. Moreover, osteoclasts derived from the bone marrow of MDL-1-deficient mice showed impaired osteoclastogenesis, and MDL-1-/- mice had increased bone mineral density. CONCLUSION Our data show that IL-23 signaling regulates the availability of osteoclast precursors in inflammatory arthritis that could be effectively targeted for the treatment of inflammatory bone loss in inflammatory arthritis.
Collapse
Affiliation(s)
- Hiroki Furuya
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Cuong Thach Nguyen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Ran Gu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, Taiwan
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Iannis E Adamopoulos
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| |
Collapse
|
7
|
Zhao K, Ruan J, Nie L, Ye X, Li J. Effects of synovial macrophages in osteoarthritis. Front Immunol 2023; 14:1164137. [PMID: 37492583 PMCID: PMC10364050 DOI: 10.3389/fimmu.2023.1164137] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease in mammals. However, its pathogenesis remains unclear. Studies indicate that OA is not only an aging process that but also an inflammation-related disease. Synovitis is closely related to the progression of OA, and synovial macrophages are crucial participants in synovitis. Instead of being a homogeneous population, macrophages are polarized into M1 or M2 subtypes in OA synovial tissues. Polarization is highly associated with OA severity. However, the M1/M2 ratio cannot be the only factor in OA prognosis because intermediate stages of macrophages also exist. To better understand the mechanism of this heterogeneous disease, OA subtypes of synovial macrophages classified by gene expression were examined. Synovial macrophages do not act alone; they interact with surrounding cells such as synovial fibroblasts, osteoclasts, chondrocytes, lymphocytes and even adipose cells through a paracrine approach to exacerbate OA. Treatments targeting synovial macrophages and their polarization are effective in relieving pain and protecting cartilage during OA development. In this review, we describe how synovial macrophages and their different polarization states influence the progression of OA. We summarize the current knowledge of the interactions between macrophages and other joint cells and examine the current research on new medications targeting synovial macrophages.
Collapse
Affiliation(s)
- Kun Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liuyan Nie
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Juebao Li
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Tosun B, Wolff LI, Houben A, Nutt S, Hartmann C. Osteoclasts and Macrophages-Their Role in Bone Marrow Cavity Formation During Mouse Embryonic Development. J Bone Miner Res 2022; 37:1761-1774. [PMID: 35689447 DOI: 10.1002/jbmr.4629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
The formation of the bone marrow cavity is a prerequisite for endochondral ossification. In reviews and textbooks, it is occasionally reported that osteoclasts are essential for bone marrow cavity formation removing hypertrophic chondrocytes. Mice lacking osteoclasts or having functionally defective osteoclasts have osteopetrotic bones, yet they still form a bone marrow cavity. Here, we investigated the role of osteoclasts and macrophages in bone marrow cavity formation during embryogenesis. Macrophages can assist osteoclasts in matrix removal by phagocytosing resorption byproducts. Rank-deficient mice, lacking osteoclasts, and Pu.1-deficient mice, lacking monocytes, macrophages, and osteoclasts, displayed a delay in bone marrow cavity formation and a lengthening of the zone of hypertrophic chondrocytes. F4/80-positive monocyte/macrophage numbers increased by about fourfold in the bone marrow cavity of E18.5 Rank-deficient mice. Based on lineage-tracing experiments, the majority of the excess F4/80 cells were derived from definitive hematopoietic precursors of the fetal liver. In long bones of both Rank-/- and Pu.1-/- specimens, Mmp9-positive cells were still present. In addition to monocytes, macrophages, and osteoclasts, Ctsb-positive septoclasts were lost in Pu.1-/- specimens. The mineralization pattern was altered in Rank-/- and Pu.1-/- specimens, revealing a significant rise in transverse-oriented mineralized structures. Taken together, our findings imply that early on during bone marrow cavity formation, osteoclasts facilitate the entry of blood vessels and later the turnover of hypertrophic chondrocytes, whereas macrophages appear to play no major role. Furthermore, the absence of septoclasts in Pu.1-/- specimens suggests that septoclasts are either derived from Pu.1-dependent precursors or require PU.1 activity for their differentiation. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benjamin Tosun
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Astrid Houben
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Stephen Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| |
Collapse
|
9
|
Nguyen CT, Furuya H, Das D, Marusina AI, Merleev AA, Ravindran R, Jalali Z, Khan IH, Maverakis E, Adamopoulos IE. Peripheral γδ T Cells Regulate Neutrophil Expansion and Recruitment in Experimental Psoriatic Arthritis. Arthritis Rheumatol 2022; 74:1524-1534. [PMID: 35320625 PMCID: PMC9427669 DOI: 10.1002/art.42124] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study was undertaken to identify the mechanistic role of γδ T cells in the pathogenesis of experimental psoriatic arthritis (PsA). METHODS In this study, we performed interleukin-23 (IL-23) gene transfer in wild-type (WT) and T cell receptor δ-deficient (TCRδ-/- ) mice and conducted tissue phenotyping in the joint, skin, and nails to characterize the inflammatory infiltrate. We further performed detailed flow cytometry, immunofluorescence staining, RNA sequencing, T cell repertoire analysis, and in vitro T cell polarization assays to identify regulatory mechanisms of γδ T cells. RESULTS We demonstrated that γδ T cells support systemic granulopoiesis, which is critical for murine PsA-like pathology. Briefly, γδ T cell ablation inhibited the expression of neutrophil chemokines CXCL1 and CXCL2 and neutrophil CD11b+Ly6G+ accumulation in the aforementioned PsA-related tissues. Although significantly reduced expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17A was detected systemically in TCRδ-/- mice, no GM-CSF+/IL-17A+ γδ T cells were detected locally in the inflamed skin or bone marrow in WT mice. Our data showed that nonresident γδ T cells regulate the expansion of an CD11b+Ly6G+ neutrophil population and their recruitment to joint and skin tissues, where they develop hallmark pathologic features of human PsA. CONCLUSION Our findings do not support the notion that tissue-resident γδ T cells initiate the disease but demonstrate a novel role of γδ T cells in neutrophil regulation that can be exploited therapeutically in PsA patients.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Hiroki Furuya
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Dayasagar Das
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
| | - Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California at Davis, USA
| | - Zahra Jalali
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Imran H. Khan
- Department of Pathology and Laboratory Medicine, University of California at Davis, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Iannis E. Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
10
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Pesce Viglietti AI, Sviercz FA, López CAM, Freiberger RN, Quarleri J, Delpino MV. Proinflammatory Microenvironment During Kingella kingae Infection Modulates Osteoclastogenesis. Front Immunol 2021; 12:757827. [PMID: 34925328 PMCID: PMC8674944 DOI: 10.3389/fimmu.2021.757827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pathogen that causes septic arthritis, osteomyelitis, and bacteremia in children from 6 to 48 months of age. The presence of bacteria within or near the bone is associated with an inflammatory process that results in osteolysis, but the underlying pathogenic mechanisms involved are largely unknown. To determine the link between K. kingae and bone loss, we have assessed whether infection per se or through the genesis of a pro-inflammatory microenvironment can promote osteoclastogenesis. For that purpose, we examined both the direct effect of K. kingae and the immune-mediated mechanism involved in K. kingae-infected macrophage-induced osteoclastogenesis. Our results indicate that osteoclastogenesis is stimulated by K. kingae infection directly and indirectly by fueling a potent pro-inflammatory response that drives macrophages to undergo functional osteoclasts via TNF-α and IL-1β induction. Such osteoclastogenic capability of K. kingae is counteracted by their outer membrane vesicles (OMV) in a concentration-dependent manner. In conclusion, this model allowed elucidating the interplay between the K. kingae and their OMV to modulate osteoclastogenesis from exposed macrophages, thus contributing to the modulation in joint and bone damage.
Collapse
Affiliation(s)
- Ayelén Ivana Pesce Viglietti
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Franco Agustín Sviercz
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cinthya Alicia Marcela López
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rosa Nicole Freiberger
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Kim SJ, Chang HJ, Volin MV, Umar S, Van Raemdonck K, Chevalier A, Palasiewicz K, Christman JW, Volkov S, Arami S, Maz M, Mehta A, Zomorrodi RK, Fox DA, Sweiss N, Shahrara S. Macrophages are the primary effector cells in IL-7-induced arthritis. Cell Mol Immunol 2020; 17:728-740. [PMID: 31197255 PMCID: PMC7331600 DOI: 10.1038/s41423-019-0235-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
Synovial macrophages are crucial in the development of joint inflammation and bone damage; however, the pathways that control macrophage remodeling in inflammatory M1 cells or bone-eroding osteoclasts are not fully understood. We determined that elevated IL-7R/CD127 expression is the hallmark of rheumatoid arthritis (RA) M1 macrophages and that these cells are highly responsive to interleukin-7 (IL-7)-driven osteoclastogenesis. We established that lipopolysaccharide (LPS), interferon-γ (IFNγ), and tumor necrosis factor-α (TNFα), the classic M1 macrophage mediators, enhance IL-7R expression in RA and murine macrophages. The local expression of IL-7 provokes arthritis, predominantly through escalating the number of F480+iNOS+ cells rather than CD3+ T cells. Ectopic LPS injection stabilizes IL-7-induced arthritis by increasing myeloid IL-7R expression, in part via IFNγ induction. Hence, in RAG-/- mice, IL-7-mediated arthritis is suppressed because of the reduction in myeloid IL-7R expression due to the lack of IFNγ. Moreover, the amelioration of IL-7-induced arthritis by anti-TNF therapy is due to a decrease in the number of cells in the unique F480+iNOS+IL-7R+CCL5+ subset, with no impact on the F480+Arginase+ cell or CD3+ T cell frequency. Consistent with the preclinical findings, the findings of a phase 4 study performed with RA patients following 6 months of anti-TNF therapy revealed that IL-7R expression was reduced without affecting the levels of IL-7. This study shifts the paradigm by discovering that IL-7-induced arthritis is dependent on F480+iNOS+IL-7R+CCL5+ cell function, which activates TH-1 cells to amplify myeloid IL-7R expression and disease severity.
Collapse
Affiliation(s)
- Seung-Jae Kim
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huan J Chang
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Sadiq Umar
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katrien Van Raemdonck
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aimee Chevalier
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - John W Christman
- Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, 43210, USA
| | - Suncica Volkov
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Arami
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mehrdad Maz
- Division of Allergy, Clinical Immunology and Rheumatology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anjali Mehta
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL, 60612, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Uncoupling protein-2 regulates M1 macrophage infiltration of gingiva with periodontitis. Cent Eur J Immunol 2020; 45:9-21. [PMID: 32425675 PMCID: PMC7226558 DOI: 10.5114/ceji.2020.94664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an inflammatory disease accompanied by alveolar bone loss. Moreover, M1 macrophages play a critical role in the development of periodontal disease. Uncoupling protein-2 (UCP2) is a mitochondrial transporter protein that controls M1 macrophage activation by modulating reactive oxygen species (ROS) production. We investigated the role of UCP2 in M1 macrophage infiltration in gingival tissues with periodontitis. We found that the expression of UCP2 was upregulated in M1 macrophages infiltrating human periodontal tissues with periodontitis. Macrophage-specific knockout of UCP2 could increase the infiltration of macrophage and exacerbate inflammatory response in a mouse gingiva affected with periodontitis, induced by Porphyromonas gingivalis-LPS (Pg-LPS) injection. The loss of UCP2 may contribute to the enhanced abilities of proliferation, migration, pro-inflammatory cytokine secretion, and ROS production in Pg-LPS-treated macrophages. Our results indicate that UCP2 has an important role in M1 macrophage polarization in the periodontal tissue with periodontitis. It might be helpful to provide theoretical basis for design of new therapeutic strategies for periodontitis.
Collapse
|
15
|
β-Glucan hybridized poly(ethylene glycol) microgels for macrophage-targeted protein delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Siouti E, Andreakos E. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol 2019; 165:152-169. [PMID: 30910693 DOI: 10.1016/j.bcp.2019.03.029] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Macrophages are central to the pathophysiology of rheumatoid arthritis (RA). They constitute the main source of pro-inflammatory cytokines and chemokines such as TNF and IL-1β, they activate a wide range of immune and non-immune cells, and they secrete diverse tissue degrading enzymes driving chronic pro-inflammatory, tissue destructive and pain responses in RA. However, they can also produce anti-inflammatory cytokines such as IL-10, secrete inhibitors of tissue degrading enzymes and promote immunoregulatory and protective responses, suggesting the existence of macrophages with distinct and diverse functional activities. Although the underlying basis of this phenomenon has remained obscure for years, emerging evidence has now provided insight into the mechanisms and molecular processes involved. Here, we review current knowledge on the biology of macrophages in RA, and highlight recent literature on the heterogeneity, origins and ontogeny of macrophages as part of the mononuclear phagocyte system. We also discuss their plasticity in the context of the M1/M2 paradigm, and the emerging theme of metabolic rewiring as a major mechanism for programming macrophage functions and pro-inflammatory activities. This sheds light into the many facets of macrophages in RA, their molecular regulation and their translational potential for developing novel protective and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Eleni Siouti
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1NY, United Kingdom.
| |
Collapse
|
17
|
Lee YS, Lee SH, Lee ES, Fong TS. Case report: migration of a broken screw to the knee joint after hardware failure following closing wedge distal femoral osteotomy. BMC Musculoskelet Disord 2019; 20:118. [PMID: 30894158 PMCID: PMC6425689 DOI: 10.1186/s12891-019-2505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background We report a case of hardware failure after distal femoral osteotomy (DFO) with a broken screw pulled out from the locking hole and positioned within the knee joint. Case presentation A 57-year-old man presented to our orthopedic outpatient department with 3-months history of an unusual painful swelling at the operated area following DFO. The leakage of joint fluid from the penetrated suprapatellar pouch was assumed to be the reason for this complication. Conclusions The overall aim of this case report is to provide a lesson to budding surgeons who might experience a similar situation that cannot be easily explained, like the unexpected complication in the present case.
Collapse
Affiliation(s)
- Yong Seuk Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, South Korea.
| | | | - Eui Soo Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, South Korea
| | - Teck Siong Fong
- Department of Orthopaedic Surgery, Putrajaya Hospital, Putrajaya, Malaysia
| |
Collapse
|
18
|
Li S, Xiang C, Wei X, Sun X, Li R, Li P, Sun J, Wei D, Chen Y, Zhang Y, Wei L. Early supplemental α2-macroglobulin attenuates cartilage and bone damage by inhibiting inflammation in collagen II-induced arthritis model. Int J Rheum Dis 2019; 22:654-665. [PMID: 30609267 DOI: 10.1111/1756-185x.13457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine if early supplemental intra-articular α2-macroglobulin (A2M) has a chondroprotective effect in a collagen II-induced arthritis (CIA) mice model. METHODS DBA/1 mice were randomized into four groups (n = 15/group): (a) CIA + 1.2 μg of A2M; (b) CIA + 0.8 μg of A2M; (c) CIA + 0.4 μg of A2M; (d) vehicle + phosphate-buffered saline (PBS). A2M was injected into right ankles and PBS was injected into the left ankles simultaneously as internal control at days 36, 43 and 50. The CIA inflammation clinical score and ankle thickness were recorded every other day starting on day 21 until sacrifice. Changes in inflammation were monitored by in vivo fluorescence molecular tomography (FMT). Inflammation, cartilage and bone damage were assessed with X-ray, histology and immunohistochemistry. Cartilage and inflammation-related gene expression was quantified by real-time polymerase chain reaction (PCR). RESULTS All mice showed ankle inflammation on day 33. After day 43, lower clinical scores, ankle thickness and Sharp/van der Heijde method scores in A2M-treated ankles compared with PBS-treated ankles. FMT data indicated that the inflammation markers MMPSense and ProSense were significantly elevated in the PBS-treated ankles than A2M-treated ankles. Histology and X-ray analyses indicated that A2M administration resulted in lower levels of inflammatory infiltration and synovial hyperplasia, as well as more typical cartilage and bone organization with increased COL II and Aggrecan staining when compared with PBS-treated ankles. In addition, real-time PCR showed that,matrix metalloproteinase-3, -9, -13, COL X and Runx2 were significantly less expressed in A2M-treated groups than PBS-treated animals. CONCLUSION Early supplemental intra-articular A2M exerts an anti-inflammatory effect and attenuates cartilage and bone damage in a CIA model.
Collapse
Affiliation(s)
- Shengchun Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan Xiang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Sun
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruifang Li
- The Third people's Hospital of Hubei Province, Wuhan, China
| | - Pengcui Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dinglu Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Chen
- The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanxiang Zhang
- The Third people's Hospital of Hubei Province, Wuhan, China
| | - Lei Wei
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Department of Orthopedics, Warren Alpert Medical School of Brown University/RIH, Providence, Rhode Island
| |
Collapse
|
19
|
Kim HR, Kim KW, Kim BM, Lee KA, Lee SH. N-acetyl-l-cysteine controls osteoclastogenesis through regulating Th17 differentiation and RANKL production in rheumatoid arthritis. Korean J Intern Med 2019; 34:210-219. [PMID: 28286938 PMCID: PMC6325425 DOI: 10.3904/kjim.2016.329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS This study aimed to determine the regulatory role of N-acetyl-l-cysteine (NAC), an antioxidant, in interleukin 17 (IL-17)-induced osteoclast differentiation in rheumatoid arthritis (RA). METHODS After RA synovial fibroblasts were stimulated by IL-17, the expression and production of receptor activator of nuclear factor κ-B ligand (RANKL) was determined by real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA). Osteoclastogenesis was also determined after co-cultures of IL-17-stimulated RA synovial fibroblasts, Th17 cells and various concentrations of NAC with monocytes. After human peripheral CD4+ T cells were cultured with NAC under Th17 condition, IL-17, interferon γ, IL-4, Foxp3, RANKL, and IL-2 expression and production was determined by flow cytometry or ELISA. RESULTS When RA synovial fibroblasts were stimulated by IL-17, IL-17 stimulated the production of RANKL, and NAC reduced the IL-17-induced RANKL production in a dose-dependent manner. NAC decreased IL-17-activated phosphorylation of mammalian target of rapamycin, c-Jun N-terminal kinase, and inhibitor of κB. When human peripheral blood CD14+ monocytes were cultured with macrophage colony-stimulating factor and IL-17 or RANKL, osteoclasts were differentiated, and NAC reduced the osteoclastogenesis. After human peripheral CD4+ T cells were co-cultured with IL-17-pretreated RA synovial fibroblasts or Th17 cells, NAC reduced their osteoclastogenesis. Under Th17 polarizing condition, NAC decreased Th17 cell differentiation and IL-17 and RANKL production. CONCLUSION NAC inhibits the IL-17-induced RANKL production in RA synovial fibroblasts and IL-17-induced osteoclast differentiation. NAC also reduced Th17 polarization. NAC could be a supplementary therapeutic option for inflammatory and bony destructive processes in RA.
Collapse
Affiliation(s)
- Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Sang-Heon Lee, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea Tel: +82-2-2030-7541 Fax: +82-2-2030-7748 E-mail:
| |
Collapse
|
20
|
Yue J, Wu D, Tam LS. The role of imaging in early diagnosis and prevention of joint damage in inflammatory arthritis. Expert Rev Clin Immunol 2018; 14:499-511. [PMID: 29754519 DOI: 10.1080/1744666x.2018.1476849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Inflammatory arthritis is characterized by chronic inflammation in the synovium, associated with degradation of cartilage and erosion of juxta-articular bone. The bone loss and joint destruction mediated by aberrant immunological responses resulting in proinflammatory cytokine release and various immune cell activation are known as osteoimmunology. Areas covered: A structured literature search including Medline and PubMed, Cochrane meta-analyses and abstracts of international congresses was performed to review joint damage in inflammatory arthritis in terms of pathogenesis, novel imaging assessment, and prevention. Expert commentary: Deeper understanding of the integration of the skeletal and immune as well as inflammatory system is paving the way to prevent bone loss and bone destruction in inflammatory arthritis. With the availability of various imaging modalities such as ultrasound, magnetic resonance imaging (MRI) and high-resolution peripheral quantitative computed tomography (HR-pQCT), we are now able to detect early joint damage, early diagnosis of inflammatory arthritis, monitor the progression or even ascertain whether the inflammatory process is effectively suppressed to allow repair of joint damage by novel therapeutic agents.
Collapse
Affiliation(s)
- Jiang Yue
- a Department of Medicine & Therapeutics , The Prince of Wales Hospital, The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Dongze Wu
- a Department of Medicine & Therapeutics , The Prince of Wales Hospital, The Chinese University of Hong Kong , Shatin , Hong Kong
| | - Lai-Shan Tam
- a Department of Medicine & Therapeutics , The Prince of Wales Hospital, The Chinese University of Hong Kong , Shatin , Hong Kong
| |
Collapse
|
21
|
Alivernini S, Gremese E, McSharry C, Tolusso B, Ferraccioli G, McInnes IB, Kurowska-Stolarska M. MicroRNA-155-at the Critical Interface of Innate and Adaptive Immunity in Arthritis. Front Immunol 2018; 8:1932. [PMID: 29354135 PMCID: PMC5760508 DOI: 10.3389/fimmu.2017.01932] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that fine-tune the cell response to a changing environment by modulating the cell transcriptome. miR-155 is a multifunctional miRNA enriched in cells of the immune system and is indispensable for the immune response. However, when deregulated, miR-155 contributes to the development of chronic inflammation, autoimmunity, cancer, and fibrosis. Herein, we review the evidence for the pathogenic role of miR-155 in driving aberrant activation of the immune system in rheumatoid arthritis, and its potential as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Stefano Alivernini
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Barbara Tolusso
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Gianfranco Ferraccioli
- Institute of Rheumatology - Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|
22
|
Sabokbar A, Afrough S, Mahoney DJ, Uchihara Y, Swales C, Athanasou NA. Role of LIGHT in the pathogenesis of joint destruction in rheumatoid arthritis. World J Exp Med 2017; 7:49-57. [PMID: 28589079 PMCID: PMC5439172 DOI: 10.5493/wjem.v7.i2.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterise the role of substitutes for receptor-activator nuclear factor kappa-B ligand (RANKL) in rheumatoid arthritis (RA) joint destruction.
METHODS Synovial fluid (SF) macrophages isolated from the knee joint of RA patients were incubated with 25 ng/mL macrophage-colony stimulating factor (M-CSF) and 50 ng/mL LIGHT (lymphotoxin-like, exhibits inducible expression and competes with herpes simplex virus glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes) in the presence and absence of 25 ng/mL RANKL and 100 ng/mL osteoprotegerin (OPG) on glass coverslips and dentine slices. Osteoclastogenesis was assessed by the formation of multinucleated cells (MNCs) expressing tartrate-resistant acid phosphatase (TRAP) on coverslips and the extent of lacunar resorption pit formation on dentine slices. The concentration of LIGHT in RA and osteoarthritis (OA) synovial fluid was measured by an enzyme-linked immunosorbent assay (ELISA) and the expression of LIGHT in RA and OA synovium was determined by immunohistochemistry using an indirect immunoperoxidase technique.
RESULTS In cultures of RA SF macrophages treated with LIGHT and M-CSF, there was significant formation of TRAP + MNCs on coverslips and extensive lacunar resorption pit formation on dentine slices. SF-macrophage-osteoclast differentiation was not inhibited by the addition of OPG, a decoy receptor for RANKL. Resorption pits were smaller and less confluent than in RANKL-treated cultures but the overall percentage area of the dentine slice resorbed was comparable in LIGHT- and RANKL-treated cultures. LIGHT significantly stimulated RANKL-induced lacunar resorption compared with RA SF macrophages treated with either RANKL or LIGHT alone. LIGHT was strongly expressed by synovial lining cells, subintimal macrophages and endothelial cells in RA synovium and the concentration of LIGHT was much higher in RA compared with OA SF.
CONCLUSION LIGHT is highly expressed in RA synovium and SF, stimulates RANKL-independent/dependent osteoclastogenesis from SF macrophages and may contribute to marginal erosion formation.
Collapse
|
23
|
Sabokbar A, Mahoney DJ, Hemingway F, Athanasou NA. Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases. Clin Rev Allergy Immunol 2017; 51:16-26. [PMID: 26578261 DOI: 10.1007/s12016-015-8523-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Collapse
Affiliation(s)
- A Sabokbar
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - D J Mahoney
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N A Athanasou
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
24
|
MicroRNA-155 contributes to enhanced resistance to apoptosis in monocytes from patients with rheumatoid arthritis. J Autoimmun 2017; 79:53-62. [PMID: 28118944 PMCID: PMC5397583 DOI: 10.1016/j.jaut.2017.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 02/04/2023]
Abstract
Monocytes and macrophages are key mediators of inflammation in rheumatoid arthritis (RA). Their persistence at the inflammatory site is likely to contribute to immunopathology. We sought to characterise one mechanism by which persistence may be achieved: resistance to apoptosis and the role of mir-155 in this process. CD14+ monocytes from peripheral blood (PBM) and synovial fluid (SFM) of RA patients were found to be resistant to spontaneous apoptosis relative to PBM from healthy control (HC) individuals. RA SFM were also resistant to anti-Fas-mediated apoptosis and displayed a gene expression profile distinct from HC and RA PBM populations. Gene expression profiling analysis revealed that the differentially expressed genes in RA SFM vs. PBM were enriched for apoptosis-related genes and showed increased expression of the mir-155 precursor BIC. Following identification of potential mir-155 target transcripts by bioinformatic methods, we show increased levels of mature mir-155 expression in RA PBM and SFM vs. HC PBM and a corresponding decrease in SFM of two predicted mir-155-target mRNAs, apoptosis mediators CASP10 and APAF1. Using miR mimics, we demonstrate that mir-155 over-expression in healthy CD14+ cells conferred resistance to spontaneous apoptosis, but not Fas-induced death in these cells, and resulted in increased production of cytokines and chemokines. Collectively our data indicate that CD14+ cells from patients with RA show enhanced resistance to apoptosis, and suggest that an increase in mir-155 may partially contribute to this phenotype. CD14+ cells from the inflamed RA joint are strongly resistant to death. Microarrays show differences in apoptosis genes in CD14+ cells from the RA joint. Mir-155 is increased and its targets decreased in RA joint CD14+ cells. Overexpression of mir-155 increases apoptosis resistance of healthy CD14+ cells.
Collapse
|
25
|
Wu DJ, Gu R, Sarin R, Zavodovskaya R, Chen CP, Christiansen BA, Zarbalis KS, Adamopoulos IE. Autophagy-linked FYVE containing protein WDFY3 interacts with TRAF6 and modulates RANKL-induced osteoclastogenesis. J Autoimmun 2016; 73:73-84. [PMID: 27330028 PMCID: PMC5003737 DOI: 10.1016/j.jaut.2016.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022]
Abstract
Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice (Wdfy3(lacZ) and Wdfy3(loxP)) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice (Wdfy3(loxP/loxP)-LysM-Cre(+)) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP(+) multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk, Acp5, Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Dennis J Wu
- Graduate Group in Immunology, University of California at Davis, United States; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, United States
| | - Ran Gu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, United States
| | - Ritu Sarin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, United States
| | - Regina Zavodovskaya
- Department of Anatomy, Physiology and Cell Biology, University of California at Davis, United States
| | - Chia-Pei Chen
- Department of Statistics, University of California at Davis, United States
| | | | | | - Iannis E Adamopoulos
- Graduate Group in Immunology, University of California at Davis, United States; Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, United States; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, United States.
| |
Collapse
|
26
|
Slocum C, Kramer C, Genco CA. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med 2016; 280:114-28. [PMID: 26791914 DOI: 10.1111/joim.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiovascular disease is an inflammatory disorder characterized by the progressive formation of plaque in coronary arteries, termed atherosclerosis. It is a multifactorial disease that is one of the leading causes of death worldwide. Although a number of risk factors have been associated with disease progression, the underlying inflammatory mechanisms contributing to atherosclerosis remain to be fully delineated. Within the last decade, the potential role for infection in inflammatory plaque progression has received considerable interest. Microbial pathogens associated with periodontal disease have been of particular interest due to the high levels of bacteremia that are observed after routine dental procedures and every day oral activities, such as tooth brushing. Here, we explore the potential mechanisms that may explain how periodontal pathogens either directly or indirectly elicit immune dysregulation and consequently progressive inflammation manifested as atherosclerosis. Periodontal pathogens have been shown to contribute directly to atherosclerosis by disrupting endothelial cell function, one of the earliest indicators of cardiovascular disease. Oral infection is thought to indirectly induce elevated production of inflammatory mediators in the systemic circulation. Recently, a number of studies have been conducted focusing on how disruption of the gut microbiome influences the systemic production of proinflammatory cytokines and consequently exacerbation of inflammatory diseases such as atherosclerosis. It is clear that the immune mechanisms leading to atherosclerotic plaque progression, by oral infection, are complex. Understanding the immune pathways leading to disease progression is essential for the future development of anti-inflammatory therapies for this chronic disease.
Collapse
Affiliation(s)
| | - C Kramer
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - C A Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Kim KW, Kim HR, Kim BM, Cho ML, Lee SH. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3011-24. [PMID: 26362732 DOI: 10.1016/j.ajpath.2015.07.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
This study determined the effect of type 17 helper T-cell (Th17) cytokines on osteoclastogenesis in rheumatoid arthritis (RA). The expression of IL-17 and receptor activator of NF-κB ligand (RANKL) was determined in synovial tissue, fibroblast-like synoviocytes (FLSs), and synovial fluids of RA patients using immunostaining and enzyme-linked immunosorbent assay. Th17 cytokine-induced RANKL expression was studied in RA FLS by using real-time PCR, luciferase activity assays, and Western blot analysis. Human peripheral blood monocytes were cultured with macrophage colony-stimulating factor and Th17 cytokines, after which osteoclastogenesis was evaluated by counting the number of tartrate-resistant acid phosphatase-positive multinucleated cells. Osteoclastogenesis was also evaluated after monocytes were co-cultured with IL-17-prestimulated FLS. There was significant correlation between RANKL and IL-17 levels in RA synovial fluid. IL-17, IL-21, and IL-22 increased the expression of Rankl mRNA in RA FLS, and the IL-17-induced RANKL expression decreased by the inhibition of Act1, tumor necrosis factor receptor-associated factor 6, NF-κB, and activator protein-1. Th17 cytokines and IL-17-prestimulated FLS induced osteoclastogenesis from monocytes in the absence of exogenous RANKL. The osteoclastic effect was reduced by inhibition of tumor necrosis factor-α. Th17 cytokines have a dual effect on osteoclastogenesis in RA: direct induction of osteoclastogenesis from monocytes and up-regulation of RANKL production in RA FLS. This Th17 cytokine/RANKL axis could be a potential therapeutic target for bone destruction in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Bo-Mi Kim
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Conversant Research Consorcium in Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Rheumatism Research Center, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev 2015; 15:1-8. [PMID: 26299984 DOI: 10.1016/j.autrev.2015.08.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) constitute an important mechanism in the activation of innate immune cells including monocytes, macrophages and dendritic cells. Macrophage activation by TLRs is pivotal in the initiation of the rapid expression of pro-inflammatory cytokines TNF, IL-1β and IL-6 while promoting Th17 responses, all of which play critical roles in autoimmunity. Surprisingly, in inflammatory arthritis, activation of specific TLRs can not only induce but also inhibit cellular processes associated with bone destruction. The intercellular and intracellular orchestration of signals from different TLRs, their endogenous or microbial ligands and accessory molecules determine the activating or inhibitory responses. Herein, we review the TLR-mediated activation of innate immune cells in their activation and differentiation to osteoclasts and the capacity of these signals to contribute to bone destruction in arthritis. Detailed understanding of the opposing mechanisms of TLRs in the induction and suppression of cellular processes in arthritis may pave the way to develop novel therapies to treat autoimmunity.
Collapse
Affiliation(s)
| | - M Eric Gerswhin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, CA, 95817, USA.
| |
Collapse
|
29
|
Role of inflammation in the aging bones. Life Sci 2014; 123:25-34. [PMID: 25510309 DOI: 10.1016/j.lfs.2014.11.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 12/15/2022]
Abstract
Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid in the understanding of the potential role(s) of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts in relation to aging.
Collapse
|
30
|
Dixit N, Wu DJ, Belgacem YH, Borodinsky LN, Gershwin ME, Adamopoulos IE. Leukotriene B4 activates intracellular calcium and augments human osteoclastogenesis. Arthritis Res Ther 2014; 16:496. [PMID: 25443625 PMCID: PMC4276054 DOI: 10.1186/s13075-014-0496-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction Bone erosion in inflammatory arthritis depends on the recruitment and activation of bone resorbing cells, the osteoclasts. Interleukin-23 (IL-23) has been primarily implicated in mediating inflammatory bone loss via the differentiation of Th17 receptor activator of nuclear factor κB ligand (RANKL)–producing cells. In this article, we describe a new role of IL-23 in activating the synthesis and production of leukotriene B4 (LTB4) in innate immune cells. Methods We utilized whole blood–derived human peripheral blood mononuclear cells (PBMCs), differentiated them towards an osteoclast lineage and then performed immunofluorescence and cytochemical staining to detect the expression of LTB4-associated receptors and enzymes such as phospholipase A2, 5-lipoxygenase and leukotriene A4 hydrolase, as well as the presence of tartrate-resistant acid phosphatase (TRAP) and F-actin rings on fully mature osteoclasts. We used enzyme immunoassays to measure LTB4 levels in culture media derived from IL-23-treated human PBMCs. We used real-time calcium imaging to study the effect of leukotrienes and requirements of different calcium sources and signaling proteins in activating intracellular calcium flux using pharmacological inhibitors to phospholipase C (U73122), membrane calcium channels (2-APB) and phosphatidylinositol 3-kinase (Wortmannin) and utilized qPCR for gene expression analysis in macrophages and osteoclasts. Results Our data show that LTB4 engagement of BLT1 and BLT2 receptors on osteoclast precursors leads to activation of phospholipase C and calcium release–activated channel–mediated intracellular calcium flux, which can activate further LTB4 autocrine production. IL-23-induced synthesis and secretion of LTB4 resulted in the upregulation of osteoclast-related genes NFATC1, MMP9, ACP5, CTSK and ITGB3 and the formation of giant, multinucleated TRAP+ cells capable of F-actin ring formation. These effects were dependent on Ca2+ signaling and were completely inhibited by BLT1/BLT2 and/or PLC and CRAC inhibitors. Conclusions In conclusion, IL-23 can initiate osteoclast differentiation independently from the RANK-RANKL pathway by utilizing Ca2+ signaling and the LTB4 signaling cascade.
Collapse
|
31
|
Shin HS, Sarin R, Dixit N, Wu J, Gershwin E, Bowman EP, Adamopoulos IE. Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis. THE JOURNAL OF IMMUNOLOGY 2014; 194:316-24. [PMID: 25452564 DOI: 10.4049/jimmunol.1401013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-23 has been well studied in the context of T cell differentiation; however, its role in the differentiation of myeloid progenitors is less clear. In this paper, we describe a novel role of IL-23 in myeloid cell differentiation. Specifically, we have identified that in human PBMCs, IL-23 induces the expression of MDL-1, a PU.1 transcriptional target during myeloid differentiation, which orchestrates osteoclast differentiation through activation of DNAX activating protein of 12 kDa and its ITAMs. The molecular events that lead to the differentiation of human macrophages to terminally differentiated osteoclasts are dependent on spleen tyrosine kinase and phospholipase Cγ2 phosphorylation for the induction of intracellular calcium flux and the subsequent activation of master regulator osteoclast transcription factor NFATc1. IL-23-elicited osteoclastogenesis is independent of the receptor activator of NF-κB ligand pathway and uses a unique myeloid DNAX activating protein of 12 kDa-associated lectin-1(+)/DNAX activating protein of 12 kDa(+) cell subset. Our data define a novel pathway that is used by IL-23 in myeloid cells and identify a major mechanism for the stimulation of osteoclastogenesis in inflammatory arthritis.
Collapse
Affiliation(s)
- Hyun-Seock Shin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Ritu Sarin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Neha Dixit
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Jian Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616
| | - Edward P Bowman
- Discovery Research, Department of Immunology and Immunomodulatory Receptors, Merck Research Laboratories, Palo Alto, CA 94304; and
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA 95817
| |
Collapse
|
32
|
Immunohistochemical identification of osteoclasts and multinucleated macrophages. Cell Immunol 2014; 292:53-6. [DOI: 10.1016/j.cellimm.2014.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 02/07/2023]
|
33
|
Kim SJ, Chen Z, Chamberlain ND, Essani AB, Volin MV, Amin MA, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. THE JOURNAL OF IMMUNOLOGY 2014; 193:3902-13. [PMID: 25200955 DOI: 10.4049/jimmunol.1302998] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our aim was to examine the impact of TLR5 ligation in rheumatoid arthritis (RA) and experimental arthritis pathology. Studies were conducted to investigate the role of TLR5 ligation on RA and mouse myeloid cell chemotaxis or osteoclast formation, and in addition, to uncover the significance of TNF-α function in TLR5-mediated pathogenesis. Next, the in vivo mechanism of action was determined in collagen-induced arthritis (CIA) and local joint TLR5 ligation models. Last, to evaluate the importance of TLR5 function in RA, we used anti-TLR5 Ab therapy in CIA mice. We show that TLR5 agonist, flagellin, can promote monocyte infiltration and osteoclast maturation directly through myeloid TLR5 ligation and indirectly via TNF-α production from RA and mouse cells. These two identified TLR5 functions are potentiated by TNF-α, because inhibition of both pathways can more strongly impair RA synovial fluid-driven monocyte migration and osteoclast differentiation compared with each factor alone. In preclinical studies, flagellin postonset treatment in CIA and local TLR5 ligation in vivo provoke homing and osteoclastic development of myeloid cells, which are associated with the TNF-α cascade. Conversely, CIA joint inflammation and bone erosion are alleviated when TLR5 function is blocked. We found that TLR5 and TNF-α pathways are interconnected, because TNF-α is produced by TLR5 ligation in RA myeloid cells, and anti-TNF-α therapy can markedly suppress TLR5 expression in RA monocytes. Our novel findings demonstrate that a direct and an indirect mechanism are involved in TLR5-driven RA inflammation and bone destruction.
Collapse
Affiliation(s)
- Seung-Jae Kim
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nathan D Chamberlain
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Abdul B Essani
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Chicago College of Osteopathic Medicine, Downers Grove, IL 60515
| | - M Asif Amin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Suncica Volkov
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Ellen M Gravallese
- Department of Medicine, University of Massachusetts Memorial Medical Center and University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shiva Arami
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - William Swedler
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nancy E Lane
- University of California Davis Medical Center, Sacramento, CA 95817
| | - Anjali Mehta
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612;
| |
Collapse
|
34
|
Lam RS, O’Brien-Simpson NM, Lenzo JC, Holden JA, Brammar GC, Walsh KA, McNaughtan JE, Rowler DK, Van Rooijen N, Reynolds EC. Macrophage Depletion AbatesPorphyromonas gingivalis–Induced Alveolar Bone Resorption in Mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:2349-62. [DOI: 10.4049/jimmunol.1400853] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Wu DJ, Dixit N, Suzuki E, Nguyen T, Shin HS, Davis J, Maverakis E, Adamopoulos IE. A novel in vivo gene transfer technique and in vitro cell based assays for the study of bone loss in musculoskeletal disorders. J Vis Exp 2014. [PMID: 24961167 DOI: 10.3791/51810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differentiation and activation of osteoclasts play a key role in the development of musculoskeletal diseases as these cells are primarily involved in bone resorption. Osteoclasts can be generated in vitro from monocyte/macrophage precursor cells in the presence of certain cytokines, which promote survival and differentiation. Here, both in vivo and in vitro techniques are demonstrated, which allow scientists to study different cytokine contributions towards osteoclast differentiation, signaling, and activation. The minicircle DNA delivery gene transfer system provides an alternative method to establish an osteoporosis-related model is particularly useful to study the efficacy of various pharmacological inhibitors in vivo. Similarly, in vitro culturing protocols for producing osteoclasts from human precursor cells in the presence of specific cytokines enables scientists to study osteoclastogenesis in human cells for translational applications. Combined, these techniques have the potential to accelerate drug discovery efforts for osteoclast-specific targeted therapeutics, which may benefit millions of osteoporosis and arthritis patients worldwide.
Collapse
Affiliation(s)
- Dennis J Wu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Neha Dixit
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Erika Suzuki
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Thanh Nguyen
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California
| | - Hyun Seock Shin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis
| | - Jack Davis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California
| | | | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children - Northern California;
| |
Collapse
|
36
|
Chen HT, Tsou HK, Chen JC, Shih JMK, Chen YJ, Tang CH. Adiponectin enhances intercellular adhesion molecule-1 expression and promotes monocyte adhesion in human synovial fibroblasts. PLoS One 2014; 9:e92741. [PMID: 24667577 PMCID: PMC3965461 DOI: 10.1371/journal.pone.0092741] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/24/2014] [Indexed: 12/13/2022] Open
Abstract
Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes and is involved in energy homeostasis. Adiponectin expression is significantly high in the synovial fluid of patients with osteoarthritis (OA). Intercellular adhesion molecule-1 (ICAM-1) is an important adhesion molecule that mediates monocyte adhesion and infiltration during OA pathogenesis. Adiponectin-induced expression of ICAM-1 in human OA synovial fibroblasts (OASFs) was examined by using qPCR, flow cytometry and western blotting. The intracellular signaling pathways were investigated by pretreated with inhibitors or transfection with siRNA. The monocyte THP-1 cell line was used for an adhesion assay with OASFs. Stimulation of OASFs with adiponectin induced ICAM-1 expression. Pretreatment with AMP-activated protein kinase (AMPK) inhibitors (AraA and compound C) or transfection with siRNA against AMPKα1 and two AMPK upstream activator- liver kinase B1 (LKB1) and calmodulin-dependent protein kinase II (CaMKII) diminished the adiponectin-induced ICAM-1 expression. Stimulation of OASFs with adiponectin increased phosphorylation of LKB1, CaMKII, AMPK, and c-Jun, resulting in c-Jun binding to AP-1 element of ICAM-1 promoter. In addition, adiponectin-induced activation of the LKB1/CaMKII, AMPK, and AP-1 pathway increased the adhesion of monocytes to the OASF monolayer. Our results suggest that adiponectin increases ICAM-1 expression in human OASFs via the LKB1/CaMKII, AMPK, c-Jun, and AP-1 signaling pathway. Adiponectin-induced ICAM-1 expression promoted the adhesion of monocytes to human OASFs. These findings may provide a better understanding of the pathogenesis of OA and can utilize this knowledge to design a new therapeutic strategy.
Collapse
Affiliation(s)
- Hsien-Te Chen
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Kai Tsou
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Early Childhood Care and Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Jui-Chieh Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Zhunan, Taiwan
| | | | - Yen-Jen Chen
- Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Rollett A, Reiter T, Ohradanova-Repic A, Machacek C, Cavaco-Paulo A, Stockinger H, Guebitz GM. HSA nanocapsules functionalized with monoclonal antibodies for targeted drug delivery. Int J Pharm 2013; 458:1-8. [DOI: 10.1016/j.ijpharm.2013.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 02/04/2023]
|
38
|
|
39
|
The emerging role of Interleukin 27 in inflammatory arthritis and bone destruction. Cytokine Growth Factor Rev 2012; 24:115-21. [PMID: 23165310 DOI: 10.1016/j.cytogfr.2012.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 11/24/2022]
Abstract
Although the causes of inflammatory arthritis elude us, aberrant cytokine expression has been linked to joint pathology. Consequently, several approaches in the clinic and/or in clinical trials are targeting cytokines, e.g. tumor necrosis factor (TNF), Interleukin 23 (IL-23) and Interleukin 17 (IL-17), with the goal of antagonizing their respective biologic activity through therapeutic neutralizing antibodies. Such, cytokine signaling-dependent molecular networks orchestrate synovial inflammation on multiple levels including differentiation of myeloid cells to osteoclasts, the central cellular players in arthritis-associated pathologic bone resorption. Hence, understanding of the cellular and molecular mechanisms elicited by synovial cytokine networks that dictate recruitment, differentiation and activation of osteoclast precursors and osteoclasts, respectively, is central to shaping novel therapeutic options for inflammatory arthritis patients. In this article we are discussing the complex signaling interactions involved in the regulation of inflammatory arthritis and it's associated bone loss with a focus on Interleukin 27 (IL-27). The present review will discuss the primary bone-degrading cell, the osteoclast, and on how IL-27, directly or indirectly, modulates osteoclast activity in autoimmune-driven inflammatory joint diseases.
Collapse
|
40
|
Giambartolomei GH, Scian R, Acosta-Rodríguez E, Fossati CA, Delpino MV. Brucella abortus-infected macrophages modulate T lymphocytes to promote osteoclastogenesis via IL-17. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:887-96. [PMID: 22901753 DOI: 10.1016/j.ajpath.2012.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/03/2012] [Accepted: 05/21/2012] [Indexed: 01/18/2023]
Abstract
The pathogenic mechanisms of bone loss caused by Brucella species have not been completely deciphered. Although T lymphocytes (LTs) are considered important to control infection, the mechanism of Brucella-induced T-cell responses to immunopathological features is not known. We present in vitro and in vivo evidence showing that Brucella abortus-induced inflammatory response leads to the activation of LTs, which further promote osteoclastogenesis. Pre-activated murine LTs treated with culture supernatant from macrophages infected with B. abortus induced bone marrow-derived monocytes (BMMs) to undergo osteoclastogenesis. Furthermore, osteoclastogenesis was mediated by CD4(+) T cells. Although B. abortus-activated T cells actively secreted the pro-osteoclastogenic cytokines RANKL and IL-17, osteoclastogenesis depended on IL-17, because osteoclast generation induced by Brucella-activated T cells was completely abrogated when these cells were cultured with BMMs from IL-17 receptor knockout mice. Neutralization experiments indicated that IL-6, generated by Brucella infection, induced the production of pro-osteoclastogenic IL-17 from LTs. By using BMMs from tumor necrosis factor receptor p55 knockout mice, we also demonstrated that IL-17 indirectly induced osteoclastogenesis through the induction of tumor necrosis factor-α from osteoclast precursors. Finally, extensive and widespread osteoclastogenesis was observed in the knee joints of mice injected with Brucella-activated T cells. Our results indicate that activated T cells, elicited by B. abortus-infected macrophages and influenced by the inflammatory milieu, promote the generation of osteoclasts, leading to bone loss.
Collapse
Affiliation(s)
- Guillermo H Giambartolomei
- Institute for the Study of Humoral Immunity, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
41
|
Dickerson TJ, Suzuki E, Stanecki C, Shin HS, Qui H, Adamopoulos IE. Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. J Autoimmun 2012; 39:369-76. [PMID: 22867712 DOI: 10.1016/j.jaut.2012.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 11/30/2022]
Abstract
Bone destruction is a common feature of inflammatory arthritis and is mediated by osteoclasts, the only specialized cells to carry out bone resorption. Aberrant expression of receptor activator of nuclear factor kappa β ligand (RANKL), an inducer of osteoclast differentiation has been linked with bone pathology and the synovial fibroblast in rheumatoid arthritis (RA). In this manuscript, we challenge the current concept that an increase in RANKL expression governs osteoclastogenesis and bone destruction in autoimmune arthritis. We isolated human fibroblasts from RA, pyrophosphate arthropathy (PPA) and osteoarthritis (OA) patients and analyzed their RANKL/OPG expression profile and the capacity of their secreted factors to induce osteoclastogenesis. We determined a 10-fold increase of RANKL mRNA and protein in fibroblasts isolated from RA relative to PPA and OA patients. Peripheral blood mononuclear cells (PBMC) from healthy volunteers were cultured in the presence of RA, PPA and OA synovial fibroblast conditioned medium. Osteoclast differentiation was assessed by expression of tartrate-resistant acid phosphatase (TRAP), vitronectin receptor (VNR), F-actin ring formation and bone resorption assays. The formation of TRAP(+), VNR(+) multinucleated cells, capable of F-actin ring formation and lacunar resorption in synovial fibroblast conditioned medium cultures occured in the presence of osteoprotegerin (OPG) a RANKL antagonist. Osteoclasts did not form in these cultures in the absence of macrophage colony stimulating factor (M-CSF). Our data suggest that the conditioned medium of pure synovial fibroblast cultures contain inflammatory mediators that can induce osteoclast formation in human PBMC independently of RANKL. Moreover inhibition of the TNF or IL-6 pathway was not sufficient to abolish osteoclastogenic signals derived from arthritic synovial fibroblasts. Collectively, our data clearly show that alternate osteoclastogenic pathways exist in inflammatory arthritis and place the synovial fibroblast as a key regulatory cell in bone and joint destruction, which is a hallmark of autoimmune arthritis.
Collapse
Affiliation(s)
- Tiffany J Dickerson
- University of California, Davis, Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rollett A, Reiter T, Nogueira P, Cardinale M, Loureiro A, Gomes A, Cavaco-Paulo A, Moreira A, Carmo AM, Guebitz GM. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. Int J Pharm 2012; 427:460-6. [PMID: 22374516 DOI: 10.1016/j.ijpharm.2012.02.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 11/19/2022]
Abstract
Activated synovial macrophages play a key role in Rheumatoid Arthritis (RA). Recent studies have shown that folate receptor beta (FRβ) is specifically expressed by activated macrophages. Therefore a folate-based nanodevice would provide the possibility of delivering therapeutic agents to activated macrophages without affecting normal cells and tissues. This study shows for the first time the sonochemical preparation of HSA nanocapsules avoiding toxic cross linking chemicals and emulsifiers used in other methods. Production of HSA nanocapsules was optimized leading to a diameter of 443.5 ± 9.0 nm and a narrow size distribution indicated by a polydispersity index (PDI) of 0.066 ± 0.080. Nanocapsules were surface modified with folic acid (FA) and the FA content was determined to be 0.38 and 6.42 molecules FA per molecule HSA, depending on the surplus of FA employed. Dynamic light scattering was used to determine size, PDI and zetapotential of the produced nanocapsules before and after surface modification. FA distribution on the surface of HSA nanocapsules was localized three-dimensionally after fluorescence labeling using confocal laser scanning microscopy (CLSM). Furthermore, specific binding and internalization of HSA nanocapsules by FRβ-positive and FRβ-negative macrophages, obtained from human peripheral blood mononuclear cells, was demonstrated by flow cytometry. FRβ-expressing macrophages showed an increased binding for FA-modified capsules compared with those without FA.
Collapse
Affiliation(s)
- Alexandra Rollett
- Graz University of Technology, Institute of Environmental Biotechnology, Petersgasse 12, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Delpino MV, Barrionuevo P, Macedo GC, Oliveira SC, Genaro SD, Scian R, Miraglia MC, Fossati CA, Baldi PC, Giambartolomei GH. Macrophage-elicited osteoclastogenesis in response to Brucella abortus infection requires TLR2/MyD88-dependent TNF-α production. J Leukoc Biol 2011; 91:285-98. [PMID: 22075930 DOI: 10.1189/jlb.04111185] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Osteoarticular complications are common in human brucellosis, but the pathogenic mechanisms involved are largely unknown. In this manuscript, we described an immune mechanism for inflammatory bone loss in response to infection by Brucella abortus. We established a requirement for MyD88 and TLR2 in TNF-α-elicited osteoclastogenesis in response to B. abortus infection. CS from macrophages infected with B. abortus induced BMM to undergo osteoclastogenesis. Although B. abortus-infected macrophages actively secreted IL-1β, IL-6, and TNF-α, osteoclastogenesis depended on TNF-α, as CS from B. abortus-infected macrophages failed to induce osteoclastogenesis in BMM from TNFRp55⁻/⁻ mice. CS from B. abortus-stimulated MyD88⁻/⁻ and TLR2⁻/⁻ macrophages failed to express TNF-α, and these CS induced no osteoclast formation compared with that of the WT or TLR4⁻/⁻ macrophages. Omp19, a B. abortus lipoprotein model, recapitulated the cytokine production and subsequent osteoclastogenesis induced by the whole bacterium. All phenomena were corroborated using human monocytes, indicating that this mechanism could play a role in human osteoarticular brucellosis. Our results indicate that B. abortus, through its lipoproteins, may be involved in bone resorption through the pathological induction of osteoclastogenesis.
Collapse
Affiliation(s)
- M Victoria Delpino
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mahoney DJ, Swales C, Athanasou NA, Bombardieri M, Pitzalis C, Kliskey K, Sharif M, Day AJ, Milner CM, Sabokbar A. TSG-6 inhibits osteoclast activity via an autocrine mechanism and is functionally synergistic with osteoprotegerin. ARTHRITIS AND RHEUMATISM 2011; 63:1034-43. [PMID: 21162099 DOI: 10.1002/art.30201] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE TSG-6 (the product of tumor necrosis factor [TNF]-stimulated gene 6) has a potent inhibitory effect on RANKL-mediated bone erosion. The aim of this study was to compare the activity of TSG-6 with that of osteoprotegerin (OPG) and to investigate its role as an autocrine modulator of cytokine-mediated osteoclast formation/activation. We also determined TSG-6 expression in inflammatory joint disease. METHODS The effects of TSG-6, OPG, and the inflammation mediators TNFα, interleukin-1 (IL-1), and IL-6 on the formation of osteoclasts from peripheral blood mononuclear cells and synovial fluid (SF) macrophages were determined by tartrate-resistant acid phosphatase staining. Lacunar resorption and filamentous actin ring formation were measured as indicators of osteoclast activity. The amount of TSG-6 in culture media or SF was quantified by enzyme-linked immunosorbent assay, and expression of TSG-6 in synovial tissue was assessed by immunohistochemistry. RESULTS TSG-6 acted in synergy with OPG to inhibit RANKL-mediated bone resorption and was produced by osteoclast precursors and mature osteoclasts in response to TNFα, IL-1, and IL-6. Expression of TSG-6 correlated with inhibition of lacunar resorption; this effect was ameliorated by an anti-TSG-6 antibody. The level of TSG-6 protein was determined in SF from patients with various arthritides; it was highest in patients with inflammatory conditions such as rheumatoid arthritis, in which it correlated with the amount of TSG-6 immunostaining in the synovium. TSG-6 inhibited the activation but not the formation of osteoclasts from SF macrophages. CONCLUSION In the presence of inflammatory cytokines, osteoclasts produced TSG-6 at concentrations that are sufficient to inhibit lacunar resorption. This may represent an autocrine mechanism to limit the degree of bone erosion during joint inflammation.
Collapse
|
45
|
Hofkens W, Grevers LC, Walgreen B, de Vries TJ, Leenen PJM, Everts V, Storm G, van den Berg WB, van Lent PL. Intravenously delivered glucocorticoid liposomes inhibit osteoclast activity and bone erosion in murine antigen-induced arthritis. J Control Release 2011; 152:363-9. [PMID: 21396411 DOI: 10.1016/j.jconrel.2011.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED The objective of this study was to determine the effect of systemic delivery of prednisolone phosphate (PLP) encapsulated within long circulating 'stealth' liposomes on bone erosion and osteoclast activity during experimental antigen-induced arthritis (AIA). Liposomal PLP strongly suppressed knee joint swelling, synovial infiltrate and bone erosion in antigen-induced arthritis. The number of active osteoclasts was not only suppressed in bone lesions near inflamed synovium, but also within the trabecular bone of the tibia, suggesting a systemic suppression of osteoclast activation. Furthermore, liposomal PLP directly blocked osteoclast differentiation and bone resorption in vitro while it also suppressed expression of osteoclast differentiation factors M-CSF and RANKL in the synovium. Targeting studies showed that liposomes are most efficiently phagocytosed by macrophages and early precursors of osteoclasts in the bone marrow rather than by mature osteoclasts, indicating a possible inhibition of osteoclast differentiation from an early stage. CONCLUSION Liposomal glucocorticoid delivery rather than free PLP offers a more efficacious way to inhibit both inflammation and bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Wouter Hofkens
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hayashi C, Gudino CV, Gibson FC, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 2011; 25:305-16. [PMID: 20883220 DOI: 10.1111/j.2041-1014.2010.00582.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hallmark of infection with the gram-negative pathogen Porphyromonas gingivalis is the induction of a chronic inflammatory response. P. gingivalis induces a local chronic inflammatory response that results in oral inflammatory bone destruction, which manifests as periodontal disease. In addition to chronic inflammation at the initial site of infection, mounting evidence has accumulated supporting a role for P. gingivalis-mediated periodontal disease as a risk factor for several systemic diseases including, diabetes, preterm birth, stroke, and atherosclerotic cardiovascular disease. A growing number of in vitro studies have demonstrated that P. gingivalis infection stimulates cell activation commensurate with expected responses paralleling inflammatory atherosclerotic-type responses. Furthermore, various mouse models have been used to examine the ability of P. gingivalis to stimulate chronic inflammatory plaque accumulation and recent studies have pointed to a pivotal role for innate immune signaling via the Toll-like receptors in the chronic inflammation associated with P. gingivalis infection. In this review we discuss the pathogen and host cell specificity of these responses and discuss possible mechanisms by which this oral pathogen can induce and maintain a chronic state of inflammation at sites distant from oral infection.
Collapse
Affiliation(s)
- C Hayashi
- Department of Medicine, Sections of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
47
|
Chao CC, Chen SJ, Adamopoulos IE, Davis N, Hong K, Vu A, Kwan S, Fayadat-Dilman L, Asio A, Bowman EP. Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity 2010; 44:243-52. [PMID: 20925596 DOI: 10.3109/08916934.2010.517815] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine secreted by a subset of memory T cells and other innate immune cells. It is associated with rheumatoid arthritis (RA) due to IL-17A expression in RA synovial fluid. The severe bone erosive rat adjuvant-induced arthritis (rAIA) and mouse collagen-induced arthritis (mCIA) models were used to address the therapeutic efficacy of anti-IL-17A treatment with a focused investigation on bone protection. In the rAIA model, treatment with anti-IL-17A completely alleviated arthritis, lowered the level of receptor activator of NFκB ligand (RANKL), and inhibited structural damage to the bones. In the mCIA model, IL-17A neutralization coincident with arthritis development or in mice with established arthritis diminished joint swelling by inhibiting disease initiation and progression. Intriguingly, even the few joints that became outwardly severely inflamed in the presence of an anti-IL-17A antagonist had diminished joint histopathology scores compared to severely inflamed, control-treated mice. The bone-preserving property correlated with decreased RANKL message in severely inflamed paws of arthritic mice. These data identify IL-17A as a key factor in inflammation-mediated bone destruction and support anti-IL-17A therapy for the treatment of inflammatory bone diseases such as RA.
Collapse
Affiliation(s)
- Cheng-Chi Chao
- Department of Immunology, Merck Palo Alto (formerly DNAX Research Institute), Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Osteoarthritis (OA), one of the most common rheumatic disorders, is characterized by cartilage breakdown and by synovial inflammation that is directly linked to clinical symptoms such as joint swelling, synovitis and inflammatory pain. The gold-standard method for detecting synovitis is histological analysis of samples obtained by biopsy, but the noninvasive imaging techniques MRI and ultrasonography might also perform well. The inflammation of the synovial membrane that occurs in both the early and late phases of OA is associated with alterations in the adjacent cartilage that are similar to those seen in rheumatoid arthritis. Catabolic and proinflammatory mediators such as cytokines, nitric oxide, prostaglandin E(2) and neuropeptides are produced by the inflamed synovium and alter the balance of cartilage matrix degradation and repair, leading to excess production of the proteolytic enzymes responsible for cartilage breakdown. Cartilage alteration in turn amplifies synovial inflammation, creating a vicious circle. As synovitis is associated with clinical symptoms and also reflects joint degradation in OA, synovium-targeted therapy could help alleviate the symptoms of the disease and perhaps also prevent structural progression.
Collapse
|
49
|
Chao CC, Chen SJ, Adamopoulos IE, Judo M, Asio A, Ayanoglu G, Bowman EP. Structural, cellular, and molecular evaluation of bone erosion in experimental models of rheumatoid arthritis: Assessment by μCT, histology, and serum biomarkers. Autoimmunity 2010; 43:642-53. [DOI: 10.3109/08916931003610992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y, McClanahan T, Bowman EP. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 2010; 12:R29. [PMID: 20167120 PMCID: PMC2875663 DOI: 10.1186/ar2936] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/31/2010] [Accepted: 02/18/2010] [Indexed: 11/23/2022] Open
Abstract
Introduction The interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis. Methods Human CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated with IL-17A and/or receptor activator of NF-κB ligand (RANKL). Osteoclast differentiation was evaluated by gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy. Physiologic bone remodelling was studied in wild-type (Wt) and IL-17A-/- mice using micro-computer tomography and serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone marrow macrophages isolated from IL-17A-/- and Wt mice. Results IL-17A upregulates the receptor activator for NF-κB receptor on human osteoclast precursors in vitro, leading to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A-/- mice have physiological bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop fully functional normal osteoclasts. Conclusions Collectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss associated with autoimmune diseases.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Discovery Research, Schering-Plough Biopharma (formerly DNAX Research, Inc,), 901 South California Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|