1
|
Barros O, D'Agostino VG, Lara Santos L, Vitorino R, Ferreira R. Shaping the future of oral cancer diagnosis: advances in salivary proteomics. Expert Rev Proteomics 2024; 21:149-168. [PMID: 38626289 DOI: 10.1080/14789450.2024.2343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Saliva has gained increasing attention in the quest for disease biomarkers. Because it is a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly studied for the identification of oral cancer biomarkers. This is particularly important because oral cancer is often diagnosed at late stages with a poor prognosis. AREAS COVERED The review addresses the evolution of the experimental approaches used in salivary proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each one. In addition, examines the current landscape of oral cancer biomarker discovery and translation focusing on salivary proteomic studies. This discussion is based on an extensive literature search (PubMed, Scopus and Google Scholar). EXPERT OPINION The introduction of mass spectrometry has revolutionized the study of salivary proteomics. In the future, the focus will be on refining existing methods and introducing powerful experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Oriana Barros
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Zhao Y, Li H, Fan Z, Wang T. Effect of Host Cell Protein on Chinese Hamster Ovary Recombinant Protein Production and its Removal Strategies: A Mini Review. Curr Pharm Biotechnol 2024; 25:665-675. [PMID: 37594091 DOI: 10.2174/1389201024666230818112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Chinese hamster ovary cells are the main expression system for recombinant therapeutic proteins. During the production of these proteins, certain host cell proteins are secreted, broken down, and released by host cells in the culture along with the proteins of interest. These host cell proteins are often difficult to remove during the downstream purification process, and thus affect the quality, safety, and effectiveness of recombinant protein biopharmaceutical products and increase the production cost of recombinant therapeutic proteins. Therefore, host cell protein production must be reduced as much as possible during the production process and eliminated during purification. This article reviews the harm caused by host cell proteins in the production of recombinant protein drugs using Chinese hamster ovary cell, factors affecting host cell proteins, the monitoring and identification of these proteins, and methods to reduce their type and quantity in the final product.
Collapse
Affiliation(s)
- Yaru Zhao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - He Li
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Zhenlin Fan
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
5
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Callaerts N, Hocquet A, Wieber F. "Conducted Properly, Published Incorrectly": The Evolving Status of Gel Electrophoresis Images Along Instrumental Transformations in Times of Reproducibility Crisis. BERICHTE ZUR WISSENSCHAFTSGESCHICHTE 2023; 46:233-258. [PMID: 37431677 DOI: 10.1002/bewi.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
For the last ten years, within molecular life sciences, the reproducibility crisis discourse has been embodied as a crisis of trust in scientific images. Beyond the contentious perception of "questionable research practices" associated with a digital turn in the production of images, this paper highlights the transformations of gel electrophoresis as a family of experimental techniques. Our aim is to analyze the evolving epistemic status of generated images and its connection with a crisis of trust in images within that field. From the 1980s to the 2000s, we identify two key innovations (precast gels and gel docs) leading to a "two-tiered" gel electrophoresis with different standardization procedures, different epistemic statuses of the produced images and different ways of generating (dis)trust in images. The first tier, exemplified by differential gel electrophoresis (DIGE), is characterized by specialized devices processing images as quantitative data. The second tier, exemplified by polyacrylamide gel electrophoresis (PAGE), is described as a routine technique making use of image as qualitative "virtual witnessing." The difference between these two tiers is particularly apparent in the ways images are processed, even though both tiers involve image digitization. Our account thus highlights different views on reproducibility within the two tiers. Comparability of images is insisted upon in the first tier while traceability is expected in the second tier. It is striking that these differences occur not only within the same scientific field, but even within the same family of experimental techniques. In the second tier, digitization entails distrust, whereas it implies a collective sentiment of trust in the first tier.
Collapse
Affiliation(s)
| | - Alexandre Hocquet
- AHP - PReST, Université de Lorraine & CNRS, Nancy, France
- KHK cultures of research, RWTH, Aachen, Germany
| | | |
Collapse
|
7
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
9
|
Iida N, Kawahara M, Hirota R, Shibagaki Y, Hattori S, Morikawa Y. A Proteomic Analysis of Detergent-Resistant Membranes in HIV Virological Synapse: The Involvement of Vimentin in CD4 Polarization. Viruses 2023; 15:1266. [PMID: 37376566 DOI: 10.3390/v15061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The cell-cell contact between HIV-1-infected and uninfected cells forms a virological synapse (VS) to allow for efficient HIV-1 transmission. Not only are HIV-1 components polarized and accumulate at cell-cell interfaces, but viral receptors and lipid raft markers are also. To better understand the nature of the HIV-1 VS, detergent-resistant membrane (DRM) fractions were isolated from an infected-uninfected cell coculture and compared to those from non-coculture samples using 2D fluorescence difference gel electrophoresis. Mass spectrometry revealed that ATP-related enzymes (ATP synthase subunit and vacuolar-type proton ATPase), protein translation factors (eukaryotic initiation factor 4A and mitochondrial elongation factor Tu), protein quality-control-related factors (protein disulfide isomerase A3 and 26S protease regulatory subunit), charged multivesicular body protein 4B, and vimentin were recruited to the VS. Membrane flotation centrifugation of the DRM fractions and confocal microscopy confirmed these findings. We further explored how vimentin contributes to the HIV-1 VS and found that vimentin supports HIV-1 transmission through the recruitment of CD4 to the cell-cell interface. Since many of the molecules identified in this study have previously been suggested to be involved in HIV-1 infection, we suggest that a 2D difference gel analysis of DRM-associated proteins may reveal the molecules that play crucial roles in HIV-1 cell-cell transmission.
Collapse
Affiliation(s)
- Naoyuki Iida
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Madoka Kawahara
- Omura Satoshi Memorial Institute and Graduate School for Infection Control, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Riku Hirota
- Omura Satoshi Memorial Institute and Graduate School for Infection Control, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshio Shibagaki
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Seisuke Hattori
- School of Pharmacy, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yuko Morikawa
- Omura Satoshi Memorial Institute and Graduate School for Infection Control, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
10
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Abstract
In-gel digestion of protein spots derived from two-dimensional gels and their subsequent identification by mass spectrometry is involved in a multitude of mass spectrometry-driven proteomic experiments, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). This type of proteomic methodology has been involved in the establishment of comparative proteome maps and in the identification of differentially expressed proteins and their isoforms in health and disease. Most in-gel digestion protocols follow a number of common steps including excision of the protein spots of interest, destaining, reduction and alkylation (for silver-stained gels), and dehydration and overnight digestion with the proteolytic enzyme of choice. While trypsin has been a mainstay of peptide digestion for many years, it does have its shortcomings, particularly related to incomplete peptide digestion, and this has led to a rise in popularity for other proteolytic enzymes either used alone or in combination. This chapter discusses the alternative enzymes available and describes the process of in-gel digestion using the enzyme trypsin.
Collapse
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Abstract
The gradual loss of skeletal muscle mass during aging and associated decline in contractile strength can result in reduced fitness, frailty, and loss of independence. In order to better understand the molecular and cellular mechanisms that underlie sarcopenia of old age and the frailty syndrome, as well as identify novel therapeutic targets to treat age-related fiber wasting, it is crucial to develop a comprehensive biomarker signature of muscle aging. Fluorescence two-dimensional gel electrophoresis (2D-DIGE) in combination with sensitive mass spectrometry presents an ideal bioanalytical tool for biomarker discovery in biogerontology. This chapter outlines the application of the 2D-DIGE method for the comparative analysis of human biopsy specimens from middle-aged versus senescent individuals using a two-CyDye-based method.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Zweyer M, Ohlendieck K, Swandulla D. Verification of Protein Changes Determined by 2D-DIGE Based Proteomics Using Immunofluorescence Microscopy. Methods Mol Biol 2023; 2596:445-464. [PMID: 36378456 DOI: 10.1007/978-1-0716-2831-7_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a key biochemical method for the comparative analysis of complex protein mixtures. The technique focuses on the identification and characterization of individual protein species following gel electrophoretic separation making it an important analytical tool of top-down proteomics. In order to verify changes in the expression levels of a particular protein, as determined by 2D-DIGE analysis, and evaluate the subcellular localization of the proteoform of interest, immunofluorescence microscopy is very well suited. This chapter describes in detail the preparation of tissue specimens and the process of cryo-sectioning, as well as incubation with primary antibodies and fluorescently labeled secondary antibodies, followed by image analysis. As illustrative examples, the co-detection of immuno-labeled dystrophin and the Y-chromosome in skeletal muscle are shown, and the localization of calbindin in the cerebellum is presented.
Collapse
Affiliation(s)
- Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
14
|
O'Sullivan EM, Dowling P, Swandulla D, Ohlendieck K. Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers. Methods Mol Biol 2023; 2596:147-167. [PMID: 36378438 DOI: 10.1007/978-1-0716-2831-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many biomedically relevant biomarkers are proteins with characteristic biochemical properties and a relatively restricted subcellular distribution. The comparative and mass spectrometry-based proteomic analysis of body fluids can be particularly instrumental for the targeted identification of novel protein biomarkers with pathological relevance. In this respect, new research efforts in biomarker discovery focus on the systematic mapping of the human saliva proteome, as well as the pathobiochemical identification of disease-related modifications or concentration changes in specific saliva proteins. As a product of exocrine secretion, saliva can be considered an ideal source for the biochemical identification of new disease indicators. Importantly, saliva represents a body fluid that is continuously available for diagnostic and prognostic assessments. This chapter gives an overview of saliva proteomics, including a discussion of the usefulness of both liquid chromatography and two-dimensional gel electrophoresis for efficient protein separation in saliva proteomics.
Collapse
Affiliation(s)
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
15
|
Abstract
The global analysis of the proteome is an important tool in cell biology. Comparative proteomic evaluations can identify and compare the composition, dynamics, and modifications between different samples. Comparing tissue proteomes under different conditions is crucial for advancing the biomedical field. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a sensitive and robust biochemical method that can compare multiple protein samples over a broad dynamic range on the same analytical gel and can be used to establish differentially expressed protein profiles between different sample groups. 2D-DIGE involves fluorescently labeling protein samples with CyDye flours, via a two-dye or a three-dye system, pre-separation by isoelectric point, and molecular weight. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization, thus enabling accurate high-resolution analysis of differences in protein abundance between samples. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of two-dye and three-dye DIGE minimal labeling.
Collapse
|
16
|
Kamata S, Ishii I. 2D-DIGE Proteomic Analysis of Mouse Liver Within 1 Week. Methods Mol Biol 2023; 2596:217-230. [PMID: 36378442 DOI: 10.1007/978-1-0716-2831-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Several years have passed since LC (liquid chromatography)-MS (mass spectrometry) became the mainstream for proteomic analysis; however, conventional fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) continues to be an important technology that enables rapid and direct visualization of hundreds to thousands of proteins and their quantitative analyses. We can get global proteomic views using 2D-DIGE within 3 days and then identify proteins with differential expression levels using MALDI-TOF/MS and MASCOT search engine. Here, we describe our routine 2D-DIGE proteomic analysis of the liver isolated from mice in pathological conditions within 1 week.
Collapse
Affiliation(s)
- Shotaro Kamata
- Laboratory of Health Chemistry, Showa Pharmaceutical University, Tokyo, Japan
| | - Isao Ishii
- Laboratory of Health Chemistry, Showa Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
17
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Identification of Subproteomic Markers for Skeletal Muscle Profiling. Methods Mol Biol 2023; 2596:291-302. [PMID: 36378446 DOI: 10.1007/978-1-0716-2831-7_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The biochemical and cell biological profiling of contractile fiber types and subcellular structures plays a central role in basic and applied myology. Mass spectrometry-based proteomics presents an ideal approach for the systematic identification of proteomic and subproteomic markers. These representative components of fast versus slow muscle fibers and their subcellular fractions are highly useful for in-depth surveys of skeletal muscle adaptations to physiological challenges, as well as the improvement of diagnostic, prognostic, and therapy-monitoring methodologies in muscle pathology. This chapter outlines the identification of subproteomic markers for skeletal muscle profiling based on bottom-up and top-down approaches, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE).
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
18
|
Abstract
The combination of large-scale protein separation techniques, sophisticated mass spectrometry, and systems bioinformatics has led to the establishment of proteomics as a distinct discipline within the wider field of protein biochemistry. Both discovery proteomics and targeted proteomics are widely used in biological and biomedical research, whereby the analytical approaches can be broadly divided into proteoform-centric top-down proteomics versus peptide-centric bottom-up proteomics. This chapter outlines the scientific value of top-down proteomics and describes how fluorescence two-dimensional difference gel electrophoresis can be combined with the systematic analysis of crucial post-translational modifications. The concept of on-membrane digestion following the electrophoretic transfer of proteins and the usefulness of comparative two-dimensional immunoblotting are discussed.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
19
|
Abstract
The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a distinctive combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a powerful comparative tool to analyze fiber type-specific differences between predominantly fast contracting versus slower twitching muscles. In this chapter, the application of the 2D-DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-CyDye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, 2D-DIGE image analysis, protein digestion, and mass spectrometry.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Zweyer M, Ohlendieck K, Swandulla D. Histological and Histochemical Microscopy Used to Verify 2D-DIGE Pathoproteomics. Methods Mol Biol 2023; 2596:465-480. [PMID: 36378457 DOI: 10.1007/978-1-0716-2831-7_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Comparative gel electrophoretic analyses of normal versus pathological specimens can swiftly identify proteome-wide changes in the concentration of specific protein isoforms. The application of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) can be employed for the characterization of complex protein populations in health and disease. In order to verify pathoproteomic findings and correlate them to histopathological alterations, standardized histological and histochemical methodology can be applied for the cell biological analysis of normal versus pathological tissue samples. This chapter outlines the usage of histochemical ATPase staining of fast and slow fiber types in normal versus dystrophic skeletal muscles, as well as the application of hematoxylin and eosin staining of nuclei and the cellular body in kidney cells, and Sudan black staining of lipids in cryo-sections.
Collapse
Affiliation(s)
- Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
21
|
Abstract
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system, particularly in the separation of intact proteins. A modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual protein species including protein isoforms and post-translational modifications. This chapter discusses the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research, particularly on recombinant Chinese hamster ovary cells, which are also discussed in this chapter.
Collapse
Affiliation(s)
- Paula Meleady
- School of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
22
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
23
|
Abstract
Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a widely employed method for efficient protein separation and the determination of abundance changes in distinct proteoforms. This makes this gel-based method a key technique of comparative approaches in top-down proteomics. For the appropriate screening of proteome-wide alterations, initial preparative steps involve sample handling, homogenization, subcellular fractionation, and the determination of protein concentration, which makes the optimal application of these techniques a crucial part of a successful initiation of a new 2D-DIGE-based analysis. This chapter describes sample homogenization and a standardized protein assay for the preparation of homogenates with a known protein concentration for subsequent differential fluorescent tagging and two-dimensional gel electrophoretic separation.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
24
|
Abstract
There are probably no biological samples that did more to spur interest in proteomics than serum and plasma. The belief was that comparing the proteomes of these samples obtained from healthy and disease-affected individuals would lead to biomarkers that could be used to diagnose conditions such as cancer. While the continuing development of mass spectrometers with greater sensitivity and resolution has been invaluable, the invention of strategic strategies to separate circulatory proteins has been just as critical. Novel and creative separation techniques were required because serum and plasma probably have the greatest dynamic range of protein concentration of any biological sample. The concentrations of circulating proteins can range over twelve orders of magnitude, making it a challenge to identify low-abundance proteins where the bulk of the useful biomarkers are believed to exist. The major goals of this article are to (i) provide an historical perspective on the rapid development of serum and plasma proteomics; (ii) describe various separation techniques that have made obtaining an in-depth view of the proteome of these biological samples possible; and (iii) describe applications where serum and plasma proteomics have been employed to discover potential biomarkers for pathological conditions.
Collapse
|
25
|
Hussein H, Kishen A. Application of Proteomics in Apical Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.814603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Apical periodontitis is an inflammatory reaction of the periradicular tissues as a consequence of multispecies microbial communities organized as biofilms within the root canal system. Periradicular tissue changes at the molecular level initiate and orchestrate the inflammatory process and precede the presentation of clinical symptoms. Inflammatory mediators have been studied at either the proteomic, metabolomic, or transcriptomic levels. Analysis at the protein level is the most common approach used to identify and quantify analytes from diseased periradicular tissues during root canal treatment, since it is more representative of definitive and active periradicular inflammatory mediator than its transcript expression level. In disease, proteins expressed in an altered manner could be utilized as biomarkers. Biomarker proteins in periradicular tissues have been qualitatively and quantitatively assessed using antibodies (immunoassays and immunostaining) or mass spectrometry-based approaches. Herein, we aim to provide a comprehensive understanding of biomarker proteins identified in clinical studies investigating periradicular lesions and pulp tissue associated with apical periodontitis using proteomics. The high throughput mass spectrometry-based proteomics has the potential to improve the current methods of monitoring inflammation while distinguishing between progressive, stable, and healing lesions for the identification of new diagnostic and therapeutic targets. This method would provide more objective tools to (a) discover biomarkers related to biological processes for better clinical case selection, and (b) determine tissue response to novel therapeutic interventions for more predictable outcomes in endodontic treatment.
Collapse
|
26
|
Schmeißer W, Lüling R, Steinritz D, Thiermann H, Rein T, John H. Transthyretin as a target of alkylation and a potential biomarker for sulfur mustard poisoning: Electrophoretic and mass spectrometric identification and characterization. Drug Test Anal 2021; 14:80-91. [PMID: 34397154 DOI: 10.1002/dta.3146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/12/2022]
Abstract
For the verification of exposure to the banned blister agent sulfur mustard (SM) and the better understanding of its pathophysiology, protein adducts formed with endogenous proteins represent an important field of toxicological research. SM and its analogue 2-chloroethyl ethyl sulfide (CEES) are well known to alkylate nucleophilic amino acid side chains, for example, free-thiol groups of cysteine residues. The specific two-dimensional thiol difference gel electrophoresis (2D-thiol-DIGE) technique making use of maleimide dyes allows the staining of free cysteine residues in proteins. As a consequence of alkylation by, for example, SM or CEES, this staining intensity is reduced. 2D-thiol-DIGE analysis of human plasma incubated with CEES and subsequent matrix-assisted laser desorption/ionization time-of-flight (tandem) mass-spectrometry, MALDI-TOF MS(/MS), revealed transthyretin (TTR) as a target of alkylating agents. TTR was extracted from SM-treated plasma by immunomagnetic separation (IMS) and analyzed after tryptic cleavage by microbore liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry (μLC-ESI MS/HR MS). It was found that the Cys10 -residue of TTR present in the hexapeptide C(-HETE)PLMVK was alkylated by the hydroxyethylthioethyl (HETE)-moiety, which is characteristic for SM exposure. It was shown that alkylated TTR is stable in plasma in vitro at 37°C for at least 14 days. In addition, C(-HETE)PLMVK can be selectively detected, is stable in the autosampler over 24 h, and shows linearity in a broad concentration range from 15.63 μM to 2 mM SM in plasma in vitro. Accordingly, TTR might represent a complementary protein marker molecule for the verification of SM exposure.
Collapse
Affiliation(s)
| | - Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, Munich, Germany.,Bundeswehr Medical Service Academy, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
27
|
Dong Z, Coates D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J Proteome Res 2021; 20:2167-2181. [PMID: 33769828 DOI: 10.1021/acs.jproteome.1c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability to activate and regulate stem cells during wound healing and tissue regeneration is a promising field that is resulting in innovative approaches in the field of regenerative medicine. The regenerative capacity of invertebrates has been well documented; however, in mammals, stem cells that drive organ regeneration are rare. Deer antlers are the only known mammalian structure that can annually regenerate to produce a tissue containing dermis, blood vessels, nerves, cartilage, and bone. The neural crest derived stem cells that drive this process result in antlers growing at up to 2 cm/day. Deer antlers thus provide superior attributes compared to lower-order animal models, when investigating the regulation of stem cell-based regeneration. Antler stem cells can therefore be used as a model to investigate the bioactive molecules, biological processes, and pathways involved in the maintenance of a stem cell niche, and their activation and differentiation during organ formation. This review examines stem cell-based regeneration with a focus on deer antlers, a neural crest stem cell-based mammalian regenerative structure. It then discusses the omics technical platforms highlighting the proteomics approaches used for investigating the molecular mechanisms underlying stem cell regulation in antler tissues.
Collapse
Affiliation(s)
- Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
28
|
Rivera Del Alamo MM, Katila T, Palviainen M, Reilas T. Effects of intrauterine devices on proteins in the uterine lavage fluid of mares. Theriogenology 2021; 165:1-9. [PMID: 33601088 DOI: 10.1016/j.theriogenology.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/26/2023]
Abstract
Intrauterine devices block luteolysis in cyclic mares, but the underlying mechanism is unknown. To clarify the mechanisms, the protein profile of the endometrial secretome was analyzed using two-dimensional difference gel electrophoresis (2D-DIGE). Twenty-seven mares were classified according to whether they were inseminated (AI) or had an intrauterine device (IUD), a water-filled plastic sphere, inserted into the uterus on Day 3 after ovulation. Uterine lavage fluids were collected on Day 15 from pregnant inseminated mares (AI-P; n = 8), non-pregnant inseminated mares (AI-N; n = 4), and mares with IUD (n = 15). The IUD group was further divided into prolonged (IUD-P; n = 7) and normal luteal phase (IUD-N; n = 8) groups on the basis of ultrasound examinations, serum levels of progesterone and PGFM on Days 14 and 15, and COX-2 results on Day 15. Four mares from each group were selected for the 2D-DIGE analyses. Ten proteins had significantly different abundance among the groups, nine of the proteins were identified. Malate dehydrogenase 1, increased sodium tolerance 1, aldehyde dehydrogenase 1A1, prostaglandin reductase 1, albumin and hemoglobin were highest in pregnant mares; T-complex protein 1 was highest in non-pregnant mares; and annexin A1 and 6-phosphogluconolactonase were highest in IUD mares. The results suggest that the mechanism behind the intrauterine devices is likely related to inflammation.
Collapse
Affiliation(s)
- M M Rivera Del Alamo
- Unit of Reproduction, Faculty of Veterinary Medicine, Travessera Dels Turons S/n Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - T Katila
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - M Palviainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Finland.
| | - T Reilas
- Natural Resources Institute Finland (Luke), Jokioinen, Finland.
| |
Collapse
|
29
|
Bonar E, Chlebicka K, Dubin G, Wladyka B. Application of Two-Dimensional Difference Gel Electrophoresis in Identification of Factors Responsible for Virulence of Staphylococcus aureus. Methods Mol Biol 2020; 2069:139-154. [PMID: 31523772 DOI: 10.1007/978-1-4939-9849-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Staphylococcus aureus is a dangerous opportunistic pathogen of humans and animals. Highly virulent and multi-antibiotic-resistant strains are of particular concern due to high invasiveness and limited array of useful treatment options. Proteomics allows identification and investigation of staphylococcal virulence factors to better understand and treat the related disease. Two-dimensional difference gel electrophoresis (2D DIGE) is a powerful method for identification of differences in staphylococcal proteomes, both intracellular and secretory. Not only the presence of particular proteins and their quantities may be determined, but also each modification changing the molecular mass and/or isoelectric point of a protein is trackable. Especially, 2D DIGE allows for detection of posttranslational modifications, including processing and degradation by proteases. For differential analysis, protein samples are labeled with spectrally distinguishable fluorescent dyes, mixed and separated according to their isoelectric point (first dimension), and then electrophoresed in the presence of sodium dodecyl sulfate according to their molecular mass (second dimension). Exceptional resolution of 2D DIGE allows to obtain focused and sharp protein spots, and identify a large number of differentiating proteins. Here we provide protocols for TRI Reagent-based preparation of high-quality samples for 2D DIGE, sample separation, and ways of handling differentiating protein spots which lead to samples ready for protein identification using MS.
Collapse
Affiliation(s)
- Emilia Bonar
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kinga Chlebicka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
30
|
Herzog R, Bartosova M, Tarantino S, Wagner A, Unterwurzacher M, Sacnun JM, Lichtenauer AM, Kuster L, Schaefer B, Alper SL, Aufricht C, Schmitt CP, Kratochwill K. Peritoneal Dialysis Fluid Supplementation with Alanyl-Glutamine Attenuates Conventional Dialysis Fluid-Mediated Endothelial Cell Injury by Restoring Perturbed Cytoprotective Responses. Biomolecules 2020; 10:biom10121678. [PMID: 33334074 PMCID: PMC7765520 DOI: 10.3390/biom10121678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.
Collapse
Affiliation(s)
- Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Silvia Tarantino
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Markus Unterwurzacher
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anton M. Lichtenauer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Lilian Kuster
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Seth L. Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (M.B.); (B.S.); (C.P.S.)
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (R.H.); (S.T.); (J.M.S.); (A.M.L.); (L.K.); (C.A.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, 1090 Vienna, Austria; (A.W.); (M.U.)
- Correspondence: ; Tel.: +43-140400-80
| |
Collapse
|
31
|
Rehiman SH, Lim SM, Lim FT, Chin AV, Tan MP, Kamaruzzaman SB, Ramasamy K, Abdul Majeed AB. Fibrinogen isoforms as potential blood-based biomarkers of Alzheimer's disease using a proteomics approach. Int J Neurosci 2020; 132:1014-1025. [PMID: 33280461 DOI: 10.1080/00207454.2020.1860038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Alzheimer's disease (AD), the commonest form of dementia which is characterized by progressive decline in cognitive function, can only be definitively diagnosed after death. Although biomarkers may aid diagnosis, currently available AD biomarkers, which are predominantly based on cerebrospinal fluid and neuroimaging facilities, are either invasive or costly. Blood-based biomarkers for AD diagnosis are highly sought after due to its practicality at the clinic. This study was undertaken to determine the differential protein expression in plasma amongst Malaysian AD, mild cognitive impairment (MCI) and non-AD individuals. Methods: A proteomic approach which utilized two-dimensional differential in gel electrophoresis (2 D DIGE) was performed for blood samples from 15 AD, 14 MCI and 15 non-AD individuals. Results: Mass spectrometry (MS)-based protein identification via MALDI ToF/ToF showed that fibrinogen-β-chain (spot 64) and fibrinogen-γ-chain (spot 91) with differential expression ratio >1.5 were significantly upregulated (p < 0.05) in AD patients when compared to non-AD individuals. Further data analysis using Pearson correlation found that the upregulated fibrinogen-γ-chain was weakly but significantly (p < 0.05) and inversely correlated with cognitive decline. Conclusion: Fibrinogen isoforms may play important roles in the vascular pathology of AD as well as neuroinflammation. As such, fibrinogen appears to be a promising blood-based biomarker for AD. Further validation of the present findings in larger population is now warranted.
Collapse
Affiliation(s)
- Siti Hajar Rehiman
- Collaborative Drug Discovery Research (CDDR) and Brain Degeneration and Therapeutics Research Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) and Brain Degeneration and Therapeutics Research Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Fei Tieng Lim
- Collaborative Drug Discovery Research (CDDR) and Brain Degeneration and Therapeutics Research Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Ai-Vyrn Chin
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maw Pin Tan
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shahrul Bahyah Kamaruzzaman
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) and Brain Degeneration and Therapeutics Research Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) and Brain Degeneration and Therapeutics Research Group, Faculty of Pharmacy, University Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
32
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
33
|
Grzelak S, Stachyra A, Moskwa B, Bień-Kalinowska J. Exploiting the potential of 2D DIGE and 2DE immunoblotting for comparative analysis of crude extract of Trichinella britovi and Trichinella spiralis muscle larvae proteomes. Vet Parasitol 2020; 289:109323. [PMID: 33278763 DOI: 10.1016/j.vetpar.2020.109323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/01/2022]
Abstract
The Trichinella genus poses an interesting puzzle for researchers, having diverged very early in the evolution of the nematodes. The Trichinella spiralis proteome is a cosmopolitan and well-studied model of Trichinella; however, Trichinella britovi also circulates in the sylvatic environment and both species infect humans, resulting in the development of trichinellosis. Few experiments have examined the proteins belonging to the T. britovi proteome. The aim of the present study was to compare the protein expression profiles of crude extracts of T. spiralis and T. britovi muscle larvae using a highly-sensitive two-dimensional differential in-gel electrophoresis (2D DIGE) technique coupled with 2DE immunoblotting. Selected immunoreactive protein spots were then identified by liquid chromatography coupled with mass spectrometry analysis (LC-MS/MS), and their function in Trichinella and the host-parasite interaction was determined by gene ontology analysis. Spots common to both T. spiralis and T. britovi, spots with different expressions between the two and spots specific to each species were labelled with different cyanine dyes. In total, 196 protein spots were found in both proteomes; of these 165 were common, 23 expressed exclusively in T. spiralis and 8 in T. britovi. A comparative analysis of volume ratio values with Melanie software showed that among the common spots, nine demonstrated higher expression in T. spiralis, and 17 in T. britovi. LC-MS/MS analysis of 11 selected spots identified 41 proteins with potential antigenic characteristics: 26 were specific for T. spiralis, six for T. britovi, and eight were found in both proteomes. Gene Ontology analysis showed that the identified T. spiralis proteins possess hydrolytic endopeptidase, endonuclease and transferase activities. Similarly, most of the T. britovi proteins possess catalytic activities, such as lyase, hydrolase, isomerase and peptidase activity. The applied 2D DIGE technique visualized Trichinella spp. protein spots with different molecular weights or isoelectric point values, as well as those with different expression levels. The identified immunoreactive proteins participate in multiple processes associated with host muscle cell invasion and larval adaptation to the host environment. Their reactivity with the host immune system makes them possible candidates for the development of a novel trichinellosis diagnostic test or vaccine against helminthiasis caused by T. spiralis or T. britovi.
Collapse
Affiliation(s)
- Sylwia Grzelak
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Anna Stachyra
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Bożena Moskwa
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Justyna Bień-Kalinowska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
34
|
Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex, occipital cortex, and hippocampus in rats. Sci Rep 2020; 10:15999. [PMID: 32994510 PMCID: PMC7524772 DOI: 10.1038/s41598-020-72868-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
During chronic cerebral hypoperfusion (CCH), the cerebral blood flow gradually decreases, leading to cognitive impairments and neurodegenerative disorders, such as vascular dementia. The reduced oxygenation, energy supply induced metabolic changes, and insufficient neuroplasticity could be reflected in the synaptic proteome. We performed stepwise bilateral common carotid occlusions on rats and studied the synaptic proteome changes of the hippocampus, occipital and frontal cortices. Samples were prepared and separated by 2-D DIGE and significantly altered protein spots were identified by HPLC–MS/MS. We revealed an outstanding amount of protein changes in the occipital cortex compared to the frontal cortex and the hippocampus with 94, 33, and 17 proteins, respectively. The high alterations in the occipital cortex are probably due to the hypoxia-induced retrograde degeneration of the primary visual cortex, which was demonstrated by electrophysiological experiments. Altered proteins have functions related to cytoskeletal organization and energy metabolism. As CCH could also be an important risk factor for Alzheimer’s disease (AD), we investigated whether our altered proteins overlap with AD protein databases. We revealed a significant amount of altered proteins associated with AD in the two neocortical areas, suggesting a prominent overlap with the AD pathomechanism.
Collapse
|
35
|
Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine. Vaccines (Basel) 2020; 8:vaccines8030413. [PMID: 32722207 PMCID: PMC7564149 DOI: 10.3390/vaccines8030413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection.
Collapse
|
36
|
Maltseva AL, Varfolomeeva MA, Lobov AA, Tikanova P, Panova M, Mikhailova NA, Granovitch AI. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 2020; 8:e8546. [PMID: 32095363 PMCID: PMC7024583 DOI: 10.7717/peerj.8546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.
Collapse
Affiliation(s)
- Arina L. Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina A. Varfolomeeva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Arseniy A. Lobov
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina Tikanova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Panova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Sweden
| | - Natalia A. Mikhailova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrei I. Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
37
|
Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes 2019; 7:proteomes7040036. [PMID: 31671630 PMCID: PMC6958347 DOI: 10.3390/proteomes7040036] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/15/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Two-dimensional gel electrophoresis (2DE) is an important and well-established technical platform enabling extensive top-down proteomic analysis. However, the long-held but now largely outdated conventional concepts of 2DE have clearly impacted its application to in-depth investigations of proteomes at the level of protein species/proteoforms. It is time to popularize a new concept of 2DE for proteomics. With the development and enrichment of the proteome concept, any given “protein” is now recognized to consist of a series of proteoforms. Thus, it is the proteoform, rather than the canonical protein, that is the basic unit of a proteome, and each proteoform has a specific isoelectric point (pI) and relative mass (Mr). Accordingly, using 2DE, each proteoform can routinely be resolved and arrayed according to its different pI and Mr. Each detectable spot contains multiple proteoforms derived from the same gene, as well as from different genes. Proteoforms derived from the same gene are distributed into different spots in a 2DE pattern. High-resolution 2DE is thus actually an initial level of separation to address proteome complexity and is effectively a pre-fractionation method prior to analysis using mass spectrometry (MS). Furthermore, stable isotope-labeled 2DE coupled with high-sensitivity liquid chromatography-tandem MS (LC-MS/MS) has tremendous potential for the large-scale detection, identification, and quantification of the proteoforms that constitute proteomes.
Collapse
|
38
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
39
|
Solé M, Monge M, André M, Quero C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci Rep 2019; 9:9340. [PMID: 31249355 PMCID: PMC6597576 DOI: 10.1038/s41598-019-45646-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Recent studies, both in laboratory and sea conditions, have demonstrated damage after sound exposure in the cephalopod statocyst sensory epithelium, which secretes endolymph protein. Here, the proteomic analysis of the endolymph was performed before and after sound exposure to assess the effects of exposure to low intensity, low frequency sounds on the statocyst endolymph of the Mediterranean common cuttlefish (Sepia officinalis), determining changes in the protein composition of the statocyst endolymph immediately and 24 h after sound exposure. Significant differences in protein expression were observed, especially 24 h after exposure. A total of 37 spots were significantly different in exposed specimens, 17 of which were mostly related to stress and cytoskeletal structure. Among the stress proteins eight spots corresponding to eight hemocyanin isoforms were under-expressed possible due to lower oxygen consumption. In addition, cytoskeletal proteins such as tubulin alpha chain and intermediate filament protein were also down-regulated after exposure. Thus, endolymph analysis in the context of acoustic stress allowed us to establish the effects at the proteome level and identify the proteins that are particularly sensitive to this type of trauma.
Collapse
Affiliation(s)
- M Solé
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain
| | - M Monge
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Edifici Collserola, 08035, Barcelona, Spain
| | - M André
- Laboratory of Applied Bioacoustics, Technical University of Catalonia, Barcelona TECH, 08800, Rambla exposició s/n, Vilanova i la Geltrú, Barcelona, Spain.
| | - C Quero
- Department of Biological Chemistry and Molecular Modelling, IQAC (CSIC), Jordi Girona 18, 08034, Barcelona, Spain.
| |
Collapse
|
40
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
41
|
Blundon M, Ganesan V, Redler B, Van PT, Minden JS. Two-Dimensional Difference Gel Electrophoresis. Methods Mol Biol 2019; 1855:229-247. [PMID: 30426421 DOI: 10.1007/978-1-4939-8793-1_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2D E) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as "spots" with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios. With conventional imaging systems, DIGE is capable of reliably detecting as little as 0.2 fmol of protein, and protein differences down to ± 15%, over a ~10,000-fold protein concentration range. DIGE combined with digital image analysis therefore greatly improves the statistical assessment of proteome variation. Here we describe a protocol for conducting DIGE experiments, which takes 2-3 days to complete. We have further improved upon 2D DIGE by introducing in-gel equilibration to improve protein retention during transfer between the first and second dimensions of electrophoresis and by developing a fluorescent gel imaging system with a millionfold dynamic range.
Collapse
Affiliation(s)
- Malachi Blundon
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vinitha Ganesan
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan Redler
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Phu T Van
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan S Minden
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
42
|
Rosso M, Lapyckyj L, Besso MJ, Monge M, Reventós J, Canals F, Quevedo Cuenca JO, Matos ML, Vazquez-Levin MH. Characterization of the molecular changes associated with the overexpression of a novel epithelial cadherin splice variant mRNA in a breast cancer model using proteomics and bioinformatics approaches: identification of changes in cell metabolism and an increased expression of lactate dehydrogenase B. Cancer Metab 2019; 7:5. [PMID: 31086659 PMCID: PMC6507066 DOI: 10.1186/s40170-019-0196-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer (BC) is the most common female cancer and the leading cause of cancer death in women worldwide. Alterations in epithelial cadherin (E-cadherin) expression and functions are associated to BC, but the underlying molecular mechanisms have not been fully elucidated. We have previously reported a novel human E-cadherin splice variant (E-cadherin variant) mRNA. Stable transfectants in MCF-7 human BC cells (MCF7Ecadvar) depicted fibroblast-like cell morphology, E-cadherin wild-type downregulation, and other molecular changes characteristic of the epithelial-to-mesenchymal transition process, reduced cell-cell adhesion, and increased cell migration and invasion. In this study, a two-dimensional differential gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS) protein identification and bioinformatics analyses were done to characterize biological processes and canonical pathways affected by E-cadherin variant expression. Results By 2D-DIGE and MS analysis, 50 proteins were found differentially expressed (≥ Δ1.5) in MCF7Ecadvar compared to control cells. Validation of transcript expression was done in the ten most overexpressed and underexpressed proteins. Bioinformatics analyses revealed that 39 of the 50 proteins identified had been previously associated to BC. Moreover, metabolic processes were the most affected, and glycolysis the canonical pathway most altered. The lactate dehydrogenase B (LDHB) was the highest overexpressed protein, and transcript levels were higher in MCF7Ecadvar than in control cells. In agreement with these findings, MCF7Ecadvar conditioned media had lower glucose and higher lactate levels than control cells. MCF7Ecadvar cell treatment with 5 mM of the glycolytic inhibitor 2-deoxy-glucose led to decreased cell viability, and modulation of LDHB expression in MCF7Ecadvar cells with a specific small interfering RNA resulted in decreased cell proliferation. Finally, a positive association between expression levels of the E-cadherin variant and LDHB transcripts was demonstrated in 21 human breast tumor tissues, and breast tumor samples with higher Ki67 expression showed higher LDHB mRNA levels. Conclusions Results from this investigation contributed to further characterize molecular changes associated to the novel E-cadherin splice variant expression in BC cells. They also revealed an association between expression of the novel variant and changes related to BC progression and aggressiveness, in particular those associated to cell metabolism.
Collapse
Affiliation(s)
- Marina Rosso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Lara Lapyckyj
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María José Besso
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Marta Monge
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jaume Reventós
- 3Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Francesc Canals
- 2Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Oswaldo Quevedo Cuenca
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - María Laura Matos
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Mónica Hebe Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer, Instituto de Biología y Medicina Experimental (IBYME; CONICET-FIBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| |
Collapse
|
43
|
Dosselli R, Grassl J, den Boer SPA, Kratz M, Moran JM, Boomsma JJ, Baer B. Protein-Level Interactions as Mediators of Sexual Conflict in Ants. Mol Cell Proteomics 2019; 18:S34-S45. [PMID: 30598476 PMCID: PMC6427229 DOI: 10.1074/mcp.ra118.000941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
All social insects with obligate reproductive division of labor evolved from strictly monogamous ancestors, but multiple queen-mating (polyandry) arose de novo, in several evolutionarily derived lineages. Polyandrous ant queens are inseminated soon after hatching and store sperm mixtures for a potential reproductive life of decades. However, they cannot re-mate later in life and are thus expected to control the loss of viable sperm because their lifetime reproductive success is ultimately sperm limited. In the leaf-cutting ant Atta colombica,, the survival of newly inseminated sperm is known to be compromised by seminal fluid of rival males and to be protected by secretions of the queen sperm storage organ (spermatheca). Here we investigate the main protein-level interactions that appear to mediate sperm competition dynamics and sperm preservation. We conducted an artificial insemination experiment and DIGE-based proteomics to identify proteomic changes when seminal fluid is exposed to spermathecal fluid followed by a mass spectrometry analysis of both secretions that allowed us to identify the sex-specific origins of the proteins that had changed in abundance. We found that spermathecal fluid targets only seven (2%) of the identified seminal fluid proteins for degradation, including two proteolytic serine proteases, a SERPIN inhibitor, and a semen-liquefying acid phosphatase. In vitro, and in vivo, experiments provided further confirmation that these proteins are key molecules mediating sexual conflict over sperm competition and viability preservation during sperm storage. In vitro, exposure to spermathecal fluid reduced the capacity of seminal fluid to compromise survival of rival sperm in a matter of hours and biochemical inhibition of these seminal fluid proteins largely eliminated that adverse effect. Our findings indicate that A. colombica, queens are in control of sperm competition and sperm storage, a capacity that has not been documented in other animals but is predicted to have independently evolved in other polyandrous social insects.
Collapse
Affiliation(s)
- Ryan Dosselli
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Susanne P A den Boer
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Madlen Kratz
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jessica M Moran
- From the ‡ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, Bayliss Building (M316),; Centre for Evolutionary Biology, School of Biological Sciences (M092),; Honey Bee Health Research Group, School of Molecular Sciences (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark;.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, The University of California, Riverside CA 92506.
| |
Collapse
|
44
|
Proteomic Analysis of the Maternal Preoptic Area in Rats. Neurochem Res 2019; 44:2314-2324. [PMID: 30847857 PMCID: PMC6776485 DOI: 10.1007/s11064-019-02755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/29/2022]
Abstract
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.
Collapse
|
45
|
Umaña-Pérez YA, Calderón Rodriguez SI. Estudio proteómico 2DE-DIGE en plasma sanguíneo de pacientes en etapa infantil con leucemia linfoblástica aguda. REVISTA COLOMBIANA DE QUÍMICA 2019. [DOI: 10.15446/rev.colomb.quim.v48n1.75170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
En Colombia, durante la última década la leucemia linfoblástica aguda (LLA) ha sido el cáncer con mayor incidencia, siendo más del 40% de las muertes por cáncer en menores de edad atribuidas a esta enfermedad. Entre los factores que influyen en estas cifras, el diagnóstico tardío es tal vez el factor más sensible que afecta de manera negativa el éxito del tratamiento. Esta investigación se centró en el estudio del proteoma plasmático de niños colombianos diagnosticados con LLA tipo B, dada su alta incidencia, en comparación con controles en la búsqueda de proteínas que podrían tener potencialidad a ser clasificadas como biomarcadores de diagnóstico. Ahora bien, en vista de los avances en las herramientas proteómicas y de espectrometría de masas y sabiendo que son una alternativa para abordar la complejidad molecular de enfermedades como el cáncer, utilizamos una aproximación proteómica basada en una separación por electroforesis bidimensional diferencial (2DE-DIGE) con posterior separación por cromatografía líquida acoplada a espectrometría de masas en tándem. Se encontraron 8 proteínas con expresión diferencial en plasma de pacientes con LLA-B, entre las cuales resaltan la serotransferrina, la Alfa-1-antitripsina, la haptoglobina, la α2-glicoproteína de zinc y la complemento C3.
Collapse
|
46
|
Titz B, Gadaleta RM, Lo Sasso G, Elamin A, Ekroos K, Ivanov NV, Peitsch MC, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int J Mol Sci 2018; 19:ijms19092775. [PMID: 30223557 PMCID: PMC6163330 DOI: 10.3390/ijms19092775] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. Ulcerative colitis and Crohn's disease are the major manifestations of IBD. While our understanding of IBD has progressed in recent years, its etiology is far from being fully understood, resulting in suboptimal treatment options. Complementing other biological endpoints, bioanalytical "omics" methods that quantify many biomolecules simultaneously have great potential in the dissection of the complex pathogenesis of IBD. In this review, we focus on the rapidly evolving proteomics and lipidomics technologies and their broad applicability to IBD studies; these range from investigations of immune-regulatory mechanisms and biomarker discovery to studies dissecting host⁻microbiome interactions and the role of intestinal epithelial cells. Future studies can leverage recent advances, including improved analytical methodologies, additional relevant sample types, and integrative multi-omics analyses. Proteomics and lipidomics could effectively accelerate the development of novel targeted treatments and the discovery of complementary biomarkers, enabling continuous monitoring of the treatment response of individual patients; this may allow further refinement of treatment and, ultimately, facilitate a personalized medicine approach to IBD.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Raffaella M Gadaleta
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Irisviksvägen 31D, 02230 Esbo, Finland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchatel, Switzerland.
| |
Collapse
|
47
|
Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: Innovative approach and examples for potential clinical application. J Proteomics 2018; 188:30-40. [DOI: 10.1016/j.jprot.2017.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
|
48
|
Kamata S, Yamamoto J, Ohtani H, Tosaka Y, Yoshikawa S, Akahoshi N, Ishii I. 2D DIGE proteomic analysis reveals fasting-induced protein remodeling through organ-specific transcription factor(s) in mice. FEBS Open Bio 2018; 8:1524-1543. [PMID: 30186752 PMCID: PMC6120221 DOI: 10.1002/2211-5463.12497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Overnight fasting is a routine procedure before surgery in clinical settings. Intermittent fasting is the most common diet/fitness trend implemented for weight loss and the treatment of lifestyle‐related diseases. In either setting, the effects not directly related to parameters of interest, either beneficial or harmful, are often ignored. We previously demonstrated differential activation of cellular adaptive responses in 13 atrophied/nonatrophied organs of fasted mice by quantitative PCR analysis of gene expression. Here, we investigated 2‐day fasting‐induced protein remodeling in six major mouse organs (liver, kidney, thymus, spleen, brain, and testis) using two‐dimensional difference gel electrophoresis (2D DIGE) proteomics as an alternative means to examine systemic adaptive responses. Quantitative analysis of protein expression followed by protein identification using matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry (MALDI‐TOFMS) revealed that the expression levels of 72, 26, and 14 proteins were significantly up‐ or downregulated in the highly atrophied liver, thymus, and spleen, respectively, and the expression levels of 32 proteins were up‐ or downregulated in the mildly atrophied kidney. Conversely, there were no significant protein expression changes in the nonatrophied organs, brain and testis. Upstream regulator analysis highlighted transcriptional regulation by peroxisome proliferator‐activated receptor alpha (PPARα) in the liver and kidney and by tumor protein/suppressor p53 (TP53) in the thymus, spleen, and liver. These results imply of the existence of both common and distinct adaptive responses between major mouse organs, which involve transcriptional regulation of specific protein expression upon short‐term fasting. Our data may be valuable in understanding systemic transcriptional regulation upon fasting in experimental animals.
Collapse
Affiliation(s)
- Shotaro Kamata
- Laboratory of Health Chemistry Showa Pharmaceutical University Tokyo Japan.,Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| | - Junya Yamamoto
- Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| | - Haruka Ohtani
- Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| | - Yuka Tosaka
- Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| | - Sayumi Yoshikawa
- Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| | - Noriyuki Akahoshi
- Laboratory of Health Chemistry Showa Pharmaceutical University Tokyo Japan
| | - Isao Ishii
- Laboratory of Health Chemistry Showa Pharmaceutical University Tokyo Japan.,Laboratory of Biochemistry Keio University School of Pharmaceutical Sciences Tokyo Japan
| |
Collapse
|
49
|
Obrstar D, Kröner F, Japelj B, Bojic L, Anderka O. Host Cell Protein Profiling in Biopharmaceutical Harvests. Anal Chem 2018; 90:11240-11247. [DOI: 10.1021/acs.analchem.8b01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Darja Obrstar
- Novartis Pharma AG, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Frieder Kröner
- Novartis Pharma AG, Klybeckstrasse 141, 4057 Basel, Switzerland
| | - Bostjan Japelj
- Novartis Pharma AG, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Lea Bojic
- Novartis Pharma AG, Kolodvorska 27, SI-1234 Menges, Slovenia
| | - Oliver Anderka
- Novartis Pharma AG, Klybeckstrasse 141, 4057 Basel, Switzerland
| |
Collapse
|
50
|
Eremina L, Pashintseva N, Kovalev L, Kovaleva M, Shishkin S. Proteomics of mammalian mitochondria in health and malignancy: From protein identification to function. Anal Biochem 2018; 552:4-18. [DOI: 10.1016/j.ab.2017.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
|