1
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
2
|
Bhandarkar NS, Shetty KB, Shetty N, Shetty K, Kiran A, Pindipapanahalli N, Shetty R, Ghosh A. Comprehensive analysis of systemic, metabolic, and molecular changes following prospective change to low-carbohydrate diet in adults with type 2 diabetes mellitus in India. Front Nutr 2024; 11:1394298. [PMID: 39279894 PMCID: PMC11397303 DOI: 10.3389/fnut.2024.1394298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose South Asians, especially Indians, face higher diabetes-related risks despite lower body mass index (BMI) compared with the White population. Limited research connects low-carbohydrate high-fat (LCHF)/ketogenic diets to metabolic changes in this group. Systematic studies are needed to assess the long-term effects of the diet, such as ocular health. Method In this prospective, observational study, 465 candidates aged 25-75 years with type 2 diabetes included with institutional ethics approval. A total of 119 subjects were included in the final study assessment based on the availability of pathophysiological reports, tears, and blood samples collected at baseline, 3rd, and 6th months. Serum and tear samples were analyzed by an enzyme-linked lectinsorbent assay, to examine secreted soluble protein biomarkers, such as IL-1β (interleukin 1 Beta), IL-6 (interleukin 6), IL-10 (interleukin 10), IL-17A (interleukin 17A), MMP-9 (matrix metalloproteinase 9), ICAM-1 (intercellular adhesion molecule 1), VEGF-A (vascular endothelial growth factor A), and TNF-α (tumor necrosis factor-alpha). A Wilcoxon test was performed for paired samples. Spearman's correlation was applied to test the strength and direction of the association between tear biomarkers and HbA1c. p-value of < 0.05 was considered significant. Results After a 3- and 6-month LCHF intervention, fasting blood sugar decreased by 10% (Δ: -14 mg/dL; p < 0.0001) and 7% (Δ: -8 mg/dL; p < 0.0001), respectively. Glycated hemoglobin A1c levels decreased by 13% (Δ: -1%; p < 0.0001) and 9% (Δ: -0.6%; p < 0.0001). Triglycerides reduced by 22% (Δ: -27 mg/dL; p < 0.0001) and 14% (Δ: -19 mg/dL; p < 0.0001). Total cholesterol reduced by 5.4% (Δ: -10.5 mg/dL; p < 0.003) and 4% (Δ: -7 mg/dL; p < 0.03), while low-density lipoprotein decreased by 10% (Δ: -11.5 mg/dL; p < 0.003) and 9% (Δ: -11 mg/dL; p < 0.002). High-density lipoprotein increased by 11% (Δ: 5 mg/dL; p < 0.0001) and 17% (Δ: 8 mg/dL; p < 0.0001). At the first follow-up, tear proteins such as ICAM-1, IL-17A, and TNF-α decreased by 30% (Δ: -2,739 pg/mL; p < 0.01), 22% (Δ: -4.5 pg/mL; p < 0.02), and 34% (Δ: -0.9 pg/mL; p < 0.002), respectively. At the second follow-up, IL-1β and TNF-α reduced by 41% (Δ: -2.4 pg/mL; p < 0.05) and 34% (Δ: -0.67 pg/mL; p < 0.02). Spearman's correlation between HbA1c and tear analytes was not statistically significant. Conclusion The LCHF diet reduces the risk of hyperglycemia and dyslipidemia. Changes in tear fluid protein profiles were observed, but identifying promising candidate biomarkers requires validation in a larger cohort.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
3
|
Beisel A, Jones G, Glass J, Lee TJ, Töteberg-Harms M, Estes A, Ulrich L, Bollinger K, Sharma S, Sharma A. Comparative analysis of human tear fluid and aqueous humor proteomes. Ocul Surf 2024; 33:16-22. [PMID: 38561100 PMCID: PMC11179983 DOI: 10.1016/j.jtos.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Technological advancements allowing for the analysis of low-volume samples have led to the investigation of human tear fluid and aqueous humor (AH) as potential biomarker sources. However, acquiring AH samples poses significant challenges, making human tear fluid a more accessible alternative. This study aims to compare the protein compositions of these two biofluids to evaluate their suitability for biomarker discovery. METHODS Paired tear and AH samples were collected from 20 patients undergoing cataract surgery. Tear samples were collected using Schirmer strips prior to surgery, and AH samples were collected from the anterior chamber immediately after corneal incision. Proteins were extracted and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS A total of 481 proteins were identified in greater than 50% of the tear samples, and 191 proteins were detected in greater than 50% of the AH samples. Of these proteins, 82 were found to be common between the two biofluids, with ALB, LTF, TF, LCN1, and IGKC being the most abundant. CONCLUSION Although tear fluid and the AH are functionally independent and physically separated, many of the proteins detected in AH were also detected in tears. This direct comparison of the proteomic content of tear fluid and AH may aid in further investigation of tear fluid as a source of readily accessible biomarkers for various human diseases.
Collapse
Affiliation(s)
- August Beisel
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Joshua Glass
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Amy Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Kathryn Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Shruti Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Ashok Sharma
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Adamczyk-Zostawa J, Wylęgała A, Lis M, Zostawa J, Fiolka R, Wylęgała E, Adamczyk-Sowa M, Czuba Z. The level of cytokines in tears as a novel indicator of demyelinating diseases. Neurol Res 2024; 46:487-494. [PMID: 38602307 DOI: 10.1080/01616412.2024.2337502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION A novel research objective is to identify new molecules in more readily accessible biological fluids that could be used in the diagnosis of multiple sclerosis (MS) and other demyelinating disorders. AIM To compare the level of selected cytokines in tears between patients with MS or other demyelinating disorder and healthy controls. MATERIAL AND METHODS 84 patients with diagnosed MS during remission or with other demyelinating disease of the CNS and 70 healthy controls were enrolled in the study. Tears were collected without any stimulation and stored till the day of assessment. The concentration of selected cytokines was measured by the Bio-Plex Pro Human cytokine screening panel 27 cytokines assay according to the manufacturer's instructions. Statistical analysis was performed with Statistica 13. RESULTS IL-1b level was significantly lower in the study group compared to the control group [3,6 vs 8.71, p < 0.001]. The same pattern was observed for IL-6 [3,1 vs 5.26, p = 0.027] and IL-10 [1,7 vs 10.92, p < 0.001] (Table 1). In the study group, IL-1RA (p = 0.015), IL-5 (p = 0.04), IL-9 (p = 0.014), and IL-15 (p = 0.037) showed significant correlations with age. In the total sample, IL-1Ra (p = 0.016) and IFN-g (p = 0.041) were significantly correlated with age, while in the control group, IL-8 (p = 0.09), MIP-1a (p = 0.009), and RANTES (p = 0.031) showed significant correlations. CONCLUSIONS Our results show that MS and other demyelination diseases lead to decrease in the overall level of cytokines in tears. Further research is needed to determine the role of tear fluid in the assessment of demyelinating disorders like MS.
Collapse
Affiliation(s)
- Jowita Adamczyk-Zostawa
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Adam Wylęgała
- Department of Pathophysiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Martyna Lis
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jacek Zostawa
- Department of Urology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Rafał Fiolka
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Edward Wylęgała
- Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Maulvi FA, Desai DT, Kalaiselvan P, Dumpati S, Kuppusamy R, Masoudi S, Shah DO, Willcox MDP. Lipid-based eye drop formulations for the management of evaporative dry eyes. Cont Lens Anterior Eye 2024; 47:102154. [PMID: 38523013 DOI: 10.1016/j.clae.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Dry eye disease is a progressive prevalent ocular surface disorder that arises from various factors and is characterized by insufficient quality and/or quantity of tears. The underlying pathophysiology is intricate and can progress to chronic, difficult-to-treat conditions. Multiple strategies and therapeutic approaches are utilized in its management that target one or more etiopathological components of dry eyes, which may include aqueous tear deficiency or evaporative dry eyes. The primary focus of this paper is on treatment alternatives that utilize lipids for the treatment of evaporative dry eyes. This may arise from either abnormal lipid production or inadequate lipid spreading caused by meibomian gland dysfunction. The hypothesis behind the development of these lipid-containing eye drops is that if they can imitate the lipid layer, they may be able to help in the management of the signs and symptoms of evaporative dry eyes. The lipids used in commercial formulations for dry eyes are mineral oil, castor oil, phospholipids, omega-3 fatty acid, and medium-chain triglycerides. The literature suggests the potential of lipid-containing eye drops to alleviate some of the signs and symptoms and enhance the quality of life for individuals suffering from evaporative dry eyes.
Collapse
Affiliation(s)
- Furqan A Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia; Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India.
| | - Ditixa T Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat 394350, India
| | - Parthasarathi Kalaiselvan
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Srikanth Dumpati
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rajesh Kuppusamy
- Faculty of Science, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Simin Masoudi
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Barton A, Faal N, Ramadhani A, Derrick T, Mafuru E, Mtuy T, Massae P, Malissa A, Joof H, Makalo P, Sillah A, Harte A, Pickering H, Bailey R, Mabey DCW, Burton MJ, Holland MJ. Longitudinal changes in tear cytokines and antimicrobial proteins in trachomatous disease. PLoS Negl Trop Dis 2023; 17:e0011689. [PMID: 37862368 PMCID: PMC10619880 DOI: 10.1371/journal.pntd.0011689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 11/01/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Trachoma is a neglected tropical disease caused by ocular infection with Chlamydia trachomatis, where repeated infections and chronic inflammation can ultimately result in scarring, trichiasis and blindness. While scarring is thought to be mediated by a dysregulated immune response, the kinetics of cytokines and antimicrobial proteins in the tear film have not yet been characterised. METHODOLOGY Pooled tears from a Gambian cohort and Tanzanian cohort were semi-quantitatively screened using a Proteome Profiler Array to identify cytokines differentially regulated in disease. Based on this screen and previous literature, ten cytokines (CXCL1, IP-10, IFN-γ, IL-1β, IL-8, IL-10, IL-12 p40, IL-1RA, IL-1α and PDGF), lysozyme and lactoferrin were assayed in the Tanzanian cohort by multiplex cytokine assay and ELISA. Finally, CXCL1, IP-10, IL-8, lysozyme and lactoferrin were longitudinally profiled in the Gambian cohort by multiplex cytokine assay and ELISA. RESULTS In the Tanzanian cohort, IL-8 was significantly increased in those with clinically inapparent infection (p = 0.0086). Lysozyme, IL-10 and chemokines CXCL1 and IL-8 were increased in scarring (p = 0.016, 0.046, 0.016, and 0.037). CXCL1, IP-10, IL-8, lysozyme and lactoferrin were longitudinally profiled over the course of infection in a Gambian cohort study, with evidence of an inflammatory response both before, during and after detectable infection. CXCL1, IL-8 and IP-10 were higher in the second infection episode relative to the first (p = 0.0012, 0.044, and 0.04). CONCLUSIONS These findings suggest that the ocular immune system responds prior to and continues to respond after detectable C. trachomatis infection, possibly due to a positive feedback loop inducing immune activation. Levels of CXC chemokines in successive infection episodes were increased, which may offer an explanation as to why repeated infections are a risk factor for scarring.
Collapse
Affiliation(s)
- Amber Barton
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Nkoyo Faal
- Medical Research Council Gambia at LSHTM, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Athumani Ramadhani
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Ophthalmology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Tamsyn Derrick
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Elias Mafuru
- Department of Ophthalmology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Tara Mtuy
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Ophthalmology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Patrick Massae
- Department of Ophthalmology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Aiweda Malissa
- Department of Ophthalmology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Hassan Joof
- Medical Research Council Gambia at LSHTM, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Pateh Makalo
- Medical Research Council Gambia at LSHTM, Atlantic Boulevard, Fajara, Banjul, The Gambia
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health, Banjul, The Gambia
| | - Anna Harte
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Harry Pickering
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Robin Bailey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - David CW Mabey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Matthew J. Burton
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Martin J. Holland
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
7
|
Liu Y, Li J, Xiao S, Liu Y, Bai M, Gong L, Zhao J, Chen D. Revolutionizing Precision Medicine: Exploring Wearable Sensors for Therapeutic Drug Monitoring and Personalized Therapy. BIOSENSORS 2023; 13:726. [PMID: 37504123 PMCID: PMC10377150 DOI: 10.3390/bios13070726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Precision medicine, particularly therapeutic drug monitoring (TDM), is essential for optimizing drug dosage and minimizing toxicity. However, current TDM methods have limitations, including the need for skilled operators, patient discomfort, and the inability to monitor dynamic drug level changes. In recent years, wearable sensors have emerged as a promising solution for drug monitoring. These sensors offer real-time and continuous measurement of drug concentrations in biofluids, enabling personalized medicine and reducing the risk of toxicity. This review provides an overview of drugs detectable by wearable sensors and explores biosensing technologies that can enable drug monitoring in the future. It presents a comparative analysis of multiple biosensing technologies and evaluates their strengths and limitations for integration into wearable detection systems. The promising capabilities of wearable sensors for real-time and continuous drug monitoring offer revolutionary advancements in diagnostic tools, supporting personalized medicine and optimal therapeutic effects. Wearable sensors are poised to become essential components of healthcare systems, catering to the diverse needs of patients and reducing healthcare costs.
Collapse
Affiliation(s)
- Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shenghao Xiao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanhui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingxia Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixiu Gong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqian Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
8
|
Safari F, Kehelpannala C, Safarchi A, Batarseh AM, Vafaee F. Biomarker Reproducibility Challenge: A Review of Non-Nucleotide Biomarker Discovery Protocols from Body Fluids in Breast Cancer Diagnosis. Cancers (Basel) 2023; 15:2780. [PMID: 37345117 DOI: 10.3390/cancers15102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Breast cancer has now become the most commonly diagnosed cancer, accounting for one in eight cancer diagnoses worldwide. Non-invasive diagnostic biomarkers and associated tests are superlative candidates to complement or improve current approaches for screening, early diagnosis, or prognosis of breast cancer. Biomarkers detected from body fluids such as blood (serum/plasma), urine, saliva, nipple aspiration fluid, and tears can detect breast cancer at its early stages in a minimally invasive way. The advancements in high-throughput molecular profiling (omics) technologies have opened an unprecedented opportunity for unbiased biomarker detection. However, the irreproducibility of biomarkers and discrepancies of reported markers have remained a major roadblock to clinical implementation, demanding the investigation of contributing factors and the development of standardised biomarker discovery pipelines. A typical biomarker discovery workflow includes pre-analytical, analytical, and post-analytical phases, from sample collection to model development. Variations introduced during these steps impact the data quality and the reproducibility of the findings. Here, we present a comprehensive review of methodological variations in biomarker discovery studies in breast cancer, with a focus on non-nucleotide biomarkers (i.e., proteins, lipids, and metabolites), highlighting the pre-analytical to post-analytical variables, which may affect the accurate identification of biomarkers from body fluids.
Collapse
Affiliation(s)
- Fatemeh Safari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Cheka Kehelpannala
- BCAL Diagnostics Ltd., Suite 506, 50 Clarence St, Sydney, NSW 2000, Australia
- BCAL Dx, The University of Sydney, Sydney Knowledge Hub, Merewether Building, Sydney, NSW 2006, Australia
| | - Azadeh Safarchi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- Microbiomes for One Systems Health, Health and Biosecurity, CSIRO, Westmead, NSW 2145, Australia
| | - Amani M Batarseh
- BCAL Diagnostics Ltd., Suite 506, 50 Clarence St, Sydney, NSW 2000, Australia
- BCAL Dx, The University of Sydney, Sydney Knowledge Hub, Merewether Building, Sydney, NSW 2006, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- UNSW Data Science Hub (uDASH), University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
- OmniOmics.ai Pty Ltd., Sydney, NSW 2035, Australia
| |
Collapse
|
9
|
Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear Biomarkers in Alzheimer's and Parkinson's Diseases, and Multiple Sclerosis: Implications for Diagnosis (Systematic Review). Int J Mol Sci 2022; 23:10123. [PMID: 36077520 PMCID: PMC9456033 DOI: 10.3390/ijms231710123] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015-2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Angelika Król-Grzymała
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | | | - Ewa Fiedorowicz
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
10
|
Martins TGDS, Sipahi AM, Mendes MA, Fowler SB, Schor P. Metaboloma use in ophthalmology. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Asiedu K. Candidate Molecular Compounds as Potential Indicators for Meibomian Gland Dysfunction. Front Med (Lausanne) 2022; 9:873538. [PMID: 35685417 PMCID: PMC9170961 DOI: 10.3389/fmed.2022.873538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease throughout the world. Studies have shown that several molecules in meibum, including but not limited to interleukins, amino acids, cadherins, eicosanoids, carbohydrates, and proteins, are altered in meibomian gland dysfunction compared with healthy normal controls. Some of these molecules such as antileukoproteinase, phospholipase A2, and lactoperoxidase also show differences in concentrations in tears between meibomian gland dysfunction and dry eye disease, further boosting hopes as candidate biomarkers. MGD is a complex condition, making it difficult to distinguish patients using single biomarkers. Therefore, multiple biomarkers forming a multiplex panel may be required. This review aims to describe molecules comprising lipids, proteins, and carbohydrates with the potential of serving various capacities as monitoring, predictive, diagnostic, and risk biomarkers for meibomian gland dysfunction.
Collapse
|
12
|
Daily A, Ravishankar P, Harms S, Klimberg VS. Using tears as a non-invasive source for early detection of breast cancer. PLoS One 2022; 17:e0267676. [PMID: 35471994 PMCID: PMC9041847 DOI: 10.1371/journal.pone.0267676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The changing expression levels of ocular proteins in response to systemic disease has been well established in literature. In this study, we examined the ocular proteome to identify protein biomarkers with altered expression levels in women diagnosed with breast cancer. Tear samples were collected from 273 participants using Schirmer strip collection methods. Following protein elution, proteome wide trypsin digestion with Liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to identify potential protein biomarkers with altered expression levels in breast cancer patients. Selected biomarkers were further validated by enzyme linked immunosorbent assay (ELISA). A total of 102 individual tear samples (51 breast cancer, 51 control) were analyzed by LC-MS/MS which identified 301 proteins. Spectral intensities between the groups were compared and 14 significant proteins (p-value <0.05) were identified as potential biomarkers in breast cancer patients. Three biomarkers, S100A8 (p-value = 0.0069, 7.8-fold increase), S100A9 (p-value = 0.0048, 10.2-fold increase), and Galectin-3 binding protein (p-value = 0.01, 3.0-fold increase) with an increased expression in breast cancer patients were selected for validation using ELISA. Validation by ELISA was conducted using 171 individual tear samples (75 Breast Cancer and 96 Control). Similar to the observed LC-MS/MS results, S100A8 (p-value <0.0001) and S100A9 (p-value <0.0001) showed significantly higher expression in breast cancer patients. However, galectin-3 binding protein had increased expression in the control group. Our results provide further support for using tear proteins to detect non-ocular systemic diseases such as breast cancer. Our work provides crucial details to support the continued evaluation of tear samples in the screening and diagnosis of breast cancer and paves the way for future evaluation of the tear proteome for screening and diagnosis of systemic diseases.
Collapse
Affiliation(s)
- Anna Daily
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- * E-mail:
| | | | - Steve Harms
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- The Breast Center-Medical Associates of Northwest Arkansas, Fayetteville, Arkansas, United States of America
| | - V. Suzanne Klimberg
- Namida Lab Inc, Fayetteville, Arkansas, United States of America
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States of America
- Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
13
|
Metabolomic Analysis of Serum and Tear Samples from Patients with Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23094534. [PMID: 35562924 PMCID: PMC9105607 DOI: 10.3390/ijms23094534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.
Collapse
|
14
|
Wu W, Wang L, Yang Y, Du W, Ji W, Fang Z, Hou X, Wu Q, Zhang C, Li L. Optical flexible biosensors: From detection principles to biomedical applications. Biosens Bioelectron 2022; 210:114328. [DOI: 10.1016/j.bios.2022.114328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 01/30/2023]
|
15
|
Reddy VS, Agarwal B, Ye Z, Zhang C, Roy K, Chinnappan A, Narayan RJ, Ramakrishna S, Ghosh R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1082. [PMID: 35407200 PMCID: PMC9000490 DOI: 10.3390/nano12071082] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Biosensors have potentially revolutionized the biomedical field. Their portability, cost-effectiveness, and ease of operation have made the market for these biosensors to grow rapidly. Diabetes mellitus is the condition of having high glucose content in the body, and it has become one of the very common conditions that is leading to deaths worldwide. Although it still has no cure or prevention, if monitored and treated with appropriate medication, the complications can be hindered and mitigated. Glucose content in the body can be detected using various biological fluids, namely blood, sweat, urine, interstitial fluids, tears, breath, and saliva. In the past decade, there has been an influx of potential biosensor technologies for continuous glucose level estimation. This literature review provides a comprehensive update on the recent advances in the field of biofluid-based sensors for glucose level detection in terms of methods, methodology and materials used.
Collapse
Affiliation(s)
- Vundrala Sumedha Reddy
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Bhawana Agarwal
- Department of Chemical Engineering, BITS Pilani-Hyderabad Campus, Hyderabad 500078, India;
| | - Zhen Ye
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Chuanqi Zhang
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Kallol Roy
- Centre for Advanced 2D Materials, National University of Singapore, Singapore 117546, Singapore;
| | - Amutha Chinnappan
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Seeram Ramakrishna
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| | - Rituparna Ghosh
- Centre for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore; (V.S.R.); (Z.Y.); (C.Z.); (A.C.)
| |
Collapse
|
16
|
Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 2022; 23:3217. [PMID: 35328638 PMCID: PMC8948775 DOI: 10.3390/ijms23063217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer spheroids are in vitro 3D models that became crucial in nanomaterials science thanks to the possibility of performing high throughput screening of nanoparticles and combined nanoparticle-drug therapies on in vitro models. However, most of the current spheroid analysis methods involve manual steps. This is a time-consuming process and is extremely liable to the variability of individual operators. For this reason, rapid, user-friendly, ready-to-use, high-throughput image analysis software is necessary. In this work, we report the INSIDIA 2.0 macro, which offers researchers high-throughput and high content quantitative analysis of in vitro 3D cancer cell spheroids and allows advanced parametrization of the expanding and invading cancer cellular mass. INSIDIA has been implemented to provide in-depth morphologic analysis and has been used for the analysis of the effect of graphene quantum dots photothermal therapy on glioblastoma (U87) and pancreatic cancer (PANC-1) spheroids. Thanks to INSIDIA 2.0 analysis, two types of effects have been observed: In U87 spheroids, death is accompanied by a decrease in area of the entire spheroid, with a decrease in entropy due to the generation of a high uniform density spheroid core. On the other hand, PANC-1 spheroids' death caused by nanoparticle photothermal disruption is accompanied with an overall increase in area and entropy due to the progressive loss of integrity and increase in variability of spheroid texture. We have summarized these effects in a quantitative parameter of spheroid disruption demonstrating that INSIDIA 2.0 multiparametric analysis can be used to quantify cell death in a non-invasive, fast, and high-throughput fashion.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Enrico Rosa
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Ginevra Friggeri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
| | - Lorena Di Pietro
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Chiara Moriconi
- Theolytics, The Sherard Building, Edmund Halley Road, Oxford Science Park, Oxford OX4 4DQ, UK; or
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (G.P.); (E.R.); (G.F.); (G.C.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy; (L.D.P.); (M.B.); (O.P.)
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
17
|
Tears as the Next Diagnostic Biofluid: A Comparative Study between Ocular Fluid and Blood. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The need to easily isolate small molecular weight proteins and genomic fragments has prompted a search for an alternative biofluid to blood that has traversed sweat, urine, saliva, and even breath. In this study, both the genomic and proteomic profiles of tears and blood are evaluated to determine the similarity and differences between the two biofluids. Both fluids were tested utilizing microarray panels for identifying proteins as well as isolation of microRNA for sequencing. As anticipated, most (118) of the proteins detected in plasma were also detected in the tear samples, with tear samples also showing 34 unique proteins that were not found in the plasma. Over 400 microRNAs were isolated in both samples with 250 microRNA fragments commonly expressed in both tears and blood. This preliminary analysis, along with simplicity of collection and processing, lends credence to further investigate tears as an alternative biofluid to blood.
Collapse
|
18
|
Kaufmann Y, Byrum SD, Acott AA, Siegel ER, Washam CL, Mancino AT. Proteomic profiling of tear fluid as a promising non-invasive screening test for colon cancer. Am J Surg 2022; 224:19-24. [DOI: 10.1016/j.amjsurg.2022.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 01/03/2023]
|
19
|
Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022; 197:113761. [PMID: 34800926 DOI: 10.1016/j.bios.2021.113761] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|
20
|
Brunmair J, Bileck A, Schmidl D, Hagn G, Meier-Menches SM, Hommer N, Schlatter A, Gerner C, Garhöfer G. Metabolic phenotyping of tear fluid as a prognostic tool for personalised medicine exemplified by T2DM patients. EPMA J 2022; 13:107-123. [PMID: 35265228 PMCID: PMC8897537 DOI: 10.1007/s13167-022-00272-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
Abstract
Background/aims Concerning healthcare approaches, a paradigm change from reactive medicine to predictive approaches, targeted prevention, and personalisation of medical services is highly desirable. This raises demand for biomarker signatures that support the prediction and diagnosis of diseases, as well as monitoring strategies regarding therapeutic efficacy and supporting individualised treatments. New methodological developments should preferably rely on non-invasively sampled biofluids like sweat and tears in order to provide optimal compliance, reduce costs, and ensure availability of the biomaterial. Here, we have thus investigated the metabolic composition of human tears in comparison to finger sweat in order to find biofluid-specific marker molecules derived from distinct secretory glands. The comprehensive investigation of numerous biofluids may lead to the identification of novel biomarker signatures. Moreover, tear fluid analysis may not only provide insight into eye pathologies but may also be relevant for the prediction and monitoring of disease progression and/ or treatment of systemic disorders such as type 2 diabetes mellitus. Methods Sweat and tear fluid were sampled from 20 healthy volunteers using filter paper and commercially available Schirmer strips, respectively. Finger sweat analysis has already been successfully established in our laboratory. In this study, we set up and evaluated methods for tear fluid extraction and analysis using high-resolution mass spectrometry hyphenated with liquid chromatography, using optimised gradients each for metabolites and eicosanoids. Sweat and tears were systematically compared using statistical analysis. As second approach, we performed a clinical pilot study with 8 diabetic patients and compared them to 19 healthy subjects. Results Tear fluid was found to be a rich source for metabolic phenotyping. Remarkably, several molecules previously identified by us in sweat were found significantly enriched in tear fluid, including creatine or taurine. Furthermore, other metabolites such as kahweol and various eicosanoids were exclusively detectable in tears, demonstrating the orthogonal power for biofluid analysis in order to gain information on individual health states. The clinical pilot study revealed that many endogenous metabolites that have previously been linked to type 2 diabetes such as carnitine, tyrosine, uric acid, and valine were indeed found significantly up-regulated in tears of diabetic patients. Nicotinic acid and taurine were elevated in the diabetic cohort as well and may represent new biomarkers for diabetes specifically identified in tear fluid. Additionally, systemic medications, like metformin, bisoprolol, and gabapentin, were readily detectable in tears of patients. Conclusions The high number of identified marker molecules found in tear fluid apparently supports disease development prediction, developing preventive approaches as well as tailoring individual patients’ treatments and monitoring treatment efficacy. Tear fluid analysis may also support pharmacokinetic studies and patient compliance control. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-022-00272-7.
Collapse
Affiliation(s)
- Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nikolaus Hommer
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andreas Schlatter
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- VIROS - Vienna Institute for Research in Ocular Surgery - Karl Landsteiner Institute, Hanusch Hospital, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University and Medical University Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
21
|
Khanna RK, Catanese S, Emond P, Corcia P, Blasco H, Pisella PJ. Metabolomics and lipidomics approaches in human tears: A systematic review. Surv Ophthalmol 2022; 67:1229-1243. [PMID: 35093405 DOI: 10.1016/j.survophthal.2022.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
The human tear film is at the interface between the ocular surface and the external environment. Although investigation has been hindered by its small volume, improvements in preanalytical and analytical methods have allowed the omics approach to represent an innovative biomarker search strategy. There is still a significant lack of standardization, representing a barrier for performing between-studies comparisons and transferring experimental findings into clinical use and trials. We summarize the preanalytical and analytical procedures, describe the biomarkers that can be found using the metabo-lipidomics approach, and provide our expert opinion for omics investigations in human tears. For this systematic review of 38 studies, we searched PubMed by combining Boolean operators with the following keywords: tear, metabolomic, lipidomic, -omics. The human tear metabo-lipidome has been well-characterized in normal individuals using high-resolution liquid chromatography coupled with mass spectrometry. Lipid and metabolite profiles were influenced by ocular (e.g. dry eye disorders; Meibomian gland dysfunction; contact lens wear; glaucoma; keratoconus; pterygium) and systemic conditions (e.g. multiple sclerosis). Investigating the tear metabo-lipidome could improve our understanding of the pathogenesis of both ocular and systemic diseases, but also provide diagnostic as well as prognostic biomarkers.
Collapse
Affiliation(s)
- Raoul K Khanna
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; UMR 1253, iBrain, Tours, Centre-Val de Loire, France
| | - Sophie Catanese
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; UMR 1253, iBrain, Tours, Centre-Val de Loire, France
| | - Patrick Emond
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; CHRU Tours, Nuclear medicine in vitro department, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; Amyotrophic lateral sclerosis Centre, Department of Neurology, CHRU Tours, France
| | - Hélène Blasco
- UMR 1253, iBrain, Tours, Centre-Val de Loire, France; CHRU Tours, Biochemistry and molecular biology department, Tours, France
| | - Pierre-Jean Pisella
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France.
| |
Collapse
|
22
|
Pieragostino D, Lanzini M, Cicalini I, Cufaro MC, Damiani V, Mastropasqua L, De Laurenzi V, Nubile M, Lanuti P, Bologna G, Agnifili L, Del Boccio P. Tear proteomics reveals the molecular basis of the efficacy of human recombinant nerve growth factor treatment for Neurotrophic Keratopathy. Sci Rep 2022; 12:1229. [PMID: 35075190 PMCID: PMC8786855 DOI: 10.1038/s41598-022-05229-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
Neurotrophic Keratopathy (NK), classified as an orphan disease (ORPHA137596), is a rare degenerative corneal disease characterized by epithelial instability and decreased corneal sensitivity caused by the damage to the corneal nerves. The administration of human recombinant nerve growth factor (rhNGF) eye drops, as a licensed-in-Europe specific medication for treatment of moderate and severe NK, has added promising perspectives to the management of this disorder by providing a valid alternative to the neurotization surgery. However, few studies have been conducted to the molecular mechanism underlying the response to the treatment. Here, we carried out tears proteomics to highlight the protein expression during pharmacological treatment of NK (Data are available via ProteomeXchange with identifier PXD025408).Our data emphasized a proteome modulation during rhNGF treatment related to an increase in DNA synthesis, an activation of both BDNF signal and IL6 receptor. Furthermore, the amount of neuronal Extracellular Vesicles EVs (CD171+) correlated with the EVs carrying IL6R (CD126+) together associated to the inflammatory EVs (CD45+) in tears. Such scenario determined drug response, confirmed by an in vivo confocal microscopy analysis, showing an increase in length, density and number of nerve fiber branches during treatment. In summary, rhNGF treatment seems to determine an inflammatory micro-environment, mediated by functionalized EVs, defining the drug response by stimulating protein synthesis and fiber regeneration.
Collapse
Affiliation(s)
- Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy. .,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Manuela Lanzini
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Verena Damiani
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Leonardo Mastropasqua
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mario Nubile
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
23
|
Yu H, Zeng W, Zhao G, Hong J, Feng Y. Response of tear cytokines following intense pulsed light combined with meibomian gland expression for treating meibomian gland dysfunction-related dry eye. Front Endocrinol (Lausanne) 2022; 13:973962. [PMID: 36187125 PMCID: PMC9520485 DOI: 10.3389/fendo.2022.973962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This study compared the changes in tear inflammatory cytokine levels after intense pulsed light (IPL) combined with meibomian gland expression (MGX) (IPL group) and instant warm compresses combined with MGX (physiotherapy group) as treatments for meibomian gland dysfunction (MGD)-related dry eye disease (DED) to explore their similarities and differences in therapeutic mechanisms. METHODS This study was a post-hoc analysis of a randomized controlled trial. Thirteen patients with MGD-related DED were enrolled in each group and received three treatments correspondingly with 3-week intervals. The levels of 20 tear cytokines, namely, TNF-α, IL-6, MMP-9, CXCL8/IL-8, CXCL10/IP-10, IL-10, EGF, IL-6R, IL-1β, IFN-γ, lactoferrin, Fas ligand, IL-17A, LT-α, S100A9, LCN2/NGAL, IL-13, IL-12/IL-23p40, Fas, and CCL11/Eotaxin, were measured at baseline, before the second and third treatments, and 3 weeks after the third treatment. The primary outcome was the difference in cytokine levels between baseline and the last measurement, and the trends were analyzed at each measurement point. RESULTS At the last measurement, a significant decrease was observed in all tear cytokines for both IPL and physiotherapy groups compared with baseline. The IPL group showed greater reductions in IL-6, IL-6R, IL-1β, IL-13, and CCL11/Eotaxin than the physiotherapy group. TNF-α, CXCL8/IL-8, CXCL10/IP-10, IL-10, EGF, IL-1β, IFN-γ, and Lipocalin-2/NGAL levels continued to decrease with treatment time. Important interactions were found in the changes of IL-6 and IL-13 levels, where the levels first decreased and then slightly increased in the physiotherapy group after treatment, while they continued to decrease in the IPL group. CONCLUSIONS The mechanisms of IPL and physiotherapy in treating MGD-related DED were both associated with reducing inflammation, and the superiority of IPL could be attributed to its better inhibitory effect on inflammatory cytokines like IL-6. In addition, several cytokines were on a downward trend during treatment, suggesting that the vicious cycle of DED was suppressed.
Collapse
Affiliation(s)
| | | | | | - Jing Hong
- *Correspondence: Jing Hong, ; Yun Feng,
| | - Yun Feng
- *Correspondence: Jing Hong, ; Yun Feng,
| |
Collapse
|
24
|
Cystatin C and cystatin SN as possible soluble tumor markers in malignant uveal melanoma. Radiol Oncol 2021; 56:83-91. [PMID: 34957724 PMCID: PMC8884861 DOI: 10.2478/raon-2021-0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022] Open
Abstract
Background The aim of the study was to determine the concentration of endogenous cystatin C and cystatin SN, as potential tumor biomarkers, in the serum and biological fluids of the eye in both healthy controls and patients with uveal melanoma. Patients and methods The concentration of both cystatins was determined in the intraocular fluid (IOF), tear fluid, and serum of patients with uveal melanoma and compared to baseline measurements in IOF, tears, serum, cerebral spinal fluid, saliva and urine of healthy controls. Results The concentration of cystatin C in all the biological matrices obtained from healthy controls significantly exceeded the concentration of cystatin SN and was independent of gender. Cystatin C concentrations in the tear fluid of patients with uveal melanoma (both the eye with the malignancy, as well as the contralateral, non-affected eye), were significantly greater than cystatin C concentrations in the tear fluid of healthy controls and was independent of tumor size. The concentration of cystatin SN in IOF of patients with uveal melanoma was significantly less than the corresponding concentration of cystatin SN in healthy controls. Conclusions The ratio of cystatins (CysC:CysSN) in both the serum and tear fluid, as well as the concentration of cystatin SN in IOF, would appear to strongly suggest the presence of uveal melanoma. It is further suggested that multiple diagnostic criteria be utilized if a patient is suspected of having uveal melanoma, such as determination of the cystatin C and cystatin SN concentrations in serum, tears, and IOF, ocular fundus and ultrasound imaging, and biopsy with histopathological evaluation.
Collapse
|
25
|
Nandi SK, Singh D, Upadhay J, Gupta N, Dhiman N, Mittal SK, Mahindroo N. Identification of tear-based protein and non-protein biomarkers: Its application in diagnosis of human diseases using biosensors. Int J Biol Macromol 2021; 193:838-846. [PMID: 34728300 DOI: 10.1016/j.ijbiomac.2021.10.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Discovery of robust, selective and specific biomarkers are important for early diagnosis and monitor progression of human diseases. Eye being a common target for several human diseases, vision impediment and complications are often associated with systemic and ocular diseases. Tears are bodily fluids that are closest to eye and are rich in protein content and other metabolites. As a biomarker repository, it advantages over other bodily fluids due to the ability to collect it non-invasively. In this review, we highlight some recent advancements in identification of tear-based protein biomarkers like lacryglobin and cystatin SA for cancer; interleukin-6 and immunoglobulin-A antibody for COVID-19; tau, amyloid-β-42 and lysozyme-C for Alzheimer's disease; peroxiredoxin-6 and α-synuclein for Parkinson's disease; kallikrein, angiotensin converting enzyme and lipocalin-1 for glaucoma; lactotransferrin and lipophilin-A for diabetic retinopathy and zinc-alpha-2 glycoprotein-1, prolactin and calcium binding protein-A4 for eye thyroid disease. We also discussed identification of tear based non-protein biomarkers like lysophospholipids and acetylcarnitine for glaucoma, 8-hydroxy-2'-deoxyquanosine and malondialdehyde for thyroid eye disease. We elucidate technological advancement in developing tear-based biosensors for diagnosis and monitoring diseases such as diabetes, diabetic retinopathy and Alzheimer's disease. Altogether, the study of tears as potential biomarkers for early diagnosis of human diseases is promising.
Collapse
Affiliation(s)
- Sandip K Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Deepanmol Singh
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Jyoti Upadhay
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Neeti Gupta
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Nayan Dhiman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Sanjeev Kumar Mittal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Neeraj Mahindroo
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
26
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
27
|
Kalasin S, Sangnuang P, Surareungchai W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Anal Chem 2021; 93:10661-10671. [PMID: 34288659 DOI: 10.1021/acs.analchem.1c02085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serum creatinine level is commonly recognized as a measure of glomerular filtration rate (GFR) and is defined as an indicator of overall renal health. A typical procedure in determining kidney performance is venipuncture to obtain serum creatinine in the blood, which requires a skilled technician to perform on a laboratory basis and multiple clinical steps to acquire a meaningful result. Recently, wearable sensors have undergone immense development, especially for noninvasive health monitoring without a need for a blood sample. This article addresses a fiber-based sensing device selective for tear creatinine, which was fabricated using a copper-containing benzenedicarboxylate (BDC) metal-organic framework (MOF) bound with graphene oxide-Cu(II) and hybridized with Cu2O nanoparticles (NPs). Density functional theory (DFT) was employed to study the binding energies of creatinine toward the ternary hybrid materials that irreversibly occurred at pendant copper ions attached with the BDC segments. Electrochemical impedance spectroscopy (EIS) was utilized to probe the unique charge-transfer resistances of the derived sensing materials. The single-use modified sensor achieved 95.1% selectivity efficiency toward the determination of tear creatinine contents from 1.6 to 2400 μM of 10 repeated measurements in the presence of interfering species of dopamine, urea, and uric acid. The machine learning with the supervised training estimated 83.3% algorithm accuracy to distinguish among low, moderate, and high normal serum creatinine by evaluating tear creatinine. With only one step of collecting tears, this lab-on-eyeglasses with disposable hybrid textile electrodes selective for tear creatinine may be greatly beneficial for point-of-care (POC) kidney monitoring for vulnerable populations remotely, especially during pandemics.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology, Thonburi 10140, Thailand
| | - Pantawan Sangnuang
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand.,School of Bioresource and Technology, King Mongkut's University of Technology, Thonburi 10150, Thailand
| |
Collapse
|
28
|
Gambhir SS, Ge TJ, Vermesh O, Spitler R, Gold GE. Continuous health monitoring: An opportunity for precision health. Sci Transl Med 2021; 13:13/597/eabe5383. [PMID: 34108250 DOI: 10.1126/scitranslmed.abe5383] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/19/2021] [Indexed: 01/15/2023]
Abstract
Continuous health monitoring and integrated diagnostic devices, worn on the body and used in the home, will help to identify and prevent early manifestations of disease. However, challenges lie ahead in validating new health monitoring technologies and in optimizing data analytics to extract actionable conclusions from continuously obtained health data.
Collapse
Affiliation(s)
- Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA.,Department of Bioengineering and Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.,Precision Health and Integrated Diagnostics Center, Stanford University, Stanford, CA 94305, USA
| | - T Jessie Ge
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ophir Vermesh
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ryan Spitler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA 94304, USA.,Precision Health and Integrated Diagnostics Center, Stanford University, Stanford, CA 94305, USA
| | - Garry E Gold
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.,Precision Health and Integrated Diagnostics Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2021; 43:493-498. [PMID: 34031798 DOI: 10.1007/s10072-021-05338-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate ciliary neurotrophic factor (CNTF) level in blood serum (BS) and lacrimal fluid (LF) of people with epilepsy (PWE). METHODS A case-control study of 72 consecutive patients with focal epilepsy (cases, epilepsy group) and 60 age- and gender-matched healthy volunteers (controls) was performed. Based on comorbid depression, two subgroups of PWE were formed. CNTF level was measured by an enzyme-linked immunosorbent assay (ELISA) in the BS and LF. For measurements of low CNTF levels in the BS, the methodology previously improved by the authors was applied. RESULTS As compared to controls, CNTF level (pg/mL) in PWE was increased both in the BS (7.0±2.9 vs. 3.7±2.0, P<0.000) and in LF (34.0±8.0 vs. 30.6±4.8, P=0.005). No significant correlation was found between CNTF level in the BS and LF either in PWE or in controls. No impact of comorbid depression or any demographic or clinical parameters studied on CNTF level in the BS or LF of PWE could be detected. CONCLUSIONS In patients with focal epilepsy, CNTF level is increased both in the BS and LF, though without correlation between them. No association of CNTF levels with age, gender, or clinical parameters, as well as depression occurrence, was found. High CNTF levels in the BS and LF could be considered as non-invasive biomarkers of focal epilepsy.
Collapse
Affiliation(s)
- Alexander Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, 59-a Beskudnikovsky Blvd., Moscow, Russian Federation, 127486.
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Tatiana Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Flora Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Anna Gudkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Natalia Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
30
|
Sebbag L, Mochel JP. An eye on the dog as the scientist's best friend for translational research in ophthalmology: Focus on the ocular surface. Med Res Rev 2020; 40:2566-2604. [PMID: 32735080 DOI: 10.1002/med.21716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Preclinical animal studies provide valuable opportunities to better understand human diseases and contribute to major advances in medicine. This review provides a comprehensive overview of ocular parameters in humans and selected animals, with a focus on the ocular surface, detailing species differences in ocular surface anatomy, physiology, tear film dynamics and tear film composition. We describe major pitfalls that tremendously limit the translational potential of traditional laboratory animals (i.e., rabbits, mice, and rats) in ophthalmic research, and highlight the benefits of integrating companion dogs with clinical analogues to human diseases into preclinical pharmacology studies. This One Health approach can help accelerate and improve the framework in which ophthalmic research is translated to the human clinic. Studies can be conducted in canine subjects with naturally occurring or noninvasively induced ocular surface disorders (e.g., dry eye disease, conjunctivitis), reviewed herein, and tear fluid can be easily retrieved from canine eyes for various bioanalytical purposes. In this review, we discuss common tear collection methods, including capillary tubes and Schirmer tear strips, and provide guidelines for tear sampling and extraction to improve the reliability of analyte quantification (drugs, proteins, others).
Collapse
Affiliation(s)
- Lionel Sebbag
- Department of Biomedical Sciences, SMART Pharmacology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jonathan P Mochel
- Department of Biomedical Sciences, SMART Pharmacology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
Benítez Del Castillo JM, Pinazo-Duran MD, Sanz-González SM, Muñoz-Hernández AM, Garcia-Medina JJ, Zanón-Moreno V. Tear 1H Nuclear Magnetic Resonance-Based Metabolomics Application to the Molecular Diagnosis of Aqueous Tear Deficiency and Meibomian Gland Dysfunction. Ophthalmic Res 2020; 64:297-309. [PMID: 32674101 DOI: 10.1159/000510211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/11/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Meibomian gland dysfunction (MGD) is a major cause of signs and symptoms related to dry eyes (DE) and eyelid inflammation. We investigated the composition of human tears by metabolomic approaches in patients with aqueous tear deficiency and MGD. METHODS Participants in this prospective, case-control pilot study were split into patients with aqueous tear deficiency and MGD (DE-MGD [n = 15]) and healthy controls (CG; n = 20). Personal interviews, ocular surface disease index (OSDI), and ophthalmic examinations were performed. Reflex tears collected by capillarity were processed to 1H nuclear magnetic resonance (NMR) spectroscopy and quantitative data analysis to identify molecules by spectra comparison to library entries of purified standards and/or unknown entities. Statistical analyses were made by the SPSS 22.0 program. RESULTS Chemometric analysis and 1H NMR spectra comparison revealed the presence of 60 metabolites in tears. Differentiating features were evident in the NMR spectra of the 2 clinical groups, characterized by significant upregulation of phenylalanine, glycerol, and isoleucine, and downregulation of glycoproteins, leucine, and -CH3 lipids, as compared to the CG. The 1H NMR metabolomic analyses of human tears confirmed the applicability of this platform with high predictive accuracy/reliability. CONCLUSIONS Our key distinctive findings support that DE-MGD induces tear metabolomics profile changes. Metabolites contributing to a higher separation from the CG can presumably be used, in the foreseeable future, as DE-MGD biomarkers for better managing the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- José Manuel Benítez Del Castillo
- Department of Ophthalmology, San Carlos Clinic Hospital, Madrid, Spain.,Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain
| | - Maria Dolores Pinazo-Duran
- Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain.,Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery (Ophthalmology), Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Silvia M Sanz-González
- Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain.,Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery (Ophthalmology), Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana M Muñoz-Hernández
- Department of Ophthalmology, San Carlos Clinic Hospital, Madrid, Spain.,Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain
| | - Jose J Garcia-Medina
- Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain.,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain.,Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery (Ophthalmology), Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Department of Ophthalmology, University Hospital Morales Meseguer, Murcia, Spain
| | - Vicente Zanón-Moreno
- Spanish Net of Ophthalmic Pathology (OFTARED) of the Institute of Health Carlos III, Madrid, Spain, .,Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, Valencia, Spain, .,Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery (Ophthalmology), Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain, .,International University of Valencia, Valencia, Spain,
| |
Collapse
|
32
|
Liang A, Qin W, Zhang M, Gao F, Zhao C, Gao Y. Profiling tear proteomes of patients with unilateral relapsed Behcet's disease-associated uveitis using data-independent acquisition proteomics. PeerJ 2020; 8:e9250. [PMID: 32596040 PMCID: PMC7307566 DOI: 10.7717/peerj.9250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose To explore whether unilateral relapse of Bechet’s disease-associated uveitis (BDU) causes differences in the tear proteome between the diseased and the contralateral quiescent eye and potential tear biomarkers for uveitis recurrence and disease monitoring. Method To minimize interindividual variations, bilateral tear samples were collected from the same patient (n = 15) with unilateral relapse of BDU. A data-independent acquisition (DIA) strategy was used to identify proteins that differed between active and quiescent eyes. Results A total of 1,797 confident proteins were identified in the tear samples, of which 381 (21.2%) were also highly expressed in various tissues and organs. Fifty-one (2.8%) proteins differed in terms of expression between tears in active and quiescent eyes, 9 (17.6%) of which were functionally related to immunity or inflammation. Alpha-1-acid glycoprotein 1 (fold change = 3.2, p = 0.007) was increased and Annexin A1 (fold change = −1.7, p < 0.001) was decreased in the tears of the active BDU eye compared to the contralateral quiescent eye. Conclusions A substantial amount of confident proteins were detected in the tears of BDU patients, including proteins that were deferentially expressed in the uveitis-relapsed eyes and the contralateral quiescent eyes. Some of these identified tear proteins play important roles in immune and inflammatory processes. Tear proteome might be a good source of biomarkers for uveitis.
Collapse
Affiliation(s)
- Anyi Liang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.,Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Meifen Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Gao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Palmieri V, Di Pietro L, Perini G, Barba M, Parolini O, De Spirito M, Lattanzi W, Papi M. Graphene Oxide Nano-Concentrators Selectively Modulate RNA Trapping According to Metal Cations in Solution. Front Bioeng Biotechnol 2020; 8:421. [PMID: 32523936 PMCID: PMC7261913 DOI: 10.3389/fbioe.2020.00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in nanotechnology, graphene nanomaterials are being translated to applications in the fields of biosensing, medicine, and diagnostics, with unprecedented power. Graphene is a carbon allotrope derived from graphite exfoliation made of an extremely thin honeycomb of sp2 hybridized carbons. In comparison with the bulk materials, graphene and its water-soluble derivative graphene oxide have a smaller size suitable for diagnostic platform miniaturization as well as high surface area and consequently loading of a large number of biological probes. In this work, we propose a nanotechnological method for concentrating total RNA solution and/or enriching small RNA molecules. To this aim, we exploited the unique trapping effects of GO nanoflakes in the presence of divalent cations (i.e., calcium and magnesium) that make it flocculate and precipitate, forming complex meshes that are positively charged. Here, we demonstrated that GO traps can concentrate nucleic acids in the presence of divalent cations and that small RNAs can be selectively released from GO-magnesium traps. GO nano-concentrators will allow better analytical performance with samples available in small amounts and will increase the sensitivity of sequencing platforms by short RNA selection.
Collapse
Affiliation(s)
- Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Marta Barba
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Wanda Lattanzi
- IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.,Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
34
|
Tear Organic Acid Analysis After Corneal Collagen Crosslinking in Keratoconus. Eye Contact Lens 2020; 46 Suppl 2:S122-S128. [DOI: 10.1097/icl.0000000000000644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Ji YW, Kim HM, Ryu SY, Oh JW, Yeo A, Choi CY, Kim MJ, Song JS, Kim HS, Seo KY, Kim KP, Lee HK. Changes in Human Tear Proteome Following Topical Treatment of Dry Eye Disease: Cyclosporine A Versus Diquafosol Tetrasodium. Invest Ophthalmol Vis Sci 2020; 60:5035-5044. [PMID: 31800960 DOI: 10.1167/iovs.19-27872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the changes in human tear proteome and clinical effects following topical cyclosporine A (CsA) 0.05% or diquafosol tetrasodium (DQS) 3% treatment of dry eye disease (DED), and to identify biomarkers for determining disease severity and treatment effectiveness in DED. Methods A total of 18 patients were diagnosed with non-Sjögren DED. Nine patients in each group were treated with topical CsA 0.05% or DQS 3% for 4 weeks. Tear samples were collected after evaluation of tear breakup time, corneal and conjunctival erosion staining, and results of Schirmer's test 1 before and after treatment. Proteomes were characterized using liquid chromatography mass spectrometry, and proteins exhibiting a fold change >1.5 or <0.67 (P < 0.05) were considered differentially expressed (DEP). Results A total of 794 proteins were identified, with no significant difference observed between pretreatment and posttreatment conditions. Proteomic analysis identified 54 and 106 DEPs between treatment groups (CsA and DQS, respectively), with gene ontology analysis indicating that both treatments enhanced innate and adaptive immune responses and cellular detoxification. Protein-network analysis showed that inflammation associated with the immune response was primarily responsible for the therapeutic process in both groups. Conclusions These results provide insight into the broad scope of changes at the ocular surface in DED and indicated that although both drugs improved the clinical parameters, the activated tear-specific biomarkers differed significantly between treatments. Our findings suggest that the DEPs identified here and those correlated with the clinical parameters might represent candidate biomarkers for DED.
Collapse
Affiliation(s)
- Yong Woo Ji
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang, Korea.,Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Min Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Korea
| | - Sun Young Ryu
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang, Korea.,Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Oh
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Korea
| | - Areum Yeo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Young Choi
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Suk Song
- Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea
| | - Hyun Seung Kim
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoung Yul Seo
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Korea
| | - Hyung Keun Lee
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea.,Institute of Vascular Disease and Metabolism, Yonsei University College of Medicine, Seoul, Korea.,College of Pharmacy, Yonsei University, Incheon, Korea
| |
Collapse
|
36
|
Edman MC, Janga SR, Kakan SS, Okamoto CT, Freire D, Feigenbaum D, Lew M, Hamm-Alvarez SF. Tears - more to them than meets the eye: why tears are a good source of biomarkers in Parkinson's disease. Biomark Med 2020; 14:151-163. [PMID: 32064896 DOI: 10.2217/bmm-2019-0364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tears are a known source of biomarkers for both ocular and systemic diseases with particular advantages; specifically, the noninvasiveness of sample collection and a unique and increasingly better-defined protein composition. Here, we discuss our rationale for use of tears for discovery of biomarkers for Parkinson's disease (PD). These reasons include literature supporting changes in tear flow and composition in PD, and the interconnections between the ocular surface system and neurons affected in PD. We highlight recent data on the identification of tear biomarkers including oligomeric α-synuclein, associated with neuronal degeneration in PD, in tears of PD patients and discuss possible sources for its release into tears. Challenges and next steps for advancing such biomarkers to clinical usage are highlighted.
Collapse
Affiliation(s)
- Maria C Edman
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shruti Singh Kakan
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Freire
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Danielle Feigenbaum
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Lew
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F Hamm-Alvarez
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
37
|
Chistyakov DV, Azbukina NV, Astakhova AA, Goriainov SV, Chistyakov VV, Tiulina VV, Baksheeva VE, Kotelin VI, Fedoseeva EV, Zamyatnin AA, Philippov PP, Kiseleva OA, Bessmertny AM, Senin II, Iomdina EN, Sergeeva MG, Zernii EY. Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits. Metabolomics 2020; 16:27. [PMID: 32052201 DOI: 10.1007/s11306-020-1650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular inflammation is a key pathogenic factor in most blindness-causing visual disorders. It can manifest in the aqueous humor (AH) and tear fluid (TF) as alterations in polyunsaturated fatty acids (PUFAs) and their metabolites, oxylipins, lipid mediators, which are biosynthesized via enzymatic pathways involving lipoxygenase, cyclooxygenase or cytochrome P450 monooxygenase and specifically regulate inflammation and resolution pathways. OBJECTIVES This study aimed to establish the baseline patterns of PUFAs and oxylipins in AH and TF by their comprehensive lipidomic identification and profiling in humans in the absence of ocular inflammation and comparatively analyze these compounds in the eye liquids of rabbits, the species often employed in investigative ophthalmology. METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for qualitative and quantitative characterization of lipid compounds in the analyzed samples. RESULTS A total of 28 lipid compounds were identified, including phospholipid derivatives and PUFAs, as well as 22 oxylipins. Whereas the PUFAs included arachidonic, docosahexaenoic and eicosapentaenoic acids, the oxylipins were derived mainly from arachidonic, linoleic and α-linolenic acids. Remarkably, although the concentration of oxylipins in AH was lower compared to TF, these liquids showed pronounced similarity in their lipid profiles, which additionally exhibited noticeable interspecies concordance. CONCLUSION The revealed correlations confirm the feasibility of rabbit models for investigating pathogenesis and trialing therapies of human eye disorders. The identified metabolite patterns suggest enzymatic mechanisms of oxylipin generation in AH and TF and might be used as a reference in ocular inflammation studies.
Collapse
Affiliation(s)
- Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
| | - Nadezhda V Azbukina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | | | | | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Vladislav I Kotelin
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Elena V Fedoseeva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Pavel P Philippov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Olga A Kiseleva
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | | | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Elena N Iomdina
- Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia, 105062
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, Moscow, Russia, 119992.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia, 119991.
| |
Collapse
|
38
|
Yu L, Yang Z, An M. Lab on the eye: A review of tear-based wearable devices for medical use and health management. Biosci Trends 2019; 13:308-313. [DOI: 10.5582/bst.2019.01178] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lan Yu
- Department of Ophthalmology, Qingdao Municipal Hospital
| | - Zhen Yang
- Department of Ophthalmology, the Second People's Hospital of Jinan City
| | - Ming An
- Department of Ophthalmology, Qingdao Municipal Hospital
| |
Collapse
|
39
|
Hanstock HG, Edwards JP, Walsh NP. Tear Lactoferrin and Lysozyme as Clinically Relevant Biomarkers of Mucosal Immune Competence. Front Immunol 2019; 10:1178. [PMID: 31231369 PMCID: PMC6558391 DOI: 10.3389/fimmu.2019.01178] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
Tears have attracted interest as a minimally-invasive biological fluid from which to assess biomarkers. Lactoferrin (Lf) and lysozyme (Lys) are abundant in the tear fluid and have antimicrobial properties. Since the eye is a portal for infection transmission, assessment of immune status at the ocular surface may be clinically relevant. Therefore, the aim of this series of studies was to investigate the tear fluid antimicrobial proteins (AMPs) Lf and Lys as biomarkers of mucosal immune status. To be considered biomarkers of interest, we would expect tear AMPs to respond to stressors known to perturb immunity but be robust to confounding variables, and to be lower in participants with heightened risk or incidence of illness. We investigated the relationship between tear AMPs and upper respiratory tract infection (URTI; study 1) as well as the response of tear AMPs to prolonged treadmill exercise (study 2) and dehydration (study 3). Study 1 was a prospective cohort study conducted during the common cold season whereas studies 2 and 3 used repeated-measures crossover designs. In study 1, tear Lys concentration (C) as well as tear AMP secretion rates (SRs) were lower in individuals who reported pathogen-confirmed URTI (n = 9) throughout the observation period than in healthy, pathogen-free controls (n = 17; Lys-C, P = 0.002, d = 0.85; Lys-SR, P < 0.001, d = 1.00; Lf-SR, P = 0.018, d = 0.66). Tear AMP secretion rates were also lower in contact lens wearers. In study 2, tear AMP SRs were 42-49% lower at 30 min-1 h post-exercise vs. pre-exercise (P < 0.001, d = 0.80-0.93). Finally, in study 3, tear AMPs were not influenced by dehydration, although tear AMP concentrations (but not secretion rates) displayed diurnal variation. We conclude that Lf and Lys have potential as biomarkers of mucosal immune competence; in particular, whether these markers are lower in infection-prone individuals warrants further investigation.
Collapse
Affiliation(s)
- Helen G Hanstock
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom.,Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Jason P Edwards
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom
| | - Neil P Walsh
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Health and Human Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
40
|
Tamkovich S, Grigor'eva A, Eremina A, Tupikin A, Kabilov M, Chernykh V, Vlassov V, Ryabchikova E. What information can be obtained from the tears of a patient with primary open angle glaucoma? Clin Chim Acta 2019; 495:529-537. [PMID: 31153869 DOI: 10.1016/j.cca.2019.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Since tears are a biological fluid, they have a potential diagnostic value for ophthalmic diseases. The aim of this study was to compare tear supernatants and pellets obtained from patients suffering from primary open angle glaucoma (POAG) and healthy persons (HPs) using transmission electron microscopy (TEM) and molecular biological methods. Tear supernatants and pellets were prepared using ultrafiltration and ultracentrifugation and were examined by negative staining and immunogold labelling TEM. DNA of the pellets was isolated, quantified and sequenced using a MiSeq (Illumina, USA) genomic sequencer with the Reagent Kit v3 (600 cycles, Illumina, USA). MicroRNA was isolated and quantified from the pellets; miR-146b, miR-16 and miR-126 were detected using TaqMan MicroRNA Assays (Applied Biosystems, USA). TEM of tear supernatants from both POAG patients and HPs revealed identical constituents: spherical or cup-shaped vesicles, "non-vesicles", cell debris and macromolecular aggregates. Pellets of POAG patients and HPs contained small extracellular vesicles (sEVs) non-labelled vesicles and "non-vesicles"; pellets of sick persons also contained sEVs with "a capsule". POAG-patient tear pellets showed elevated concentrations of genomic ds-DNA and SINE-repeats, and different expressions of miR-146b, miR-16 and miR-126 and a different set of bacterial DNA in comparison with pellets obtained from the tears of HPs. The data obtained indicate that the tears of HPs and POAG patients could serve as an object for TEM studies and as a source of sEV-containing preparations (pellets), which, in turn, could be used for the isolation and study of genomic ds-DNA and RNA. Our data provide the basis for using tears for diagnostic applications.
Collapse
Affiliation(s)
- Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk National Research State University, Novosibirsk, Russia.
| | - Alina Grigor'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alena Eremina
- Fyodorov Eye Microsurgery Complex, Novosibirsk Branch, Novosibirsk, Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Marcel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valerii Chernykh
- Fyodorov Eye Microsurgery Complex, Novosibirsk Branch, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk National Research State University, Novosibirsk, Russia
| |
Collapse
|
41
|
Picó C, Serra F, Rodríguez AM, Keijer J, Palou A. Biomarkers of Nutrition and Health: New Tools for New Approaches. Nutrients 2019; 11:E1092. [PMID: 31100942 PMCID: PMC6567133 DOI: 10.3390/nu11051092] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
A main challenge in nutritional studies is the valid and reliable assessment of food intake, as well as its effects on the body. Generally, food intake measurement is based on self-reported dietary intake questionnaires, which have inherent limitations. They can be overcome by the use of biomarkers, capable of objectively assessing food consumption without the bias of self-reported dietary assessment. Another major goal is to determine the biological effects of foods and their impact on health. Systems analysis of dynamic responses may help to identify biomarkers indicative of intake and effects on the body at the same time, possibly in relation to individuals' health/disease states. Such biomarkers could be used to quantify intake and validate intake questionnaires, analyse physiological or pathological responses to certain food components or diets, identify persons with specific dietary deficiency, provide information on inter-individual variations or help to formulate personalized dietary recommendations to achieve optimal health for particular phenotypes, currently referred as "precision nutrition." In this regard, holistic approaches using global analysis methods (omics approaches), capable of gathering high amounts of data, appear to be very useful to identify new biomarkers and to enhance our understanding of the role of food in health and disease.
Collapse
Affiliation(s)
- Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics and Obesity), CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn) and Instituto de Investigación Sanitaria Illes Balears (IdISBa), University of the Balearic Islands, ES-07122 Palma de Mallorca, Spain.
| |
Collapse
|
42
|
Csősz É, Deák E, Tóth N, Traverso CE, Csutak A, Tőzsér J. Comparative analysis of cytokine profiles of glaucomatous tears and aqueous humour reveals potential biomarkers for trabeculectomy complications. FEBS Open Bio 2019; 9:1020-1028. [PMID: 30959565 PMCID: PMC6487689 DOI: 10.1002/2211-5463.12637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease that causes impaired vision and, in advanced cases, blindness. The increasing prevalence of glaucoma due to an ageing population has necessitated the identification of suitable biomarkers for the early detection of the disease. Aqueous humour (AH) has been proposed as a source of biomarkers, but it can only be collected using a minor, yet invasive surgical intervention. Tears, however, are constantly available and can be collected any time via noninvasive methods. In order to examine the utility of tear as a surrogate for aqueous humour in biomarker development, we compared the levels of 27 cytokines and chemokines in paired samples of tear and aqueous humour using a Luminex multiplex immunobead-based technique. Significantly higher levels of cytokines in tear compared to aqueous humour were detected suggesting that tear and aqueous humour are not identical in terms of inflammation response. Furthermore, the levels of IFN-γ, GM-CSF and IL-5 in tear were significantly lower in patients who developed complications after one year, but no statistically significant changes in cytokine levels were observed in aqueous humour. These three molecules may have potential as predictive biomarkers for the appearance of late flap-related complications of trabeculectomy.
Collapse
Affiliation(s)
- Éva Csősz
- Biomarker Research GroupDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
- Proteomics Core FacilityDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
| | - Eszter Deák
- Biomarker Research GroupDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
- Department of OphthalmologyFaculty of MedicineUniversity of DebrecenHungary
| | - Noémi Tóth
- Biomarker Research GroupDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
- Department of OphthalmologyFaculty of MedicineUniversity of DebrecenHungary
| | - Carlo Enrico Traverso
- Clinica OculisticaDiNOGMIUniversity of Genoa and IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Adrienne Csutak
- Department of OphthalmologyFaculty of MedicineUniversity of DebrecenHungary
| | - József Tőzsér
- Biomarker Research GroupDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
- Proteomics Core FacilityDepartment of Biochemistry and Molecular BiologyFaculty of MedicineUniversity of DebrecenHungary
| |
Collapse
|
43
|
Koychev I, Lawson J, Chessell T, Mackay C, Gunn R, Sahakian B, Rowe JB, Thomas AJ, Rochester L, Chan D, Tom B, Malhotra P, Ballard C, Chessell I, Ritchie CW, Raymont V, Leroi I, Lengyel I, Murray M, Thomas DL, Gallacher J, Lovestone S. Deep and Frequent Phenotyping study protocol: an observational study in prodromal Alzheimer's disease. BMJ Open 2019; 9:e024498. [PMID: 30904851 PMCID: PMC6475176 DOI: 10.1136/bmjopen-2018-024498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Recent failures of potential novel therapeutics for Alzheimer's disease (AD) have prompted a drive towards clinical studies in prodromal or preclinical states. However, carrying out clinical trials in early disease stages is extremely challenging-a key reason being the unfeasibility of using classical outcome measures of dementia trials (eg, conversion to dementia) and the lack of validated surrogate measures so early in the disease process. The Deep and Frequent Phenotyping (DFP) study aims to resolve this issue by identifying a set of markers acting as indicators of disease progression in the prodromal phase of disease that could be used as indicative outcome measures in proof-of-concept trials. METHODS AND ANALYSIS The DFP study is a repeated measures observational study where participants will be recruited through existing parent cohorts, research interested lists/databases, advertisements and memory clinics. Repeated measures of both established (cognition, positron emission tomography (PET) imaging or cerebrospinal fluid (CSF) markers of pathology, structural MRI markers of neurodegeneration) and experimental modalities (functional MRI, magnetoencephalography and/or electroencephalography, gait measurement, ophthalmological and continuous smartphone-based cognitive and other assessments together with experimental CSF, blood, tear and saliva biomarkers) will be performed. We will be recruiting male and female participants aged >60 years with prodromal AD, defined as absence of dementia but with evidence of cognitive impairment together with AD pathology as assessed using PET imaging or CSF biomarkers. Control participants without evidence of AD pathology will be included at a 1:4 ratio. ETHICS AND DISSEMINATION The study gained favourable ethical opinion from the South Central-Oxford B NHS Research Ethics Committee (REC reference 17/SC/0315; approved on 18 August 2017; amendment 13 February 2018). Data will be shared with the scientific community no more than 1 year following completion of study and data assembly.
Collapse
Affiliation(s)
- Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Tharani Chessell
- IMED Neuroscience, AstraZeneca UK Ltd, Cambridge, Cambridgeshire, UK
| | - Clare Mackay
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Roger Gunn
- Invicro, London, UK
- Department of Medicine, Imperial College London, London, UK
| | - Barbara Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Alan J Thomas
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lynn Rochester
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Dennis Chan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge, Cambridgeshire, UK
| | - Brian Tom
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Paresh Malhotra
- Department of Neurology, Imperial College London Faculty of Medicine, London, UK
| | | | - Iain Chessell
- IMED Neuroscience, AstraZeneca UK Ltd, Cambridge, Cambridgeshire, UK
| | - Craig W Ritchie
- Department of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vanessa Raymont
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Iracema Leroi
- Manchester Academic Health Sciences Centre, Institute of Brain, Behaviour, and Mental Health, Manchester, UK
| | | | | | - David L Thomas
- Leonard Wolfson Experimental Neurology Centre, University College London Institute of Neurology, London, London, UK
| | - John Gallacher
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Gerber-Hollbach N, Plattner K, O'Leary OE, Jenoe P, Moes S, Drexler B, Schoetzau A, Halter JP, Goldblum D. Tear Film Proteomics Reveal Important Differences Between Patients With and Without Ocular GvHD After Allogeneic Hematopoietic Cell Transplantation. Invest Ophthalmol Vis Sci 2019; 59:3521-3530. [PMID: 30025099 DOI: 10.1167/iovs.18-24433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To date, no biomarkers for ocular graft versus host disease (GvHD), a frequent complication following allogeneic hematopoietic cell transplantation (HCT), exist. In this prospective study, we evaluated the potential of human tear proteins as biomarkers for ocular GvHD. Methods Tears from 10 patients with moderate-to-severe ocular GvHD were compared to 10 patients without ocular GvHD. After a full ocular surface clinical examination, tears were collected onto Schirmer strips and protein composition was analyzed by liquid chromatography tandem mass spectrometry. Statistical evaluation was performed using the Mann-Whitney U test to compare means and the false discovery rate method to adjust for multiple comparisons. Functional annotation of differentially expressed proteins was done with the PANTHER classification system. Results We identified 282 proteins in tryptic digests of Schirmer strips; 79 proteins were significantly differentially expressed between the two groups, from which 54 were up- and 25 downregulated. The most upregulated proteins were classified as nucleic acid binding and cytoskeletal proteins, while the most extensively downregulated proteins belong to an array of classes including transfer and receptor proteins, enzyme modulators, and hydrolases. In addition to proteins already confirmed as differentially expressed in dry eye disease, we report changes in 36 novel proteins. Conclusions This study reports the proteomic profile of tears in ocular GvHD for the first time and identifies a number of unique differentially expressed proteins. Further studies with a higher number of participants are necessary to confirm these results and to evaluate the reliability of these expression patterns in longitudinal studies.
Collapse
Affiliation(s)
- Nadine Gerber-Hollbach
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Kim Plattner
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Olivia E O'Leary
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Paul Jenoe
- Proteomics Core Facility, Biozentrum, University Basel, Basel, Switzerland
| | - Suzette Moes
- Proteomics Core Facility, Biozentrum, University Basel, Basel, Switzerland
| | - Beatrice Drexler
- Department of Hematology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Andreas Schoetzau
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörg P Halter
- Department of Hematology, University Hospital Basel, University Basel, Basel, Switzerland
| | - David Goldblum
- Department of Ophthalmology, University Hospital Basel, University Basel, Basel, Switzerland
| |
Collapse
|
45
|
Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. Int J Mol Sci 2019; 20:ijms20061265. [PMID: 30871169 PMCID: PMC6471885 DOI: 10.3390/ijms20061265] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Metabolomics based on mass spectrometry represents an innovative approach to characterize multifactorial diseases, such as multiple sclerosis (MuS). To date, the most important biomarker source for MuS diagnosis is the cerebrospinal fluid. However, an important goal for research is to identify new molecules in more easily accessible biological fluids. A very interesting biofluid in MuS is represented by tears, considered as an intermediate fluid between the cerebrospinal fluid and serum. In this work, we developed a merged strategy for the analysis of lipids containing choline by Liquid Chromatography coupled to Tandem Mass Spectrometry (LC-MS/MS), as well as for the targeted analysis of free carnitine, acylcarnitines and aminoacids by direct infusion mass spectrometry. Samples for both metabolomics and lipidomics approaches were obtained in a single extraction procedure from tears of patients affected by MuS and healthy controls. Tear lipidomics showed 30 phospholipids significantly modulated and, notably, many sphingomyelins resulted lower in MuS. Moreover, the metabolomics approach carried out both on tears and serum highlighted the diagnostic potential of specific aminoacids and acylcarnitines. In conclusion, the metabolic profiling of tears appears to reflect the pathological conditions of the central nervous system, suggesting that the molecular repository of tears can be considered as a source of potential biomarkers for MuS.
Collapse
|
46
|
Sea Turtle Tears: A Novel, Minimally Invasive Sampling Method for 1H-NMR Metabolomics Investigations with Cold Stun Syndrome as a Case Study. J Wildl Dis 2019. [PMID: 30856047 DOI: 10.7589/2018-07-168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated a method for collecting and processing tear samples from loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp's ridley (Lepidochelys kempii) sea turtles and to identify tear biomarkers and potential differences between unaffected sea turtles and those affected by cold stun syndrome. Tear samples from unaffected and cold-stunned loggerhead, green, and Kemp's ridley sea turtles were collected with sterile, cellulose, latex-free ophthalmic eye spears. We pooled spears to achieve acceptable concentrations, which we extracted and analyzed with proton nuclear magnetic resonance spectroscopy. Using principal components analysis, we identified five tear biomarkers (propylene glycol, glycerol, lactate, formate, and an unidentified metabolite) that distinguished unaffected sea turtles from those with cold stun syndrome. The formate concentration was significantly lower (one-sided, exact, two-sample permutation, P=0.019) in unaffected sea turtles, which is consistent with clinical metabolic acidosis reported in cold-stunned animals. Collection of sufficient sample volume for analysis required multiple spears per sample cohort, but tear sample collection from sea turtles was easy to perform and well tolerated by the animals. Sea turtle tears can be an appropriate sample for some metabolomics research questions.
Collapse
|
47
|
Dor M, Eperon S, Lalive PH, Guex-Crosier Y, Hamedani M, Salvisberg C, Turck N. Investigation of the global protein content from healthy human tears. Exp Eye Res 2019; 179:64-74. [DOI: 10.1016/j.exer.2018.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/01/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023]
|
48
|
Gibson EJ, Bucknall MP, Golebiowski B, Stapleton F. Comparative limitations and benefits of liquid chromatography – mass spectrometry techniques for analysis of sex steroids in tears. Exp Eye Res 2019; 179:168-178. [DOI: 10.1016/j.exer.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
49
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|
50
|
Brown CN, Green BD, Thompson RB, den Hollander AI, Lengyel I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018; 9:metabo9010004. [PMID: 30591665 PMCID: PMC6358913 DOI: 10.3390/metabo9010004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related macular degeneration (AMD) leads to irreversible visual loss, therefore, early intervention is desirable, but due to its multifactorial nature, diagnosis of early disease might be challenging. Identification of early markers for disease development and progression is key for disease diagnosis. Suitable biomarkers can potentially provide opportunities for clinical intervention at a stage of the disease when irreversible changes are yet to take place. One of the most metabolically active tissues in the human body is the retina, making the use of hypothesis-free techniques, like metabolomics, to measure molecular changes in AMD appealing. Indeed, there is increasing evidence that metabolic dysfunction has an important role in the development and progression of AMD. Therefore, metabolomics appears to be an appropriate platform to investigate disease-associated biomarkers. In this review, we explored what is known about metabolic changes in the retina, in conjunction with the emerging literature in AMD metabolomics research. Methods for metabolic biomarker identification in the eye have also been discussed, including the use of tears, vitreous, and aqueous humor, as well as imaging methods, like fluorescence lifetime imaging, that could be translated into a clinical diagnostic tool with molecular level resolution.
Collapse
Affiliation(s)
- Connor N Brown
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Brian D Green
- Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast BT9 6AG, UK.
| | - Richard B Thompson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen 6525 EX, The Netherlands.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine (WWIEM), Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|