1
|
Barnette D, Inselman AL, Kaldhone P, Lee GS, Davis K, Sarkar S, Malhi P, Fisher JE, Hanig JP, Beger RD, Jones EE. The incorporation of MALDI mass spectrometry imaging in studies to identify markers of toxicity following in utero opioid exposures in mouse fetuses. FRONTIERS IN TOXICOLOGY 2024; 6:1452974. [PMID: 39691158 PMCID: PMC11651024 DOI: 10.3389/ftox.2024.1452974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction In 2015, the FDA released a Drug Safety Communication regarding a possible link between opioid exposure during early pregnancy and an increased risk of fetal neural tube defects (NTDs). At the time, the indications for opioid use during pregnancy were not changed due to incomplete maternal toxicity data and limitations in human and animal studies. To assess these knowledge gaps, largescale animal studies are ongoing; however, state-of-the-art technologies have emerged as promising tools to assess otherwise non-standard endpoints. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a dynamic approach capable of generating 2D ion images to visualize the distribution of an analyte of interest across a tissue section. Methods Given the importance of lipid metabolism and neurotransmitters in the developing central nervous system, this study incorporates MALDI MSI to assess lipid distributions across mouse gestational day (GD) 18 fetuses, with and without observable NTDs following maternal exposure on GD 8 to morphine (400 mg/kg BW) or the NTD positive control valproic acid (VPA) (500 mg/kg BW). Results Analysis of whole-body mouse fetuses revealed differential lipid distributions localized mainly in the brain and spinal cord, which included several phosphatidylcholine (PC) species such as PCs 34:1, 34:0, and 36:2 localized to the cortex or hippocampus and lyso PC 16:0 across all brain regions. Overall, differential lipids increased in with maternal morphine and VPA exposure. Neurotransmitter distributions across the brain using FMP-10 derivatizing agent were also assessed, revealing morphine-specific changes. Discussion The observed differential glycerophospholipid distributions in relation to treatment and NTD development in mouse fetuses provide potential targets for further investigation of molecular mechanisms of opioid-related developmental effects. Overall, these findings support the feasibility of incorporating MALDI MSI to assess non-standard endpoints of opioid exposure during gestation.
Collapse
Affiliation(s)
- Dustyn Barnette
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Amy L. Inselman
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Pravin Kaldhone
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - Grace S. Lee
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Kelly Davis
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - Sumit Sarkar
- National Center for Toxicological Research (FDA), Division of Neurotoxicology, Jefferson, AR, United States
| | - Pritpal Malhi
- National Center for Toxicological Research (FDA), Toxicologic Pathology Associates, Jefferson, AR, United States
| | - J. Edward Fisher
- Center for Drug Evaluation and Research (CDER), Office of Testing and Research, Silver Spring, MD, United States
| | - Joseph P. Hanig
- Center for Drug Evaluation and Research (CDER), Division of Pharmacology Toxicology for Neuroscience, Silver Spring, MD, United States
| | - Richard D. Beger
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| | - E. Ellen Jones
- National Center for Toxicological Research (FDA), Division of Systems Biology, Jefferson, AR, United States
| |
Collapse
|
2
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
3
|
Vestal M, Li L, Dobrinskikh E, Shi Y, Wang B, Shi X, Li S, Vestal C, Parker K. Rapid MALDI-TOF molecular imaging: Instrument enhancements and their practical consequences. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4423. [PMID: 31314129 DOI: 10.1002/jms.4423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A new high performance linear MALDI-TOF mass spectrometer provides both high spatial resolution and high speed. This instrument employs a new ion optics system with a grounded ion source and efficient transfer and detection of ions over a broad mass range. This provides very high sensitivity, precision, and an extended dynamic range for both positive and negative ion detection. Here we demonstrate the capabilities of this system by imaging pancreatic tissue samples from rats and mice.
Collapse
Affiliation(s)
- Marvin Vestal
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Bowen Wang
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, 43210
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Sicheng Li
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Christina Vestal
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| | - Kenneth Parker
- SimulTOF Systems, Virgin Instruments Corp, Marlborough, Massachusetts, 01752
| |
Collapse
|
4
|
Berghmans E, Jacobs J, Deben C, Hermans C, Broeckx G, Smits E, Maes E, Raskin J, Pauwels P, Baggerman G. Mass Spectrometry Imaging Reveals Neutrophil Defensins as Additional Biomarkers for Anti-PD-(L)1 Immunotherapy Response in NSCLC Patients. Cancers (Basel) 2020; 12:E863. [PMID: 32252405 PMCID: PMC7225984 DOI: 10.3390/cancers12040863] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Therapeutic blocking of the interaction between programmed death-1 (PD-1) with its ligand PD-L1, an immune checkpoint, is a promising approach to restore the antitumor immune response. Improved clinical outcomes have been shown in different human cancers, including non-small cell lung cancer (NSCLC). Unfortunately, still a high number of NSCLC patients are treated with immunotherapy without obtaining any clinical benefit, due to the limitations of PD-L1 protein expression as the currently sole predictive biomarker for clinical use; (2) Methods: In this study, we applied mass spectrometry imaging (MSI) to discover new protein biomarkers, and to assess the possible correlation between candidate biomarkers and a positive immunotherapy response by matrix-assisted laser desorption/ionization (MALDI) MSI in 25 formalin-fixed paraffin-embedded (FFPE) pretreatment tumor biopsies (Biobank@UZA); (3) Results: Using MALDI MSI, we revealed that the addition of neutrophil defensin 1, 2 and 3 as pretreatment biomarkers may more accurately predict the outcome of immunotherapy treatment in NSCLC. These results were verified and confirmed with immunohistochemical analyses. In addition, we provide in-vitro evidence of the immune stimulatory effect of neutrophil defensins towards cancer cells; and (4) Conclusions: With proteomic approaches, we have discovered neutrophil defensins as additional prospective biomarkers for an anti-PD-(L)1 immunotherapy response. Thereby, we also demonstrated that the neutrophil defensins contribute in the activation of the immune response towards cancer cells, which could provide a new lead towards an anticancer therapy.
Collapse
Affiliation(s)
- Eline Berghmans
- Centre for Proteomics, University of Antwerp, 2020 Antwerpen, Belgium;
- Health Unit, VITO, 2400 Mol, Belgium
| | - Julie Jacobs
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Pathology Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Pathology Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Christophe Hermans
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Pathology Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Glenn Broeckx
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Pathology Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Evelyne Maes
- Food & Bio-Based Products, AgResearch Ltd., Lincoln 7674, New Zealand;
| | - Jo Raskin
- Thoracic Oncology Department, Antwerp University Hospital, 2650 Edegem, Belgium;
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium; (J.J.); (C.D.); (C.H.); (G.B.); (E.S.); (P.P.)
- Pathology Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerpen, Belgium;
- Health Unit, VITO, 2400 Mol, Belgium
| |
Collapse
|
5
|
Smets T, Waelkens E, De Moor B. Prioritization of m/z-Values in Mass Spectrometry Imaging Profiles Obtained Using Uniform Manifold Approximation and Projection for Dimensionality Reduction. Anal Chem 2020; 92:5240-5248. [DOI: 10.1021/acs.analchem.9b05764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tina Smets
- STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, KU Leuven, 3001 Leuven, Belgium
| | - Bart De Moor
- STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A, Armandala R, Spraggins JM, Lowe CL, Boyd KL, Stein RW, Wright CV, Norris JL, Powers AC, Brissova M, Caprioli RM. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 2019; 62:1036-1047. [PMID: 30955045 PMCID: PMC6553460 DOI: 10.1007/s00125-019-4855-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
AIMS/HYPOTHESIS The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 μm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.
Collapse
Affiliation(s)
- Boone M Prentice
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Nathaniel J Hart
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Audra Judd
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
| | - Radhika Armandala
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey M Spraggins
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Cindy L Lowe
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli L Boyd
- Translational Pathology Shared Resource, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Christopher V Wright
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy L Norris
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Marcela Brissova
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard M Caprioli
- 9160 MRB III, Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA.
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology and Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Berghmans E, Van Raemdonck G, Schildermans K, Willems H, Boonen K, Maes E, Mertens I, Pauwels P, Baggerman G. MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment. Methods Protoc 2019; 2:mps2020044. [PMID: 31164623 PMCID: PMC6632162 DOI: 10.3390/mps2020044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced non-small-cell lung cancer (NSCLC) is generally linked with a poor prognosis and is one of the leading causes of cancer-related deaths worldwide. Since only a minority of the patients respond well to chemotherapy and/or targeted therapies, immunotherapy might be a valid alternative in the lung cancer treatment field, as immunotherapy attempts to strengthen the body’s own immune response to recognize and eliminate malignant tumor cells. However, positive response patterns to immunotherapy remain unclear. In this study, we demonstrate how immune-related factors could be visualized from single NSCLC tissue sections (Biobank@UZA) while retaining their spatial information by using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), in order to unravel the molecular profile of NSCLC patients. In this way, different regions in lung cancerous tissues could be discriminated based on the molecular composition. In addition, we linked visualization (MALDI MSI) and identification (based on liquid chromatography higher resolution mass spectrometry) of the molecules of interest for the correct biological interpretation of the observed molecular differences within the area in which these molecules are detected. This is of major importance to fully understand the underlying molecular profile of the NSCLC tumor microenvironment.
Collapse
Affiliation(s)
- Eline Berghmans
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Van Raemdonck
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Karin Schildermans
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Hanny Willems
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Evelyne Maes
- Food & Bio-Based Products, AgResearch Ltd., 8140 Christchurch, New Zealand.
| | - Inge Mertens
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
8
|
Abstract
The mechanism underlying many biological phenotypes remains unknown despite the increasing availability of whole genome and transcriptome sequencing. Direct measurement of changes in protein expression is an attractive alternative and has the potential to reveal novel processes. Mass spectrometry has become the standard method for proteomics, allowing both the confident identification and quantification of thousands of proteins from biological samples. In this review, mass spectrometry-based proteomic methods and their applications are described.
Collapse
Affiliation(s)
- J Robert O'Neill
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK. Robert.o'.,Department of Clinical Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK. Robert.o'
| |
Collapse
|
9
|
Zhou R, Basile F. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging. Anal Chem 2017; 89:8704-8712. [PMID: 28727443 DOI: 10.1021/acs.analchem.7b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| | - Franco Basile
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| |
Collapse
|
10
|
Li C, Ma D, Deng K, Chen Y, Huang P, Wang Z. Application of MALDI-TOF MS for Estimating the Postmortem Interval in Rat Muscle Samples. J Forensic Sci 2017; 62:1345-1350. [DOI: 10.1111/1556-4029.13413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/08/2016] [Accepted: 11/30/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Chengzhi Li
- School of Forensic Science and Medicine; Xi'an Jiaotong University; Xi'an 710061 China
- Department of Forensic Pathology; Institute of Forensic Science; Ministry of Justice; Shanghai 200063 China
| | - Dong Ma
- Department of Forensic Pathology; Institute of Forensic Science; Ministry of Justice; Shanghai 200063 China
| | - Kaifei Deng
- Department of Forensic Pathology; Institute of Forensic Science; Ministry of Justice; Shanghai 200063 China
| | - Yijiu Chen
- Department of Forensic Pathology; Institute of Forensic Science; Ministry of Justice; Shanghai 200063 China
| | - Ping Huang
- Department of Forensic Pathology; Institute of Forensic Science; Ministry of Justice; Shanghai 200063 China
| | - Zhenyuan Wang
- School of Forensic Science and Medicine; Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|
11
|
Aerts J, Laeremans A, Minerva L, Boonen K, Harshavardhan B, D'hooge R, Valkenborg D, Baggerman G, Arckens L. MS imaging and mass spectrometric synaptosome profiling identify PEP-19/pcp4 as a synaptic molecule involved in spatial learning in mice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:936-945. [PMID: 27760390 DOI: 10.1016/j.bbapap.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The Morris water maze (MWM) spatial learning task has been demonstrated to involve a cognitive switch of action control to serve the transition from an early towards a late learning phase. However, the molecular mechanisms governing this switch are largely unknown. We employed MALDI MS imaging (MSI) to screen for changes in expression of small proteins in brain structures implicated in the different learning phases. We compared mice trained for 3days and 30days in the MWM, reflecting an early and a late learning phase in relation to the acquisition of a spatial learning task. An ion with m/z of 6724, identified as PEP-19/pcp4 by top-down tandem MS, was detected at higher intensity in the dorsal striatum of the late learning phase group compared with the early learning phase group. In addition, mass spectrometric analysis of synaptosomes confirmed the presence of PEP-19/pcp4 at the synapse. PEP-19/pcp4 has previously been identified as a critical determinant of synaptic plasticity in locomotor learning. Our findings extend PEP-19/pcp4 function to spatial learning in the forebrain and put MSI forward as a valid and unbiased research strategy for the discovery and identification of the molecular machinery involved in learning, memory and synaptic plasticity. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Jeroen Aerts
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Annelies Laeremans
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Laurens Minerva
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | - Kurt Boonen
- KU Leuven, Department of Biology, Laboratory of Functional Genomics and Proteomics, Naamsestraat 59, 3000 Leuven, Belgium
| | | | - Rudi D'hooge
- KU Leuven, Laboratory of Biological Psychology, Tiensestraat 102, 3000 Leuven, Belgium
| | - Dirk Valkenborg
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Geert Baggerman
- Center for Proteomics, UAntwerp, Antwerp, Belgium; Unit Environmental Risk & Health, VITO, Mol, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Zhou L, Wang K, Li Q, Nice EC, Zhang H, Huang C. Clinical proteomics-driven precision medicine for targeted cancer therapy: current overview and future perspectives. Expert Rev Proteomics 2016; 13:367-81. [PMID: 26923776 DOI: 10.1586/14789450.2016.1159959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a common disease that is a leading cause of death worldwide. Currently, early detection and novel therapeutic strategies are urgently needed for more effective management of cancer. Importantly, protein profiling using clinical proteomic strategies, with spectacular sensitivity and precision, offer excellent promise for the identification of potential biomarkers that would direct the development of targeted therapeutic anticancer drugs for precision medicine. In particular, clinical sample sources, including tumor tissues and body fluids (blood, feces, urine and saliva), have been widely investigated using modern high-throughput mass spectrometry-based proteomic approaches combined with bioinformatic analysis, to pursue the possibilities of precision medicine for targeted cancer therapy. Discussed in this review are the current advantages and limitations of clinical proteomics, the available strategies of clinical proteomics for the management of precision medicine, as well as the challenges and future perspectives of clinical proteomics-driven precision medicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Kui Wang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China
| | - Qifu Li
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Edouard C Nice
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| | - Canhua Huang
- a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu , P.R. China.,b Department of Neurology , The Affiliated Hospital of Hainan Medical College , Haikou , Hainan , P.R. China
| |
Collapse
|
13
|
Whiting L, Stewart KW, Hay DL, Harris PW, Choong YS, Phillips ARJ, Brimble MA, Cooper GJS. Glicentin-related pancreatic polypeptide inhibits glucose-stimulated insulin secretion from the isolated pancreas of adult male rats. Physiol Rep 2015; 3:3/12/e12638. [PMID: 26634904 PMCID: PMC4760439 DOI: 10.14814/phy2.12638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Peptides derived from the glucagon gene Gcg, for example, glucagon and glucagon‐like peptide 1 (GLP‐1), act as physiological regulators of fuel metabolism and are thus of major interest in the pathogenesis of diseases, such as type‐2 diabetes and obesity, and their therapeutic management. Glicentin‐related pancreatic polypeptide (GRPP) is a further, 30 amino acid Gcg‐derived peptide identified in human, mouse, rat, and pig. However, the potential glucoregulatory function of this peptide is largely unknown. Here, we synthesized rat GRPP (rGRPP) and a closely related peptide, rat GRPP‐like peptide (rGRPP‐LP), and investigated their actions in the liver and pancreas of adult male rats by employing isolated‐perfused organ preparations. Rat GRPP and rGRPP‐LP did not affect glucose output from the liver, but both elicited potent inhibition of glucose‐stimulated insulin secretion (GSIS) from the rat pancreas. This action is unlikely to be mediated by glucagon or GLP‐1 receptors, as rGRPP and rGRPP‐LP did not stimulate cyclic adenosine monophosphate (cAMP) production from the glucagon or GLP‐1 receptors, nor did they antagonize glucagon‐ or GLP‐1‐stimulated cAMP‐production at either receptor. GRPP and GRPP‐LP may be novel regulators of insulin secretion, acting through an as‐yet undefined receptor.
Collapse
Affiliation(s)
- Lynda Whiting
- School of Biological Sciences, University of Auckland, Auckland, New Zealand The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand
| | - Kevin W Stewart
- School of Biological Sciences, University of Auckland, Auckland, New Zealand Waikato Institute of Technology, Hamilton, New Zealand
| | - Deborah L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand
| | - Paul W Harris
- The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Yee S Choong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand Department of Surgery, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand The Maurice Wilkins Centre for Molecular BioDiscovery, New Zealand Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK The Institute of Human Development, University of Manchester, Manchester, UK Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Crouch RK, Koutalos Y, Kono M, Schey K, Ablonczy Z. A2E and Lipofuscin. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:449-63. [PMID: 26310170 DOI: 10.1016/bs.pmbts.2015.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipofuscin is highly fluorescent material, formed in several tissues but best studied in the eye. The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging in the eye and has been implicated in various retinal degenerations, including age-related macular degeneration. The bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), formed from retinal, has been identified as a byproduct of the visual cycle, and numerous in vitro studies have found toxicity associated with this compound. The compound is known to accumulate in the RPE with age and was the first identified compound extracted from lipofuscin. Our studies have correlated the distribution of lipofuscin and A2E across the human and mouse RPE. Lipofuscin fluorescence was imaged in the RPE from human donors of various ages and from assorted mouse models. The spatial distribution of A2E was determined using matrix-assisted laser desorption-ionization imaging mass spectrometry on both flat-mounted and transversally sectioned RPE tissue. Our data support the clinical observations in humans of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. Interestingly, in all the mouse models, A2E distribution and lipofuscin fluorescence correlate well. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging in humans.
Collapse
Affiliation(s)
- Rosalie K Crouch
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Yiannis Koutalos
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Masahiro Kono
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kevin Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Zsolt Ablonczy
- Department of Ophthalmology, Albert Florens Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
15
|
Taverna D, Boraldi F, De Santis G, Caprioli RM, Quaglino D. Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification. Bone 2015; 74:83-94. [PMID: 25595835 PMCID: PMC4355241 DOI: 10.1016/j.bone.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 01/18/2023]
Abstract
The present study was designed to demonstrate the potential of an optimized histology directed protein identification combined with imaging mass spectrometry technology to reveal and identify molecules associated to ectopic calcification in human tissue. As a proof of concept, mineralized and non-mineralized areas were compared within the same dermal tissue obtained from a patient affected by Pseudoxanthoma elasticum, a genetic disorder characterized by calcification only at specific sites of soft connective tissues. Data have been technically validated on a contralateral dermal tissue from the same subject and compared with those from control healthy skin. Results demonstrate that this approach 1) significantly reduces the effects generated by techniques that, disrupting tissue organization, blend data from affected and unaffected areas; 2) demonstrates that, abolishing differences due to inter-individual variability, mineralized and non-mineralized areas within the same sample have a specific protein profile and have a different distribution of molecules; and 3) avoiding the bias of focusing on already known molecules, reveals a number of proteins that have been never related to the disease nor to the calcification process, thus paving the way for the selection of new molecules to be validated as pathogenic or as potential pharmacological targets.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgio De Santis
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Richard M Caprioli
- Departments of Biochemistry, Medicine, Pharmacology and Chemistry and the Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, USA
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Mainini V, Lalowski M, Gotsopoulos A, Bitsika V, Baumann M, Magni F. MALDI-imaging mass spectrometry on tissues. Methods Mol Biol 2015; 1243:139-64. [PMID: 25384744 DOI: 10.1007/978-1-4939-1872-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-profiling and imaging mass spectrometry (MSI) are promising technologies for measuring hundreds of different molecules directly on tissues. For instance, small molecules, drugs and their metabolites, endogenous lipids, carbohydrates and complex peptides/proteins can be measured at the same time. In the most advanced instruments, it is achieved without significant disruption of sample integrity. MSI is a unique approach for assessing the spatial distribution of molecules using graphical multidimensional maps of their constituent analytes, which may for instance be correlated with histopathological alterations in patient tissues. MALDI-TOF-MSI technology has been implemented in hospitals of several countries, where it is routinely used for quick pathogen(s) identification, a task formerly accomplished by laborious and expensive DNA/RNA-based PCR (polymerase chain reaction) screening.In this chapter, we describe how MSI is performed, what is required from the researcher, the instrument vendors and finally what can be achieved with MSI. We restrict our descriptions only to MALDI-MSI although several other MS techniques of ionization can easily be linked to MSI.
Collapse
Affiliation(s)
- Veronica Mainini
- Department of Health Sciences, University Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Zaima N, Goto-Inoue N, Moriyama T. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry: New Technology for Vascular Pathology. J Vasc Res 2014; 51:144-8. [DOI: 10.1159/000362123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/11/2014] [Indexed: 01/30/2023] Open
|
18
|
Ye H, Mandal R, Catherman A, Thomas PM, Kelleher NL, Ikonomidou C, Li L. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders. PLoS One 2014; 9:e92831. [PMID: 24710523 PMCID: PMC3978070 DOI: 10.1371/journal.pone.0092831] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI). Our goal was to study changes in protein expression in postnatal day 10 (P10) rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801). Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19), cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP) HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, PR China
- School of Pharmacy, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Rakesh Mandal
- Department of Neurology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Adam Catherman
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Paul M. Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States of America
| | - Chrysanthy Ikonomidou
- Department of Neurology, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail: (CI); (LL)
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- * E-mail: (CI); (LL)
| |
Collapse
|
19
|
Dyer JM, Deb-Choudhury S, Cornellison CD, Krsinic G, Dobbie P, Rosenvold K, Clerens S. Spatial and temporal mass spectrometric profiling and imaging of lipid degradation in bovine M. longissimus dorsi lumborum. J Food Compost Anal 2014. [DOI: 10.1016/j.jfca.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Minerva L, Ceulemans A, Baggerman G, Arckens L. MALDI MS imaging as a tool for biomarker discovery: methodological challenges in a clinical setting. Proteomics Clin Appl 2014; 6:581-95. [PMID: 23090913 DOI: 10.1002/prca.201200033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/12/2022]
Abstract
MALDI MS imaging (MSI) is an analytical tool capable of providing spatial distribution and relative abundance of biomolecules directly in tissue. After 15 years of intense efforts to improve the acquisition and quality of molecular images, MSI has matured into an asset of the proteomic toolbox. The power of MSI lies in the ability to differentiate tissue regions that are not histologically distinct but are characterized by different MS profiles. Recently, MSI has been gaining momentum in biomedical research and has found applications in disease diagnosis and prognosis, biomarker discovery, and drug therapy. Although the technology holds great promise, MSI is still faced with a set of methodological challenges presented by the clinical setting. There is a growing awareness regarding this topic and efforts are being taken to develop clear and practical standards to overcome these challenges. This review presents an overview of MALDI MSI as a biomarker discovery tool and recent methodological progress in the field.
Collapse
Affiliation(s)
- Laurens Minerva
- Laboratory of Neuroplasticity and Neuroproteomics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Lalowski M, Magni F, Mainini V, Monogioudi E, Gotsopoulos A, Soliymani R, Chinello C, Baumann M. Imaging mass spectrometry: a new tool for kidney disease investigations. Nephrol Dial Transplant 2013; 28:1648-56. [PMID: 23553250 DOI: 10.1093/ndt/gft008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Matrix-assisted laser desorption ionization (MALDI)-profiling and imaging mass spectrometry are promising technologies for measuring hundreds of different molecules directly on tissues. For instance, small molecules, drugs and their metabolites, endogenous lipids, carbohydrates and complex peptides/proteins can be measured at the same time without significant disruption of sample integrity. In this review, the potential of MALDI-profiling/imaging technologies in disease proteomics, drug action and studies of cellular processes in the context of kidney tissue is described. Spatial and sequence information obtained in tissue MALDI-profiling/imaging studies can be correlated with other mass spectrometry-based techniques, auxiliary imaging technologies and routine (immuno) histochemical staining.
Collapse
Affiliation(s)
- Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry in cancer research: Combining proteomic profiling and histological evaluation. Clin Biochem 2013; 46:539-45. [DOI: 10.1016/j.clinbiochem.2013.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 01/31/2023]
|
23
|
Pan S, Brentnall TA, Kelly K, Chen R. Tissue proteomics in pancreatic cancer study: discovery, emerging technologies, and challenges. Proteomics 2013; 13:710-21. [PMID: 23125171 DOI: 10.1002/pmic.201200319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer is a highly lethal disease that is difficult to diagnose and treat. The advances in proteomics technology, especially quantitative proteomics, have stimulated a great interest in applying this technology for pancreatic cancer study. A variety of tissue proteomics approaches have been applied to investigate pancreatic cancer and the associated diseases. These studies were carried out with various goals, aiming to better understand the molecular mechanisms underlying pancreatic tumorigenesis, to improve therapeutic treatment and to identify cancer associated protein signatures, signaling events as well as interactions between cancer cells and tumor microenvironment. Here, we provide an overview on the tissue proteomics studies of pancreatic cancer reported in the past few years in light of discovery and technology development.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
24
|
|
25
|
Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry. J Proteomics 2012; 75:5014-5026. [PMID: 22465716 DOI: 10.1016/j.jprot.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
Abstract
Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.
Collapse
|
26
|
Stewart KW, Phillips ARJ, Whiting L, Jüllig M, Middleditch MJ, Cooper GJS. A simple and rapid method for identifying and semi-quantifying peptide hormones in isolated pancreatic islets by direct-tissue matrix-assisted laser desorption ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3387-3395. [PMID: 22002691 DOI: 10.1002/rcm.5239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a new, simple, robust and efficient method based on direct-tissue matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry that enables consistent semi-quantitation of peptide hormones in isolated pancreatic islets from normal and diabetic rodents. Prominent signals were measured that corresponded to all the main peptide hormones present in islet-endocrine cells: (α-cells) glucagon, glicentin-related polypeptide/GRPP; (β-cells) insulin I, insulin II, C-peptide I, C-peptide II, amylin; (δ-cells) somatostatin-14; and (PP-cells), and pancreatic polypeptide. The signal ratios coincided with known relative hormone abundances. The method demonstrated that severe insulin deficiency is accompanied by elevated levels of all non-β-cell-hormones in diabetic rat islets, consistent with alleviation of paracrine suppression of hormone production by non-β-cells. It was also effective in characterizing hormonal phenotype in hemizygous human-amylin transgenic mice that express human and mouse amylin in approx. equimolar quantities. Finally, the method demonstrated utility in basic peptide-hormone discovery by identifying a prominent new Gcg-gene-derived peptide (theoretical monoisotopic molecular weight 3263.5 Da), closely related to but distinct from GRPP, in diabetic islets. This peptide, whose sequence is HAPQDTEENARSFPASQTEPLEDPNQINE in Rattus norvegicus, could be a peptide hormone whose roles in physiology and metabolic disease warrant further investigation. This method provides a powerful new approach that could provide important new insights into the physiology and regulation of peptide hormones in islets and other endocrine tissues. It has potentially wide-ranging applications that encompass endocrinology, pharmacology, phenotypic analysis in genetic models of metabolic disease, and hormone discovery, and could also effectively limit the numbers of animals required for such studies.
Collapse
|
27
|
Minerva L, Boonen K, Menschaert G, Landuyt B, Baggerman G, Arckens L. Linking Mass Spectrometric Imaging and Traditional Peptidomics: A Validation in the Obese Mouse Model. Anal Chem 2011; 83:7682-91. [DOI: 10.1021/ac200888j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - G. Menschaert
- BioBix, Laboratory of Bioinformatics and Computational Genomics, Ghent University, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
28
|
MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136:227-44. [PMID: 21805154 DOI: 10.1007/s00418-011-0843-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/29/2022]
Abstract
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a method that allows the investigation of the molecular content of tissues within its morphological context. Since it is able to measure the distribution of hundreds of analytes at once, while being label free, this method has great potential which has been increasingly recognized in the field of tissue-based research. In the last few years, MALDI-IMS has been successfully used for the molecular assessment of tissue samples mainly in biomedical research and also in other scientific fields. The present article will give an update on the application of MALDI-IMS in clinical and preclinical research. It will also give an overview of the multitude of technical advancements of this method in recent years. This includes developments in instrumentation, sample preparation, computational data analysis and protein identification. It will also highlight a number of emerging fields for application of MALDI-IMS like drug imaging where MALDI-IMS is used for studying the spatial distribution of drugs in tissues.
Collapse
|
29
|
Lagarrigue M, Becker M, Lavigne R, Deininger SO, Walch A, Aubry F, Suckau D, Pineau C. Revisiting rat spermatogenesis with MALDI imaging at 20-microm resolution. Mol Cell Proteomics 2010; 10:M110.005991. [PMID: 21149303 DOI: 10.1074/mcp.m110.005991] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) molecular imaging technology attracts increasing attention in the field of biomarker discovery. The unambiguous correlation between histopathology and MALDI images is a key feature for success. MALDI imaging mass spectrometry (MS) at high definition thus calls for technological developments that were established by a number of small steps. These included tissue and matrix preparation steps, dedicated lasers for MALDI imaging, an increase of the robustness against cell debris and matrix sublimation, software for precision matching of molecular and microscopic images, and the analysis of MALDI imaging data using multivariate statistical methods. The goal of these developments is to approach single cell resolution with imaging MS. Currently, a performance level of 20-μm image resolution was achieved with an unmodified and commercially available instrument for proteins detected in the 2-16-kDa range. The rat testis was used as a relevant model for validating and optimizing our technological developments. Indeed, testicular anatomy is among the most complex found in mammalian bodies. In the present study, we were able to visualize, at 20-μm image resolution level, different stages of germ cell development in testicular seminiferous tubules; to provide a molecular correlate for its well established stage-specific classification; and to identify proteins of interest using a top-down approach and superimpose molecular and immunohistochemistry images.
Collapse
Affiliation(s)
- Mélanie Lagarrigue
- INSERM U625, Proteomics Core Facility Biogenouest, Campus de Beaulieu, Université de Rennes I, F-35042 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 2010; 134:423-43. [DOI: 10.1007/s00418-010-0753-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
31
|
Chaurand P, Cornett DS, Angel PM, Caprioli RM. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 2010; 10:O110.004259. [PMID: 20736411 DOI: 10.1074/mcp.o110.004259] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.
Collapse
Affiliation(s)
- Pierre Chaurand
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8575, USA
| | | | | | | |
Collapse
|
32
|
Grey AC, Gelasco AK, Section J, Moreno-Rodriguez RA, Krug EL, Schey KL. Molecular morphology of the chick heart visualized by MALDI imaging mass spectrometry. Anat Rec (Hoboken) 2010; 293:821-8. [PMID: 20186963 DOI: 10.1002/ar.21103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Utilization of MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) for tissue imaging is a relatively new proteomic technique that simultaneously maps the spatial distribution of multiple proteins directly within a single frozen tissue section. Here, we report the development of a methodology to apply MALDI tissue imaging to chick heart tissue sections acquired from fixed and paraffin-embedded samples. This protocol produces molecular images that can be related to the high-quality histological tissue sections. Perfused term chick hearts were fixed in acidic ethanol and embedded in paraffin wax. Tissue sections (15 microm) were collected onto conductive slides, deparaffinized with xylene, and transitioned into water with graded ethanol washes and allowed to air dry. In separate experiments, three different MALDI matrices were applied to chick heart tissue sections through repeated cycles from a glass nebulizer. Tissue sections were then analyzed by MALDI mass spectrometry using a raster step-size of 75-100 microm, and molecular images for specific m/z ratios reconstituted. MALDI tissue imaging revealed spatially resolved protein signals within single heart sections that are specific to structures or regions of the heart, for example, vessels, valves, endocardium, myocardium, or septa. Moreover, no prior knowledge of protein expression is required as is the case for immunohistochemistry and in situ hybridization methodologies. The ability to simultaneously localize a large number of unique protein signals within a single tissue section, with good preservation of histological features, provides cardiovascular researchers a new tool to give insight into the molecular mechanisms underlying normal and pathological conditions.
Collapse
Affiliation(s)
- Angus C Grey
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The complementary disciplines of genomics and proteomics offer better insights into the molecular mechanisms of diseases. While genomics hunts for defining our static genetic substrate, proteomics explores the structure and function of proteins expressed by a cell or tissue type under specified conditions. In the past decade, proteomics has been revolutionized by the application of techniques such as two-dimensional gel electrophoresis (2DGE), mass spectrometry (MS), and protein arrays. These techniques have tremendous potential for biomarker development, target validation, diagnosis, prognosis, and optimization of treatment in medical care, especially in the field of islet and diabetes research. This chapter will highlight the contributions of proteomic technologies toward the dissection of complex network of signaling molecules regulating islet function, the identification of potential biomarkers, and the understanding of mechanisms involved in the pathogenesis of diabetes.
Collapse
|
34
|
Affiliation(s)
- Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M.A. Heeren
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
35
|
Debois D, Bertrand V, Quinton L, De Pauw-Gillet MC, De Pauw E. MALDI-In Source Decay Applied to Mass Spectrometry Imaging: A New Tool for Protein Identification. Anal Chem 2010; 82:4036-45. [DOI: 10.1021/ac902875q] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Delphine Debois
- LSM-CART-GIGA-R and Laboratory of Histology-Cytology (GIGA-R), University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Virginie Bertrand
- LSM-CART-GIGA-R and Laboratory of Histology-Cytology (GIGA-R), University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Loïc Quinton
- LSM-CART-GIGA-R and Laboratory of Histology-Cytology (GIGA-R), University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Marie-Claire De Pauw-Gillet
- LSM-CART-GIGA-R and Laboratory of Histology-Cytology (GIGA-R), University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Edwin De Pauw
- LSM-CART-GIGA-R and Laboratory of Histology-Cytology (GIGA-R), University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|