1
|
Kunii M, Harada A. Molecular mechanisms of polarized transport to the apical plasma membrane. Front Cell Dev Biol 2024; 12:1477173. [PMID: 39445332 PMCID: PMC11497131 DOI: 10.3389/fcell.2024.1477173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Cell polarity is essential for cellular function. Directional transport within a cell is called polarized transport, and it plays an important role in cell polarity. In this review, we will introduce the molecular mechanisms of polarized transport, particularly apical transport, and its physiological importance.
Collapse
Affiliation(s)
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, The University of Osaka, Osaka, Japan
| |
Collapse
|
2
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Kranz LA, Hahn WS, Thompson WS, Hentz R, Kobrinsky NL, Galardy P, Greenmyer JR. Neonatal hemophagocytic lymphohistiocytosis: A meta-analysis of 205 cases. Pediatr Blood Cancer 2024; 71:e30894. [PMID: 38296838 DOI: 10.1002/pbc.30894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal hemophagocytic lymphohistiocytosis (nHLH), defined as HLH that presents in the first month of life, is clinically devastating. There have been few large descriptive studies of nHLH. OBJECTIVES The objective of this study was to perform a meta-analysis of published cases of nHLH. METHODS A comprehensive literature database search was performed. Cases of HLH were eligible for inclusion if clinical analysis was performed at age ≤30 days. Up to 70 variables were extracted from each case. RESULTS A total of 544 studies were assessed for eligibility, and 205 cases of nHLH from 142 articles were included. The median age of symptom onset was day of life 3 (interquartile range [IQR]: 0-11, n = 141). Median age at diagnosis was day of life 15 (IQR: 6-27, n = 87). Causes of HLH included familial HLH (48%, n = 99/205), infection (26%, n = 53/205), unknown (17%, n = 35/205), macrophage activation syndrome/rheumatologic (2.9%, n = 4/205), primary immune deficiency (2.0%, n = 5/205), inborn errors of metabolism (2.4%, n = 5/205), and malignancy (2.0%, n = 4/205). Fever was absent in 19% (n = 28/147) of all neonates and 39% (n = 15/38) of preterm neonates. Bicytopenia was absent in 26% (n = 47/183) of patients. Central nervous system (CNS) manifestations were reported in 63% of cases (n = 64/102). Liver injury (68%, n = 91/134) and/or liver failure (24%, n = 32/134) were common. Flow cytometry was performed in 22% (n = 45/205) of cases. Many patients (63%, n = 121/193) died within the period of reporting. Discernable values for HLH diagnostic criteria were reported between 30% and 83% of the time. CONCLUSIONS Evaluation of nHLH requires rapid testing for a wide range of differential diagnoses. HLH diagnostic criteria such as fever and bicytopenia may not occur as frequently in the neonatal population as in older pediatric populations. Neurologic and hepatic manifestations frequently occur in the neonatal population. Current reports of nHLH suggest a high mortality rate. Future publications containing data on nHLH should improve reporting quality by reporting all clinically relevant data.
Collapse
Affiliation(s)
- Lincoln A Kranz
- University of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Wyatt S Hahn
- University of North Dakota School of Medicine, Grand Forks, North Dakota, USA
| | - Whitney S Thompson
- Mayo Clinic, Neonatal and Perinatal Medicine, Clinical Genomics, Center for Individualized Medicine, Rochester, Minnesota, USA
| | - Roland Hentz
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Paul Galardy
- Pediatric Hematology and Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jacob R Greenmyer
- Pediatric Hematology and Oncology, Hospice and Palliative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Sun M, Pylypenko O, Zhou Z, Xu M, Li Q, Houdusse A, van IJzendoorn SCD. Uncovering the Relationship Between Genes and Phenotypes Beyond the Gut in Microvillus Inclusion Disease. Cell Mol Gastroenterol Hepatol 2024; 17:983-1005. [PMID: 38307491 PMCID: PMC11041842 DOI: 10.1016/j.jcmgh.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Zhe Zhou
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mingqian Xu
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Qinghong Li
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Center for Liver Digestive & Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Babcock SJ, Flores-Marin D, Thiagarajah JR. The genetics of monogenic intestinal epithelial disorders. Hum Genet 2023; 142:613-654. [PMID: 36422736 PMCID: PMC10182130 DOI: 10.1007/s00439-022-02501-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Monogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development. The advent of accessible and low-cost genetic sequencing has accelerated discovery in the field with over 45 different genes now associated with CoDE disorders. Despite this increasing knowledge in the causal genetics of disease, the underlying cellular pathophysiology remains incompletely understood for many disorders. Consequently, clinical management options for CoDE disorders are currently limited and there is an urgent need for new and disorder-specific therapies. In this review, we provide a general overview of CoDE disorders, including a historical perspective of the field and relationship to other monogenic disorders of the intestine. We describe the genetics, clinical presentation, and known pathophysiology for specific disorders. Lastly, we describe the major challenges relating to CoDE disorders, briefly outline key areas that need further study, and provide a perspective on the future genetic and therapeutic landscape.
Collapse
Affiliation(s)
- Stephen J Babcock
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - David Flores-Marin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Fujikawa H, Shimizu H, Nambu R, Takeuchi I, Matsui T, Sakamoto K, Gocho Y, Miyamoto T, Yasumi T, Yoshioka T, Arai K. Monogenic inflammatory bowel disease with STXBP2 mutations is not resolved by hematopoietic stem cell transplantation but can be alleviated via immunosuppressive drug therapy. Clin Immunol 2023; 246:109203. [PMID: 36503158 DOI: 10.1016/j.clim.2022.109203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
STXBP2, encoding syntaxin-binding protein 2, is involved in intracellular organelle trafficking and is associated with familial hemophagocytic lymphohistiocytosis type 5. Although STXBP2 mutations reportedly cause monogenic inflammatory bowel disease, the clinical course and underlying pathogenic mechanisms remain unclear. We identified a novel mutation in STXBP2 [c.1197delC, p.Ala400fs] in a boy with congenital intractable diarrhea and hemophagocytic lymphohistiocytosis (HLH). HLH was treated with intravenous prednisolone, cyclosporine, and dexamethasone palmitate. Hematopoietic stem cell transplantation (HSCT) along with prophylaxis for graft-versus-host-disease was performed at 5 months of age. Additionally, colonoscopies done before and after HSCT showed mild colitis with cryptitis. The patient showed elevated fecal calprotectin levels and persistent diarrhea even after HSCT and required partial parenteral nutrition. While anti-inflammatory treatment reduced diarrhea, it was not completely normalized even after HSCT, suggesting that the pathogenesis of inflammatory bowel disease associated with STXBP2 mutations involves both hyperinflammation and functional epithelial barrier defects.
Collapse
Affiliation(s)
- Hiroki Fujikawa
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Hirotaka Shimizu
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama-city, Saitama 330-0877, Japan.
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Toshihiro Matsui
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Kenichi Sakamoto
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yoshihiro Gocho
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
9
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
10
|
Sun Y, Leng C, van Ijzendoorn SCD. Fetal Bowel Abnormalities Suspected by Ultrasonography in Microvillus Inclusion Disease: Prevalence and Clinical Significance. J Clin Med 2022; 11:jcm11154331. [PMID: 35893420 PMCID: PMC9332086 DOI: 10.3390/jcm11154331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Microvillus inclusion disease (MVID) is a rare, inherited, congenital, diarrheal disorder that is invariably fatal if left untreated. Within days after birth, MVID presents as a life-threatening emergency characterized by severe dehydration, metabolic acidosis, and weight loss. Diagnosis is cumbersome and can take a long time. Whether MVID could be diagnosed before birth is not known. Anecdotal reports of MVID-associated fetal bowel abnormalities suspected by ultrasonography (that is, dilated bowel loops and polyhydramnios) have been published. These are believed to be rare, but their prevalence in MVID has not been investigated. Here, we have performed a comprehensive retrospective study of 117 published MVID cases spanning three decades. We find that fetal bowel abnormalities in MVID occurred in up to 60% of cases of MVID for which prenatal ultrasonography or pregnancy details were reported. Suspected fetal bowel abnormalities appeared in the third trimester of pregnancy and correlated with postnatal, early-onset diarrhea and case-fatality risk during infancy. Fetal bowel dilation correlated with MYO5B loss-of-function variants. In conclusion, MVID has already started during fetal life in a significant number of cases. Genetic testing for MVID-causing gene variants in cases where fetal bowel abnormalities are suspected by ultrasonography may allow for the prenatal diagnosis of MVID in a significant percentage of cases, enabling optimal preparation for neonatal intensive care.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China
| | - Sven C. D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
11
|
Bowman DM, Kaji I, Goldenring JR. Altered MYO5B Function Underlies Microvillus Inclusion Disease: Opportunities for Intervention at a Cellular Level. Cell Mol Gastroenterol Hepatol 2022; 14:553-565. [PMID: 35660026 PMCID: PMC9304615 DOI: 10.1016/j.jcmgh.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital diarrheal disorder resulting in life-threatening secretory diarrhea in newborns. Inactivating and nonsense mutations in myosin Vb (MYO5B) have been identified in MVID patients. Work using patient tissues, cell lines, mice, and pigs has led to critical insights into the pathology of MVID and a better understanding of both apical trafficking in intestinal enterocytes and intestinal stem cell differentiation. These studies have demonstrated that loss of MYO5B or inactivating mutations lead to loss of apical sodium and water transporters, without loss of apical CFTR, accounting for the major pathology of the disease. In addition, loss of MYO5B expression induces the formation of microvillus inclusions through apical bulk endocytosis that utilizes dynamin and PACSIN2 and recruits tight junction proteins to the sites of bulk endosome formation. Importantly, formation of microvillus inclusions is not required for the induction of diarrhea. Recent investigations have demonstrated that administration of lysophosphatidic acid (LPA) can partially reestablish apical ion transporters in enterocytes of MYO5B KO mice. In addition, further studies have shown that MYO5B loss induces an imbalance in Wnt/Notch signaling pathways that can lead to alterations in enterocyte maturation and tuft cell lineage differentiation. Inhibition of Notch signaling leads to improvements in those cell differentiation deficits. These studies demonstrate that directed strategies through LPA receptor activation and Notch inhibition can bypass the inhibitory effects of MYO5B loss. Thus, effective strategies may be successful in MVID patients and other congenital diarrhea syndromes to reestablish proper apical membrane absorption of sodium and water in enterocytes and ameliorate life-threatening congenital diarrhea.
Collapse
Affiliation(s)
- Deanna M Bowman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
12
|
Li Q, Zhou Z, Sun Y, Sun C, Klappe K, van IJzendoorn SC. A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy. Cell Mol Gastroenterol Hepatol 2022; 14:295-310. [PMID: 35421597 PMCID: PMC9218578 DOI: 10.1016/j.jcmgh.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven C.D. van IJzendoorn
- Correspondence Address correspondence to: Sven C. D. van IJzendoorn, PhD, Department of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
13
|
Ouahed J, Kelsen JR, Spessott WA, Kooshesh K, Sanmillan ML, Dawany N, Sullivan KE, Hamilton KE, Slowik V, Nejentsev S, Neves JF, Flores H, Chung WK, Wilson A, Anyane-Yeboa K, Wou K, Jain P, Field M, Tollefson S, Dent MH, Li D, Naito T, McGovern DPB, Kwong AC, Taliaferro F, Ordovas-Montanes J, Horwitz BH, Kotlarz D, Klein C, Evans J, Dorsey J, Warner N, Elkadri A, Muise AM, Goldsmith J, Thompson B, Engelhardt KR, Cant AJ, Hambleton S, Barclay A, Toth-Petroczy A, Vuzman D, Carmichael N, Bodea C, Cassa CA, Devoto M, Maas RL, Behrens EM, Giraudo CG, Snapper SB. Variants in STXBP3 are Associated with Very Early Onset Inflammatory Bowel Disease, Bilateral Sensorineural Hearing Loss and Immune Dysregulation. J Crohns Colitis 2021; 15:1908-1919. [PMID: 33891011 PMCID: PMC8575043 DOI: 10.1093/ecco-jcc/jjab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Waldo A Spessott
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kameron Kooshesh
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria L Sanmillan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Noor Dawany
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Voytek Slowik
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergey Nejentsev
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - João Farela Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Primary Immunodeficiencies Unit; Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Helena Flores
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Lisbon, 1150, Portugal
| | - Wendy K Chung
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Ashley Wilson
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Kwame Anyane-Yeboa
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Karen Wou
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Preti Jain
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Tollefson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Maiah H Dent
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Takeo Naito
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew C Kwong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Faith Taliaferro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Program in Immunology, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Emergency Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Kotlarz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Jonathan Evans
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Jill Dorsey
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Thompson
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Andrew J Cant
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Andrew Barclay
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, G51 4TF, UK
| | - Agnes Toth-Petroczy
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dana Vuzman
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nikkola Carmichael
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Corneliu Bodea
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Translational and Precision Medicine, University Sapienza, Rome 00185, Italy.,CNR-IRGB, Cagliari 09042, Italy
| | - Richard L Maas
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
14
|
Leng C, Sun Y, van IJzendoorn SCD. Risk and Clinical Significance of Idiopathic Preterm Birth in Microvillus Inclusion Disease. J Clin Med 2021; 10:jcm10173935. [PMID: 34501384 PMCID: PMC8432107 DOI: 10.3390/jcm10173935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare enteropathy caused by mutations in the MYO5B or STX3 gene. MVID is a disease that is difficult to manage with clinical heterogeneity. Therefore, knowledge about factors influencing MVID morbidity and mortality is urgently needed. Triggered by a recent study that reported a high percentage of preterm births in twelve cases of MVID, we have conducted a comprehensive retrospective study involving 88 cases of MVID with reported gestational ages. We found that moderate to late preterm birth occurred in more than half of all cases, and this was particularly prominent in MYO5B-associated MVID. Preterm birth in MVID counterintuitively correlated with higher birth weight percentiles, and correlated with higher stool outputs and a significantly shorter average survival time. Data from this study thus demonstrate an increased risk of preterm birth in MYO5B-associated MVID, with a clinical impact on morbidity and mortality. Adverse effects associated with preterm birth should be taken into account in the care of children diagnosed with MVID. Documentation of gestational age may contribute to a better prognostic risk assessment in MVID.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
- Department of Thoracic Surgery, Guangdong Esophageal Cancer Institute, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China
| | - Yue Sun
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Centre for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, The Netherlands; (C.L.); (Y.S.)
- Correspondence:
| |
Collapse
|
15
|
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. J Clin Med 2021; 10:jcm10030481. [PMID: 33525641 PMCID: PMC7865828 DOI: 10.3390/jcm10030481] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling.
Collapse
|
16
|
Leng C, Rings EHHM, de Wildt SN, van IJzendoorn SCD. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J Clin Med 2020; 10:jcm10010022. [PMID: 33374831 PMCID: PMC7794843 DOI: 10.3390/jcm10010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare inherited and invariably fatal enteropathy, characterized by severe intractable secretory diarrhea and nutrient malabsorption. No cure exists, and patients typically die during infancy because of treatment-related complications. The need for alternative treatment strategies is evident. Several pharmacological interventions with variable successes have been tried and reported for individual patients as part of their clinical care. Unfortunately, these interventions and their outcomes have remained hidden in case reports and have not been reviewed. Further, recent advances regarding MVID pathogenesis have shed new light on the outcomes of these pharmacological interventions and offer suggestions for future clinical research and trials. Hence, an inventory of reported pharmacological interventions in MVID, their rationales and outcomes, and a discussion of these in the light of current knowledge is opportune. Together with a discussion on MVID-specific pharmacokinetic, -dynamic, and -genetic concerns that pose unique challenges regarding pharmacological strategies, we envision that this paper will aid researchers and clinicians in their efforts to develop pharmacological interventions to combat this devastating disease.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-(0)50-3616209
| |
Collapse
|
17
|
Russo P. Updates in Pediatric Congenital Enteropathies: Differential Diagnosis, Testing, and Genetics. Surg Pathol Clin 2020; 13:581-600. [PMID: 33183722 DOI: 10.1016/j.path.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Congenital enteropathies comprise a heterogeneous group of disorders typically resulting in severe diarrhea and intestinal failure. Recent advances in and more widespread application of genetic testing have allowed more accurate diagnosis of these entities as well as identification of new disorders, provided a deeper understanding of intestinal pathophysiology through genotype-phenotype correlations, and permitted the exploration of more specific therapies to diseases that have heretofore been resistant to conventional treatments. The therapeutic armamentarium for these disorders now includes intestinal and hematopoietic stem cell transplantation, specific targeted therapy, such as the use of interleukin-1 receptor antagonists and, in some cases, gene therapy. These considerations are particularly applicable to the group of disorders identified as "very-early onset inflammatory bowel disease" (VEO-IBD), for which a veritable explosion of knowledge has occurred in the last decade. The pathologist plays a crucial role in assisting in the diagnosis of these entities and in ruling out other disorders that enter into the differential diagnosis.
Collapse
Affiliation(s)
- Pierre Russo
- Department of Pathology and Laboratory Medicine, Division of Anatomic Pathology, The University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, 324 South 34th Street, Main Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
19
|
Posovszky C, Barth TFE. [The gut: center of immunity : Rare inflammatory bowel diseases caused by immunodeficiencies]. DER PATHOLOGE 2020; 41:211-223. [PMID: 32253499 DOI: 10.1007/s00292-020-00775-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gut is the largest immune organ of the human body with an enormous mucosal interface. By acting as a physical barrier and by hosting many of the body's immune cells and tissues, the gut is the first line of defense against potentially harmful substances. Therefore, diseases leading to impaired immune response or disruption of the epithelial barrier result in autoimmune, infectious, or inflammatory bowel disease, frequently associated with diarrhea, malabsorption, melena, and growth failure. The differential diagnosis represents an interdisciplinary challenge in this group of rare diseases. The diseases are characterized by clinical, immunological, and histopathological features caused by mutations in single genes. In the following, we will focus on histological findings within the various entities of immunodeficiencies.
Collapse
Affiliation(s)
- Carsten Posovszky
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Eythstr. 24, 89075, Ulm, Deutschland.
| | - Thomas F E Barth
- Institut für Pathologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 8, 89081, Ulm, Deutschland
| |
Collapse
|
20
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
21
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
22
|
Abstract
Congenital diarrheal disorders are heterogeneous conditions characterized by diarrhea with onset in the first years of life. They range from simple temporary conditions, such as cow's milk protein intolerance to irreversible complications, such as microvillous inclusion disease with significant morbidity and mortality. Advances in genomic medicine have improved our understanding of these disorders, leading to an ever-increasing list of identified causative genes. The diagnostic approach to these conditions consists of establishing the presence of diarrhea by detailed review of the history, followed by characterizing the composition of the diarrhea, the response to fasting, and with further specialized testing.
Collapse
Affiliation(s)
- Abdul Aziz Elkadri
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Abstract
There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.
Collapse
|
24
|
Eloseily EM, Weiser P, Crayne CB, Haines H, Mannion ML, Stoll ML, Beukelman T, Atkinson TP, Cron RQ. Benefit of Anakinra in Treating Pediatric Secondary Hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol 2019; 72:326-334. [PMID: 31513353 DOI: 10.1002/art.41103] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the benefit of the recombinant human interleukin-1 receptor antagonist anakinra in treating pediatric patients with secondary hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) associated with rheumatic and nonrheumatic conditions. METHODS A retrospective chart review of all anakinra-treated patients with secondary HLH/MAS was performed at Children's of Alabama from January 2008 through December 2016. Demographic, clinical, laboratory, and genetic characteristics, outcomes data, and information on concurrent treatments were collected from the records and analyzed using appropriate univariate statistical approaches to assess changes following treatment and associations between patient variables and outcomes. RESULTS Forty-four patients with secondary HLH/MAS being treated with anakinra were identified in the electronic medical records. The median duration of hospitalization was 15 days. The mean pretreatment serum ferritin level was 33,316 ng/ml and dropped to 14,435 ng/ml (57% decrease) within 15 days of the start of anakinra treatment. The overall mortality rate in the cohort was 27%. Earlier initiation of anakinra (within 5 days of hospitalization) was associated with reduced mortality (P = 0.046), whereas thrombocytopenia (platelet count <100,000/μl) and STXBP2 mutations were both associated with increased mortality (P = 0.008 and P = 0.012, respectively). In considering patients according to their underlying diagnosis, those with systemic juvenile idiopathic arthritis (JIA) had the lowest mortality rate, with no deaths among the 13 systemic JIA patients included in the study (P = 0.006). In contrast, those with an underlying hematologic malignancy had the highest mortality rate, at 100% (n = 3). CONCLUSION These findings suggest that anakinra appears to be effective in treating pediatric patients with non-malignancy-associated secondary HLH/MAS, especially when it is given early in the disease course and when administered to patients who have an underlying rheumatic disease.
Collapse
Affiliation(s)
- Esraa M Eloseily
- University of Alabama at Birmingham School of Medicine and Assiut University Children's Hospital, Assiut, Egypt
| | - Peter Weiser
- University of Alabama at Birmingham School of Medicine
| | | | - Hilary Haines
- University of Alabama at Birmingham School of Medicine
| | | | | | | | | | - Randy Q Cron
- University of Alabama at Birmingham School of Medicine
| |
Collapse
|
25
|
Viñas-Giménez L, Donadeu L, Alsina L, Rincón R, de la Campa EÁ, Esteve-Sole A, Català A, Colobran R, de la Cruz X, Sayós J, Martínez-Gallo M. Molecular analysis of the novel L243R mutation in STXBP2 reveals impairment of degranulation activity. Int J Hematol 2019; 111:440-450. [PMID: 31865540 DOI: 10.1007/s12185-019-02796-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
The presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection. Remarkably, the results of the degranulation assay showed reduction of CD107a median fluorescence intensity (MFI) and absent cytotoxicity. Genetic analysis identified compound heterozygous mutations in STXBP2 gene: a previously reported splicing defect in exon 15 (c.1247-1G>C, p.V417LfsX126) and a novel missense mutation in exon 9 (c.728T>G, p.L243R). Transfection experiments of STXBP2-L243R or STXBP2-WT constructs showed an undetectable protein expression of the STXBP2-L243R mutation. The residue L243 is highly preserved evolutionarily; moreover, computational analysis of its structure revealed its participation in the rich network of interactions that stabilizes domains 2 and 3 of the protein. Altogether, we demonstrated by molecular and in silico analysis that the new L243R mutation in STXBP2 plays a pathogenic role that, together with the p.Val417Leufsc mutation, shows the synergistic negative effect of these two mutations on STXBP2 function, leading to a decrease of degranulatory activity in vivo.
Collapse
Affiliation(s)
- Laura Viñas-Giménez
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Laura Donadeu
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Rafael Rincón
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elena Álvarez de la Campa
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Esteve-Sole
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Hematology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Catala per la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain.
- Institut de Recerca Vall hebron (VHIR), Immune Regulation and Immunotherapy Group, Edifici Mediterrania, Lab 09, Planta baixa, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain.
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Jayawardena D, Alrefai WA, Dudeja PK, Gill RK. Recent advances in understanding and managing malabsorption: focus on microvillus inclusion disease. F1000Res 2019; 8. [PMID: 31824659 PMCID: PMC6896243 DOI: 10.12688/f1000research.20762.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare congenital severe malabsorptive and secretory diarrheal disease characterized by blunted or absent microvilli with accumulation of secretory granules and inclusion bodies in enterocytes. The typical clinical presentation of the disease is severe chronic diarrhea that rapidly leads to dehydration and metabolic acidosis. Despite significant advances in our understanding of the causative factors, to date, no curative therapy for MVID and associated diarrhea exists. Prognosis mainly relies on life-long total parenteral nutrition (TPN) and eventual small bowel and/or liver transplantation. Both TPN and intestinal transplantation are challenging and present with many side effects. A breakthrough in the understanding of MVID emanated from seminal findings revealing mutations in
MYO5B as a cause for MVID. During the last decade, many studies have thus utilized cell lines and animal models with knockdown of
MYO5B to closely recapitulate the human disease and investigate potential therapeutic options in disease management. We will review the most recent advances made in the research pertaining to MVID. We will also highlight the tools and models developed that can be utilized for basic and applied research to increase our understanding of MVID and develop novel and effective targeted therapies.
Collapse
Affiliation(s)
- Dulari Jayawardena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Tang X, Guo X, Li Q, Huang Z. Familial hemophagocytic lymphohistiocytosis type 5 in a Chinese Tibetan patient caused by a novel compound heterozygous mutation in STXBP2. Medicine (Baltimore) 2019; 98:e17674. [PMID: 31651895 PMCID: PMC6824734 DOI: 10.1097/md.0000000000017674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Familial hemophagocytic lymphohistiocytosis (FHL) is a fatal autosomal recessive immunodeficiency disease whose rapid and accurate diagnosis is paramount for appropriate treatment. Mutations in STXBP2 gene have been associated with FHL type 5 (FHL-5). Here, we report the first Tibetan Chinese patient diagnosed with FHL-5 caused by a novel compound heterozygous mutation in STXBP2. PATIENT CONCERNS A 9-year-old girl who presented with recurrent fever, splenomegaly, pancytopenia, hypofibrinogenemia, and conspicuous bone marrow hemophagocytosis was diagnosed with haemophagocytic lymphohistiocytosis (HLH). DIAGNOSIS FHL mutation analysis of the patient and her parents revealed that she presented compound heterozygosity for STXBP2: a novel missense mutation c.663G > C (p.Glu221Asp) and the known pathogenic splice-site mutation c.1247-1G > C (p.Val417LeufsX126). Bioinformatics analyses predicted that the new mutation was pathogenic and the FHL-5 diagnosis was confirmed. INTERVENTIONS Upon diagnosis, HLH-2004-directed chemotherapy was instituted, but there was a relapse. Allogeneic hematopoietic stem cell transplantation (HSCT) was performed. OUTCOMES After transplantation, the patient presented implantation dysfunction, chronic graft-versus-host disease, and 5 episodes of pancreatitis. A follow-up after 5 years revealed that the patient had died of pancreatitis. LESSONS This finding expands the spectrum of FHL-5-related mutations in Chinese patients and indicates a clear genotype-phenotype correlation of FHL-5 in China.
Collapse
Affiliation(s)
- Xue Tang
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Qiang Li
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Zhuo Huang
- Department of Pediatrics, West China Second University Hospital
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J Cell Biol 2019; 218:3647-3662. [PMID: 31562230 PMCID: PMC6829668 DOI: 10.1083/jcb.201902063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, Bio5 Institute, University of Arizona, Tucson, AZ
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN.,The Nashville VA Medical Center, Nashville, TN
| |
Collapse
|
29
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Hemophagocytic Lymphohistiocytosis: Clinical Presentations and Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:824-832. [DOI: 10.1016/j.jaip.2018.11.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
|
31
|
Lehmberg K, Moshous D, Booth C. Haematopoietic Stem Cell Transplantation for Primary Haemophagocytic Lymphohistiocytosis. Front Pediatr 2019; 7:435. [PMID: 31709205 PMCID: PMC6823612 DOI: 10.3389/fped.2019.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic stem cell transplantation currently remains the only curative treatment of primary forms of haemophagocytic lymphohistiocytosis (HLH). Rapid diagnosis, efficient primary treatment of hyperinflammation, and conditioning regimens tailored to this demanding condition have substantially improved prognosis in the past 40 years. However, refractory hyperinflammation, central nervous system (CNS) involvement, unavailability of matched donors, susceptibility to conditioning-related toxicities, and a high frequency of mixed chimaerism remain a challenge in a substantial proportion of patients. Gene therapeutic approaches for several genetic defects of primary HLH are being developed at pre-clinical and translational levels.
Collapse
Affiliation(s)
- Kai Lehmberg
- Division of Paediatric Stem Cell Transplantation and Immunology, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Despina Moshous
- Department of Immunohematology, Necker-Enfants Malades Hospital, APHP, and Imagine Institute, Inserm U 1163, Descartes University, Paris Sorbonne Cité, Paris, France
| | - Claire Booth
- Department of Paediatric Immunology, Great Ormond Street Hospital, London, United Kingdom.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
32
|
Mosa MH, Nicolle O, Maschalidi S, Sepulveda FE, Bidaud-Meynard A, Menche C, Michels BE, Michaux G, de Saint Basile G, Farin HF. Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2-Deficient Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2018; 6:477-493.e1. [PMID: 30364784 PMCID: PMC6198061 DOI: 10.1016/j.jcmgh.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Microvillus inclusion disease (MVID) is a congenital intestinal malabsorption disorder caused by defective apical vesicular transport. Existing cellular models do not fully recapitulate this heterogeneous pathology. The aim of this study was to characterize 3-dimensional intestinal organoids that continuously generate polarized absorptive cells as an accessible and relevant model to investigate MVID. METHODS Intestinal organoids from Munc18-2/Stxbp2-null mice that are deficient for apical vesicular transport were subjected to enterocyte-specific differentiation protocols. Lentiviral rescue experiments were performed using human MUNC18-2 variants. Apical trafficking and microvillus formation were characterized by confocal and transmission electron microscopy. Spinning disc time-lapse microscopy was used to document the lifecycle of microvillus inclusions. RESULTS Loss of Munc18-2/Stxbp2 recapitulated the pathologic features observed in patients with MUNC18-2 deficiency. The defects were fully restored by transgenic wild-type human MUNC18-2 protein, but not the patient variant (P477L). Importantly, we discovered that the MVID phenotype was correlated with the degree of enterocyte differentiation: secretory vesicles accumulated already in crypt progenitors, while differentiated enterocytes showed an apical tubulovesicular network and enlarged lysosomes. Upon prolonged enterocyte differentiation, cytoplasmic F-actin-positive foci were observed that further progressed into classic microvillus inclusions. Time-lapse microscopy showed their dynamic formation by intracellular maturation or invagination of the apical or basolateral plasma membrane. CONCLUSIONS We show that prolonged enterocyte-specific differentiation is required to recapitulate the entire spectrum of MVID. Primary organoids can provide a powerful model for this heterogeneous pathology. Formation of microvillus inclusions from multiple membrane sources showed an unexpected dynamic of the enterocyte brush border.
Collapse
Key Words
- 3D, 3-dimensional
- Apical Vesicular Transport
- Brush Border Formation
- DAPI, 4′,6-diamidino-2-phenylindole
- Disease Modeling
- EGFP, enhanced green fluorescent protein
- FHL5, familial hemophagocytic lymphohistiocytosis type 5
- IWP-2, inhibitor of WNT production-2
- KO, knock-out
- MVID, microvillus inclusion disease
- MVIs, microvillus inclusions
- Microvillus Atrophy
- PBS, phosphate-buffered saline
- STXBP2, syntaxin binding protein 2
- Stx3, syntaxin 3
- TEM, transmission electron microscopy
- VPA, valproic acid
- WT, wild-type
Collapse
Affiliation(s)
- Mohammed H. Mosa
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Ophélie Nicolle
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Fernando E. Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Aurelien Bidaud-Meynard
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Birgitta E. Michels
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Faculty of Biological Sciences, Goethe University Frankfurt, Germany
| | - Grégoire Michaux
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France,Correspondence Address correspondence to: Grégoire Michaux, PhD, University Rennes, Institut de Génétique et Développement de Rennes, Rennes, France.
| | - Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France,Centre d’Etudes des Déficites Immunitaires, Assistance Publique-Hôpitaux de Paris, France,Geneviève de Saint Basile, MD, PhD, INSERM, Paris, France.
| | - Henner F. Farin
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Henner F. Farin, PhD, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
| |
Collapse
|
33
|
Schillemans M, Karampini E, van den Eshof BL, Gangaev A, Hofman M, van Breevoort D, Meems H, Janssen H, Mulder AA, Jost CR, Escher JC, Adam R, Carter T, Koster AJ, van den Biggelaar M, Voorberg J, Bierings R. Weibel-Palade Body Localized Syntaxin-3 Modulates Von Willebrand Factor Secretion From Endothelial Cells. Arterioscler Thromb Vasc Biol 2018; 38:1549-1561. [PMID: 29880488 PMCID: PMC6039413 DOI: 10.1161/atvbaha.117.310701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. Approach and Results— In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3−/−), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3−/− BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3−/− BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3−/− BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). Conclusions— Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.
Collapse
Affiliation(s)
- Maaike Schillemans
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Ellie Karampini
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Bart L van den Eshof
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Anastasia Gangaev
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Menno Hofman
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Dorothee van Breevoort
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Henriët Meems
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Hans Janssen
- Cell Biology, The Netherlands Cancer Institute, Amsterdam (H.J.)
| | - Aat A Mulder
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Carolina R Jost
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Johanna C Escher
- Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands (J.C.E.)
| | - Rüdiger Adam
- Pediatric Gastroenterology, University Medical Centre, Mannheim, Germany (R.A.)
| | - Tom Carter
- St George's, University of London, United Kingdom (T.C.)
| | - Abraham J Koster
- Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, The Netherlands (A.A.M., C.R.J., A.J.K.)
| | - Maartje van den Biggelaar
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| | - Jan Voorberg
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.).,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands (J.V.)
| | - Ruben Bierings
- From the Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands (M.S., E.K., B.L.v.d.E., A.G., M.H., D.v.B., H.M., M.v.d.B., J.V., R.B.)
| |
Collapse
|
34
|
Thiagarajah JR, Kamin DS, Acra S, Goldsmith JD, Roland JT, Lencer WI, Muise AM, Goldenring JR, Avitzur Y, Martín MG. Advances in Evaluation of Chronic Diarrhea in Infants. Gastroenterology 2018; 154:2045-2059.e6. [PMID: 29654747 PMCID: PMC6044208 DOI: 10.1053/j.gastro.2018.03.067] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/17/2022]
Abstract
Diarrhea is common in infants (children less than 2 years of age), usually acute, and, if chronic, commonly caused by allergies and occasionally by infectious agents. Congenital diarrheas and enteropathies (CODEs) are rare causes of devastating chronic diarrhea in infants. Evaluation of CODEs is a lengthy process and infrequently leads to a clear diagnosis. However, genomic analyses and the development of model systems have increased our understanding of CODE pathogenesis. With these advances, a new diagnostic approach is needed. We propose a revised approach to determine causes of diarrhea in infants, including CODEs, based on stool analysis, histologic features, responses to dietary modifications, and genetic tests. After exclusion of common causes of diarrhea in infants, the evaluation proceeds through analyses of stool characteristics (watery, fatty, or bloody) and histologic features, such as the villus to crypt ratio in intestinal biopsies. Infants with CODEs resulting from defects in digestion, absorption, transport of nutrients and electrolytes, or enteroendocrine cell development or function have normal villi to crypt ratios; defects in enterocyte structure or immune-mediated conditions result in an abnormal villus to crypt ratios and morphology. Whole-exome and genome sequencing in the early stages of evaluation can reduce the time required for a definitive diagnosis of CODEs, or lead to identification of new variants associated with these enteropathies. The functional effects of gene mutations can be analyzed in model systems such as enteroids or induced pluripotent stem cells and are facilitated by recent advances in gene editing procedures. Characterization and investigation of new CODE disorders will improve management of patients and advance our understanding of epithelial cells and other cells in the intestinal mucosa.
Collapse
Affiliation(s)
- Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel S. Kamin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sari Acra
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeffrey D. Goldsmith
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph T. Roland
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M. Muise
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada,SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Department of Paediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James R. Goldenring
- Departments of Surgery and Pediatrics and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
35
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
36
|
Dhekne HS, Pylypenko O, Overeem AW, Zibouche M, Ferreira RJ, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P, Swertz MA, Houdusse A, van IJzendoorn SCD. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat 2018; 39:333-344. [PMID: 29266534 PMCID: PMC5838515 DOI: 10.1002/humu.23386] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olena Pylypenko
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Arend W Overeem
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malik Zibouche
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosaria J Ferreira
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Engevik AC, Goldenring JR. Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027979. [PMID: 28264818 DOI: 10.1101/cshperspect.a027979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Collapse
Affiliation(s)
- Amy Christine Engevik
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232.,Nashville VA Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
38
|
Sheikh IA, Ammoury R, Ghishan FK. Pathophysiology of Diarrhea and Its Clinical Implications. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1669-1687. [DOI: 10.1016/b978-0-12-809954-4.00068-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Sepulveda FE, de Saint Basile G. Hemophagocytic syndrome: primary forms and predisposing conditions. Curr Opin Immunol 2017; 49:20-26. [PMID: 28866302 DOI: 10.1016/j.coi.2017.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH, also referred to a hemophagocytic syndrome) is a life-threatening condition in which uncontrolled activation of lymphocytes and macrophages, and thus the secretion of large amounts of inflammatory cytokines, leads to a severe hyperinflammatory state. Over the last few decades, researchers have characterized primary forms of HLH caused by genetic defects that impair lymphocytes' cytotoxic machinery. Other genetic causes of HLH not related to impaired cytotoxicity have also recently been identified. Furthermore, the so-called 'acquired' forms of HLH are encountered in the context of severe infections, autoimmune and autoinflammatory diseases, malignancy, and metabolic disorders, and may also be associated with primary immunodeficiencies. This implies that a variety of disease mechanisms can lead to HLH. Today's research seeks to gain a better understanding of the various pathogenetic and environmental factors that converge to induce HLH.
Collapse
Affiliation(s)
- Fernando E Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris F-75015, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris F-75015, France
| | - Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris F-75015, France; Paris Descartes University-Sorbonne Paris Cité, Imagine Institute, Paris F-75015, France; Centre d'Etudes des Déficites Immunitaires, Assistance Publique-Hôpitaux de Paris, F-75015, France.
| |
Collapse
|
40
|
Vogel GF, van Rijn JM, Krainer IM, Janecke AR, Posovszky C, Cohen M, Searle C, Jantchou P, Escher JC, Patey N, Cutz E, Müller T, Middendorp S, Hess MW, Huber LA. Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations. JCI Insight 2017; 2:94564. [PMID: 28724787 DOI: 10.1172/jci.insight.94564] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Familial hemophagocytic lymphohistiocytosis 5 (FHL5) is an autosomal recessive disease caused by mutations in STXBP2, coding for Munc18-2, which is required for SNARE-mediated membrane fusion. FHL5 causes hematologic and gastrointestinal symptoms characterized by chronic enteropathy that is reminiscent of microvillus inclusion disease (MVID). However, the molecular pathophysiology of FHL5-associated diarrhea is poorly understood. Five FHL5 patients, including four previously unreported patients, were studied. Morphology of duodenal sections was analyzed by electron and fluorescence microscopy. Small intestinal enterocytes and organoid-derived monolayers displayed the subcellular characteristics of MVID. For the analyses of Munc18-2-dependent SNARE-protein interactions, a Munc18-2 CaCo2-KO model cell line was generated by applying CRISPR/Cas9 technology. Munc18-2 is required for Slp4a/Stx3 interaction in fusion of cargo vesicles with the apical plasma membrane. Cargo trafficking was investigated in patient biopsies, patient-derived organoids, and the genome-edited model cell line. Loss of Munc18-2 selectively disrupts trafficking of certain apical brush-border proteins (NHE3 and GLUT5), while transport of DPPIV remained unaffected. Here, we describe the molecular mechanism how the loss of function of Munc18-2 leads to cargo-selective mislocalization of brush-border components and a subapical accumulation of cargo vesicles, as it is known from the loss of polarity phenotype in MVID.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jorik M van Rijn
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Iris M Krainer
- Department of Paediatrics I and.,Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marta Cohen
- Sheffield Children's Hospital NHS Trust, Western Bank, Sheffield, United Kingdom
| | - Claire Searle
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Prevost Jantchou
- Gastroentérologie Hépatologie et Nutrition Pédiatrique Hôpital Sainte-Justine, Université de Montréal, Montréal, Quebec, Canada
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Sophia Children's Hospital, Erasmus MC, Rotterdam, The Netherlands
| | - Natalie Patey
- Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ernest Cutz
- The Hospital for Sick Children, Toronto, Canada
| | | | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology and Regenerative Medicine Center Utrecht, Wilhelmina Children's Hospital, University Medical Centre (UMC) Utrecht, Utrecht, The Netherlands
| | - Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Overeem AW, Posovszky C, Rings EHMM, Giepmans BNG, van IJzendoorn SCD. The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders. Dis Model Mech 2016; 9:1-12. [PMID: 26747865 PMCID: PMC4728335 DOI: 10.1242/dmm.022269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diarrheal disorders are rare, often fatal, diseases that are difficult to diagnose (often requiring biopsies) and that manifest in the first few weeks of life as chronic diarrhea and the malabsorption of nutrients. The etiology of congenital diarrheal disorders is diverse, but several are associated with defects in the predominant intestinal epithelial cell type, enterocytes. These particular congenital diarrheal disorders (CDDENT) include microvillus inclusion disease and congenital tufting enteropathy, and can feature in other diseases, such as hemophagocytic lymphohistiocytosis type 5 and trichohepatoenteric syndrome. Treatment options for most of these disorders are limited and an improved understanding of their molecular bases could help to drive the development of better therapies. Recently, mutations in genes that are involved in normal intestinal epithelial physiology have been associated with different CDDENT. Here, we review recent progress in understanding the cellular mechanisms of CDDENT. We highlight the potential of animal models and patient-specific stem-cell-based organoid cultures, as well as patient registries, to integrate basic and clinical research, with the aim of clarifying the pathogenesis of CDDENT and expediting the discovery of novel therapeutic strategies. Summary: Overview of the recent progress in our understanding of congenital diarrheal disorders, and the available models to study these diseases.
Collapse
Affiliation(s)
- Arend W Overeem
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany
| | - Edmond H M M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, 3000 CB Rotterdam, The Netherlands Department of Pediatrics, Leiden University Medical Center, Leiden University, 2300 RC Leiden, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
42
|
Román-Fernández A, Bryant DM. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic. Traffic 2016; 17:1244-1261. [PMID: 27281121 DOI: 10.1111/tra.12417] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.
Collapse
Affiliation(s)
- Alvaro Román-Fernández
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David M Bryant
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
43
|
Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities. Br J Haematol 2016; 174:203-17. [PMID: 27264204 DOI: 10.1111/bjh.14147] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) comprises a heterogeneous spectrum of hyperinflammatory conditions that are inherited (primary HLH) or acquired in a context of infections, malignancies or autoimmune/autoinflammatory disorders (secondary HLH). Genetic defects in the cytotoxic machinery of natural killer and CD8(+) T cells underlie primary HLH, with residual cytotoxicity determining disease severity. Improved sequencing techniques have expanded the range of causal mutations and have redefined many cases of secondary HLH as primary HLH and vice versa, blurring the distinction between both subtypes. These insights allow HLH to be conceptualized as a threshold disease, in which interplay between various genetic and environmental factors causes progressive inflammation into a critical point, beyond which uncontrolled activation of immune cells and excessive cytokine production give rise to the cardinal symptoms of HLH. Various pathogenic pathways may thus converge to a common end stage of fulminant HLH.
Collapse
Affiliation(s)
- Ellen Brisse
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine H Wouters
- Laboratory of Paediatric Immunology, KU Leuven, University Hospital Gasthuisberg, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Congenital intestinal diarrhoeal diseases: A diagnostic and therapeutic challenge. Best Pract Res Clin Gastroenterol 2016; 30:187-211. [PMID: 27086885 DOI: 10.1016/j.bpg.2016.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/05/2016] [Indexed: 01/31/2023]
Abstract
Congenital diarrhoeal disorders are a heterogeneous group of inherited malabsorptive or secretory diseases typically appearing in the first weeks of life, which may be triggered by the introduction of distinct nutrients. However, they may also be unrecognised for a while and triggered by exogenous factors later on. In principle, they can be clinically classified as osmotic, secretory or inflammatory diarrhoea. In recent years the disease-causing molecular defects of these congenital disorders have been identified. According to the underlying pathophysiology they can be classified into four main groups: 1) Defects of digestion, absorption and transport of nutrients or electrolytes 2) Defects of absorptive enterocyte differentiation or polarisation 3) Defects of the enteroendocrine cells 4) Defects of the immune system affecting the intestine. Here, we describe the clinical presentation of congenital intestinal diarrhoeal diseases, the diagnostic work-up and specific treatment aspects.
Collapse
|
45
|
Michaux G, Massey-Harroche D, Nicolle O, Rabant M, Brousse N, Goulet O, Le Bivic A, Ruemmele FM. The localisation of the apical Par/Cdc42 polarity module is specifically affected in microvillus inclusion disease. Biol Cell 2015; 108:19-28. [PMID: 26526116 DOI: 10.1111/boc.201500034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/23/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND INFORMATION Microvillus inclusion disease (MVID) is a genetic disorder affecting intestinal absorption. It is caused by mutations in MYO5B or syntaxin 3 (STX3) affecting apical membrane trafficking. Morphologically, MVID is characterised by a depletion of apical microvilli and the formation of microvillus inclusions inside the cells, suggesting a loss of polarity. To investigate this hypothesis, we examined the location of essential apical polarity determinants in five MVID patients. RESULTS We found that the polarity determinants Cdc42, Par6B, PKCζ/ι and the structural proteins ezrin and phospho-ezrin were lost from the apical membrane and accumulated either in the cytoplasm or on the basal side of enterocytes in patients, which suggests an inversion of cell polarity. Moreover, microvilli-like structures were observed at the basal side as per electron microscopy analysis. We next performed Myo5B depletion in three dimensional grown human Caco2 cells forming cysts and found a direct link between the loss of Myo5B and the mislocalisation of the same apical proteins; furthermore, we observed that a majority of cysts displayed an inverted polarity phenotype as seen in some patients. Finally, we found that this loss of polarity was specific for MVID: tissue samples of patients with Myo5B-independent absorption disorders showed normal polarity but we identified Cdc42 as a potentially essential biomarker for trichohepatoenteric syndrome. CONCLUSION Our findings indicate that the loss of Myo5B induces a strong loss of enterocyte polarity, potentially leading to polarity inversion. SIGNIFICANCE Our results show that polarity determinants could be useful markers to help establishing a diagnosis in patients. Furthermore, they could be used to characterise other rare intestinal absorption diseases.
Collapse
Affiliation(s)
- Grégoire Michaux
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, F-35043, Rennes, France.,UEB, SFR Biosit, Faculté de Médecine, University of Rennes 1, F-35043, Rennes, France
| | - Dominique Massey-Harroche
- CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Aix-Marseille Université, 13288, Marseille, France
| | - Ophélie Nicolle
- CNRS, UMR6290, Institut de Génétique et Développement de Rennes, F-35043, Rennes, France.,UEB, SFR Biosit, Faculté de Médecine, University of Rennes 1, F-35043, Rennes, France
| | - Marion Rabant
- Pathology Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Nicole Brousse
- Pathology Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Olivier Goulet
- Pediatric Gastroenterology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - André Le Bivic
- CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Aix-Marseille Université, 13288, Marseille, France
| | - Frank M Ruemmele
- Pediatric Gastroenterology Unit, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Imagine, INSERM U1163, Paris, France
| |
Collapse
|
46
|
Intrinsic defects in erythroid cells from familial hemophagocytic lymphohistiocytosis type 5 patients identify a role for STXBP2/Munc18-2 in erythropoiesis and phospholipid scrambling. Exp Hematol 2015; 43:1072-1076.e2. [DOI: 10.1016/j.exphem.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
|
47
|
Seo JJ. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: recent advances and controversies. Blood Res 2015; 50:131-9. [PMID: 26457279 PMCID: PMC4595578 DOI: 10.5045/br.2015.50.3.131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening hyperinflammatory clinical syndrome of uncontrolled immune response which results in hypercytokinemia due to underlying primary or secondary immune defect. A number of genetic defects in transport, processing and function of cytotoxic granules which result in defective granule exocytosis and cytotoxicity of cytotoxic T lymphocytes (CTL) and natural killer (NK) cells have been well identified at the cellular and molecular level. Important advances have been made during the last 20 years in the diagnosis and treatment of HLH. The Histiocyte Society has proposed diagnostic guideline using both clinical and laboratory findings in HLH-2004 protocol, and this has been modified partly in 2009. HLH used to be a fatal disease, but the survival of HLH patients has improved to more than 60% with the use of chemoimmunotherapy combined with hematopoietic cell transplantation (HCT) over the past 2 decades. However, HCT is still the only curative option of treatment for primary HLH and refractory/relapsed HLH after proper chemoimmunotherapy. The outcome of HCT for HLH patients was also improved steadily during last decades, but HCT for HLH still carries significant mortality and morbidity. Moreover, there remain ongoing controversies in various aspects of HCT including indication of HCT, donor selection, timing of HCT, conditioning regimen, and mixed chimerism after HCT. This review summarized the important practical issues which were proven by previous studies on HCT for HLH, and tried to delineate the controversies among them.
Collapse
Affiliation(s)
- Jong Jin Seo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Goldenring JR. Recycling endosomes. Curr Opin Cell Biol 2015; 35:117-22. [PMID: 26022676 DOI: 10.1016/j.ceb.2015.04.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking.
Collapse
Affiliation(s)
- James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; The Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
49
|
Canani RB, Castaldo G, Bacchetta R, Martín MG, Goulet O. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat Rev Gastroenterol Hepatol 2015; 12:293-302. [PMID: 25782092 PMCID: PMC7599016 DOI: 10.1038/nrgastro.2015.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Congenital diarrhoeal disorders (CDDs) represent an evolving web of rare chronic enteropathies, with a typical onset early in life. In many of these conditions, severe chronic diarrhoea represents the primary clinical manifestation, whereas in others diarrhoea is only a component of a more complex multi-organ or systemic disorder. Typically, within the first days of life, diarrhoea leads to a life-threatening condition highlighted by severe dehydration and serum electrolyte abnormalities. Thus, in the vast majority of cases appropriate therapy must be started immediately to prevent dehydration and long-term, sometimes severe, complications. The number of well-characterized disorders attributed to CDDs has gradually increased over the past several years, and many new genes have been identified and functionally related to CDDs, opening new diagnostic and therapeutic perspectives. Molecular analysis has changed the diagnostic scenario in CDDs, and led to a reduction in invasive and expensive procedures. Major advances have been made in terms of pathogenesis, enabling a better understanding not only of these rare conditions but also of more common diseases mechanisms.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Via S. Pansini 5 80131, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5 80131, Naples, Italy
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, 265 Campus Drive West, Stanford, CA 94305, USA
| | - Martín G. Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, 757 Westwood Plaza Los Angeles, CA 90095, USA
| | - Olivier Goulet
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University Paris Descartes Hôpital Necker Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
50
|
Knowles BC, Weis VG, Yu S, Roland JT, Williams JA, Alvarado GS, Lapierre LA, Shub MD, Gao N, Goldenring JR. Rab11a regulates syntaxin 3 localization and microvillus assembly in enterocytes. J Cell Sci 2015; 128:1617-26. [PMID: 25673875 DOI: 10.1242/jcs.163303] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/02/2015] [Indexed: 02/02/2023] Open
Abstract
Rab11a is a key component of the apical recycling endosome that aids in the trafficking of proteins to the luminal surface in polarized epithelial cells. Utilizing conditional Rab11a-knockout specific to intestinal epithelial cells, and human colonic epithelial CaCo2-BBE cells with stable Rab11a knockdown, we examined the molecular and pathological impact of Rab11a deficiency on the establishment of apical cell polarity and microvillus morphogenesis. We demonstrate that loss of Rab11a induced alterations in enterocyte polarity, shortened microvillar length and affected the formation of microvilli along the lateral membranes. Rab11a deficiency in enterocytes altered the apical localization of syntaxin 3. These data affirm the role of Rab11a in apical membrane trafficking and the maintenance of apical microvilli in enterocytes.
Collapse
Affiliation(s)
- Byron C Knowles
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Victoria G Weis
- Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Joseph T Roland
- Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Janice A Williams
- Vanderbilt Ingraham Cancer Center: Cell Imaging Shared Resource, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Gabriela S Alvarado
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Lynne A Lapierre
- Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Mitchell D Shub
- Phoenix Children's Hospital and the Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA Rutgers Cancer Institute of New Jersey, Piscataway, NJ 08903, USA
| | - James R Goldenring
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN 37235, USA Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| |
Collapse
|