1
|
Rustagi V, Rameshwari R, Kumar Singh I. Identification of potential inhibitors for MAP4K4 in glaucoma using meta-dynamics-based dissociation free energy calculation. Brain Res 2025; 1847:149300. [PMID: 39500479 DOI: 10.1016/j.brainres.2024.149300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/12/2024]
Abstract
Glaucoma, a prevalent eye ailment causing irreversible vision loss, affects over 295 million individuals globally, necessitating the exploration of novel therapeutic avenues. Despite extensive research on targets like the phosphodiesterase enzyme and rho kinase, the potential of MAP4K4 in glaucoma remains untapped. This study aims to identify potent MAP4K4 inhibitors to counteract retinal cell apoptosis and oxidative stress associated with glaucoma. Using HTVS and XP docking, 911,059 compounds were screened. The MMGBSA calculation and pharmacokinetics analysis were used to shortlist the compounds. After performing 75 molecular dynamics simulations, further meta-dynamics were employed to calculate dissociation-free energy and find potential MAP4K4 inhibitors. Findings indicated that ZINC06717217 and ZINC38836256 exhibited remarkable promise, with docking scores of -9.57 and -11.12 and MMGBSA binding energies of -91.07 kcal/mol and -87.52 kcal/mol, respectively. Comparative analysis with the reference compound Q27453723 underscored their superior stability, requiring dissociation-free energies of -15.11 kcal/mol and -12.46 kcal/mol to disengage from the docked complex. This underscored their robust binding affinity. ZINC06717217 and ZINC38836256 show promising stability and strong binding to the MAP4K4 protein. Hence, these findings are promising in inhibiting MAP4K4 for glaucoma treatment, potentially leading to more effective treatment and curing blindness. KEY MESSAGES: First to incorporate the dissociation-free energy for identifying compounds for glaucoma treatment. In-silico analysis showed that ZINC06717217 and ZINC38836256 are promising compounds for targeting MAP4K4.
Collapse
Affiliation(s)
- Vanshika Rustagi
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121004, India
| | - Rashmi Rameshwari
- Department of Biotechnology, School of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121004, India.
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India; Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi 110007, India.
| |
Collapse
|
2
|
Chou CL, Jayatissa NU, Kichula ET, Ou SM, Limbutara K, Knepper MA. Phosphoproteomic response to epidermal growth factor in native rat inner medullary collecting duct. Am J Physiol Renal Physiol 2025; 328:F29-F47. [PMID: 39508840 DOI: 10.1152/ajprenal.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Epidermal growth factor (EGF) has important effects in the renal collecting duct to regulate salt and water transport. To identify elements of EGF-mediated signaling in the rat renal inner medullary collecting duct (IMCD), we carried out phosphoproteomic analysis. Biochemically isolated rat IMCD suspensions were treated with 1 µM of EGF or vehicle for 30 min. We performed comprehensive quantitative phosphoproteomics using tandem mass tag (TMT)-labeling of tryptic peptides followed by protein mass spectrometry. We present a data resource reporting all detected phosphorylation sites and their changes in response to EGF. For a total of 29,881 unique phosphorylation sites, 135 sites were increased and 119 sites were decreased based on stringent statistical analysis. The data are provided to users at https://esbl.nhlbi.nih.gov/Databases/EGF-phospho/. The analysis demonstrated that EGF signals through canonical EGF pathways in the renal IMCD. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which EGF-regulated phosphoproteins are over-represented in native rat IMCD cells confirmed mapping to RAF-MEK-extracellular signal-regulated kinase (ERK) signaling but also pointed to a role for EGF in the regulation of protein translation. A large number of phosphoproteins regulated by EGF contained PDZ domains that are key elements of epithelial polarity determination. We also provide a collecting duct EGF-network map as a user-accessible web resource at https://esbl.nhlbi.nih.gov/Databases/EGF-network/. Overall, the phosphoproteomic data presented provide a useful resource for experimental design and modeling of signaling in the renal collecting duct.NEW & NOTEWORTHY EGF negatively regulates transepithelial water and salt transport across the kidney collecting duct. This study identified phosphoproteins affected by EGF stimulation in normal rat collecting ducts, providing insights into global cell signaling mechanisms. Bioinformatic analyses highlighted enhanced canonical ERK signaling alongside a diminished activity in the PI3K-Akt pathway, which is crucial for cell proliferation and survival. This EGF response differs somewhat from prior studies where both pathways were prominently activated.
Collapse
Affiliation(s)
- Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Nipun U Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elena T Kichula
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shuo-Ming Ou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
An oncogene addiction phosphorylation signature and its derived scores inform tumor responsiveness to targeted therapies. Cell Mol Life Sci 2022; 80:6. [PMID: 36494469 PMCID: PMC9734221 DOI: 10.1007/s00018-022-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Oncogene addiction provides important therapeutic opportunities for precision oncology treatment strategies. To date the cellular circuitries associated with driving oncoproteins, which eventually establish the phenotypic manifestation of oncogene addiction, remain largely unexplored. Data suggest the DNA damage response (DDR) as a central signaling network that intersects with pathways associated with deregulated addicting oncoproteins with kinase activity in cancer cells. EXPERIMENTAL DESIGN: We employed a targeted mass spectrometry approach to systematically explore alterations in 116 phosphosites related to oncogene signaling and its intersection with the DDR following inhibition of the addicting oncogene alone or in combination with irradiation in MET-, EGFR-, ALK- or BRAF (V600)-positive cancer models. An NSCLC tissue pipeline combining patient-derived xenografts (PDXs) and ex vivo patient organotypic cultures has been established for treatment responsiveness assessment. RESULTS We identified an 'oncogene addiction phosphorylation signature' (OAPS) consisting of 8 protein phosphorylations (ACLY S455, IF4B S422, IF4G1 S1231, LIMA1 S490, MYCN S62, NCBP1 S22, P3C2A S259 and TERF2 S365) that are significantly suppressed upon targeted oncogene inhibition solely in addicted cell line models and patient tissues. We show that the OAPS is present in patient tissues and the OAPS-derived score strongly correlates with the ex vivo responses to targeted treatments. CONCLUSIONS We propose a score derived from OAPS as a quantitative measure to evaluate oncogene addiction of cancer cell samples. This work underlines the importance of protein phosphorylation assessment for patient stratification in precision oncology and corresponding identification of tumor subtypes sensitive to inhibition of a particular oncogene.
Collapse
|
4
|
Zhai LH, Chen KF, Hao BB, Tan MJ. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol Sin 2022; 43:3112-3129. [PMID: 36372853 PMCID: PMC9712763 DOI: 10.1038/s41401-022-01017-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022] Open
Abstract
Protein post-translational modifications (PTMs), which are usually enzymatically catalyzed, are major regulators of protein activity and involved in almost all celluar processes. Dysregulation of PTMs is associated with various types of diseases. Therefore, PTM regulatory enzymes represent as an attractive and important class of targets in drug research and development. Inhibitors against kinases, methyltransferases, deacetyltransferases, ubiquitin ligases have achieved remarkable success in clinical application. Mass spectrometry-based proteomics technologies serve as a powerful approach for system-wide characterization of PTMs, which facilitates the identification of drug targets, elucidation of the mechanisms of action of drugs, and discovery of biomakers in personalized therapy. In this review, we summarize recent advances of proteomics-based studies on PTM targeting drugs and discuss how proteomics strategies facilicate drug target identification, mechanism elucidation, and new therapy development in precision medicine.
Collapse
Affiliation(s)
- Lin-Hui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China
| | - Kai-Feng Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Bing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, 528400, China.
| |
Collapse
|
5
|
Gavali S, Ross KE, Cowart J, Chen C, Wu CH. iPTMnet RESTful API for Post-translational Modification Network Analysis. Methods Mol Biol 2022; 2499:187-204. [PMID: 35696082 PMCID: PMC10082948 DOI: 10.1007/978-1-0716-2317-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
iPTMnet is a resource that combines rich information about protein post-translational modifications (PTM) from curated databases as well as text mining tools. Researchers can use the iPTMnet website to query, analyze and download the PTM data. In this chapter we describe the iPTMnet RESTful API which provides a way to streamline the integration of iPTMnet data into an automated data analysis workflow. In the first section, we give an overview of the architecture of the API. In the second section, we describe various function defined by the API and provide detailed examples of using these functions.
Collapse
|
6
|
Zhang X, Maity TK, Ross KE, Qi Y, Cultraro CM, Bahta M, Pitts S, Keswani M, Gao S, Nguyen KDP, Cowart J, Kirkali F, Wu C, Guha U. Alterations in the Global Proteome and Phosphoproteome in Third Generation EGFR TKI Resistance Reveal Drug Targets to Circumvent Resistance. Cancer Res 2021; 81:3051-3066. [PMID: 33727228 PMCID: PMC8182571 DOI: 10.1158/0008-5472.can-20-2435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. The treatment of patients with lung cancer harboring mutant EGFR with orally administered EGFR tyrosine kinase inhibitors (TKI) has been a paradigm shift. Osimertinib and rociletinib are third-generation irreversible EGFR TKIs targeting the EGFR T790M mutation. Osimertinib is the current standard of care for patients with EGFR mutations due to increased efficacy, lower side effects, and enhanced brain penetrance. Unfortunately, all patients develop resistance. Genomic approaches have primarily been used to interrogate resistance mechanisms. Here we characterized the proteome and phosphoproteome of a series of isogenic EGFR-mutant lung adenocarcinoma cell lines that are either sensitive or resistant to these drugs, comprising the most comprehensive proteomic dataset resource to date to investigate third generation EGFR TKI resistance in lung adenocarcinoma. Unbiased global quantitative mass spectrometry uncovered alterations in signaling pathways, revealed a proteomic signature of epithelial-mesenchymal transition, and identified kinases and phosphatases with altered expression and phosphorylation in TKI-resistant cells. Decreased tyrosine phosphorylation of key sites in the phosphatase SHP2 suggests its inhibition, resulting in subsequent inhibition of RAS/MAPK and activation of PI3K/AKT pathways. Anticorrelation analyses of this phosphoproteomic dataset with published drug-induced P100 phosphoproteomic datasets from the Library of Integrated Network-Based Cellular Signatures program predicted drugs with the potential to overcome EGFR TKI resistance. The PI3K/MTOR inhibitor dactolisib in combination with osimertinib overcame resistance both in vitro and in vivo. Taken together, this study reveals global proteomic alterations upon third generation EGFR TKI resistance and highlights potential novel approaches to overcome resistance. SIGNIFICANCE: Global quantitative proteomics reveals changes in the proteome and phosphoproteome in lung cancer cells resistant to third generation EGFR TKIs, identifying the PI3K/mTOR inhibitor dactolisib as a potential approach to overcome resistance.
Collapse
Affiliation(s)
- Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karen E Ross
- Dept. of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C
| | - Yue Qi
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meriam Bahta
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Stephanie Pitts
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Meghana Keswani
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Fatos Kirkali
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Cathy Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
7
|
Venugopalan A, Lynberg M, Cultraro CM, Nguyen KDP, Zhang X, Waris M, Dayal N, Abebe A, Maity TK, Guha U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene 2021; 40:3331-3346. [PMID: 33850265 PMCID: PMC8514158 DOI: 10.1038/s41388-021-01764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain constitutively activate EGFR resulting in lung tumorigenesis. Activated EGFR modulates downstream signaling by altering phosphorylation-driven interactions that promote growth and survival. Secretory carrier membrane proteins (SCAMPs) are a family of transmembrane proteins that regulate recycling of receptor proteins, including EGFR. The potential role of SCAMPs in mutant EGFR function and tumorigenesis has not been elucidated. Using quantitative mass-spectrometry-based phosphoproteomics, we identified SCAMP3 as a target of mutant EGFRs in lung adenocarcinoma and sought to further investigate the role of SCAMP3 in the regulation of lung tumorigenesis. Here we show that activated EGFR, either directly or indirectly phosphorylates SCAMP3 at Y86 and this phosphorylation increases the interaction of SCAMP3 with both wild-type and mutant EGFRs. SCAMP3 knockdown increases lung adenocarcinoma cell survival and increases xenograft tumor growth in vivo, demonstrating a tumor suppressor role of SCAMP3 in lung tumorigenesis. The tumor suppressor function is a result of SCAMP3 promoting EGFR degradation and attenuating MAP kinase signaling pathways. SCAMP3 knockdown also increases multinucleated cells in culture, suggesting that SCAMP3 is required for efficient cytokinesis. The enhanced growth, increased colony formation, reduced EGFR degradation and multinucleation phenotype of SCAMP3-depleted cells were reversed by re-expression of wild-type SCAMP3, but not SCAMP3 Y86F, suggesting that Y86 phosphorylation is critical for SCAMP3 function. Taken together, the results of this study demonstrate that SCAMP3 functions as a novel tumor suppressor in lung cancer by modulating EGFR signaling and cytokinesis that is partly Y86 phosphorylation-dependent.
Collapse
Affiliation(s)
- Abhilash Venugopalan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Matthew Lynberg
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Maryam Waris
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Noelle Dayal
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Asebot Abebe
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
- Bristol Myers Squibb, Lawrenceville, NJ, USA.
| |
Collapse
|
8
|
Liu T, Han X, Zheng S, Liu Q, Tuerxun A, Zhang Q, Yang L, Lu X. CALM1 promotes progression and dampens chemosensitivity to EGFR inhibitor in esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:121. [PMID: 33602237 PMCID: PMC7890995 DOI: 10.1186/s12935-021-01801-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background Calmodulin1 (CALM1) has been identified as one of the overexpression genes in a variety of cancers and EGFR inhibitor have been widely used in clinical treatment but it is unknown whether CALM1 and epidermal growth factor receptor (EGFR) have a synergistic effect in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to explore the synergistic effects of knock-out CALM1 combined with EGFR inhibitor (Afatinib) and to elucidate the role of CALM1 in sensitizing the resistance to Afatinib in ESCC. Method Immunohistochemistry (IHC) and qRT-PCR were used to examine the expression of CALM1 and EGFR in ESCC tissues. Kaplan–Meier survival analysis was used to analyze the clinical and prognostic significance of CALM1 and EGFR expression in ESCC. Furthermore, to evaluate the biological function of CALM1 in ESCC, the latest gene editing technique CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats)was applied to knockout CALM1 in ESCC cell lines KYSE150, Eca109 and TE-1. MTT, flow cytometry, Transwell migration, scratch wound-healing and colony formation assays were performed to assay the combined effect of knock-out CALM1 and EGFR inhibitor on ESCC cell proliferation and migration. In addition, nude mice xenograft model was used to observe the synergistic inhibition of knock-out CALM1 and Afatinib. Results Both CALM1 and EGFR were found to be significantly over-expressed in ESCC compared with paired normal control. Over-expressed CALM1 and EGFR were significantly associated with clinical stage, T classification and poor overall prognosis, respectively. In vitro, the combined effect of knock-out CALM1 mediated by the lentivirus and EGFR inhibitor was shown to be capable of inhibiting the proliferation, inducing cell cycle arrest at G1/S stage and increasing apoptosis of KYSE-150 and Eca109 cells; invasion and migration were also suppressed. In vivo, the results of tumor weight and total fluorescence were markedly reduced compared with the sgCtrl-infected group and sgCAML1 group. Conclusion Our data demonstrated that knock-out of CALM1 could sensitize ESCC cells to EGFR inhibitor, and it may exert oncogenic role via promotion of EMT. Taken together, CALM1 may be a tempting target to overcome Afatinib resistance.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.,Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Disease in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.
| |
Collapse
|
9
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Sürmen MG, Sürmen S, Ali A, Musharraf SG, Emekli N. Phosphoproteomic strategies in cancer research: a minireview. Analyst 2020; 145:7125-7149. [PMID: 32996481 DOI: 10.1039/d0an00915f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Understanding the cellular processes is central to comprehend disease conditions and is also true for cancer research. Proteomic studies provide significant insight into cancer mechanisms and aid in the diagnosis and prognosis of the disease. Phosphoproteome is one of the most studied complements of the whole proteome given its importance in the understanding of cellular processes such as signaling and regulations. Over the last decade, several new methods have been developed for phosphoproteome analysis. A significant amount of these efforts pertains to cancer research. The current use of powerful analytical instruments in phosphoproteomic approaches has paved the way for deeper and sensitive investigations. However, these methods and techniques need further improvements to deal with challenges posed by the complexity of samples and scarcity of phosphoproteins in the whole proteome, throughput and reproducibility. This review aims to provide a comprehensive summary of the variety of steps used in phosphoproteomic methods applied in cancer research including the enrichment and fractionation strategies. This will allow researchers to evaluate and choose a better combination of steps for their phosphoproteome studies.
Collapse
Affiliation(s)
- Mustafa Gani Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Saime Sürmen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nesrin Emekli
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
11
|
Nishimura T, Végvári Á, Nakamura H, Kato H, Saji H. Mutant Proteomics of Lung Adenocarcinomas Harboring Different EGFR Mutations. Front Oncol 2020; 10:1494. [PMID: 32983988 PMCID: PMC7477350 DOI: 10.3389/fonc.2020.01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor EGFR major driver mutations may affect downstream molecular networks and pathways, which would influence treatment outcomes of non-small cell lung cancer (NSCLC). This study aimed to unveil profiles of mutant proteins expressed in lung adenocarcinomas of 36 patients harboring representative driver EGFR mutations (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Surprisingly, the orthogonal partial least squares discriminant analysis performed for identified mutant proteins demonstrated the profound differences in distance among the different EGFR mutation groups, suggesting that cancer cells harboring L858R or Ex19del emerge from cellular origins different from L858R/Ex19del-negative cells. Weighted gene coexpression network analysis, together with over-representative analysis, identified 18 coexpressed modules and their eigen proteins. Pathways enriched differentially for both the L858R and Ex19del mutations included carboxylic acid metabolic process, cell cycle, developmental biology, cellular responses to stress, mitotic prophase, cell proliferation, growth, epithelial to mesenchymal transition (EMT), and immune system. The IPA causal network analysis identified the highly activated networks of PARPBP, HOXA1, and APH1 under the L858R mutation, whereas those of ASGR1, APEX1, BUB1, and MAPK10 were highly activated under the Ex19del mutation. Interestingly, the downregulated causal network of osimertinib intervention showed the highest significance in overlap p-value among most causal networks predicted under the L858R mutation. We also identified the causal network of MAPK interacting serine/threonine kinase 1/2 (MNK1/2) highly activated differentially under the L858R mutation. Tumor-suppressor AMOT, a component of the Hippo pathways, was highly inhibited commonly under both L858R and Ex19del mutations. Our results could identify disease-related protein molecular networks from the landscape of single amino acid variants. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Division of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Research Institute of Health and Welfare Sciences, Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
12
|
FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis 2020; 9:13. [PMID: 32029704 PMCID: PMC7005035 DOI: 10.1038/s41389-020-0190-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 02/01/2023] Open
Abstract
Considering the poor prognosis of most advanced cancers, prevention of invasion and metastasis is essential for disease control. Ras homologous (Rho) guanine exchange factors (GEFs) and their signaling cascade could be potential therapeutic targets in advanced cancers. We conducted in silico analyses of The Cancer Genome Atlas expression data to identify candidate Rho-GEF genes showing aberrant expression in advanced gastric cancer and found FERM, Rho/ArhGEF, and pleckstrin domain protein 1 (FARP1) expression is related to poor prognosis. Analyses in 91 clinical advanced gastric cancers of the relationship of prognosis and pathological factors with immunohistochemical expression of FARP1 indicated that high expression of FARP1 is significantly associated with lymphatic invasion, lymph metastasis, and poor prognosis of the patients (P = 0.025). In gastric cancer cells, FARP1 knockdown decreased cell motility, whereas FARP1 overexpression promoted cell motility and filopodium formation via CDC42 activation. FARP1 interacted with integrin β5, and a potent integrin αvβ5 inhibitor (SB273005) prevented cell motility in only high FARP1-expressing gastric cancer cells. These results suggest that the integrin αvβ5-FARP1-CDC42 axis plays a crucial role in gastric cancer cell migration and invasion. Thus, regulatory cascade upstream of Rho can be a specific and promising target of advanced cancer treatment.
Collapse
|
13
|
Gavali S, Cowart J, Chen C, Ross KE, Arighi C, Wu CH. RESTful API for iPTMnet: a resource for protein post-translational modification network discovery. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5829784. [PMID: 32395768 PMCID: PMC7216315 DOI: 10.1093/database/baz157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 11/12/2022]
Abstract
iPTMnet is a bioinformatics resource that integrates protein post-translational modification (PTM) data from text mining and curated databases and ontologies to aid in knowledge discovery and scientific study. The current iPTMnet website can be used for querying and browsing rich PTM information but does not support automated iPTMnet data integration with other tools. Hence, we have developed a RESTful API utilizing the latest developments in cloud technologies to facilitate the integration of iPTMnet into existing tools and pipelines. We have packaged iPTMnet API software in Docker containers and published it on DockerHub for easy redistribution. We have also developed Python and R packages that allow users to integrate iPTMnet for scientific discovery, as demonstrated in a use case that connects PTM sites to kinase signaling pathways.
Collapse
Affiliation(s)
- Sachin Gavali
- Center for Bioinformatics and Computational Biology, 205 Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, 205 Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, 205 Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.,Department of Computer and Information Sciences, 101 Smith Hall, 18 Amstel Ave Newark, DE 19716, USA
| | - Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, 337 Basic Science Building, 3900 Reservoir Road, N.W, Washington D.C. 20057, USA
| | - Cecilia Arighi
- Center for Bioinformatics and Computational Biology, 205 Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.,Department of Computer and Information Sciences, 101 Smith Hall, 18 Amstel Ave Newark, DE 19716, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, 205 Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA.,Department of Biochemistry and Molecular & Cellular Biology, 337 Basic Science Building, 3900 Reservoir Road, N.W, Washington D.C. 20057, USA.,Department of Computer and Information Sciences, 101 Smith Hall, 18 Amstel Ave Newark, DE 19716, USA
| |
Collapse
|
14
|
Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K, Wu CH. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 2019; 46:D542-D550. [PMID: 29145615 PMCID: PMC5753337 DOI: 10.1093/nar/gkx1104] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs) play a pivotal role in numerous biological processes by modulating regulation of protein function. We have developed iPTMnet (http://proteininformationresource.org/iPTMnet) for PTM knowledge discovery, employing an integrative bioinformatics approach—combining text mining, data mining, and ontological representation to capture rich PTM information, including PTM enzyme-substrate-site relationships, PTM-specific protein-protein interactions (PPIs) and PTM conservation across species. iPTMnet encompasses data from (i) our PTM-focused text mining tools, RLIMS-P and eFIP, which extract phosphorylation information from full-scale mining of PubMed abstracts and full-length articles; (ii) a set of curated databases with experimentally observed PTMs; and iii) Protein Ontology that organizes proteins and PTM proteoforms, enabling their representation, annotation and comparison within and across species. Presently covering eight major PTM types (phosphorylation, ubiquitination, acetylation, methylation, glycosylation, S-nitrosylation, sumoylation and myristoylation), iPTMnet knowledgebase contains more than 654 500 unique PTM sites in over 62 100 proteins, along with more than 1200 PTM enzymes and over 24 300 PTM enzyme-substrate-site relations. The website supports online search, browsing, retrieval and visual analysis for scientific queries. Several examples, including functional interpretation of phosphoproteomic data, demonstrate iPTMnet as a gateway for visual exploration and systematic analysis of PTM networks and conservation, thereby enabling PTM discovery and hypothesis generation.
Collapse
Affiliation(s)
- Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Cecilia N Arighi
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Gang Li
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Sheng-Chih Chen
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - K Vijay-Shanker
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
15
|
Chen W, Zhang J, Zhang P, Hu F, Jiang T, Gu J, Chang Q. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy. FASEB J 2019; 33:3451-3464. [PMID: 30475644 DOI: 10.1096/fj.201801086rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinopathy of prematurity is a vision-threatening condition, and therapies based on antagonizing VEGF may elicit serious side effects in premature infants. Mechanisms of retinal angiogenesis, particularly the signaling pathways independent of VEGF, remain elusive. The goals of our study were to explore TLR4-mediated signaling pathways in human retinal microvascular endothelial cells (HRMECs) and to examine the effects of TLR4 antagonists in models of oxygen-induced retinopathy (OIR). Our results show that intravitreal injection of the TLR4 antagonist TAK-242 reduced areas of nonperfusion, inhibited aberrant angiogenesis, and improved vascular density in the retina of OIR mice. The effects were further potentiated by the anti-VEGF antibody ranibizumab. In cultured HRMECs, the TLR4 agonist LPS up-regulated TLR4/MAPKK kinase kinase 4 (MAP4K4) signaling, and promoted cell proliferation and migration, and reduced barrier functions of the cells. Down-regulation of MAP4K4 in HRMECs abolished the proangiogenic effects by LPS. Our data suggest that the TLR4-MAP4K4 pathway can regulate retinal neovascularization via mechanisms independent of VEGF.-Chen, W., Zhang, J., Zhang, P., Hu, F., Jiang, T., Gu, J., Chang, Q. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Juan Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Peijun Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Fangyuan Hu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Tingting Jiang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Junxiang Gu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Qing Chang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
16
|
Sidhanth C, Manasa P, Krishnapriya S, Sneha S, Bindhya S, Nagare R, Garg M, Ganesan T. A systematic understanding of signaling by ErbB2 in cancer using phosphoproteomics. Biochem Cell Biol 2018; 96:295-305. [DOI: 10.1139/bcb-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ErbB2 is an important receptor tyrosine kinase and a member of the ErbB family. Although it does not have a specific ligand, it transmits signals downstream by heterodimerization with other receptors in the family. It plays a major role in a variety of cellular responses like proliferation, differentiation, and adhesion. ErbB2 is amplified at the DNA level in breast cancer (20%–30%) and gastric cancer (10%–20%), and trastuzumab is effective as a therapeutic antibody. This review is a critical analysis of the currently published data on the signaling pathways of ErbB2 and the interacting proteins. It also focuses on the techniques that are currently available to evaluate the entire phosphoproteome following activation of ErbB2. Identification of new and relevant phosphoproteins can not only serve as new therapeutic targets but also as a surrogate marker in patients to assess the activity of compounds that inhibit ErbB2. Overall, such analysis will improve understanding of signaling by ErbB2.
Collapse
Affiliation(s)
- C. Sidhanth
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - P. Manasa
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Krishnapriya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Sneha
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - S. Bindhya
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - R.P. Nagare
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - M. Garg
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| | - T.S. Ganesan
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
- Laboratory for Cancer Biology, Departments of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38 Sardar Patel Road Guindy, Chennai-600036, India
| |
Collapse
|
17
|
Huang LC, Ross KE, Baffi TR, Drabkin H, Kochut KJ, Ruan Z, D'Eustachio P, McSkimming D, Arighi C, Chen C, Natale DA, Smith C, Gaudet P, Newton AC, Wu C, Kannan N. Integrative annotation and knowledge discovery of kinase post-translational modifications and cancer-associated mutations through federated protein ontologies and resources. Sci Rep 2018; 8:6518. [PMID: 29695735 PMCID: PMC5916945 DOI: 10.1038/s41598-018-24457-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Many bioinformatics resources with unique perspectives on the protein landscape are currently available. However, generating new knowledge from these resources requires interoperable workflows that support cross-resource queries. In this study, we employ federated queries linking information from the Protein Kinase Ontology, iPTMnet, Protein Ontology, neXtProt, and the Mouse Genome Informatics to identify key knowledge gaps in the functional coverage of the human kinome and prioritize understudied kinases, cancer variants and post-translational modifications (PTMs) for functional studies. We identify 32 functional domains enriched in cancer variants and PTMs and generate mechanistic hypotheses on overlapping variant and PTM sites by aggregating information at the residue, protein, pathway and species level from these resources. We experimentally test the hypothesis that S768 phosphorylation in the C-helix of EGFR is inhibitory by showing that oncogenic variants altering S768 phosphorylation increase basal EGFR activity. In contrast, oncogenic variants altering conserved phosphorylation sites in the ‘hydrophobic motif’ of PKCβII (S660F and S660C) are loss-of-function in that they reduce kinase activity and enhance membrane translocation. Our studies provide a framework for integrative, consistent, and reproducible annotation of the cancer kinomes.
Collapse
Affiliation(s)
- Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Karen E Ross
- Protein Information Resource (PIR), Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Timothy R Baffi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Krzysztof J Kochut
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Peter D'Eustachio
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY, 10016, USA
| | - Daniel McSkimming
- Genome, Environment, and Microbiome (GEM) Center of Excellence, University at Buffalo, Buffalo, NY, 14203, USA
| | - Cecilia Arighi
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Darren A Natale
- Protein Information Resource (PIR), Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | | | - Pascale Gaudet
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cathy Wu
- Protein Information Resource (PIR), Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
18
|
Awasthi S, Maity T, Oyler BL, Qi Y, Zhang X, Goodlett DR, Guha U. Quantitative targeted proteomic analysis of potential markers of tyrosine kinase inhibitor (TKI) sensitivity in EGFR mutated lung adenocarcinoma. J Proteomics 2018; 189:48-59. [PMID: 29660496 DOI: 10.1016/j.jprot.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 01/03/2023]
Abstract
Lung cancer causes the highest mortality among all cancers. Patients harboring kinase domain mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors (TKIs), however, acquired resistance always develops. Moreover, 30-40% of patients with EGFR mutations exhibit primary resistance. Hence, there is an unmet need for additional biomarkers of TKI sensitivity that complement EGFR mutation testing and predict treatment response. We previously identified phosphopeptides whose phosphorylation is inhibited upon treatment with EGFR TKIs, erlotinib and afatinib in TKI sensitive cells, but not in resistant cells. These phosphosites are potential biomarkers of TKI sensitivity. Here, we sought to develop modified immuno-multiple reaction monitoring (immuno-MRM)-based quantitation assays for select phosphosites including EGFR-pY1197, pY1172, pY998, AHNAK-pY160, pY715, DAPP1-pY139, CAV1-pY14, INPPL1-pY1135, NEDD9-pY164, NF1-pY2579, and STAT5A-pY694. These sites were significantly hypophosphorylated by erlotinib and a 3rd generation EGFR TKI, osimertinib, in TKI-sensitive H3255 cells, which harbor the TKI-sensitizing EGFRL858R mutation. However, in H1975 cells, which harbor the TKI-resistant EGFRL858R/T790M mutant, osimertinib, but not erlotinib, could significantly inhibit phosphorylation of EGFR-pY-1197, STAT5A-pY694 and CAV1-pY14, suggesting these sites also predict response in TKI-resistant cells. We could further validate EGFR-pY-1197 as a biomarker of TKI sensitivity by developing a calibration curve-based modified immuno-MRM assay. SIGNIFICANCE: In this report, we have shown the development and optimization of MRM assays coupled with global phosphotyrosine enrichment (modified immuno-MRM) for a list of 11 phosphotyrosine peptides. Our optimized assays identified the targets reproducibly in biological samples with good selectivity. We also developed and characterized quantitation methods to determine endogenous abundance of these targets and correlated the results of the relative quantification with amounts estimated from the calibration curves. This approach represents a way to validate and verify biomarker candidates discovered from large-scale global phospho-proteomics analysis. The application of these modified immuno-MRM assays in lung adenocarcinoma cells provides proof-of concept for the feasibility of clinical applications. These assays may be used in prospective clinical studies of EGFR TKI treatment of EGFR mutant lung cancer to correlate treatment response and other clinical endpoints.
Collapse
Affiliation(s)
- Shivangi Awasthi
- Thoracic & Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, United States; School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Tapan Maity
- Thoracic & Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, United States
| | - Benjamin L Oyler
- School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yue Qi
- Thoracic & Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, United States
| | - Xu Zhang
- Thoracic & Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, United States
| | - David R Goodlett
- School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Udayan Guha
- Thoracic & Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD, United States.
| |
Collapse
|
19
|
Cudjoe EK, Saleh T, Hawkridge AM, Gewirtz DA. Proteomics Insights into Autophagy. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/25/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Emmanuel K. Cudjoe
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
| | - Tareq Saleh
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
| | - Adam M. Hawkridge
- Department of Pharmacotherapy & Outcomes Science; Virginia Commonwealth University; Richmond VA
- Department of Pharmaceutics; Virginia Commonwealth University; Richmond VA
| | - David A. Gewirtz
- Department of Pharmacology & Toxicology; Virginia Commonwealth University; Richmond VA
- Massey Cancer Center; Virginia Commonwealth University; Richmond VA
| |
Collapse
|
20
|
Conforti F, Zhang X, Rao G, De Pas T, Yonemori Y, Rodriguez JA, McCutcheon JN, Rahhal R, Alberobello AT, Wang Y, Zhang YW, Guha U, Giaccone G. Therapeutic Effects of XPO1 Inhibition in Thymic Epithelial Tumors. Cancer Res 2017; 77:5614-5627. [PMID: 28819023 PMCID: PMC8170838 DOI: 10.1158/0008-5472.can-17-1323] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/29/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022]
Abstract
Exportin 1 (XPO1) mediates nuclear export of many cellular factors known to play critical roles in malignant processes, and selinexor (KPT-330) is the first XPO1-selective inhibitor of nuclear export compound in advanced clinical development phase for cancer treatment. We demonstrated here that inhibition of XPO1 drives nuclear accumulation of important cargo tumor suppressor proteins, including transcription factor FOXO3a and p53 in thymic epithelial tumor (TET) cells, and induces p53-dependent and -independent antitumor activity in vitro Selinexor suppressed the growth of TET xenograft tumors in athymic nude mice via inhibition of cell proliferation and induction of apoptosis. Loss of p53 activity or amplification of XPO1 may contribute to resistance to XPO1 inhibitor in TET. Using mass spectrometry-based proteomics analysis, we identified a number of proteins whose abundances in the nucleus and cytoplasm shifted significantly following selinexor treatment in the TET cells. Furthermore, we found that XPO1 was highly expressed in aggressive histotypes and advanced stages of human TET, and high XPO1 expression was associated with poorer patient survival. These results underscore an important role of XPO1 in the pathogenesis of TET and support clinical development of the XPO1 inhibitor for the treatment of patients with this type of tumors. Cancer Res; 77(20); 5614-27. ©2017 AACR.
Collapse
Affiliation(s)
- Fabio Conforti
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
- Oncology Unit of Thymic Cancer, Rare Tumors and Sarcomas, European Institute of Oncology, Milan, Italy
| | - Xu Zhang
- Thoracic and Gastrointestinal Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Guanhua Rao
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Tommaso De Pas
- Oncology Unit of Thymic Cancer, Rare Tumors and Sarcomas, European Institute of Oncology, Milan, Italy
| | - Yoko Yonemori
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain
| | - Justine N McCutcheon
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Raneen Rahhal
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Anna T Alberobello
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yisong Wang
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yu-Wen Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Giuseppe Giaccone
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
21
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
22
|
Novikova SE, Kurbatov LK, Zavialova MG, Zgoda VG, Archakov AI. [Omics technologies in diagnostics of lung adenocarcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:181-210. [PMID: 28781253 DOI: 10.18097/pbmc20176303181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date lung adenocarcinoma (LAC) is the most common type of lung cancer. Numerous studies on LAC biology resulted in identification of crucial mutations in protooncogenes and activating neoplastic transformation pathways. Therapeutic approaches that significantly increase the survival rate of patients with LAC of different etiology have been developed and introduced into clinical practice. However, the main problem in the treatment of LAC is early diagnosis, taking into account both factors and mechanisms responsible in tumor initiation and progression. Identification of a wide biomarker repertoire with high specificity and reliability of detection appears to be a solution to this problem. In this context, proteins with differential expression in normal and pathological condition, suitable for detection in biological fluids are the most promising biomarkers. In this review we have analyzed literature data on studies aimed at search of LAC biomarkers. The major attention has been paid to protein biomarkers as the most promising and convenient subject of clinical diagnosis. The review also summarizes existing knowledge on posttranslational modifications, splice variants, isoforms, as well as model systems and transcriptome changes in LAC.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
23
|
Labots M, van der Mijn JC, Beekhof R, Piersma SR, de Goeij-de Haas RR, Pham TV, Knol JC, Dekker H, van Grieken NC, Verheul HM, Jiménez CR. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection. J Proteomics 2017; 162:99-107. [DOI: 10.1016/j.jprot.2017.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
|
24
|
Pool M, de Boer HR, Hooge MNLD, van Vugt MA, de Vries EG. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine. Theranostics 2017; 7:2111-2133. [PMID: 28638489 PMCID: PMC5479290 DOI: 10.7150/thno.17934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H. Rudolf de Boer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N. Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel A.T.M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G.E. de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Zhang X, Maity T, Kashyap MK, Bansal M, Venugopalan A, Singh S, Awasthi S, Marimuthu A, Charles Jacob HK, Belkina N, Pitts S, Cultraro CM, Gao S, Kirkali G, Biswas R, Chaerkady R, Califano A, Pandey A, Guha U. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response. Mol Cell Proteomics 2017; 16:891-910. [PMID: 28331001 PMCID: PMC5417828 DOI: 10.1074/mcp.m117.067439] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Indexed: 02/05/2023] Open
Abstract
Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747LREA750, are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238/Y1239 and MET-Y1252/1253. This study provides unique insight into the TKI-mediated modulation of mutant EGFR signaling, which can be applied to the development of biomarkers of EGFR TKI response.
Collapse
Affiliation(s)
- Xu Zhang
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Tapan Maity
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Manoj K Kashyap
- §Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Mukesh Bansal
- ¶Department of System Biology, Columbia University, New York, New York, 10032
- ‖PsychoGenics Inc., Tarrytown, New York, 10591
| | - Abhilash Venugopalan
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Sahib Singh
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Shivangi Awasthi
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | | | | | - Natalya Belkina
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Stephanie Pitts
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Constance M Cultraro
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Shaojian Gao
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Guldal Kirkali
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Romi Biswas
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892
| | - Raghothama Chaerkady
- §Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
- **Medimmune LLC, Gaithersburg, Maryland, 20878
| | - Andrea Califano
- ¶Department of System Biology, Columbia University, New York, New York, 10032
| | - Akhilesh Pandey
- §Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| | - Udayan Guha
- From the ‡Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, 20892;
| |
Collapse
|
26
|
Gruber W, Scheidt T, Aberger F, Huber CG. Understanding cell signaling in cancer stem cells for targeted therapy - can phosphoproteomics help to reveal the secrets? Cell Commun Signal 2017; 15:12. [PMID: 28356110 PMCID: PMC5372284 DOI: 10.1186/s12964-017-0166-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cancer represents heterogeneous and aberrantly proliferative manifestations composed of (epi)genetically and phenotypically distinct cells with a common clonal origin. Cancer stem cells (CSC) make up a rare subpopulation with the remarkable capacity to initiate, propagate and spread a malignant disease. Furthermore, CSC show increased therapy resistance, thereby contributing to disease relapse. Elimination of CSC, therefore, is a crucial aim to design efficacious treatments for long-term survival of cancer patients. In this article, we highlight the nature of CSC and propose that phosphoproteomics based on unbiased high-performance liquid chromatography-mass spectrometry provides a powerful tool to decipher the molecular CSC programs. Detailed knowledge about the regulation of signaling processes in CSC is a prerequisite for the development of patient-tailored multi-modal treatments including the elimination of rare CSC. Main body Phosphorylation is a crucial post-translational modification regulating a plethora of both intra- and intercellular communication processes in normal and malignant cells. Small-molecule targeting of kinases has proven successful in the therapy, but the high rates of relapse and failure to stem malignant spread suggest that these kinase inhibitors largely spare CSC. Studying the kinetics of global phosphorylation patterns in an unbiased manner is, therefore, required to improve strategies and successful treatments within multi-modal therapeutic regimens by targeting the malignant behavior of CSC. The phosphoproteome comprises all phosphoproteins within a cell population that can be analyzed by phosphoproteomics, allowing the investigation of thousands of phosphorylation events. One major aspect is the perception of events underlying the activation and deactivation of kinases and phosphatases in oncogenic signaling pathways. Thus, not only can this tool be harnessed to better understand cellular processes such as those controlling CSC, but also applied to identify novel drug targets for targeted anti-CSC therapy. Conclusion State-of-the-art phosphoproteomics approaches focusing on single cell analysis have the potential to better understand oncogenic signaling in heterogeneous cell populations including rare, yet highly malignant CSC. By eliminating the influence of heterogeneity of populations, single-cell studies will reveal novel insights also into the inter- and intratumoral communication processes controlling malignant CSC and disease progression, laying the basis for improved rational combination treatments.
Collapse
Affiliation(s)
- Wolfgang Gruber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Tamara Scheidt
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria
| | - Fritz Aberger
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| | - Christian G Huber
- Department of Molecular Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
27
|
Chan CYX, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics 2016; 13:421-33. [PMID: 26960075 DOI: 10.1586/14789450.2016.1164604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.
Collapse
Affiliation(s)
- Chi Yuet X'avia Chan
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Marina A Gritsenko
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Richard D Smith
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
28
|
Gao X, Gao C, Liu G, Hu J. MAP4K4: an emerging therapeutic target in cancer. Cell Biosci 2016; 6:56. [PMID: 27800153 PMCID: PMC5084373 DOI: 10.1186/s13578-016-0121-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine kinase MAP4K4 is a member of the Ste20p (sterile 20 protein) family. MAP4K4 was initially discovered in 1995 as a key kinase in the mating pathway in Saccharomyces cerevisiae and was later found to be involved in many aspects of cell functions and many biological and pathological processes. The role of MAP4K4 in immunity, inflammation, metabolic and cardiovascular disease has been recognized. Information regarding MAP4K4 in cancers is extremely limited, but increasing evidence suggests that MAP4K4 also plays an important role in cancer and MAP4K4 may represent a novel actionable cancer therapeutic target. This review summarizes our current understanding of MAP4K4 regulation and MAP4K4 in cancer. MAP4K4-specific inhibitors have been recently developed. We hope that this review article would advocate more basic and preclinical research on MAP4K4 in cancer, which could ultimately provide biological and mechanistic justifications for preclinical and clinical test of MAP4K4 inhibitor in cancer patients.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China ; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Guoxiang Liu
- Department of Respiratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Hillman Cancer Center Research Pavilion, 2.42D, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
29
|
Jia X, Qian R, Zhang B, Zhao S. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer. J Thorac Dis 2016; 8:2682-2688. [PMID: 27867542 DOI: 10.21037/jtd.2016.09.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 (SALL4) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. METHODS In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS), and a fusion gene of the echinoderm microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK). RESULTS The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS. In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. CONCLUSIONS SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR, which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis.
Collapse
Affiliation(s)
- Xiangbo Jia
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou 450003, China
| | - Binbin Zhang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou 450003, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
30
|
Liu ZY, Wu T, Li Q, Wang MC, Jing L, Ruan ZP, Yao Y, Nan KJ, Guo H. Notch Signaling Components: Diverging Prognostic Indicators in Lung Adenocarcinoma. Medicine (Baltimore) 2016; 95:e3715. [PMID: 27196489 PMCID: PMC4902431 DOI: 10.1097/md.0000000000003715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a lethal and aggressive malignancy. Currently, the identities of prognostic and predictive makers of NSCLC have not been fully established. Dysregulated Notch signaling has been implicated in many human malignancies, including NSCLC. However, the prognostic value of measuring Notch signaling and the utility of developing Notch-targeted therapies in NSCLC remain inconclusive. The present study investigated the association of individual Notch receptor and ligand levels with lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) prognosis using the Kaplan-Meier plotte database. This online database encompasses 2437 lung cancer samples. Hazard ratios with 95% confidence intervals were calculated. The results showed that higher Notch1, Notch2, JAG1, and DLL1 mRNA expression predicted better overall survival (OS) in lung ADC, but showed no significance in SCC patients. Elevated Notch3, JAG2, and DLL3 mRNA expression was associated with poor OS of ADC patients, but not in SCC patients. There was no association between Notch4 and OS in either lung ADC or SCC patients. In conclusion, the set of Notch1, Notch2, JAG1, DLL1 and that of Notch3, JAG2, DLL3 played opposing prognostic roles in lung ADC patients. Neither set of Notch receptors and ligands was indicative of lung SCC prognosis. Notch signaling could serve as promising marker to predict outcomes in lung ADC patients. The distinct features of lung cancer subtypes and Notch components should be considered when developing future Notch-targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yan Liu
- From the Department of Medical Oncology, the First Affiliated Hospital of Xi'an JiaoTong University (Z-YL, TW, QL, M-CW, LJ, Z-PR, YY, K-JN, HG); and Department of Respiratory Medicine, Xi'an central Hospital (Z-YL), Xi'an, Shaanxi, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Radhakrishnan A, Nanjappa V, Raja R, Sathe G, Chavan S, Nirujogi RS, Patil AH, Solanki H, Renuse S, Sahasrabuddhe NA, Mathur PP, Prasad TSK, Kumar P, Califano JA, Sidransky D, Pandey A, Gowda H, Chatterjee A. Dysregulation of splicing proteins in head and neck squamous cell carcinoma. Cancer Biol Ther 2016; 17:219-29. [PMID: 26853621 DOI: 10.1080/15384047.2016.1139234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Signaling plays an important role in regulating all cellular pathways. Altered signaling is one of the hallmarks of cancers. Phosphoproteomics enables interrogation of kinase mediated signaling pathways in biological systems. In cancers, this approach can be utilized to identify aberrantly activated pathways that potentially drive proliferation and tumorigenesis. To identify signaling alterations in head and neck squamous cell carcinoma (HNSCC), we carried out proteomic and phosphoproteomic analysis of HNSCC cell lines using a combination of tandem mass tag (TMT) labeling approach and titanium dioxide-based enrichment. We identified 4,920 phosphosites corresponding to 2,212 proteins in six HNSCC cell lines compared to a normal oral cell line. Our data indicated significant enrichment of proteins associated with splicing. We observed hyperphosphorylation of SRSF protein kinase 2 (SRPK2) and its downstream substrates in HNSCC cell lines. SRPK2 is a splicing kinase, known to phosphorylate serine/arginine (SR) rich domain proteins and regulate splicing process in eukaryotes. Although genome-wide studies have reported the contribution of alternative splicing events of several genes in the progression of cancer, the involvement of splicing kinases in HNSCC is not known. In this study, we studied the role of SRPK2 in HNSCC. Inhibition of SRPK2 resulted in significant decrease in colony forming and invasive ability in a panel of HNSCC cell lines. Our results indicate that phosphorylation of SRPK2 plays a crucial role in the regulation of splicing process in HNSCC and that splicing kinases can be developed as a new class of therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Aneesha Radhakrishnan
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,b Department of Biochemistry and Molecular Biology , Pondicherry University , Puducherry , India
| | - Vishalakshi Nanjappa
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,c Amrita School of Biotechnology, Amrita University , Kollam , India
| | - Remya Raja
- a Institute of Bioinformatics, International Technology Park , Bangalore , India
| | - Gajanan Sathe
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,d Manipal University , Madhav Nagar, Manipal , India
| | - Sandip Chavan
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,d Manipal University , Madhav Nagar, Manipal , India
| | - Raja Sekhar Nirujogi
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,e Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry , India
| | - Arun H Patil
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,f School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Hitendra Solanki
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,f School of Biotechnology, KIIT University , Bhubaneswar , India
| | - Santosh Renuse
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,c Amrita School of Biotechnology, Amrita University , Kollam , India
| | | | - Premendu P Mathur
- b Department of Biochemistry and Molecular Biology , Pondicherry University , Puducherry , India.,f School of Biotechnology, KIIT University , Bhubaneswar , India
| | - T S Keshava Prasad
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,c Amrita School of Biotechnology, Amrita University , Kollam , India.,e Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry , India.,g YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore , India
| | - Prashant Kumar
- a Institute of Bioinformatics, International Technology Park , Bangalore , India
| | - Joseph A Califano
- h Milton J Dance Head and Neck Center, Greater Baltimore Medical Center , Baltimore , MD , USA.,i Department of Otolaryngology-Head and Neck Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - David Sidransky
- i Department of Otolaryngology-Head and Neck Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Akhilesh Pandey
- j McKusick-Nathans Institute of Genetic Medicine , Baltimore , MD , USA.,k Departments of Biological Chemistry , Baltimore , MD , USA.,l Oncology and Pathology, Johns Hopkins University School of Medicine , Baltimore , MD , USA.,m Pathology, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Harsha Gowda
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,g YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore , India
| | - Aditi Chatterjee
- a Institute of Bioinformatics, International Technology Park , Bangalore , India.,g YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore , India
| |
Collapse
|
32
|
Abstract
In this issue of Structure, Chen et al. present structures of the FERM-containing protein tyrosine phosphatase PTPN3 in complex with a phosphopeptide fragment of substrate epidermal growth factor receptor pathway substrate, providing detailed information on substrate specificity.
Collapse
Affiliation(s)
- Emily J Parker
- Maurice Wilkins Centre, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
33
|
Clark DJ, Mei Y, Sun S, Zhang H, Yang AJ, Mao L. Glycoproteomic Approach Identifies KRAS as a Positive Regulator of CREG1 in Non-small Cell Lung Cancer Cells. Am J Cancer Res 2016; 6:65-77. [PMID: 26722374 PMCID: PMC4679355 DOI: 10.7150/thno.12350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
Protein glycosylation plays a fundamental role in a multitude of biological processes, and the associated aberrant expression of glycoproteins in cancer has made them attractive biomarkers and therapeutic targets. In this study, we examined differentially expressed glycoproteins in cell lines derived from three different states of lung tumorigenesis: an immortalized bronchial epithelial cell (HBE) line, a non-small cell lung cancer (NSCLC) cell line harboring a Kirsten rat sarcoma viral oncogene homolog (KRAS) activation mutation and a NSCLC cell line harboring an epidermal growth factor receptor (EGFR) activation deletion. Using a Triple SILAC proteomic quantification strategy paired with hydrazide chemistry N-linked glycopeptide enrichment, we quantified 118 glycopeptides in the three cell lines derived from 82 glycoproteins. Proteomic profiling revealed 27 glycopeptides overexpressed in both NSCLC cell lines, 6 glycopeptides overexpressed only in the EGFR mutant cells and 19 glycopeptides overexpressed only in the KRAS mutant cells. Further investigation of a panel of NSCLC cell lines found that Cellular repressor of E1A-stimulated genes (CREG1) overexpression was closely correlated with KRAS mutation status in NSCLC cells and could be down-regulated by inhibition of KRAS expression. Our results indicate that CREG1 is a down-stream effector of KRAS in a sub-type of NSCLC cells and a novel candidate biomarker or therapeutic target for KRAS mutant NSCLC.
Collapse
|
34
|
Amadoz A, Sebastian-Leon P, Vidal E, Salavert F, Dopazo J. Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci Rep 2015; 5:18494. [PMID: 26678097 PMCID: PMC4683444 DOI: 10.1038/srep18494] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Many complex traits, as drug response, are associated with changes in biological pathways rather than being caused by single gene alterations. Here, a predictive framework is presented in which gene expression data are recoded into activity statuses of signal transduction circuits (sub-pathways within signaling pathways that connect receptor proteins to final effector proteins that trigger cell actions). Such activity values are used as features by a prediction algorithm which can efficiently predict a continuous variable such as the IC50 value. The main advantage of this prediction method is that the features selected by the predictor, the signaling circuits, are themselves rich-informative, mechanism-based biomarkers which provide insight into or drug molecular mechanisms of action (MoA).
Collapse
Affiliation(s)
- Alicia Amadoz
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Patricia Sebastian-Leon
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Enrique Vidal
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Francisco Salavert
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Joaquin Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Functional Genomics Node, (INB) at CIPF, Valencia, Spain
| |
Collapse
|
35
|
Zen Y, Britton D, Mitra V, Pike I, Heaton N, Quaglia A. A global proteomic study identifies distinct pathological features of IgG4-related and primary sclerosing cholangitis. Histopathology 2015; 68:796-809. [PMID: 26308372 DOI: 10.1111/his.12813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/15/2015] [Indexed: 02/06/2023]
Abstract
AIMS This combined proteomic and histopathological study was aimed to compare tissue characteristics of immunoglobulin (Ig)G4-related sclerosing cholangitis (ISC) and primary sclerosing cholangitis (PSC) in a global, non-biased manner. METHODS AND RESULTS Tissue proteomes and phosphorylomes of frozen large bile duct samples were analysed by a conventional liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol and additional phosphopeptide enrichment methods. The proteomic examination identified 23 373 peptides and 4870 proteins, including 4801 phosphopeptides and 1121 phosphoproteins. The expression profiles of phosphopeptides discriminated ISC from PSC more clearly than those of non-phosphopeptides. In the pathway analysis, ISC was found to have 11 more activated signal cascades, including three immunological pathways, all B cell- or immunoglobulin-related. On immunostaining, two immunological markers (FYN-binding protein and allograft inflammatory factor-1) up-regulated in ISC were expressed mainly in M2 macrophages, consistent with increased phagocytotic activity induced by the immunoglobulin (Ig)G-Fcγ receptor interaction. In contrast, PSC had two more activated signal pathways related to extracellular matrix (ECM) remodelling. Filamin-A involved in ECM remodelling was expressed aberrantly in injured bile ducts and associated cholangiocarcinomas in PSC, suggesting its possible roles in periductal fibrosis and carcinogenesis in PSC. CONCLUSIONS This study suggested crucial roles of B cells and macrophages in ISC, and more dynamic ECM remodelling in PSC.
Collapse
Affiliation(s)
- Yoh Zen
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan.,Institute of Liver Studies, King's College Hospital, London, UK
| | | | | | - Ian Pike
- Proteome Sciences plc, Cobham, UK
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
36
|
Petsalaki E, Helbig AO, Gopal A, Pasculescu A, Roth FP, Pawson T. SELPHI: correlation-based identification of kinase-associated networks from global phospho-proteomics data sets. Nucleic Acids Res 2015; 43:W276-82. [PMID: 25948583 PMCID: PMC4489257 DOI: 10.1093/nar/gkv459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
While phospho-proteomics studies have shed light on the dynamics of cellular signaling, they mainly describe global effects and rarely explore mechanistic details, such as kinase/substrate relationships. Tools and databases, such as NetworKIN and PhosphoSitePlus, provide valuable regulatory details on signaling networks but rely on prior knowledge. They therefore provide limited information on less studied kinases and fewer unexpected relationships given that better studied signaling events can mask condition- or cell-specific ‘network wiring’. SELPHI is a web-based tool providing in-depth analysis of phospho-proteomics data that is intuitive and accessible to non-bioinformatics experts. It uses correlation analysis of phospho-sites to extract kinase/phosphatase and phospho-peptide associations, and highlights the potential flow of signaling in the system under study. We illustrate SELPHI via analysis of phospho-proteomics data acquired in the presence of erlotinib—a tyrosine kinase inhibitor (TKI)—in cancer cells expressing TKI-resistant and -sensitive variants of the Epidermal Growth Factor Receptor. In this data set, SELPHI revealed information overlooked by the reporting study, including the known role of MET and EPHA2 kinases in conferring resistance to erlotinib in TKI sensitive strains. SELPHI can significantly enhance the analysis of phospho-proteomics data contributing to improved understanding of sample-specific signaling networks. SELPHI is freely available via http://llama.mshri.on.ca/SELPHI.
Collapse
Affiliation(s)
- Evangelia Petsalaki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada
| | - Andreas O Helbig
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, M5G 1X5, Canada
| | - Anjali Gopal
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada
| | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, M5G 1X8, Canada Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02215, USA Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X8, Canada
| |
Collapse
|