1
|
Tang S, Zhang Y, Botchway BOA, Wang X, Huang M, Liu X. Epigallocatechin-3-Gallate Inhibits Oxidative Stress Through the Keap1/Nrf2 Signaling Pathway to Improve Alzheimer Disease. Mol Neurobiol 2024:10.1007/s12035-024-04498-6. [PMID: 39299981 DOI: 10.1007/s12035-024-04498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Alzheimer disease (AD) is a common neurodegenerative disease with an intricate pathophysiological mechanism. Oxidative stress has been shown in several investigations as a significant factor in AD progression. For instance, studies have confirmed that oxidative stress inhibition may considerably improve AD symptoms, with potent antioxidants being touted as a possible interventional strategy in the search for AD treatment. Epigallocatechin-3-gallate (EGCG) acts as a natural catechin that has antioxidant effect. It activates the kelch-like epichlorohydrin-associated proteins (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to inhibit oxidative stress. The Keap1/Nrf2 signal pathway is not only an upstream signaling target for a variety of antioxidant enzymes, but also minimizes high levels of reactive oxygen species. This report analyzes the antioxidant effect of EGCG in AD, elaborates its specific mechanism of action, and provides a theoretical basis for its clinical application in AD.
Collapse
Affiliation(s)
- Shi Tang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Benson O A Botchway
- Bupa Cromwell Hospital, Kensington, London, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, China.
| |
Collapse
|
2
|
Padalko V, Posnik F, Adamczyk M. Mitochondrial Aconitase and Its Contribution to the Pathogenesis of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9950. [PMID: 39337438 PMCID: PMC11431987 DOI: 10.3390/ijms25189950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This survey reviews modern ideas on the structure and functions of mitochondrial and cytosolic aconitase isoenzymes in eukaryotes. Cumulative experimental evidence about mitochondrial aconitases (Aco2) as one of the main targets of reactive oxygen and nitrogen species is generalized. The important role of Aco2 in maintenance of homeostasis of the intracellular iron pool and maintenance of the mitochondrial DNA is discussed. The role of Aco2 in the pathogenesis of some neurodegenerative diseases is highlighted. Inactivation or dysfunction of Aco2 as well as mutations found in the ACO2 gene appear to be significant factors in the development and promotion of various types of neurodegenerative diseases. A restoration of efficient mitochondrial functioning as a source of energy for the cell by targeting Aco2 seems to be one of the promising therapeutic directions to minimize progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Volodymyr Padalko
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- School of Medicine, V. N. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
| | - Filip Posnik
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Adamczyk
- Laboratory of Systems and Synthetic Biology, Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Di Domenico F, Lanzillotta C, Perluigi M. Redox imbalance and metabolic defects in the context of Alzheimer disease. FEBS Lett 2024; 598:2047-2066. [PMID: 38472147 DOI: 10.1002/1873-3468.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Redox reactions play a critical role for intracellular processes, including pathways involved in metabolism and signaling. Reactive oxygen species (ROS) act either as second messengers or generators of protein modifications, fundamental mechanisms for signal transduction. Disturbance of redox homeostasis is associated with many disorders. Among these, Alzheimer's disease is a neurodegenerative pathology that presents hallmarks of oxidative damage such as increased ROS production, decreased activity of antioxidant enzymes, oxidative modifications of macromolecules, and changes in mitochondrial homeostasis. Interestingly, alteration of redox homeostasis is closely associated with defects of energy metabolism, involving both carbohydrates and lipids, the major energy fuels for the cell. As the brain relies exclusively on glucose metabolism, defects of glucose utilization represent a harmful event for the brain. During aging, a progressive perturbation of energy metabolism occurs resulting in brain hypometabolism. This condition contributes to increase neuronal cell vulnerability ultimately resulting in cognitive impairment. The current review discusses the crosstalk between alteration of redox homeostasis and brain energy defects that seems to act in concert in promoting Alzheimer's neurodegeneration.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
4
|
Abstract
Cellular quality control systems sense and mediate homeostatic responses to prevent the buildup of aberrant macromolecules, which arise from errors during biosynthesis, damage by environmental insults, or imbalances in enzymatic and metabolic activity. Lipids are structurally diverse macromolecules that have many important cellular functions, ranging from structural roles in membranes to functions as signaling and energy-storage molecules. As with other macromolecules, lipids can be damaged (e.g., oxidized), and cells require quality control systems to ensure that nonfunctional and potentially toxic lipids do not accumulate. Ferroptosis is a form of cell death that results from the failure of lipid quality control and the consequent accumulation of oxidatively damaged phospholipids. In this review, we describe a framework for lipid quality control, using ferroptosis as an illustrative example to highlight concepts related to lipid damage, membrane remodeling, and suppression or detoxification of lipid damage via preemptive and damage-repair lipid quality control pathways.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA;
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, California, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Lin D, Gold A, Kaye S, Atkinson JR, Tol M, Sas A, Segal B, Tontonoz P, Zhu J, Gao J. Arachidonic Acid Mobilization and Peroxidation Promote Microglial Dysfunction in Aβ Pathology. J Neurosci 2024; 44:e0202242024. [PMID: 38866484 PMCID: PMC11293449 DOI: 10.1523/jneurosci.0202-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aberrant increase of arachidonic acid (ARA) has long been implicated in the pathology of Alzheimer's disease (AD), while the underlying causal mechanism remains unclear. In this study, we revealed a link between ARA mobilization and microglial dysfunction in Aβ pathology. Lipidomic analysis of primary microglia from AppNL-GF mice showed a marked increase in free ARA and lysophospholipids (LPLs) along with a decrease in ARA-containing phospholipids, suggesting increased ARA release from phospholipids (PLs). To manipulate ARA-containing PLs in microglia, we genetically deleted lysophosphatidylcholine acyltransferase 3 (Lpcat3), the main enzyme catalyzing the incorporation of ARA into PLs. Loss of microglial Lpcat3 reduced the levels of ARA-containing PLs, free ARA and LPLs, leading to a compensatory increase in monounsaturated fatty acid (MUFA)-containing PLs in both male and female App NL-GF mice. Notably, the reduction of ARA in microglia significantly ameliorated oxidative stress and inflammatory responses while enhancing the phagocytosis of Aβ plaques and promoting the compaction of Aβ deposits. Mechanistically, scRNA seq suggested that LPCAT3 deficiency facilitates phagocytosis by facilitating de novo lipid synthesis while protecting microglia from oxidative damage. Collectively, our study reveals a novel mechanistic link between ARA mobilization and microglial dysfunction in AD. Lowering brain ARA levels through pharmacological or dietary interventions may be a potential therapeutic strategy to slow down AD progression.
Collapse
Affiliation(s)
- Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jeffrey R Atkinson
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Marcus Tol
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Andrew Sas
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Benjamin Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
6
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
7
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Xiang C, Lu Y, Hao R, Wei Y, Hu Y, Yu G. Catalpol alleviates amyloid- generation and neuronal oxidative stress injury via activating the Keap1-Nrf2/ARE signaling pathway in the immortalized lymphocytes from patients with late-onset Alzheimer's disease and SKNMC cells co-culture model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1547-1557. [PMID: 39539442 PMCID: PMC11556766 DOI: 10.22038/ijbms.2024.78543.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 11/16/2024]
Abstract
Objectives To assess the effect of catalpol, the major bioactive constituents of Rehmannia glutinosa, on our Alzheimer's disease (AD) in vitro model. Materials and Methods We employed the immortalized lymphocytes (lymphoblastoid cell line, LCL) from late-onset AD patients and co-cultured "them" to mimic the pathological process of late-onset AD and investigated the effect of catalpol on our AD in vitro model. Results In the co-culture model, AD-derived LCL triggered excessive Aβ1-42 in SKNMC cells due to its high levels of oxidative stress and resulted in neuronal oxidative stress injury through inhibiting Keap1-Nrf2/ARE signaling pathway. Treatment with catalpol and N-acetylcysteine (NAC), an antioxidant, prevented the AD LCL-induced Aβ1-42 overproduction and reduced the level of β-site amyloid precursor protein cleaving enzyme-1 (BACE1) and amyloid precursor protein (APP)-C99. Catalpol and NAC also enhanced the antioxidant capacity and reduced apoptosis in SKNMC cells co-cultured with AD LCL. The anti-oxidative effect of catalpol was antagonized by ML385, the Nrf2 inhibitor. Therefore, we speculate that the antioxidant and anti-apoptotic effects of catalpol are mediated by activating the Keap1-Nrf2/ARE signaling pathway. Conclusion Catalpol affects the anti-Aβ generation and the antioxidative and antiapoptotic properties in the AD co-cultured model. So, it might be a novel natural drug and offer a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Caixia Xiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Cent Hosp Enshi Tujia & Miao Autonomous Prefectur, 158 Wuyang Ave, Enshi 445000, Hubei, Peoples R China
- These authors contributed equally to this work
| | - Yunwei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Department of Neurology, Shenzhen Traditional Chinese Medicine Hospital, China
- These authors contributed equally to this work
| | - Renjuan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuyan Wei
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yingchao Hu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Guran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
9
|
Perluigi M, Di Domenico F, Butterfield DA. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol Rev 2024; 104:103-197. [PMID: 37843394 PMCID: PMC11281823 DOI: 10.1152/physrev.00030.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 10/17/2023] Open
Abstract
Alzheimer disease (AD) is associated with multiple etiologies and pathological mechanisms, among which oxidative stress (OS) appears as a major determinant. Intriguingly, OS arises in various pathways regulating brain functions, and it seems to link different hypotheses and mechanisms of AD neuropathology with high fidelity. The brain is particularly vulnerable to oxidative damage, mainly because of its unique lipid composition, resulting in an amplified cascade of redox reactions that target several cellular components/functions ultimately leading to neurodegeneration. The present review highlights the "OS hypothesis of AD," including amyloid beta-peptide-associated mechanisms, the role of lipid and protein oxidation unraveled by redox proteomics, and the antioxidant strategies that have been investigated to modulate the progression of AD. Collected studies from our groups and others have contributed to unraveling the close relationships between perturbation of redox homeostasis in the brain and AD neuropathology by elucidating redox-regulated events potentially involved in both the pathogenesis and progression of AD. However, the complexity of AD pathological mechanisms requires an in-depth understanding of several major intracellular pathways affecting redox homeostasis and relevant for brain functions. This understanding is crucial to developing pharmacological strategies targeting OS-mediated toxicity that may potentially contribute to slow AD progression as well as improve the quality of life of persons with this severe dementing disorder.
Collapse
Affiliation(s)
- Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli," Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
10
|
Zhu J, Xu F, Lai H, Yuan H, Li XY, Hu J, Li W, Liu L, Wang C. ACO2 deficiency increases vulnerability to Parkinson's disease via dysregulating mitochondrial function and histone acetylation-mediated transcription of autophagy genes. Commun Biol 2023; 6:1201. [PMID: 38007539 PMCID: PMC10676364 DOI: 10.1038/s42003-023-05570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023] Open
Abstract
Parkinson's disease (PD) is characterized by α-synuclein aggregation in dopaminergic (DA) neurons, which are sensitive to oxidative stress. Mitochondria aconitase 2 (ACO2) is an essential enzyme in the tricarboxylic acid cycle that orchestrates mitochondrial and autophagic functions to energy metabolism. Though widely linked to diseases, its relation to PD has not been fully clarified. Here we revealed that the peripheral ACO2 activity was significantly decreased in PD patients and associated with their onset age and disease durations. The knock-in mouse and Drosophila models with the A252T variant displayed aggravated motor deficits and DA neuron degeneration after 6-OHDA and rotenone-induction, and the ACO2 knockdown or blockade cells showed features of mitochondrial and autophagic dysfunction. Moreover, the transcription of autophagy-related genes LC3 and Atg5 was significantly downregulated via inhibited histone acetylation at the H3K9 and H4K5 sites. These data provided multi-dimensional evidences supporting the essential roles of ACO2, and as a potential early biomarker to be used in clinical trials for assessing the effects of antioxidants in PD. Moreover, ameliorating energy metabolism by targeting ACO2 could be considered as a potential therapeutic strategy for PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Junge Zhu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Fanxi Xu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hong Lai
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Huiyao Yuan
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Junya Hu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Wei Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, Capital Medical University; School of Basic Medicine, Beijing, 100069, China.
| | - Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
11
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
12
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
13
|
Singh A, Kukal S, Kanojia N, Singh M, Saso L, Kukreti S, Kukreti R. Lipid Mediated Brain Disorders: A Perspective. Prostaglandins Other Lipid Mediat 2023; 167:106737. [PMID: 37086954 DOI: 10.1016/j.prostaglandins.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
The brain, one of the most resilient organs of the body is highly enriched in lipid content, suggesting the essential role of lipids in brain physiological activities. Lipids constitute an important structural part of the brain and act as a rich source of metabolic energy. Besides, lipids in their bioactive form (known as bioactive lipids) play an essential signaling and regulatory role, facilitating neurogenesis, synaptogenesis, and cell-cell communication. Brain lipid metabolism is thus a tightly regulated process. Any alteration/dysregulation of lipid metabolism greatly impact brain health and activity. Moreover, since central nervous system (CNS) is the most metabolically active system and lacks an efficient antioxidative defence system, it acts as a hub for the production of reactive oxygen species (ROS) and subsequent lipid peroxidation. These peroxidation events are reported during pathological changes such as neuronal tissue injury and inflammation. Present review is a modest attempt to gain insights into the role of dysregulated bioactive lipid levels and lipid oxidation status in the pathogenesis and progression of neurodegenerative disorders. This may open up new avenues exploiting lipids as the therapeutic targets for improving brain health, and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India; Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Mahak Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
| |
Collapse
|
14
|
van Zalm PW, Ahmed S, Fatou B, Schreiber R, Barnaby O, Boxer A, Zetterberg H, Steen JA, Steen H. Meta-analysis of published cerebrospinal fluid proteomics data identifies and validates metabolic enzyme panel as Alzheimer's disease biomarkers. Cell Rep Med 2023; 4:101005. [PMID: 37075703 PMCID: PMC10140596 DOI: 10.1016/j.xcrm.2023.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
To develop therapies for Alzheimer's disease, we need accurate in vivo diagnostics. Multiple proteomic studies mapping biomarker candidates in cerebrospinal fluid (CSF) resulted in little overlap. To overcome this shortcoming, we apply the rarely used concept of proteomics meta-analysis to identify an effective biomarker panel. We combine ten independent datasets for biomarker identification: seven datasets from 150 patients/controls for discovery, one dataset with 20 patients/controls for down-selection, and two datasets with 494 patients/controls for validation. The discovery results in 21 biomarker candidates and down-selection in three, to be validated in the two additional large-scale proteomics datasets with 228 diseased and 266 control samples. This resulting 3-protein biomarker panel differentiates Alzheimer's disease (AD) from controls in the two validation cohorts with areas under the receiver operating characteristic curve (AUROCs) of 0.83 and 0.87, respectively. This study highlights the value of systematically re-analyzing previously published proteomics data and the need for more stringent data deposition.
Collapse
Affiliation(s)
- Patrick W van Zalm
- Department of Pathology, Boston Children's Hospital, and Department of Pathology, Harvard Medical School, Boston, MA, USA; Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Saima Ahmed
- Department of Pathology, Boston Children's Hospital, and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital, and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Rudy Schreiber
- Department of Neuropsychology and Psychopharmacology, EURON, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Omar Barnaby
- Department of Pathology, Boston Children's Hospital, and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Adam Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Judith A Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA, USA; Neuroiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, and Department of Pathology, Harvard Medical School, Boston, MA, USA; Neuroiology Program, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Ji Y, Zhang X, Chen J, Song S, Fang S, Wang Z, Xu S, Xu Y, Liu J, Jiang C, Pan K, Zhang J, Wang L, Yin Z. Asiatic acid attenuates tubular injury in diabetic kidney disease by regulating mitochondrial dynamics via the Nrf-2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154552. [PMID: 36610157 DOI: 10.1016/j.phymed.2022.154552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mitochondrial dynamics plays a crucial role in tubular injury in diabetic kidney disease (DKD). Asiatic acid (AA) has demonstrated renal protective effects in DKD; however, its therapeutic effect on tubular injury in DKD remains unclear. PURPOSE This study aimed to verify the effects of AA on tubular injury in DKD and underlying mechanisms. STUDY DESIGN In the present study, the effects of AA on tubular injury were assessed in rats with streptozotocin-induced diabetes and advanced glycation end products (AGEs)-stimulated HK-2 cells models. METHODS After oral administration with or without AA for ten weeks, body weight and levels of fast blood glucose, serum creatinine (sCr), blood urea nitrogen (BUN), urinary albumin, and kidney injury molecule-1 (KIM-1) were detected. Histological analysis was performed to evaluate the renal function of rats. Moreover, the expression of proteins associated with the Nrf-2 pathway and mitochondrial dynamics was analyzed. AGEs-stimulated HK-2 cells were examined to evaluate the tubular protection and the mechanism of AA in vitro. RESULTS AA remarkably decreased albumin levels, KIM-1 levels in urine, and serum Cr, and BUN levels. In addition, AA prevented tubular injury and mitochondrial injury by regulating the Nrf-2 pathway and mitochondrial dynamics. Furthermore, the effects of AA on mitochondrial dynamics and tubular protection were eliminated after treatment with ML385 (Nrf2 inhibitor). CONCLUSION These findings suggested that AA might be developed as a potential candidate for the treatment of tubular injury in DKD, and its effects are potentially mediated via the regulation of the Nrf-2 pathway and mitochondrial dynamics.
Collapse
Affiliation(s)
- Yali Ji
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
| | - Xuanxuan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jicong Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sijia Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Siyang Fang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zihan Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Xu
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
| | - Yinying Xu
- Department of Nephrology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, China
| | - Jianjing Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ke Pan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Lei Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhiqi Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
16
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
17
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
18
|
Inoue Y, Tasaki M, Masuda T, Misumi Y, Nomura T, Ando Y, Ueda M. α-Enolase reduces cerebrovascular Aβ deposits by protecting Aβ amyloid formation. Cell Mol Life Sci 2022; 79:462. [PMID: 35916996 PMCID: PMC11072596 DOI: 10.1007/s00018-022-04493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by cerebrovascular amyloid β (Aβ) deposits and causes dementia and cerebral hemorrhage. Although α-enolase (ENO1) was shown to possess multifunctional roles, its exact functions in CAA pathogenesis have not been determined. In this study, we focused on ENO1, a well-known glycolytic enzyme, which was previously identified via a proteomic approach as an upregulated protein in brain samples from patients with Alzheimer's disease (AD). We utilized the thioflavin T fluorescence assay and transmission electron microscopy to monitor the effects of ENO1 on amyloid formation by Aβ peptides. We also cultured murine primary cerebrovascular smooth muscle cells to determine the effects of ENO1 on Aβ cytotoxicity. To investigate the effects of ENO1 in vivo, we infused ENO1 or a vehicle control into the brains of APP23 mice, a transgenic model of AD/CAA, using a continuous infusion system, followed by a cognitive test and pathological and biochemical analyses. We found that novel functions of ENO1 included interacting with Aβ and inhibiting its fibril formation, disrupting Aβ fibrils, and weakening the cytotoxic effects of these fibrils via proteolytic degradation of Aβ peptide. We also demonstrated that infusion of ENO1 into APP23 mouse brains reduced cerebrovascular Aβ deposits and improved cognitive impairment. In addition, we found that enzymatically inactivated ENO1 failed to inhibit Aβ fibril formation and fibril disruption. The proteolytic activity of ENO1 may thus underlie the enzyme's cytoprotective effect and clearance of Aβ from the brain, and ENO1 may be a therapeutic target in CAA.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Masayoshi Tasaki
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Chuo-ku, Honjo, Kumamoto, Kumamoto, 860-8556, Japan
| |
Collapse
|
19
|
The effect of citalopram treatment on amyloid-β precursor protein processing and oxidative stress in human hNSC-derived neurons. Transl Psychiatry 2022; 12:285. [PMID: 35851379 PMCID: PMC9293911 DOI: 10.1038/s41398-022-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022] Open
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) may hold therapeutic benefits for people with Alzheimer's disease (AD). SSRIs may perturb AD progression, or the conversion from MCI to AD, via increased neurogenesis, reduced oxidative stress and/or favourable Amyloid-β Precursor Protein (AβPP) processing. This study used iPSC derived cortical neuronal cells carrying 3 different PSEN1 mutations, to investigate the effect of treatment with the SSRI, Citalopram on AβPP processing and oxidative stress. Control and PSEN1 mutation (L286V, A246E, M146L) iPSC-derived neurons were treated with Citalopram for 45 days. ADAM10 activity, AβPP processing and Aβ generation was measured in addition to cellular redox status. Citalopram treatment reduced the Aβ1-42:40 ratio in control but not in fAD PSEN1 cells. ADAM10 activity was increased with Citalopram treatments in fAD PSEN1 cell lines, which was also seen for sAβPPα secretion. Lower superoxide generation in fAD PSEN1 cells following Citalopram treatment was identified, although there was no effect on end markers of oxidative stress. Treatment with Citalopram appears to have little effect on Aβ generation in fADPSEN1 cells, but our findings suggest that treatment can significantly increase non-amyloidogenic AβPP processing and reduce oxidative stress. These changes may explain why SSRIs appear most effective in the prodromal period of the disease progression, as opposed to reducing established AD pathology. Further investigation of specific pathways conferring the beneficial effects of SSRIs treatment are warranted.
Collapse
|
20
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
21
|
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022; 77:101619. [PMID: 35395415 DOI: 10.1016/j.arr.2022.101619] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
As the number of patients with Alzheimer's disease (AD) increases, it brings great suffering to their families and causes a heavy socioeconomic burden to society. A vast amount of funds and a mass of research have been devoted to elucidating the pathology of AD. However, the main pathogenesis is still elusive, and its mechanism is not completely clear. Research on the mechanisms of AD mainly focuses on the amyloid cascade, tau protein, neuroinflammation, metal ions, and oxidative stress hypotheses. Oxidative stress is as a bridge that connects the different hypotheses and mechanisms of AD. It is a process that causes neuronal damage and occurs in various pathways. Oxidative stress plays a critical role in AD and can even be considered a crucial central factor in the pathogenesis of AD. Previous reviews have also summarized the role of oxidative stress in AD, but these mainly review a specific signaling pathway. Taking oxidative stress as the central point, this review comprehensively expands on the roles of oxidative stress that are involved in the pathogenesis of AD. The vivid and easy-to-understand figures systematically clarify the connected roles of oxidative stress in AD and allow readers to further understand oxidative stress and AD.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jianan Guo
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
22
|
Ebanks B, Chakrabarti L. Mitochondrial ATP Synthase is a Target of Oxidative Stress in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:854321. [PMID: 35237666 PMCID: PMC8882969 DOI: 10.3389/fmolb.2022.854321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial ATP synthase is responsible for the production of cellular ATP, and it does so by harnessing the membrane potential of the mitochondria that is produced by the sequential oxidation of select cellular metabolites. Since the structural features of ATP synthase were first resolved nearly three decades ago, significant progress has been made in understanding its role in health and disease. Mitochondrial dysfunction is common to neurodegeneration, with elevated oxidative stress a hallmark of this dysfunction. The patterns of this oxidative stress, including molecular targets and the form of oxidative modification, can vary widely. In this mini review we discuss the oxidative modifications of ATP synthase that have been observed in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Oxidative modifications of ATP synthase in Alzheimer’s disease are well-documented, and there is a growing body of knowledge on the subject in Parkinson’s disease. The consideration of ATP synthase as a pharmacological target in a variety of diseases underlines the importance of understanding these modifications, both as a potential target, and also as inhibitors of any pharmacological intervention.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Brad Ebanks,
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, United Kingdom
| |
Collapse
|
23
|
Hu W, Song M, Wang C, Guo Z, Li Y, Wang D. Structural characterization of polysaccharide purified from Hericium erinaceus fermented mycelium and its pharmacological basis for application in Alzheimer's disease: Oxidative stress related calcium homeostasis. Int J Biol Macromol 2021; 193:358-369. [PMID: 34688684 DOI: 10.1016/j.ijbiomac.2021.10.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
The purified polysaccharides from Hericium erinaceus fermented mycelium entitled with PHEB was analyzed and it was mainly composed of six glycosidic bonds. It has been confirmed to show the relieving activity against Alzheimer's Disease (AD)- just as behaviors of B6C3-Tg (APPswePSEN1d E9)/Nju double transgenic [Genotype: (Appswe)T, (Psen1) T] (APP/PS1) mice. Six-week PHEB administration significantly improved the cognitive behavior of mice. Brain injury, amyloid beta deposition and tau hyperphosphorylation were alleviated in PHEB-treated AD mice without changes in other tissues. PHEB alleviated the oxidative stress in brains of AD mice via regulation the Nrf2 and its downstream kinase, which further improved the cholinergic system function. Proteomics and bioinformatics analysis showed that the therapeutic effect of PHEB is achieved by regulating calcium homeostasis mediated by oxidative stress. Furthermore, PHEB regulated the CaMK II/IV to achieve the calcium homeostasis in brains; and ultimately to show the anti-AD property.
Collapse
Affiliation(s)
- Wenji Hu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ziang Guo
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
24
|
The Impact of Medium Chain and Polyunsaturated ω-3-Fatty Acids on Amyloid-β Deposition, Oxidative Stress and Metabolic Dysfunction Associated with Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10121991. [PMID: 34943094 PMCID: PMC8698946 DOI: 10.3390/antiox10121991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly population, is closely linked to a dysregulated cerebral lipid homeostasis and particular changes in brain fatty acid (FA) composition. The abnormal extracellular accumulation and deposition of the peptide amyloid-β (Aβ) is considered as an early toxic event in AD pathogenesis, which initiates a series of events leading to neuronal dysfunction and death. These include the induction of neuroinflammation and oxidative stress, the disruption of calcium homeostasis and membrane integrity, an impairment of cerebral energy metabolism, as well as synaptic and mitochondrial dysfunction. Dietary medium chain fatty acids (MCFAs) and polyunsaturated ω-3-fatty acids (ω-3-PUFAs) seem to be valuable for disease modification. Both classes of FAs have neuronal health-promoting and cognition-enhancing properties and might be of benefit for patients suffering from mild cognitive impairment (MCI) and AD. This review summarizes the current knowledge about the molecular mechanisms by which MCFAs and ω-3-PUFAs reduce the cerebral Aβ deposition, improve brain energy metabolism, and lessen oxidative stress levels.
Collapse
|
25
|
Low molecular weight chondroitin sulfate ameliorates pathological changes in 5XFAD mice by improving various functions in the brain. Neuropharmacology 2021; 199:108796. [PMID: 34543632 DOI: 10.1016/j.neuropharm.2021.108796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Our previous study found that low molecular weight chondroitin sulfate (LMWCS) had neuroprotective effects against the toxicity of amyloid-β (Aβ) peptides both in vitro and in vivo, and we speculated that the effects might be related with its anti-oxidative activities. In this study, the anti-Alzheimer's disease (AD) activity of LMWCS was further studied in 5XFAD transgenic mice. After 4-month gavage, the levels of Aβ1-42 level, amyloid precursor protein (APP) and presenilin 1 (PS1) were significantly decreased in the brains of 5XFAD mice, indicating the alteration of APP metabolism by LMWCS. Besides, LMWCS inhibited the secretions of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6. Furthermore, the suppression of neuroinflammation by LMWCS was supported by the decreased expressions of glial fibrillary acidic protein (GFAP) and toll-like receptor 2 (TLR2) in the brains. LMWCS also reduced the production of reactive oxygen species (ROS) and the level of phospho-tau (Ser404) in the brains. Nevertheless, the changes in the behavior tests were moderate. In conclusion, LMWCS administration ameliorated APP metabolism, neuroinflammation, ROS production and tau protein abnormality in the brains of 5XFAD mice, displaying the potential to improve the pathological changes of AD mouse brain. LMWCS could be considered as a promising anti-AD drug candidate, nonetheless, the therapy regimen need to be optimized to improve its pharmacotherapy efficacy.
Collapse
|
26
|
Jurcau A. Insights into the Pathogenesis of Neurodegenerative Diseases: Focus on Mitochondrial Dysfunction and Oxidative Stress. Int J Mol Sci 2021; 22:11847. [PMID: 34769277 PMCID: PMC8584731 DOI: 10.3390/ijms222111847] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
As the population ages, the incidence of neurodegenerative diseases is increasing. Due to intensive research, important steps in the elucidation of pathogenetic cascades have been made and significantly implicated mitochondrial dysfunction and oxidative stress. However, the available treatment in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis is mainly symptomatic, providing minor benefits and, at most, slowing down the progression of the disease. Although in preclinical setting, drugs targeting mitochondrial dysfunction and oxidative stress yielded encouraging results, clinical trials failed or had inconclusive results. It is likely that by the time of clinical diagnosis, the pathogenetic cascades are full-blown and significant numbers of neurons have already degenerated, making it impossible for mitochondria-targeted or antioxidant molecules to stop or reverse the process. Until further research will provide more efficient molecules, a healthy lifestyle, with plenty of dietary antioxidants and avoidance of exogenous oxidants may postpone the onset of neurodegeneration, while familial cases may benefit from genetic testing and aggressive therapy started in the preclinical stage.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
27
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
28
|
Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective Effects of Rhynchophylline Against Aβ 1-42-Induced Oxidative Stress, Neurodegeneration, and Memory Impairment Via Nrf2-ARE Activation. Neurochem Res 2021; 46:2439-2450. [PMID: 34170454 DOI: 10.1007/s11064-021-03343-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Extensive studies have shown that oxidative stress is a crucial pathogenic factor in Alzheimer's disease (AD). Nuclear factor E2-related factor 2 (Nrf2) is a master cytoprotective regulator against oxidative stress, and thus represents an attractive therapeutic target in AD. The goal of our study is to investigate the contribution of Nrf2 in Rhynchophylline (Rhy)-induced neuroprotection in AD. The data showed that intraperitoneal administration of Rhy (10 or 20 mg/kg) could ameliorate Aβ1-42-induced cognitive impairment, evidenced by performance improvement in memory tests. The result of Antioxidant response element (ARE)-luciferase activity assay indicated that Rhy treatment improved ARE promoter activity. The results of reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) assessment in the frontal cortex and hippocampus showed that Rhy treatment could attenuate Aβ1-42-induced oxidative stress to some extent, evidenced by reversion of these cytokines compared to Aβ1-42 + Veh group. Rhy treatment also restored expression of Nrf2 and its downstream protein heme oxygenase-1 (HO-1), NAD(P)H/quinone oxidoreductase 1 (NOQ1), and recombinant glutamate cysteine ligase, modifier subunit (GCLM) in the frontal cortex and hippocampus of Aβ1-42-treated mice. In addition, to investigate whether activation of Nrf2-mediated pathway is responsible for the neuroprotection of Rhy, Nrf2 siRNA was used in human neuroblastoma cells (SH-SY5Y). Interestingly, the results showed that the protective effects of Rhy, including anti-oxidative, anti-apoptosis and elevation of Nrf2 and its downstream proteins, were abolished in Nrf2 siRNA-transfected cells. These findings indicate that Rhynchophylline is protective against Aβ1-42-induced neurotoxicity via Nrf2-ARE activation, and suggest that Rhy may serve as a potential candidate and promising Nrf2 activator for management of AD.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- Jiangsu Food and Pharmaceutical Science College, Huai'an, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
29
|
Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 2021; 20:689-709. [PMID: 34194012 PMCID: PMC8243062 DOI: 10.1038/s41573-021-00233-1] [Citation(s) in RCA: 1153] [Impact Index Per Article: 384.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a component of many diseases, including atherosclerosis, chronic obstructive pulmonary disease, Alzheimer disease and cancer. Although numerous small molecules evaluated as antioxidants have exhibited therapeutic potential in preclinical studies, clinical trial results have been disappointing. A greater understanding of the mechanisms through which antioxidants act and where and when they are effective may provide a rational approach that leads to greater pharmacological success. Here, we review the relationships between oxidative stress, redox signalling and disease, the mechanisms through which oxidative stress can contribute to pathology, how antioxidant defences work, what limits their effectiveness and how antioxidant defences can be increased through physiological signalling, dietary components and potential pharmaceutical intervention.
Collapse
Affiliation(s)
- Henry Jay Forman
- University of California Merced, Merced, CA, USA.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Uddin MS, Kabir MT, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Exploring the Potential of Neuroproteomics in Alzheimer's Disease. Curr Top Med Chem 2021; 20:2263-2278. [PMID: 32493192 DOI: 10.2174/1568026620666200603112030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Jakaria
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam M Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer's disease. Open Biol 2021; 11:210013. [PMID: 34186009 PMCID: PMC8241491 DOI: 10.1098/rsob.210013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress, the imbalance of the antioxidant system, results in an accumulation of neurotoxic proteins in Alzheimer's disease (AD). The antioxidant system is composed of exogenous and endogenous antioxidants to maintain homeostasis. Superoxide dismutase (SOD) is an endogenous enzymatic antioxidant that converts superoxide ions to hydrogen peroxide in cells. SOD supplementation in mice prevented cognitive decline in stress-induced cells by reducing lipid peroxidation and maintaining neurogenesis in the hippocampus. Furthermore, SOD decreased expression of BACE1 while reducing plaque burden in the brain. Additionally, Astaxanthin (AST), a potent exogenous carotenoid, scavenges superoxide anion radicals. Mice treated with AST showed slower memory decline and decreased depositions of amyloid-beta (Aβ) and tau protein. Currently, the neuroprotective potential of these supplements has only been examined separately in studies. However, a single antioxidant cannot sufficiently resist oxidative damage to the brain, therefore, a combinatory approach is proposed as a relevant therapy for ameliorating pathological changes in AD.
Collapse
Affiliation(s)
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow 226002, India
| |
Collapse
|
32
|
Mehder RH, Bennett BM, Andrew RD. Morphometric Analysis of Hippocampal and Neocortical Pyramidal Neurons in a Mouse Model of Late Onset Alzheimer's Disease. J Alzheimers Dis 2021; 74:1069-1083. [PMID: 32144984 PMCID: PMC7242838 DOI: 10.3233/jad-191067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of late-onset (sporadic) Alzheimer’s disease (LOAD) has lacked animal models where impairments develop with aging. Oxidative stress promotes LOAD, so we have developed an oxidative stress-based model of age-related cognitive impairment based on gene deletion of aldehyde dehydrogenase 2 (ALDH2). This enzyme is important for the detoxification of endogenous aldehydes arising from lipid peroxidation. Compared to wildtype (WT) mice, the knockout (KO) mice exhibit a progressive decline in recognition and spatial memory and AD-like pathologies. Here we performed morphometric analyses in the dorsal and ventral hippocampal CA1 regions (dCA1 and vCA1) as well as in overlying primary sensory cortex to determine if altered neuronal structure can help account for the cognitive impairment in 12-month old KO mice. Dendritic morphology was quantitatively analyzed following Golgi-Cox staining using 9 WT mice (108 neurons) and 15 KO mice (180 neurons). Four pyramidal neurons were traced per mouse in each region, followed by branched structured analysis and Sholl analysis. Compared to WT controls, the morphology and complexity of dCA1 pyramidal neurons from KOs showed significant reductions in apical and basal dendritic length, dendrite intersections, ends, and nodes. As well, spine density along dorsal CA1 apical dendrites was significantly lower in KO versus WT. In contrast, pyramidal arborization in the vCA1 and primary sensory cortex were only minimally reduced in KO versus WT mice. These data suggest a region-specific vulnerability to oxidative stress-induced damage and/or a major and specific reduction in synaptic input to the pyramidal neurons of the dorsal hippocampus. This is in keeping with studies showing that lesions to the dorsal hippocampus impair primarily cognitive memory whereas ventral hippocampal lesions cause deficits in stress, emotion, and affect.
Collapse
Affiliation(s)
- Rasha H Mehder
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Brian M Bennett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - R David Andrew
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
33
|
Jové M, Mota-Martorell N, Torres P, Ayala V, Portero-Otin M, Ferrer I, Pamplona R. The Causal Role of Lipoxidative Damage in Mitochondrial Bioenergetic Dysfunction Linked to Alzheimer's Disease Pathology. Life (Basel) 2021; 11:life11050388. [PMID: 33923074 PMCID: PMC8147054 DOI: 10.3390/life11050388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
Current shreds of evidence point to the entorhinal cortex (EC) as the origin of the Alzheimer’s disease (AD) pathology in the cerebrum. Compared with other cortical areas, the neurons from this brain region possess an inherent selective vulnerability derived from particular oxidative stress conditions that favor increased mitochondrial molecular damage with early bioenergetic involvement. This alteration of energy metabolism is the starting point for subsequent changes in a multitude of cell mechanisms, leading to neuronal dysfunction and, ultimately, cell death. These events are induced by changes that come with age, creating the substrate for the alteration of several neuronal pathways that will evolve toward neurodegeneration and, consequently, the development of AD pathology. In this context, the present review will focus on description of the biological mechanisms that confer vulnerability specifically to neurons of the entorhinal cortex, the changes induced by the aging process in this brain region, and the alterations at the mitochondrial level as the earliest mechanism for the development of AD pathology. Current findings allow us to propose the existence of an altered allostatic mechanism at the entorhinal cortex whose core is made up of mitochondrial oxidative stress, lipid metabolism, and energy production, and which, in a positive loop, evolves to neurodegeneration, laying the basis for the onset and progression of AD pathology.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Pascual Torres
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Victoria Ayala
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), ISCIII, 28220 Madrid, Spain
- Correspondence: (I.F.); (R.P.)
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), 25198 Lleida, Spain; (M.J.); (N.M.-M.); (P.T.); (V.A.); (M.P.-O.)
- Correspondence: (I.F.); (R.P.)
| |
Collapse
|
34
|
Tassone G, Kola A, Valensin D, Pozzi C. Dynamic Interplay between Copper Toxicity and Mitochondrial Dysfunction in Alzheimer's Disease. Life (Basel) 2021; 11:life11050386. [PMID: 33923275 PMCID: PMC8146034 DOI: 10.3390/life11050386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, affecting millions of people worldwide, a number expected to exponentially increase in the future since no effective treatments are available so far. AD is characterized by severe cognitive dysfunctions associated with neuronal loss and connection disruption, mainly occurring in specific brain areas such as the hippocampus, cerebral cortex, and amygdala, compromising memory, language, reasoning, and social behavior. Proteomics and redox proteomics are powerful techniques used to identify altered proteins and pathways in AD, providing relevant insights on cellular pathways altered in the disease and defining novel targets exploitable for drug development. Here, we review the main results achieved by both -omics techniques, focusing on the changes occurring in AD mitochondria under oxidative stress and upon copper exposure. Relevant information arises by the comparative analysis of these results, evidencing alterations of common mitochondrial proteins, metabolic cycles, and cascades. Our analysis leads to three shared mitochondrial proteins, playing key roles in metabolism, ATP generation, oxidative stress, and apoptosis. Their potential as targets for development of innovative AD treatments is thus suggested. Despite the relevant efforts, no effective drugs against AD have been reported so far; nonetheless, various compounds targeting mitochondria have been proposed and investigated, reporting promising results.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| | - Cecilia Pozzi
- Correspondence: (D.V.); (C.P.); Tel.: +39-0577-232428 (D.V.); +39-0577-232132 (C.P.)
| |
Collapse
|
35
|
Li H, Shi G, Zha H, Zheng L, Luo Z, Wang Y. Inhibition of histone deacetylase promotes a neuroprotective mechanism in an experimental model of Parkinson's disease. Arch Med Sci 2021; 20:664-674. [PMID: 38757033 PMCID: PMC11094841 DOI: 10.5114/aoms/130287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/07/2020] [Indexed: 05/18/2024] Open
Abstract
Introduction Therapies targeting histone deacetylase (HDAC) have gained wider attention in the treatment of various clinical conditions. However, the use of HDAC inhibitors in pre-clinical trials in the case of Parkinson's disease (PD) is very limited. In the present study, the HDAC inhibitor, entinostat, was tested in animals induced with Parkinson's disease experimentally. Material and methods Wistar male rats (150 ±10 g) were administered with rotenone (2 mg/kg/day, s.c.) for 21 days to induce PD, while entinostat (20 mg/kg) was given intraperitoneally. Then, the neurological functions, PD markers, and HDACs were analysed in the control and experimental animals. Results The results demonstrated that rats that received entinostat displayed progressive motor, behavioural, and neurological function with attenuated α-synuclein and improved tyrosine-hydroxylase compared to control cells. Moreover, the induction of PD in rats demonstrated reduced levels of H2S, dopamine, 3, and 4-dihydroxyphenylacetic acid (DOPAC), and increased monoamine oxidase activity in PD rats. However, the rats that received entinostat demonstrated progressive levels of dopa and DOPAC, with attenuated levels of HDAC-2, -4, and -6 mRNA in the PD rats compared to controls. On the other hand, elevated (p < 0.01) levels of PD marker genes such as GDF3 and NMDA2b were reduced, with a significant increase in neuroprotective genes such as VDAC3 and CBX5 in entinostat-supplemented rats. Conclusions The study results suggest that inhibition of HDAC systematically improves the neurological functions, and hence treatments, emphasizing that HDACI, as the speculated mechanism, will be a promising mode of treatment in PD.
Collapse
Affiliation(s)
- Hang Li
- Department of Geriatrics, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Guolin Shi
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Zha
- Department of Reproductive and Genetics, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Liqing Zheng
- Talent Services Section, Chengdu Talent Service Centre for Healthcare Professionals, Chengdu, Sichuan, China
| | - Zhan Luo
- Department of Physical Examination, Chengdu First People’s Hospital, Chengdu, Sichuan, China
| | - Ying Wang
- Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
36
|
Mehder RH, Bennett BM, Andrew RD. Age-Related Neuronal Deterioration Specifically Within the Dorsal CA1 Region of the Hippocampus in a Mouse Model of Late Onset Alzheimer's Disease. J Alzheimers Dis 2021; 79:1547-1561. [PMID: 33459722 PMCID: PMC7990463 DOI: 10.3233/jad-201024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuronal damage resulting from increased oxidative stress is important in the development of late onset/age-related Alzheimer's disease (LOAD). We have developed an oxidative stress-related mouse model of LOAD based on gene deletion of aldehyde dehydrogenase 2 (ALDH2), an enzyme important for the detoxification of endogenous aldehydes arising from lipid peroxidation. Compared to wildtype (WT) mice, the knockout (KO) mice exhibit AD-like pathologies and a progressive decline in recognition and spatial memory. This progression presumably has a morphological basis induced by oxidative damage. OBJECTIVE We performed morphometric analyses in the dorsal hippocampal CA1 region (dCA1) to determine if altered neuronal structure can help account for the progressive cognitive impairment in 3- to 12-month-old KO mice. METHODS Dendritic morphology was quantitatively analyzed by branched structured analysis and Sholl analysis following Golgi-Cox staining in WT mice (148 neurons) versus KO mice (180 neurons). RESULTS The morphology and complexity of dCA1 pyramidal neurons were similar at age 3 months in WTs and KOs. However, by 6 months there were significant reductions in apical and basal dendritic length, dendrite complexity, and spine density in KO versus WT mice that were maintained through ages 9 and 12 months. Immunostaining for protein adducts of the lipid peroxidation product 4-hydroxynonenal revealed significant increases in staining in dCA1 (but not ventral CA1) by 3 months, increasing through 12 months. CONCLUSION This specific and progressive increase in dCA1 oxidative damage preceded detectable synaptic trimming in KO mice, in keeping with studies showing that lesions to dorsal hippocampus primarily impair cognitive memory.
Collapse
Affiliation(s)
- Rasha H Mehder
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Brian M Bennett
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - R David Andrew
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
37
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase Activity of Copper Amyloid-β. Inorg Chem 2021; 60:606-613. [PMID: 33405903 PMCID: PMC8023651 DOI: 10.1021/acs.inorgchem.0c02243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Interaction
of copper ions with Aβ peptides alters the redox
activity of the metal ion and can be associated with neurodegeneration.
Many studies deal with the characterization of the copper binding
mode responsible for the reactivity. Oxidation experiments of dopamine
and related catechols by copper(II) complexes with the N-terminal
amyloid-β peptides Aβ16 and Aβ9, and the Aβ16[H6A] and Aβ16[H13A]
mutant forms, both in their free amine and N-acetylated forms show
that efficient reactivity requires the oxygenation of a CuI-bis(imidazole) complex with a bound substrate. Therefore, the active
intermediate for catechol oxidation differs from the proposed “in-between
state” for the catalytic oxidation of ascorbate. During the
catechol oxidation process, hydrogen peroxide and superoxide anion
are formed but give only a minor contribution to the reaction. The redox cycling of copper bound to
amyloid-β peptide
requires the generation of a Cu(I)-Aβ-catecholate complex. When
copper(II) is confined in the N-terminal portion, its reduction is
slow and causes a shift toward a bis-His coordination environment.
The addition of catechol to the Cu(I)-bis(imidazole) complex results
in a faster reaction with dioxygen. The reactive species for catechol
oxidation does not correspond to the proposed “in-between state”
for ascorbate oxidation.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
38
|
Liu Y, Chen Z, Li B, Yao H, Zarka M, Welch J, Sachdev P, Bridge W, Braidy N. Supplementation with γ-glutamylcysteine (γ-GC) lessens oxidative stress, brain inflammation and amyloid pathology and improves spatial memory in a murine model of AD. Neurochem Int 2020; 144:104931. [PMID: 33276023 DOI: 10.1016/j.neuint.2020.104931] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 11/29/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The accumulation of oxidative stress, neuroinflammation and abnormal aggregation of amyloid β-peptide (Aβ) have been shown to induce synaptic dysfunction and memory deficits in Alzheimer's disease (AD). Cellular depletion of the major endogenous antioxidant Glutathione (GSH) has been linked to cognitive decline and the development of AD pathology. Supplementation with γ-glutamylcysteine (γ-GC), the immediate precursor and the limiting substrate for GSH biosynthesis, can transiently augment cellular GSH levels by bypassing the regulation of GSH homeostasis. METHODS In the present study, we investigated the effect of dietary supplementation of γ-GC on oxidative stress and Aβ pathology in the brains of APP/PS1 mice. The APP/PS1 mice were fed γ-GC from 3 months of age with biomarkers of apoptosis and cell death, oxidative stress, neuroinflammation and Aβ load being assessed at 6 months of age. RESULTS Our data showed that supplementation with γ-GC lowered the levels of brain lipid peroxidation, protein carbonyls and apoptosis, increased both total GSH and the glutathione/glutathione disulphide (GSH/GSSG) ratio and replenished ATP and the activities of the antioxidant enzymes (superoxide dismutase (SOD), catalase, glutamine synthetase and glutathione peroxidase (GPX)), the latter being a key regulator of ferroptosis. Brain Aβ load was lower and acetylcholinesterase (AChE) activity was markedly improved compared to APP/PS1 mice fed a standard chow diet. Alteration in brain cytokine levels and matrix metalloproteinase enzymes MMP-2 and MMP-9 suggested that γ-GC may lower inflammation and enhance Aβ plaque clearance in vivo. Spatial memory was also improved by γ-GC as determined using the Morris water maze. CONCLUSION Our data collectively suggested that supplementation with γ-GC may represent a novel strategy for the treatment and/or prevention of cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zheng Chen
- School of Medicine, Huzhou University, Huzhou Central Hospital Huzhou, China
| | - Ben Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Hua Yao
- Institute of Life Sciences and Institute of Neuroscience, Wenzhou University, Wenzhou, China
| | - Martin Zarka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Jeffrey Welch
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
39
|
Foret MK, Lincoln R, Do Carmo S, Cuello AC, Cosa G. Connecting the "Dots": From Free Radical Lipid Autoxidation to Cell Pathology and Disease. Chem Rev 2020; 120:12757-12787. [PMID: 33211489 DOI: 10.1021/acs.chemrev.0c00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Richard Lincoln
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
40
|
Wilson EN, Do Carmo S, Welikovitch LA, Hall H, Aguilar LF, Foret MK, Iulita MF, Jia DT, Marks AR, Allard S, Emmerson JT, Ducatenzeiler A, Cuello AC. NP03, a Microdose Lithium Formulation, Blunts Early Amyloid Post-Plaque Neuropathology in McGill-R-Thy1-APP Alzheimer-Like Transgenic Rats. J Alzheimers Dis 2020; 73:723-739. [PMID: 31868669 DOI: 10.3233/jad-190862] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages. We administered NP03 (40μg Li/kg; 1 ml/kg body weight) to McGill-R-Thy1-APP transgenic rats for 12 weeks spanning the transition phase from plaque-free to plaque-bearing. The effect of NP03 on remote working memory was assessed using the novel object recognition task. Levels of human Aβ38, Aβ40, and Aβ42 as well as levels of pro-inflammatory mediators were measured in brain-extracts and plasma using electrochemiluminescent assays. Mature Aβ plaques were visualized with a thioflavin-S staining. Vesicular acetylcholine transporter (VAChT) bouton density and levels of chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-6 (IL-6), and 4-hydroxynonenal (4-HNE) were probed using quantitative immunohistochemistry. During the early Aβ post-plaque stage, we find that NP03 rescues functional deficits in object recognition, reduces loss of cholinergic boutons in the hippocampus, reduces levels of soluble and insoluble cortical Aβ42 and reduces hippocampal Aβ plaque number. In addition, NP03 reduces markers of neuroinflammation and cellular oxidative stress. Together these results indicate that microdose lithium NP03 is effective at later stages of amyloid pathology, after appearance of Aβ plaques.
Collapse
Affiliation(s)
- Edward N Wilson
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Sonia Do Carmo
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Hélène Hall
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Morgan K Foret
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Dan Tong Jia
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adam R Marks
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Simon Allard
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joshua T Emmerson
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada.,Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom (Visiting Professorship)
| |
Collapse
|
41
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
42
|
Atlante A, Amadoro G, Bobba A, Latina V. Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells 2020; 9:E2347. [PMID: 33114170 PMCID: PMC7690784 DOI: 10.3390/cells9112347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
A new epoch is emerging with intense research on nutraceuticals, i.e., "food or food product that provides medical or health benefits including the prevention and treatment of diseases", such as Alzheimer's disease. Nutraceuticals act at different biochemical and metabolic levels and much evidence shows their neuroprotective effects; in particular, they are able to provide protection against mitochondrial damage, oxidative stress, toxicity of β-amyloid and Tau and cell death. They have been shown to influence the composition of the intestinal microbiota significantly contributing to the discovery that differential microorganisms composition is associated with the formation and aggregation of cerebral toxic proteins. Further, the routes of interaction between epigenetic mechanisms and the microbiota-gut-brain axis have been elucidated, thus establishing a modulatory role of diet-induced epigenetic changes of gut microbiota in shaping the brain. This review examines recent scientific literature addressing the beneficial effects of some natural products for which mechanistic evidence to prevent or slowdown AD are available. Even if the road is still long, the results are already exceptional.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy;
| |
Collapse
|
43
|
Zhao N, Meng J, Jiang W, Xu W, Liu C, Wang F. Study on the relationships between molecular weights of chondroitin sulfate oligosaccharides and Aβ-induced oxidative stress and the related mechanisms. Glycobiology 2020; 31:492-507. [PMID: 33043980 DOI: 10.1093/glycob/cwaa096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, we studied anti-Alzheimer's disease (AD) activities of chondroitin sulfate (CS) oligosaccharides with different molecular weights. CS from shark cartilage was degraded by a recombinant CS endolyase, chondroitinase ABC I (CHSase ABC I), and CS disaccharide (DP2), tetrasaccharide (DP4), hexasaccharide (DP6), octasaccharide (DP8), decasaccharide (DP10) and dodecasaccharide (DP12) were obtained by separation with gel filtration. Anti-AD activities of CS oligosaccharides were assessed using Aβ-injured SH-SY5Y cells and BV2 cells. It was shown that CS oligosaccharides could block Aβ-induced oxidative stress, mitochondrial dysfunction and activation of intrinsic apoptotic pathway for SH-SY5Y cells. Furthermore, these activities increased with the increase of molecular weights. For Aβ-injured BV2 cells, CS oligosaccharides inhibited oxidative stress, the production of proinflammatory cytokines and the activation of toll-like receptor pathway, and CS DP2 had the best activity among them. In conclusion, CS oligosaccharides suppressed Aβ-induced oxidative stress and relevant injury in vitro, and these effects had different relationships with the molecular weights of CS oligosaccharides for different cell lines, which might be caused by different mechanisms.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Jie Meng
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Wenjia Xu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China.,Laboratory of Carbohydrate Chemistry and Glycobiology, National Glycoengineering Research Center, Shandong University, No. 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
44
|
Shen Y, Hua L, Yeh CK, Shen L, Ying M, Zhang Z, Liu G, Li S, Chen S, Chen X, Yang X. Ultrasound with microbubbles improves memory, ameliorates pathology and modulates hippocampal proteomic changes in a triple transgenic mouse model of Alzheimer's disease. Am J Cancer Res 2020; 10:11794-11819. [PMID: 33052247 PMCID: PMC7546002 DOI: 10.7150/thno.44152] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease manifested by cognitive impairment. As a unique approach to open the blood-brain barrier (BBB) noninvasively and temporarily, a growing number of studies showed that low-intensity focused ultrasound in combination with microbubbles (FUS/MB), in the absence of therapeutic agents, is capable of ameliorating amyloid or tau pathology, concurrent with improving memory deficits of AD animal models. However, the effects of FUS/MB on both the two pathologies simultaneously, as well as the memory behaviors, have not been reported so far. Methods: In this study, female triple transgenic AD (3×Tg-AD) mice at eight months of age with both amyloid-β (Aβ) deposits and tau phosphorylation were treated by repeated FUS/MB in the unilateral hippocampus twice per week for six weeks. The memory behaviors were investigated by the Y maze, the Morris water maze and the step-down passive avoidance test following repeated FUS/MB treatments. Afterwards, the involvement of Aβ and tau pathology were assessed by immunohistochemical analysis. Neuronal health and phagocytosis of Aβ deposits by microglia in the hippocampus were examined by confocal microscopy. Further, hippocampal proteomic alterations were analyzed by employing two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) combined with mass spectrometry. Results: The three independent memory tasks were indicative of evident learning and memory impairments in eight-month-old 3×Tg-AD mice, which developed intraneuronal Aβ, extracellular diffuse Aβ deposits and phosphorylated tau in the hippocampus and amygdala. Following repeated FUS/MB treatments, significant improvement in learning and memory ability of the 3×Tg-AD mice was achieved. Amelioration in both Aβ deposits and phosphorylated tau in the sonicated hemisphere was induced in FUS/MB-treated 3×Tg-AD mice. Albeit without increase in neuron density, enhancement in axonal neurofilaments emerged from the FUS/MB treatment. Confocal microscopy revealed activated microglia engulfing Aβ deposits in the FUS/MB-treated hippocampus. Further, proteomic analysis revealed 20 differentially expressed proteins, associated with glycolysis, neuron projection, mitochondrial pathways, metabolic process and ubiquitin binding etc., in the hippocampus between FUS/MB-treated and sham-treated 3×Tg-AD mice. Conclusions: Our findings reinforce the positive therapeutic effects on AD models with both Aβ and tau pathology induced by FUS/MB-mediated BBB opening, further supporting the potential of this treatment regime for clinical applications.
Collapse
|
45
|
Butterfield DA, Boyd-Kimball D. Mitochondrial Oxidative and Nitrosative Stress and Alzheimer Disease. Antioxidants (Basel) 2020; 9:E818. [PMID: 32887505 PMCID: PMC7554713 DOI: 10.3390/antiox9090818] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in-and oxidative and nitrosative modifications of-mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section on the implications of mitochondrial oxidative and nitrosative stress in MCI and AD with respect to imaging studies in and targeted therapies toward these disorders. Taken together, this review provides support for the notion that brain mitochondrial alterations in AD and MCI are key components of oxidative and nitrosative stress observed in these two disorders, and as such, they provide potentially promising therapeutic targets to slow-and hopefully one day stop-the progression of AD, which is a devastating dementing disorder.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601, USA;
| |
Collapse
|
46
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
47
|
Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms 2020; 8:microorganisms8070972. [PMID: 32610629 PMCID: PMC7409037 DOI: 10.3390/microorganisms8070972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.
Collapse
|
48
|
Protective action of Grewia asiatica (phalsa) berries against scopolamine-induced deficit in learning and memory using behavior paradigms in rats. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-019-00376-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Liu H, Yang H, Fang Y, Li K, Tian L, Liu X, Zhang W, Tan Y, Lai W, Bian L, Lin B, Xi Z. Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135809. [PMID: 31829301 DOI: 10.1016/j.scitotenv.2019.135809] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Manufactured zinc oxide nanoparticles (Nano-ZnO) are being used increasingly in many fields owing to their excellent physicochemical properties. Consequently, biosecurity has become a growing concern for human health and the environment. In the present study, Nano-ZnO neurotoxicity was investigated in vivo and in vitro. In vivo results showed that Nano-ZnO particles delivered through intranasal instillation were translocated to the brain, specifically deposited in the olfactory bulb, hippocampus, striatum, and cerebral cortex, and caused ultrastructural changes, oxidative damage, inflammatory responses, and histopathological damages there, which may be important for inducing Nano-ZnO neurotoxicity. Further in vitro studies on PC12 cell line illustrated that exposure to Nano-ZnO for 6 h affected cell morphology, decreased cell viability, increased lactate dehydrogenase and oxidative stress activity levels, impaired mitochondrial function, and disturbed the cell cycle. In addition, Nano-ZnO could destroy neuronal structure by affecting cytoskeleton proteins (tubulin-α, tubulin-β and NF-H), resulting in the interruption of connection between nerve cells, which lead to nervous system function damage. Meanwhile, Nano-ZnO could induce neuronal repair and regeneration disorders by affecting the growth-related protein GAP-43 and delayed neurotoxicity by affecting the calcium/calcium-regulated kinase (CAMK2A/CAMK2B protein) signaling pathway.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wei Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
50
|
The pROS of Autophagy in Neuronal Health. J Mol Biol 2020; 432:2546-2559. [PMID: 32006535 PMCID: PMC7232022 DOI: 10.1016/j.jmb.2020.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
Autophagy refers to a set of catabolic pathways that together facilitate degradation of superfluous, damaged and toxic cellular components. The most studied type of autophagy, called macroautophagy, involves membrane mobilisation, cargo engulfment and trafficking of the newly formed autophagic vesicle to the recycling organelle, the lysosome. Macroautophagy responds to a variety of intra- and extra-cellular stress conditions including, but not limited to, pathogen intrusion, oxygen or nutrient starvation, proteotoxic and organelle stress, and elevation of reactive oxygen species (ROS). ROS are highly reactive oxygen molecules that can interact with cellular macromolecules (proteins, lipids, nucleic acids) to either modify their activity or, when released in excess, inflict irreversible damage. Although increased ROS release has long been recognised for its involvement in macroautophagy activation, the underlying mechanisms and the wider impact of ROS-mediated macroautophagy stimulation remain incompletely understood. We therefore discuss the growing body of evidence that describes the variety of mechanisms modulated by ROS that trigger cytoprotective detoxification via macroautophagy. We outline the role of ROS in signalling upstream of autophagy initiation, by increased gene expression and post-translational modifications of transcription factors, and in the formation and nucleation of autophagic vesicles by cysteine modification of conserved autophagy proteins including ATG4B, ATG7 and ATG3. Furthermore, we review the effect of ROS on selective forms of macroautophagy, specifically on cargo recognition by autophagy receptor proteins p62 and NBR1 (neighbour of BRCA1) and the recycling of mitochondria (mitophagy), and peroxisomes (pexophagy). Finally, we highlight both, the standalone and mutual contributions of abnormal ROS signalling and macroautophagy to the development and progression of neurodegenerative diseases. ROS are messengers that modify protein activity by PTMs. ROS-mediated PTMs regulate activity and specificity of autophagy proteins. Increase in autophagy mediates rapid clearance of oxidised cargo and ROS sources. The importance of ROS-mediated autophagy is highlighted in neurodegeneration.
Collapse
|