1
|
Chen MX, Zhang KL, Zhang M, Das D, Fang YM, Dai L, Zhang J, Zhu FY. Alternative splicing and its regulatory role in woody plants. TREE PHYSIOLOGY 2020; 40:1475-1486. [PMID: 32589747 DOI: 10.1093/treephys/tpaa076] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional process to enhance proteome diversity in eukaryotic organisms. In plants, numerous reports have primarily focused on AS analysis in model plant species or herbaceous plants, leading to a notable lack of research on AS in woody plants. More importantly, emerging evidence indicates that many important traits, including wood formation and stress resistance, in woody plants are controlled by AS. In this review article, we summarize the current progress of all kinds of AS studies in different tree species at various stages of development and in response to various stresses, revealing the significant role played by AS in woody plants, as well as the similar properties and differential regulation within their herbaceous counterparts. Furthermore, we propose several potential strategies to facilitate the functional characterization of splicing factors in woody plants and evaluate a general pipeline for the systematic characterization of splicing isoforms in a complex AS regulatory network. The utilization of genetic studies and high-throughput omics integration approaches to analyze AS genes and splicing factors is likely to further advance our understanding of AS modulation in woody plants.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, 410128, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Debatosh Das
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Ye Z, Sangireddy SR, Yu CL, Hui D, Howe K, Fish T, Thannhauser TW, Zhou S. Comparative Proteomics of Root Apex and Root Elongation Zones Provides Insights into Molecular Mechanisms for Drought Stress and Recovery Adjustment in Switchgrass. Proteomes 2020; 8:3. [PMID: 32092968 PMCID: PMC7151713 DOI: 10.3390/proteomes8010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
Switchgrass plants were grown in a Sandwich tube system to induce gradual drought stress by withholding watering. After 29 days, the leaf photosynthetic rate decreased significantly, compared to the control plants which were watered regularly. The drought-treated plants recovered to the same leaf water content after three days of re-watering. The root tip (1cm basal fragment, designated as RT1 hereafter) and the elongation/maturation zone (the next upper 1 cm tissue, designated as RT2 hereafter) tissues were collected at the 29th day of drought stress treatment, (named SDT for severe drought treated), after one (D1W) and three days (D3W) of re-watering. The tandem mass tags mass spectrometry-based quantitative proteomics analysis was performed to identify the proteomes, and drought-induced differentially accumulated proteins (DAPs). From RT1 tissues, 6156, 7687, and 7699 proteins were quantified, and 296, 535, and 384 DAPs were identified in the SDT, D1W, and D3W samples, respectively. From RT2 tissues, 7382, 7255, and 6883 proteins were quantified, and 393, 587, and 321 proteins DAPs were identified in the SDT, D1W, and D3W samples. Between RT1 and RT2 tissues, very few DAPs overlapped at SDT, but the number of such proteins increased during the recovery phase. A large number of hydrophilic proteins and stress-responsive proteins were induced during SDT and remained at a higher level during the recovery stages. A large number of DAPs in RT1 tissues maintained the same expression pattern throughout drought treatment and the recovery phases. The DAPs in RT1 tissues were classified in cell proliferation, mitotic cell division, and chromatin modification, and those in RT2 were placed in cell wall remodeling and cell expansion processes. This study provided information pertaining to root zone-specific proteome changes during drought and recover phases, which will allow us to select proteins (genes) as better defined targets for developing drought tolerant plants. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD017441.
Collapse
Affiliation(s)
- Zhujia Ye
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Sasikiran Reddy Sangireddy
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| | - Chih-Li Yu
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (C.-L.Y.); (D.H.)
| | - Kevin Howe
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | - Tara Fish
- Functional & Comparative Proteomics Center, USDA-ARS, Ithaca, NY 14853, USA; (K.H.); (T.F.)
| | | | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (Z.Y.); (S.R.S.)
| |
Collapse
|
3
|
ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int J Mol Sci 2019; 20:E5321. [PMID: 31731530 PMCID: PMC6862505 DOI: 10.3390/ijms20215321] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Due to the present scenario of climate change, plants have to evolve strategies to survive and perform under a plethora of biotic and abiotic stresses, which restrict plant productivity. Maintenance of plant protein functional conformation and preventing non-native proteins from aggregation, which leads to metabolic disruption, are of prime importance. Plant heat shock proteins (HSPs), as chaperones, play a pivotal role in conferring biotic and abiotic stress tolerance. Moreover, HSP also enhances membrane stability and detoxifies the reactive oxygen species (ROS) by positively regulating the antioxidant enzymes system. Additionally, it uses ROS as a signal to molecules to induce HSP production. HSP also enhances plant immunity by the accumulation and stability of pathogenesis-related (PR) proteins under various biotic stresses. Thus, to unravel the entire plant defense system, the role of HSPs are discussed with a special focus on plant response to biotic and abiotic stresses, which will be helpful in the development of stress tolerance in plant crops.
Collapse
Affiliation(s)
- Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Abdul Mateen Khattak
- Department of Horticulture, University of Agriculture Peshawar, Peshawar 25130, Pakistan;
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin 300192, China;
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.u.H.); (A.K.); (M.A.); (W.-X.G.); (H.-X.Z.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
4
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
5
|
Lafon-Placette C, Le Gac AL, Chauveau D, Segura V, Delaunay A, Lesage-Descauses MC, Hummel I, Cohen D, Jesson B, Le Thiec D, Bogeat-Triboulot MB, Brignolas F, Maury S. Changes in the epigenome and transcriptome of the poplar shoot apical meristem in response to water availability affect preferentially hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:537-551. [PMID: 29211860 DOI: 10.1093/jxb/erx409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
The adaptive capacity of long-lived organisms such as trees to the predicted climate changes, including severe and successive drought episodes, will depend on the presence of genetic diversity and phenotypic plasticity. Here, the involvement of epigenetic mechanisms in phenotypic plasticity toward soil water availability was examined in Populus×euramericana. This work aimed at characterizing (i) the transcriptome plasticity, (ii) the genome-wide plasticity of DNA methylation, and (iii) the function of genes affected by a drought-rewatering cycle in the shoot apical meristem. Using microarray chips, differentially expressed genes (DEGs) and differentially methylated regions (DMRs) were identified for each water regime. The rewatering condition was associated with the highest variations of both gene expression and DNA methylation. Changes in methylation were observed particularly in the body of expressed genes and to a lesser extent in transposable elements. Together, DEGs and DMRs were significantly enriched in genes related to phytohormone metabolism or signaling pathways. Altogether, shoot apical meristem responses to changes in water availability involved coordinated variations in DNA methylation, as well as in gene expression, with a specific targeting of genes involved in hormone pathways, a factor that may enable phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Alain Delaunay
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| | | | - Irène Hummel
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | - David Cohen
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | - Didier Le Thiec
- EEF, INRA Grand-Est-Nancy, Université de Lorraine, UMR 1137, France
| | | | | | - Stéphane Maury
- LBLGC EA 1207, INRA, Université d'Orléans, USC 1328, France
| |
Collapse
|
6
|
Li JW, Chen XD, Hu XY, Ma L, Zhang SB. Comparative physiological and proteomic analyses reveal different adaptive strategies by Cymbidium sinense and C. tracyanum to drought. PLANTA 2018; 247:69-97. [PMID: 28871432 DOI: 10.1007/s00425-017-2768-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
A terrestrial orchid, Cymbidium sinense appears to utilizes "remedy strategy", while an epiphytic orchid, C. tracyanum , employs a "precaution strategy" to drought stress based on morphological, physiological and proteomic analysis. Drought condition influences plant growth and productivity. Although the mechanism by which plants adapt to this abiotic stress has been studied extensively, the water-adaptive strategies of epiphytes grown in water-limited habitats remain undefined. Here, root and leaf anatomies, dynamic changes in physiological and proteomic responses during periods of drought stress and recovery studied in an epiphytic orchid (Cymbidium tracyanum) and a terrestrial orchid (C. sinense) to investigate their strategies for coping with drought. Compared with C. sinense, C. tracyanum showed stronger drought-resistant adaptive characteristics to drought because its leaves had more negative water potential at turgor loss point and roots had higher proportion of velamen radicum thickness. Although both species demonstrated quick recovery of photosynthesis after stress treatment, they differed in physiological and proteomic responses. We detected and functionally characterized 103 differentially expressed proteins in C. sinense and 104 proteins in C. tracyanum. These proteins were mainly involved in carbon and energy metabolism, photosynthesis, and defense responses. The up-regulated expression of plastid fibrillin may have contributed to the marked accumulation of jasmonates only in stressed C. sinense, while ferredoxin-NADP reductase up-regulation was only found in C. tracyanum which possibly related to the stimulation of cyclic electron flow that is linked with photoprotection. These physiological and proteomic performances suggest distinct adaptive strategies to drought stress between C. sinense (remedy strategy) and C. tracyanum (precaution strategy). Our findings may help improve our understanding about the ecological adaptation of epiphytic orchids.
Collapse
Affiliation(s)
- Jia-Wei Li
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Dong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiang-Yang Hu
- College of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lan Ma
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China
| | - Shi-Bao Zhang
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, 650201, China.
| |
Collapse
|
7
|
Mishra D, Shekhar S, Singh D, Chakraborty S, Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. REGULATION OF HEAT SHOCK PROTEIN RESPONSES 2018. [DOI: 10.1007/978-3-319-74715-6_3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Khodadadi E, Fakheri BA, Aharizad S, Emamjomeh A, Norouzi M, Komatsu S. Leaf proteomics of drought-sensitive and -tolerant genotypes of fennel. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1433-1444. [PMID: 28887228 DOI: 10.1016/j.bbapap.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022]
Abstract
Fennel is attracted attention as a useful resource as researching medicinal plant for drought tolerance. To elucidate the response mechanism in drought-sensitive and -tolerant genotypes of fennel leaf, a gel-free/label-free proteomic technique was used. Fifty-day-old plants were subjected to drought stress for 60days. The relative water and proline contents were decreased and increased in sensitive genotypes, respectively; however, they were not a big change in tolerant genotypes. Photosynthesis was decreased in the sensitive genotypes under drought; however, it was increased in the tolerant genotype. In both drought-sensitive and -tolerant genotypes, proteins related to protein metabolism and cell organization were predominately affected under drought stress. The abundance of phosphoribulokinase and phosphoglycerate kinase enzymes were decreased and increased in drought-sensitive and -tolerant genotypes, respectively; however, the abundance of RuBisCO and glyceraldehyde-3-phosphate dehydrogenase enzymes were increased and decreased in drought-sensitive and -tolerant genotypes, respectively. Under drought stress, the abundance of glycolysis-related proteins was decreased in sensitive genotypes; however, they were increased in tolerance genotypes. Commonly changed proteins with polyethylene glycol fractionation such as cobalamin-independent methionine synthase were decreased and increased in drought-sensitive and -tolerant genotypes, respectively. These results suggest that cobalamin-independent methionine synthetase is involved in the tolerance of drought-tolerant fennel leaf under drought stress.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Saeed Aharizad
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Abbasali Emamjomeh
- Department of Plant Breeding and Biotechnology, University of Zabol, Zabol 98613-35856, Iran
| | - Majid Norouzi
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz 51666-16471, Iran
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan; University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|
9
|
Król A, Weidner S. Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:114-126. [PMID: 28178572 DOI: 10.1016/j.jplph.2016.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 05/21/2023]
Abstract
The essence of exploring and understanding mechanisms of plant adaptation to environmental stresses lies in the determination of patterns of the expression of proteins, identification of stress proteins and their association with the specific functions in metabolic pathways. To date, little information has been provided about the proteomic response of grapevine to the persistent influence of adverse environmental conditions. This article describes changes in the profile of protein accumulation in leaves of common grapevine (Vitis vinifera L.) seedlings in response to prolonged drought. Isolated proteins were separated by two-dimensional electrophoresis (2 DE), and the proteins whose level of accumulation changed significantly due to the applied stress factors were identified with tandem mass spectrometry MALDI TOF/TOF type. Analysis of the proteome of grapevine leaves led to the detection of many proteins whose synthesis changed in response to the applied stressor. Drought caused the most numerous changes in the accumulation of proteins associated with carbohydrate and energy metabolism, mostly connected with the pathways of glycolysis and photosystem II protein components. The biological function of the identified proteins is discussed with reference to the stress of drought. Some of the identified proteins, especially the ones whose accumulation increased during drought stress, may be responsible for the adaptation of grapevine to drought.
Collapse
Affiliation(s)
- Angelika Król
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland.
| | - Stanisław Weidner
- Department of Biology and Biotechnology, Chair of Biochemistry, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn, Kortowo, Poland
| |
Collapse
|
10
|
Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress. Int J Mol Sci 2016; 17:ijms17101607. [PMID: 27689998 PMCID: PMC5085640 DOI: 10.3390/ijms17101607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/17/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
In this study, we conducted the first isobaric tags for relative and absolute quantitation (isobaric tags for relative and absolute quantitation (iTRAQ))-based comparative proteomic analysis of ramie plantlets after 0 (minor drought stress), 24 (moderate drought stress), and 72 h (severe drought stress) of treatment with 15% (w/v) poly (ethylene glycol)6000 (PEG6000) to simulate drought stress. In our study, the association analysis of proteins and transcript expression revealed 1244 and 968 associated proteins identified in leaves and roots, respectively. L1, L2, and L3 are leaf samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups, a total of 118, 216, and 433 unique proteins were identified as differentially expressed during L1 vs. L2, L2 vs. L3, and L1 vs. L3, respectively. R1, R2, and R3 are root samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups,a total of 124, 27, and 240 unique proteins were identified as differentially expressed during R1 vs. R2, R2 vs. R3, and R1 vs. R3, respectively. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was significantly upregulated in roots in response to drought stress. This enhancement may result in more glycolytically generated adenosine triphosphate (ATP) in roots to adapt to adverse environmental conditions. To obtain complementary information related to iTRAQ data, the mRNA levels of 12 proteins related to glycolysis/gluconeogenesis in leaves and 7 in roots were further analyzed by qPCR. Most of their expression levels were higher in R3 than R1 and R2, suggesting that these compounds may promote drought tolerance by modulating the production of available energy.
Collapse
|
11
|
Aspinwall MJ, Loik ME, Resco de Dios V, Tjoelker MG, Payton PR, Tissue DT. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. PLANT, CELL & ENVIRONMENT 2015; 38:1752-64. [PMID: 25132508 DOI: 10.1111/pce.12424] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 05/15/2023]
Abstract
Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| | - Michael E Loik
- Department of Environmental Studies, University of California - Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Victor Resco de Dios
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
- Department of Crop and Forest Sciences - AGROTECNIO Center, Universitat de Lleida, Lleida, E25198, Spain
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| | - Paxton R Payton
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX, 74915, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
12
|
Utilization of proteomics in experimental field conditions — A case study of poplars growing on grassland affected by long-term starch wastewater irrigation. J Proteomics 2015; 126:200-17. [DOI: 10.1016/j.jprot.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/14/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
|
13
|
Brossa R, Pintó-Marijuan M, Francisco R, López-Carbonell M, Chaves MM, Alegre L. Redox proteomics and physiological responses in Cistus albidus shrubs subjected to long-term summer drought followed by recovery. PLANTA 2015; 241:803-22. [PMID: 25502480 PMCID: PMC4361772 DOI: 10.1007/s00425-014-2221-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/02/2014] [Indexed: 05/23/2023]
Abstract
The interaction between enzymatic and non-enzymatic antioxidants, endogenous levels of ABA and ABA-GE, the rapid recuperation of photosynthetic proteins under re-watering as well the high level of antioxidant proteins in previously drought-stressed plants under re-watering conditions, will contribute to drought resistance in plants subjected to a long-term drought stress under Mediterranean field conditions. This work provides an overview of the mechanisms of Cistus albidus acclimation to long-term summer drought followed by re-watering in Mediterranean field conditions. To better understand the molecular mechanisms of drought resistance in these plants, a proteomic study using 2-DE and MALDI-TOF/TOF MS/MS was performed on leaves from these shrubs. The analysis identified 57 differentially expressed proteins in water-stressed plants when contrasted to well watered. Water-stressed plants showed an increase, both qualitatively and quantitatively, in HSPs, and downregulation of photosynthesis and carbon metabolism enzymes. Under drought conditions, there was considerable upregulation of enzymes related to redox homeostasis, DHA reductase, Glyoxalase, SOD and isoflavone reductase. However, upregulation of catalase was not observed until after re-watering was carried out. Drought treatment caused an enhancement in antioxidant defense responses that can be modulated by ABA, and its catabolites, ABA-GE, as well as JA. Furthermore, quantification of protein carbonylation was shown to be a useful marker of the relationship between water and oxidative stress, and showed that there was only moderate oxidative stress in C. albidus plants subjected to water stress. After re-watering plants recovered although the levels of ABA-GE and antioxidant enzymes still remain higher than in well-watered plants. We expect that our results will provide new data on summer acclimation to drought stress in Mediterranean shrubs.
Collapse
Affiliation(s)
- Ricard Brossa
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Marta Pintó-Marijuan
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Rita Francisco
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Marta López-Carbonell
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - Maria Manuela Chaves
- Molecular Ecophysiology Lab. (LEM), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Leonor Alegre
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Yang Y, Dong C, Yang S, Li X, Sun X, Yang Y. Physiological and proteomic adaptation of the alpine grass Stipa purpurea to a drought gradient. PLoS One 2015; 10:e0117475. [PMID: 25646623 PMCID: PMC4315458 DOI: 10.1371/journal.pone.0117475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/24/2014] [Indexed: 01/28/2023] Open
Abstract
Stipa purpurea, an endemic forage species on the Tibetan Plateau, is highly resistant to cold and drought, but the mechanisms underlying its responses to drought stress remain elusive. An understanding of such mechanisms may be useful for developing cultivars that are adaptable to water deficit. In this study, we analyzed the physiological and proteomic responses of S. purpurea under increasing drought stress. Seedlings of S. purpurea were subjected to a drought gradient in a controlled experiment, and proteins showing changes in abundance under these conditions were identified by two-dimensional electrophoresis followed by mass spectrometry analysis. A western blotting analysis was conducted to confirm the increased abundance of a heat-shock protein, NCED2, and a dehydrin in S. purpurea seedlings under drought conditions. We detected carbonylated proteins to identify oxidation-sensitive proteins in S. purpurea seedlings, and found that ribulose-1, 5-bisphosphate carboxylase oxygenase (RuBisCO) was one of the oxidation-sensitive proteins under drought. Together, these results indicated drought stress might inhibit photosynthesis in S. purpurea by oxidizing RuBisCO, but the plants were able to maintain photosynthetic efficiency by a compensatory upregulation of unoxidized RuBisCO and other photosynthesis-related proteins. Further analyses confirmed that increased abundance of antioxidant enzymes could balance the redox status of the plants to mitigate drought-induced oxidative damage.
Collapse
Affiliation(s)
- Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chao Dong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihai Yang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of Nitrogen Remobilization in Poplar Bark. J Proteome Res 2014; 14:1112-26. [DOI: 10.1021/pr501090p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nazrul Islam
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Gen Li
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Wesley M. Garrett
- Animal
Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Rongshuang Lin
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| | - Ganesh Sriram
- Department
of Chemical and Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Bret Cooper
- Soybean
Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, United States
| | - Gary D. Coleman
- Department
of Plant Sciences and Landscape Architecture, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
16
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
17
|
Comparative genomic analysis of transgenic poplar dwarf mutant reveals numerous differentially expressed genes involved in energy flow. Int J Mol Sci 2014; 15:15603-21. [PMID: 25192286 PMCID: PMC4200758 DOI: 10.3390/ijms150915603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/26/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022] Open
Abstract
In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481) was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.
Collapse
|
18
|
Romeo S, Trupiano D, Ariani A, Renzone G, Scippa GS, Scaloni A, Sebastiani L. Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1054-63. [PMID: 24974332 DOI: 10.1016/j.jplph.2014.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 05/12/2023]
Abstract
Contamination of soil and water by heavy metals has become a widespread problem; environmental pollution by high zinc (Zn) concentration occurs frequently. Although poplar (Populus spp.) has been identified as suitable for phytoremediation approaches, its response to high Zn concentrations are still not clearly understood. For this reason, we investigated the effects of Zn in Populus×euramericana clone I-214 roots by proteomic analysis. Comparative experiments were conducted on rooted woody cuttings grown in nutrient solutions containing 1mM (treatment) or 1μM (control) Zn concentrations. A gel-based proteomic approach coupled with morphological and chemical analysis was used to identify differentially represented proteins in treated roots and to investigate the effect of Zn treatment on the poplar root system. Data shows that Zn was accumulated preferentially in roots, that the antioxidant system, the carbohydrate/energy and amino acid metabolisms were the main pathways modulated by Zn excess, and that mitochondria and vacuoles were the cellular organelles predominately affected by Zn stress. A coordination between cell death and proliferation/growth seems to occur under this condition to counteract the Zn-induced damage.
Collapse
Affiliation(s)
- Stefania Romeo
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche, IS, Italy
| | - Andrea Ariani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Giovanni Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Gabriella S Scippa
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090 Pesche, IS, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| |
Collapse
|
19
|
Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:655-71. [PMID: 24376254 PMCID: PMC3904723 DOI: 10.1093/jxb/ert435] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rice yield and quality are adversely affected by high temperatures, and these effects are more pronounced at the 'milky stage' of the rice grain ripening phase. Identifying the functional proteins involved in the response of rice to high temperature stress may provide the basis for improving heat tolerance in rice. In the present study, a comparative proteomic analysis of paired, genetically similar heat-tolerant and heat-sensitive rice lines was conducted. Two-dimensional electrophoresis (2-DE) revealed a total of 27 differentially expressed proteins in rice grains, predominantly from the heat-tolerant lines. The protein profiles clearly indicated variations in protein expression between the heat-tolerant and heat-sensitive rice lines. Matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis revealed that 25 of the 27 differentially displayed proteins were homologous to known functional proteins. These homologous proteins were involved in biosynthesis, energy metabolism, oxidation, heat shock metabolism, and the regulation of transcription. Seventeen of the 25 genes encoding the differentially displayed proteins were mapped to rice chromosomes according to the co-segregating conditions between the simple sequence repeat (SSR) markers and the target genes in recombinant inbred lines (RILs). The proteins identified in the present study provide a basis to elucidate further the molecular mechanisms underlying the adaptation of rice to high temperature stress.
Collapse
Affiliation(s)
- Jiang-Lin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province 330045, China
- Key Laboratory of Agriculture responding to Climate Change (Jiangxi Agricultural University), Nanchang City, Jiangxi Province 330045, China
- * These authors contributed equally to this work
| | - Hui-Wen Zhou
- Key Laboratory of Agriculture responding to Climate Change (Jiangxi Agricultural University), Nanchang City, Jiangxi Province 330045, China
- * These authors contributed equally to this work
| | - Hong-Yu Zhang
- Key Laboratory of Agriculture responding to Climate Change (Jiangxi Agricultural University), Nanchang City, Jiangxi Province 330045, China
| | - Ping-An Zhong
- Key Laboratory of Agriculture responding to Climate Change (Jiangxi Agricultural University), Nanchang City, Jiangxi Province 330045, China
| | - Ying-Jin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education, Jiangxi Province 330045, China
- Key Laboratory of Agriculture responding to Climate Change (Jiangxi Agricultural University), Nanchang City, Jiangxi Province 330045, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Sanchez DH. Physiological and biotechnological implications of transcript-level variation under abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:925-930. [PMID: 24033916 DOI: 10.1111/plb.12075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
The discovery of genes that can be used to increase plant tolerance to environmental stress has practical implications for agriculture, since knowledge at the molecular level can potentially be translated from model plants to crops or from tolerant to sensitive cultivars. For more than a decade, researchers have attempted to identify transcriptional and metabolic pathways involved in stress tolerance using functional genomics tools. In some cases, promising results were obtained when a clear causal link was found between transcripts and tolerance/sensitivity to stress. However, recent reports question the global translational power of functional genomics for biotechnological applications, as one of the main limitations seems to be the large variability in gene expression. Transcript-level variability under stress has not been considered of interest in the scientific literature because it is intuitively obvious, but most reports seem to naively overlook the consequences. Here, three case situations are reviewed (variability between genotypes, variability due to environmental interactions and variability between stressors) in support of the concept that inherent transcript-level variation in biological systems may limit our knowledge of environmental plant tolerance and of functional genomics in molecular stress physiology.
Collapse
Affiliation(s)
- D H Sanchez
- Laboratory of Plant Genetics-Sciences III, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Valero-Galván J, González-Fernández R, Navarro-Cerrillo RM, Gil-Pelegrín E, Jorrín-Novo JV. Physiological and proteomic analyses of drought stress response in Holm oak provenances. J Proteome Res 2013; 12:5110-23. [PMID: 24088139 DOI: 10.1021/pr400591n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Responses to drought stress by water withholding have been studied in 1 year old Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) seedlings from seven provenances from Andalusia (southern Spain). Several physiological parameters, including predawn xylem water potentials and relative water content in soil, roots, and leaves as well as maximum quantum efficiency and yield of PSII were evaluated for 28 days in both irrigated and nonirrigated seedlings. The leaf proteome map of the two provenances that show the extreme responses (Seville, GSE, is the most susceptible, while Almerı́a, SSA, is the least susceptible) was obtained. Statistically significant variable spots among provenances and treatments were subjected to MALDI-TOF/TOF-MS/MS analysis for protein identification. In response to drought stress, ~12.4% of the reproducible spots varied significantly depending on the treatment and the population. These variable proteins were mainly chloroplastic and belonged to the metabolism and defense/stress functional categories. The 2-DE protein profile of nonirrigated seedlings was similar in both provenances. Physiological and proteomics data were generally in good agreement. The general trend was a decrease in protein abundance upon water withholding in both provenances, mainly in those involved in ATP synthesis and photosynthesis. This decrease, moreover, was most marked in the most susceptible population compared with the less susceptible one.
Collapse
Affiliation(s)
- José Valero-Galván
- Department of Chemistry-Biology, Biomedical Sciences Institute, Autonomous University of Ciudad Juárez , Anillo Envolvente del Pronaf y Estocolmo s/n, 32310 Ciudad Juárez, Chihuahua, México
| | | | | | | | | |
Collapse
|
22
|
Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC PLANT BIOLOGY 2013; 13:49. [PMID: 23514573 PMCID: PMC3608200 DOI: 10.1186/1471-2229-13-49] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/14/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cabernet Sauvignon grapevines were exposed to a progressive, increasing water defict over 16 days. Shoot elongation and photosynthesis were measured for physiological responses to water deficit. The effect of water deficit over time on the abundance of individual proteins in growing shoot tips (including four immature leaves) was analyzed using nanoflow liquid chromatography - tandem mass spectrometry (nanoLC-MS/MS). RESULTS Water deficit progressively decreased shoot elongation, stomatal conductance and photosynthesis after Day 4; 2277 proteins were identified by shotgun proteomics with an average CV of 9% for the protein abundance of all proteins. There were 472 out of 942 (50%) proteins found in all samples that were significantly affected by water deficit. The 472 proteins were clustered into four groups: increased and decreased abundance of early- and late-responding protein profiles. Vines sensed the water deficit early, appearing to acclimate to stress, because the abundance of many proteins changed before decreases in shoot elongation, stomatal conductance and photosynthesis. Predominant functional categories of the early-responding proteins included photosynthesis, glycolysis, translation, antioxidant defense and growth-related categories (steroid metabolism and water transport), whereas additional proteins for late-responding proteins were largely involved with transport, photorespiration, antioxidants, amino acid and carbohydrate metabolism. CONCLUSIONS Proteomic responses to water deficit were dynamic with early, significant changes in abundance of proteins involved in translation, energy, antioxidant defense and steroid metabolism. The abundance of these proteins changed prior to any detectable decreases in shoot elongation, stomatal conductance or photosynthesis. Many of these early-responding proteins are known to be regulated by post-transcriptional modifications such as phosphorylation. The proteomics analysis indicates massive and substantial changes in plant metabolism that appear to funnel carbon and energy into antioxidant defenses in the very early stages of plant response to water deficit before any significant injury.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Steve C Van Sluyter
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557, USA
| | - Dana Pascovici
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Tim Keighley
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Paul A Haynes
- Present address: Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
23
|
Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MÁ, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera MT. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 2013; 3:399-415. [PMID: 23467802 PMCID: PMC3586649 DOI: 10.1002/ece3.461] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular "memory". Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Kelly J Vining
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Clément Lafon-Placette
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Carl G Fossdal
- Department of Biology and Environment, Norwegian Forest and Landscape InstitutePO Box 115, N-1431, Aas, Norway
| | - Marie Mirouze
- Epigenetic Regulations and Seed Development, Institut de Recherche pour le Développement, UMR232 ERL5300 CNRS-IRD911 Av. Agropolis, 34394, Montpellier, France
| | - José Gutiérrez Marcos
- School of Life Sciences, University of WarwickWellesbourne, Warkwick, CV35 9EF, United Kingdom
| | - Silvia Fluch
- Platform for Integrated Clone Management (PICME), Health & Environment Department, AIT Austrian Institute of Technology GmbHKonrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Mario Fernández Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA–HUCA), University of OviedoSpain
| | - M Ángeles Guevara
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| | - Dolores Abarca
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Øystein Johnsen
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesPO Box 5003, N-1432, Ås, Norway
| | - Stéphane Maury
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, University of Toronto1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Antje Rohde
- Department Plant Growth & Development, Institute of Agriculture and Fisheries ResearchCaritasstraat 21, 9090, Melle, Belgium
| | - Carmen Díaz-Sala
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - María-Teresa Cervera
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| |
Collapse
|
24
|
Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavaletto M. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. PLoS One 2012; 7:e38662. [PMID: 22761694 PMCID: PMC3383689 DOI: 10.1371/journal.pone.0038662] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/09/2012] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein.
Collapse
Affiliation(s)
- Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale A Avogadro, Alessandria, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Benešová M, Holá D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, Rothová O, Kočová M, Procházková D, Honnerová J, Fridrichová L, Hniličková H. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One 2012; 7:e38017. [PMID: 22719860 PMCID: PMC3374823 DOI: 10.1371/journal.pone.0038017] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/02/2012] [Indexed: 01/05/2023] Open
Abstract
Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.
Collapse
Affiliation(s)
- Monika Benešová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dana Holá
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr L. Jedelský
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Laboratory of Mass Spectrometry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - František Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Naďa Wilhelmová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Olga Rothová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Marie Kočová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Dagmar Procházková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jana Honnerová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lenka Fridrichová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Helena Hniličková
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
26
|
Bedon F, Villar E, Vincent D, Dupuy JW, Lomenech AM, Mabialangoma A, Chaumeil P, Barré A, Plomion C, Gion JM. Proteomic plasticity of two Eucalyptus genotypes under contrasted water regimes in the field. PLANT, CELL & ENVIRONMENT 2012; 35:790-805. [PMID: 22026815 DOI: 10.1111/j.1365-3040.2011.02452.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Water deficit affects tree growth and limits wood production. In an attempt to identify the molecular triggers of adaptation mechanisms to water deficit in Eucalyptus, we investigated protein expression patterns of two ecophysiologically contrasted Eucalyptus genotypes. They were grown in the field in either natural conditions or irrigated for 7 weeks during the dry season in the Republic of Congo. At the phenotypic level, genotype (G), treatment (T) and/or G × T interaction effects were observed for above- and below-ground biomass-related traits. At the molecular level, changes in protein abundance were recorded in leaves (acidic pH 4-7, and basic pH 7-11, proteomes) and stems (acidic proteome) using two-dimensional gel electrophoresis (2-DE). One third of the detected protein spots displayed significant G, T and/or G × T effects, and 158 of them were identified by tandem mass spectrometry (LC-MS/MS) analysis. Thus, several proteins whose molecular plasticity was genetically controlled (i.e. G × T effect) were revealed, highlighting adaptive mechanisms to water deficit specific to each genotype, namely cell wall modification, cell detoxification and osmoregulation. Transcript abundances corresponding to G × T proteins were also investigated by quantitative RT-PCR. These proteins represent relevant targets to improve drought resistance in this ecologically and economically important forest tree genus.
Collapse
Affiliation(s)
- Frank Bedon
- INRA, UMR1202 BIOGECO, 69 route d'Arcachon, F-33612, Bordeaux, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kosová K, Vítámvás P, Prášil IT, Renaut J. Plant proteome changes under abiotic stress — Contribution of proteomics studies to understanding plant stress response. J Proteomics 2011; 74:1301-22. [DOI: 10.1016/j.jprot.2011.02.006] [Citation(s) in RCA: 567] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 01/01/2023]
|
28
|
Abril N, Gion JM, Kerner R, Müller-Starck G, Cerrillo RMN, Plomion C, Renaut J, Valledor L, Jorrin-Novo JV. Proteomics research on forest trees, the most recalcitrant and orphan plant species. PHYTOCHEMISTRY 2011; 72:1219-42. [PMID: 21353265 DOI: 10.1016/j.phytochem.2011.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/27/2010] [Accepted: 01/06/2011] [Indexed: 05/06/2023]
Abstract
The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes.
Collapse
Affiliation(s)
- Nieves Abril
- Dpt. of Biochemistry and Molecular Biology, ETSIAM, University of Cordoba, Campus de Rabanales, Ed. Severo Ochoa, Cordoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sanda S, Yoshida K, Kuwano M, Kawamura T, Munekage YN, Akashi K, Yokota A. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon. PHYSIOLOGIA PLANTARUM 2011; 142:247-64. [PMID: 21438881 DOI: 10.1111/j.1399-3054.2011.01473.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, drought stress coupled with high levels of illumination causes not only dehydration of tissues, but also oxidative damage resulting from excess absorbed light energy. In this study, we analyzed the regulation of electron transport under drought/high-light stress conditions in wild watermelon, a xerophyte that shows strong resistance to this type of stress. Under drought/high-light conditions that completely suppressed CO(2) fixation, the linear electron flow was diminished between photosystem (PS) II and PS I, there was no photoinhibitory damage to PS II and PS I and no decrease in the abundance of the two PSs. Proteome analyses revealed changes in the abundance of protein spots representing the Rieske-type iron-sulfur protein (ISP) and I and K subunits of NAD(P)H dehydrogenase in response to drought stress. Two-dimensional electrophoresis and immunoblot analyses revealed new ISP protein spots with more acidic isoelectric points in plants under drought stress. Our findings suggest that the modified ISPs depress the linear electron transport activity under stress conditions to protect PS I from photoinhibition. The qualitative changes in photosynthetic proteins may switch the photosynthetic electron transport from normal photosynthesis mode to stress-tolerance mode.
Collapse
Affiliation(s)
- Satoko Sanda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Poplar under drought: comparison of leaf and cambial proteomic responses. J Proteomics 2011; 74:1396-410. [PMID: 21439416 DOI: 10.1016/j.jprot.2011.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/25/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
The forest ecosystem is of particular importance from an economic and ecological perspective. However, the stress physiology of trees, perennial and woody plants, is far from being fully understood. For that purpose, poplar plants were exposed to drought; the plants exhibited commonly reported drought stress traits in the different plant tissues. Leafy rooted cuttings of poplar were investigated through a proteomic approach in order to compare the water constraint response of two plant tissues, namely leaf and cambium. Sampling was realized during the drought period at 2 time points with increased drought intensity and 7 days after rewatering. Our data show that there is a difference in the moment of response to the water constraint between the two tissues, cambium being affected later than leaves. In leaves, drought induced a decrease in rubisco content, and an increase in the abundance of light harvesting complex proteins as well as changes in membrane-related proteins. In the cambial tissue, the salient proteome pattern change was the decrease of multiple proteins identified as bark storage proteins. After rewatering, almost all changes in cambial proteome disappeared whereas a significant number of leaf proteins appeared to be differentially regulated only during the recovery from drought.
Collapse
|
31
|
Faergestad EM, Rye MB, Nhek S, Hollung K, Grove H. The use of chemometrics to analyse protein patterns from gel electrophoresis. ACTA CHROMATOGR 2011. [DOI: 10.1556/achrom.23.2011.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Teyssier C, Grondin C, Bonhomme L, Lomenech AM, Vallance M, Morabito D, Label P, Lelu-Walter MA. Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix × eurolepsis): a 2-DE proteomic analysis. PHYSIOLOGIA PLANTARUM 2011; 141:152-65. [PMID: 20969577 DOI: 10.1111/j.1399-3054.2010.01423.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An integrated physiological and proteomic approach was used to investigate the effects of high gellan gum concentration in the medium during maturation of somatic embryos (SE) of hybrid larch, by comparing embryos incubated in media with a high gellan gum concentration (8 g l(-1) ) and the standard concentration (4 g l(-1) ) after 1, 3, 6 and 8 weeks of maturation. Because of the reduced availability of water in the 8 g l(-1) medium, the cultured embryos had a lower osmotic water potential (Ψπ) and water contents, but higher dry weights (DWs), at 8 weeks compared with embryos cultured on the standard medium. The high gellan gum concentration induced a desiccation that is characteristic in zygotic embryo maturation. Total soluble proteins were extracted from SE with trichloroacetic acid (TCA)-acetone after 1 and 8 weeks of maturation on media with 4 and 8 g l(-1) of gellan gum, and separated by two-dimensional gel electrophoresis (2-DE) at pH 4-7. More than 1100 proteins were reproducibly detected on each gel. At 1 and 8 weeks respectively, the abundances of 62 and 49 spots detected in analyses of embryos matured at the two gellan gum concentrations, significantly differed. Among 62 significantly differing spots at 1 week of maturation, the corresponding proteins of 56 were reliably identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), and were found to be mainly involved in 'carbohydrate metabolism', 'genetic information processing' or 'environmental information processing' according to kegg taxonomy. Both physiological parameters and the proteins identified suggested that the embryos were stressed when they were cultured on 4 g l(-1) of gellan gum.
Collapse
Affiliation(s)
- Caroline Teyssier
- INRA, UR 588, Research Unit for Breeding, Genetics and Physiology of Forest trees, Ardon, F-45075 Orléans Cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Skirycz A, Memmi S, De Bodt S, Maleux K, Obata T, Fernie AR, Devreese B, Inzé D. A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions. J Proteome Res 2011; 10:1018-29. [PMID: 21142212 DOI: 10.1021/pr100785n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plants respond to environmental stress by dynamically reprogramming their growth. Whereas stress onset is accompanied by rapid growth inhibition leading to smaller organs, growth will recover and adapt once the stress conditions become stable and do no threaten plant survival. Here, adaptation of growing Arabidopsis thaliana leaves to mild and prolonged osmotic stress was investigated by means of a complete metabolic labeling strategy with the (15)N-stable isotope as a complement to a previously published transcript and metabolite profiling. Global analysis of protein changes revealed that plastidial ATPase, Calvin cycle, and photorespiration were down-regulated, but mitochondrial ATP synthesis was up-regulated, indicating the importance of mitochondria in preserving plastid functions during water stress. Although transcript and protein data correlated well with the stable and prolonged character of the applied stress, numerous proteins were clearly regulated at the post-transcriptional level that could, at least partly, be related to changes in protein synthesis and degradation. In conclusion, proteomics using the (15)N labeling helped understand the mechanisms underlying growth adaptation to osmotic stress and allowed the identification of candidate genes to improve plant growth under limited water.
Collapse
|
34
|
|
35
|
Wang X, Chen S, Zhang H, Shi L, Cao F, Guo L, Xie Y, Wang T, Yan X, Dai S. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res 2010; 9:6561-77. [PMID: 20923197 DOI: 10.1021/pr100767k] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues from 19 desiccation tolerant and nontolerant plant species suggests that resurrection S. tamariscina has developed a specific desiccation tolerant mechanism. To our knowledge, this study constitutes the first detailed investigation of the protein complement in fern/fern-allies.
Collapse
Affiliation(s)
- Xiaonan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Voelckel C, Mirzaei M, Reichelt M, Luo Z, Pascovici D, Heenan PB, Schmidt S, Janssen B, Haynes PA, Lockhart PJ. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon. BMC Evol Biol 2010; 10:151. [PMID: 20482888 PMCID: PMC2886070 DOI: 10.1186/1471-2148-10-151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/20/2010] [Indexed: 11/30/2022] Open
Abstract
Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins) and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase), the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases), water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase) and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis). Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study. Our results indicate that protein profiling provides a valuable tool for validating transcript profiles in studies of adaptive divergence.
Collapse
Affiliation(s)
- Claudia Voelckel
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang S, Chen F, Peng S, Ma W, Korpelainen H, Li C. Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana
under drought stress. Proteomics 2010; 10:2661-77. [DOI: 10.1002/pmic.200900650] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Berta M, Giovannelli A, Sebastiani F, Camussi A, Racchi ML. Transcriptome changes in the cambial region of poplar (Populus alba L.) in response to water deficit. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:341-54. [PMID: 20398240 DOI: 10.1111/j.1438-8677.2009.00320.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A transcriptome analysis of the Populus alba cambial region was performed with the aim of elucidating the gene network underlying the response to water deficit within the cambium and differentiating derivative cambial cells. Water stress was induced in 1-year-old P. alba plants by withholding water for 9 days. At that time, leaf predawn water potential fell to -0.8 MPa, resulting in a significant reduction in stomatal conductance, CO(2) assimilation and a consistent increment of stem shrinkage. These effects were almost fully reversed by re-hydration. The water deficit resulted in changes in gene expression that affected several functional categories, such as protein metabolism, cell wall metabolism, stress response, transporters and transcriptional regulation. The function of up- and down-regulated genes is discussed considering the physiological response of the plants to water deficit.
Collapse
Affiliation(s)
- M Berta
- Department of Agricultural Biotechnology, Genetics section, Florence, Italy
| | | | | | | | | |
Collapse
|