1
|
Dhamotharan K, Korn SM, Wacker A, Becker MA, Günther S, Schwalbe H, Schlundt A. A core network in the SARS-CoV-2 nucleocapsid NTD mediates structural integrity and selective RNA-binding. Nat Commun 2024; 15:10656. [PMID: 39653699 PMCID: PMC11628620 DOI: 10.1038/s41467-024-55024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive. Similarly, the molecular impact of nucleocapsid NTD mutations that have emerged since 2019 has not yet been fully explored. Using crystallography and solution NMR, we investigate how NTD mutations influence structural integrity and RNA-binding. We find that both features rely on a core network of residues conserved in Betacoronaviruses, crucial for protein stability and communication among flexible loop-regions that facilitate RNA-recognition. Our comprehensive structural analysis demonstrates that contacts within this network guide selective RNA-interactions. We propose that the core network renders the NTD evolutionarily robust in stability and plasticity for its versatile RNA processing roles.
Collapse
Affiliation(s)
- Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
| | - Sophie M Korn
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Matthias A Becker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
2
|
Gajardo-Parra NF, Cea-Klapp E, Chandra A, Canales RI, Garrido JM, Held C, Guajardo N. Assessing the Effect of Deep Eutectic Solvents on α-Chymotrypsin Thermal Stability and Activity. CHEMSUSCHEM 2024:e202401414. [PMID: 39402266 DOI: 10.1002/cssc.202401414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Optimizing the liquid reaction phase holds significant potential for enhancing the efficiency of biocatalytic processes since it determines reaction equilibrium and kinetics. This study investigates the influence of the addition of deep eutectic solvents on the stability and activity of α-chymotrypsin, a proteolytic enzyme with industrial relevance. Deep eutectic solvents, composed of choline chloride or betaine mixed with glycerol or sorbitol, were added in the reaction phase at various concentrations. Experimental techniques, including kinetic and fluorometry, were employed to assess the α-chymotrypsin activity, thermal stability, and unfolding reversibility. Atomistic molecular dynamics simulations were also conducted to assess the interactions and provide molecular-level insights between α-chymotrypsin and the solvent. The results showed that among all studied mixtures, adding choline chloride + sorbitol improved thermal stability up to 18 °C and reaction kinetic efficiency up to two-fold upon adding choline chloride + glycerol. Notably, the choline chloride + sorbitol system exhibited the most substantial stabilization effect, attributed to the surface preferential accumulation of sorbitol, as corroborated by the computational analyses. This work highlights the potential of tailoring liquid reaction phase of α-chymotrypsin catalyzed reaction using neoteric solvents such as deep eutectic solvents to enhance α-chymotrypsin performance and stability in industrial applications.
Collapse
Affiliation(s)
- Nicolás F Gajardo-Parra
- Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Santiago, 8370191, Chile
| | - Esteban Cea-Klapp
- Departamento de Ingeniería Química, Universidad de Concepción, Víctor Lamas 1290, Concepción, Chile
| | - Anshu Chandra
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Roberto I Canales
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicũna Mackenna 4860, Macul, Santiago, Chile
| | - José Matías Garrido
- Departamento de Ingeniería Química, Universidad de Concepción, Víctor Lamas 1290, Concepción, Chile
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227, Dortmund, Germany
| | - Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicũna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
3
|
You S, Nguyen T, Li-Ma C, Bollong MJ. Identification of Tunable, Environmentally Responsive Fluorogenic Dyes by High-Throughput Screening. ACS Chem Biol 2024; 19:2041-2049. [PMID: 39250827 DOI: 10.1021/acschembio.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Small molecule dyes remain essential biological tools, yet only a handful of environmentally responsive fluorogenic small molecules are available for routine characterization of protein state. Here, we report the development and execution of a high throughput screen to identify compounds that increase in fluorescence in response to binding of lipophilic sites of proteins. This effort yielded two small molecules that potently indicate the presence of a range of common proteins and outperform common dyes in differential scanning fluorimetry experiments. Structure activity relationship studies revealed that these two scaffolds can be tuned both for their quantum yields and emission wavelengths. This work affords a straightforward framework for the discovery of new fluorophores and adds two fluorogenic probes to the toolbox for studying protein state.
Collapse
Affiliation(s)
- Shaochen You
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Thu Nguyen
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Chloris Li-Ma
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| | - Michael J Bollong
- Department of Chemistry, Scripps Research, San Diego, California 92037, United States
| |
Collapse
|
4
|
Palatinszky M, Herbold CW, Sedlacek CJ, Pühringer D, Kitzinger K, Giguere AT, Wasmund K, Nielsen PH, Dueholm MKD, Jehmlich N, Gruseck R, Legin A, Kostan J, Krasnici N, Schreiner C, Palmetzhofer J, Hofmann T, Zumstein M, Djinović-Carugo K, Daims H, Wagner M. Growth of complete ammonia oxidizers on guanidine. Nature 2024; 633:646-653. [PMID: 39143220 PMCID: PMC11410670 DOI: 10.1038/s41586-024-07832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
Guanidine is a chemically stable nitrogen compound that is excreted in human urine and is widely used in manufacturing of plastics, as a flame retardant and as a component of propellants, and is well known as a protein denaturant in biochemistry1-3. Guanidine occurs widely in nature and is used by several microorganisms as a nitrogen source, but microorganisms growing on guanidine as the only substrate have not yet been identified. Here we show that the complete ammonia oxidizer (comammox) Nitrospira inopinata and probably most other comammox microorganisms can grow on guanidine as the sole source of energy, reductant and nitrogen. Proteomics, enzyme kinetics and the crystal structure of a N. inopinata guanidinase homologue demonstrated that it is a bona fide guanidinase. Incubation experiments with comammox-containing agricultural soil and wastewater treatment plant microbiomes suggested that guanidine serves as substrate for nitrification in the environment. The identification of guanidine as a growth substrate for comammox shows an unexpected niche of these globally important nitrifiers and offers opportunities for their isolation.
Collapse
Affiliation(s)
- Marton Palatinszky
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora (School of Biological Sciences), Te Whare Wānanga o Waitaha (University of Canterbury), Ōtautahi (Christchurch), Aotearoa New Zealand
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dominic Pühringer
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Katharina Kitzinger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andrew T Giguere
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Kenneth Wasmund
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K D Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Richard Gruseck
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Anton Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julius Kostan
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Nesrete Krasnici
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Claudia Schreiner
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Johanna Palmetzhofer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Thilo Hofmann
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Zumstein
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
- European Molecular Biology Laboratory (EMBL), Grenoble, France
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
- The Comammox Research Platform, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Pedersen CN, Yang F, Ita S, Xu Y, Akunuri R, Trampari S, Neumann CMT, Desdorf LM, Schiøtt B, Salvino JM, Mortensen OV, Nissen P, Shahsavar A. Cryo-EM structure of the dopamine transporter with a novel atypical non-competitive inhibitor bound to the orthosteric site. J Neurochem 2024; 168:2043-2055. [PMID: 39010681 PMCID: PMC11449642 DOI: 10.1111/jnc.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The regulation of dopamine (DA) removal from the synaptic cleft is a crucial process in neurotransmission and is facilitated by the sodium- and chloride-coupled dopamine transporter DAT. Psychostimulant drugs, cocaine, and amphetamine, both block the uptake of DA, while amphetamine also triggers the release of DA. As a result, they prolong or even amplify neurotransmitter signaling. Atypical inhibitors of DAT lack cocaine-like rewarding effects and offer a promising strategy for the treatment of drug use disorders. Here, we present the 3.2 Å resolution cryo-electron microscopy structure of the Drosophila melanogaster dopamine transporter (dDAT) in complex with the atypical non-competitive inhibitor AC-4-248. The inhibitor partially binds at the central binding site, extending into the extracellular vestibule, and locks the transporter in an outward open conformation. Our findings propose mechanisms for the non-competitive inhibition of DAT and attenuation of cocaine potency by AC-4-248 and provide a basis for the rational design of more efficacious atypical inhibitors.
Collapse
Affiliation(s)
- Clara Nautrup Pedersen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fuyu Yang
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Samantha Ita
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Yibin Xu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Sofia Trampari
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline Marie Teresa Neumann
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Azadeh Shahsavar
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Azaria RD, Correia AB, Schache KJ, Zapata M, Pathmasiri KC, Mohanty V, Nannapaneni DT, Ashfeld BL, Helquist P, Wiest O, Ohgane K, Li Q, Fredenburg RA, Blagg BS, Cologna SM, Schultz ML, Lieberman AP. Mutant induced neurons and humanized mice enable identification of Niemann-Pick type C1 proteostatic therapies. JCI Insight 2024; 9:e179525. [PMID: 39207850 PMCID: PMC11530122 DOI: 10.1172/jci.insight.179525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Therapeutics that rescue folding, trafficking, and function of disease-causing missense mutants are sought for a host of human diseases, but efforts to leverage model systems to test emerging strategies have met with limited success. Such is the case for Niemann-Pick type C1 disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, progressive neurodegeneration, and early death. NPC1, a multipass transmembrane glycoprotein, is synthesized in the endoplasmic reticulum and traffics to late endosomes/lysosomes, but this process is often disrupted in disease. We sought to identify small molecules that promote folding and enable lysosomal localization and functional recovery of mutant NPC1. We leveraged a panel of isogenic human induced neurons expressing distinct NPC1 missense mutations. We used this panel to rescreen compounds that were reported previously to correct NPC1 folding and trafficking. We established mo56-hydroxycholesterol (mo56Hc) as a potent pharmacological chaperone for several NPC1 mutants. Furthermore, we generated mice expressing human I1061T NPC1, a common mutation in patients. We demonstrated that this model exhibited disease phenotypes and recapitulated the protein trafficking defects, lipid storage, and response to mo56Hc exhibited by human cells expressing I1061T NPC1. These tools established a paradigm for testing and validation of proteostatic therapeutics as an important step toward the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Adele B. Correia
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Manuela Zapata
- Department of Chemistry, University of Illinois Chicago, Illinois, USA
| | | | | | | | - Brandon L. Ashfeld
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Olaf Wiest
- Department of Chemistry & Biochemistry and
| | - Kenji Ohgane
- Department of Chemistry, Ochanomizu University, Tokyo, Japan
| | | | - Ross A. Fredenburg
- Ara Parseghian Medical Research Fund at Notre Dame University, Notre Dame, Indiana, USA
| | - Brian S.J. Blagg
- Department of Chemistry & Biochemistry and
- Warren Family Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| | | | - Mark L. Schultz
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Hou XN, Song B, Zhao C, Chu WT, Ruan MX, Dong X, Meng LS, Gong Z, Weng YX, Zheng J, Wang J, Tang C. Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability. JACS AU 2024; 4:3310-3320. [PMID: 39211624 PMCID: PMC11350723 DOI: 10.1021/jacsau.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mei-Xia Ruan
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Ling-Shen Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zheng
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, Newyork 11794-3400, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Martínez-Carranza M, Škerlová J, Lee PG, Zhang J, Krč A, Sirohiwal A, Burgin D, Elliott M, Philippe J, Donald S, Hornby F, Henriksson L, Masuyer G, Kaila VRI, Beard M, Dong M, Stenmark P. Activity of botulinum neurotoxin X and its structure when shielded by a non-toxic non-hemagglutinin protein. Commun Chem 2024; 7:179. [PMID: 39138288 PMCID: PMC11322297 DOI: 10.1038/s42004-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are used to treat an increasing number of medical disorders. All BoNTs are naturally co-expressed with a protective partner protein (NTNH) with which they form a 300 kDa complex, to resist acidic and proteolytic attack from the digestive tract. We have previously identified a new botulinum neurotoxin serotype, BoNT/X, that has unique and therapeutically attractive properties. We present the cryo-EM structure of the BoNT/X-NTNH/X complex and the crystal structure of the isolated NTNH protein. Unexpectedly, the BoNT/X complex is stable and protease-resistant at both neutral and acidic pH and disassembles only in alkaline conditions. Using the stabilizing effect of NTNH, we isolated BoNT/X and showed that it has very low potency both in vitro and in vivo. Given the high catalytic activity and translocation efficacy of BoNT/X, low activity of the full toxin is likely due to the receptor-binding domain, which presents very weak ganglioside binding and exposed hydrophobic surfaces.
Collapse
Affiliation(s)
| | - Jana Škerlová
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Pyung-Gang Lee
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abhishek Sirohiwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | - Linda Henriksson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
Jungnickel KEJ, Guelle O, Iguchi M, Dong W, Kotov V, Gabriel F, Debacker C, Dairou J, McCort-Tranchepain I, Laqtom NN, Chan SH, Ejima A, Sato K, Massa López D, Saftig P, Mehdipour AR, Abu-Remaileh M, Gasnier B, Löw C, Damme M. MFSD1 with its accessory subunit GLMP functions as a general dipeptide uniporter in lysosomes. Nat Cell Biol 2024; 26:1047-1061. [PMID: 38839979 PMCID: PMC11252000 DOI: 10.1038/s41556-024-01436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The lysosomal degradation of macromolecules produces diverse small metabolites exported by specific transporters for reuse in biosynthetic pathways. Here we deorphanized the major facilitator superfamily domain containing 1 (MFSD1) protein, which forms a tight complex with the glycosylated lysosomal membrane protein (GLMP) in the lysosomal membrane. Untargeted metabolomics analysis of MFSD1-deficient mouse lysosomes revealed an increase in cationic dipeptides. Purified MFSD1 selectively bound diverse dipeptides, while electrophysiological, isotope tracer and fluorescence-based studies in Xenopus oocytes and proteoliposomes showed that MFSD1-GLMP acts as a uniporter for cationic, neutral and anionic dipeptides. Cryoelectron microscopy structure of the dipeptide-bound MFSD1-GLMP complex in outward-open conformation characterized the heterodimer interface and, in combination with molecular dynamics simulations, provided a structural basis for its selectivity towards diverse dipeptides. Together, our data identify MFSD1 as a general lysosomal dipeptide uniporter, providing an alternative route to recycle lysosomal proteolysis products when lysosomal amino acid exporters are overloaded.
Collapse
Affiliation(s)
| | - Océane Guelle
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Miharu Iguchi
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Vadim Kotov
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Florian Gabriel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Cécile Debacker
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, Paris, France
| | - Isabelle McCort-Tranchepain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université Paris Cité, Paris, France
| | - Nouf N Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Sze Ham Chan
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Akika Ejima
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Sato
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - David Massa López
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | - Bruno Gasnier
- Saints-Pères Paris Institute for the Neurosciences, Université Paris Cité, Centre National de la Recherche Scientifique, Paris, France.
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany.
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
10
|
Pollegioni L, Campanini B, Good JM, Motta Z, Murtas G, Buoli Comani V, Pavlidou DC, Mercier N, Mittaz-Crettol L, Sacchi S, Marchesani F. L-serine deficiency: on the properties of the Asn133Ser variant of human phosphoserine phosphatase. Sci Rep 2024; 14:12463. [PMID: 38816452 PMCID: PMC11139964 DOI: 10.1038/s41598-024-63164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
The non-essential amino acid L-serine is involved in a number of metabolic pathways and in the brain its level is largely due to the biosynthesis from the glycolytic intermediate D-3-phosphoglycerate by the phosphorylated pathway (PP). This cytosolic pathway is made by three enzymes proposed to generate a reversible metabolon named the "serinosome". Phosphoserine phosphatase (PSP) catalyses the last and irreversible step, representing the driving force pushing L-serine synthesis. Genetic defects of the PP enzymes result in strong neurological phenotypes. Recently, we identified the homozygous missense variant [NM_004577.4: c.398A > G p.(Asn133Ser)] in the PSPH, the PSP encoding gene, in two siblings with a neurodevelopmental syndrome and a myelopathy. The recombinant Asn133Ser enzyme does not show significant alterations in protein conformation and dimeric oligomerization state, as well as in enzymatic activity and functionality of the reconstructed PP. However, the Asn133Ser variant is less stable than wild-type PSP, a feature also apparent at cellular level. Studies on patients' fibroblasts also highlight a strong decrease in the level of the enzymes of the PP, a partial nuclear and perinuclear localization of variant PSP and a stronger perinuclear aggregates formation. We propose that these alterations contribute to the formation of a dysfunctional serinosome and thus to the observed reduction of L-serine, glycine and D-serine levels (the latter playing a crucial role in modulating NMDA receptors). The characterization of patients harbouring the Asn133Ser PSP substitution allows to go deep into the molecular mechanisms related to L-serine deficit and to suggest treatments to cope with the observed amino acids alterations.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy.
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Zoraide Motta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | | - Despina-Christina Pavlidou
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Noëlle Mercier
- Department of Epileptology, Institution of Lavigny, Lavigny, Switzerland
| | - Laureane Mittaz-Crettol
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | | |
Collapse
|
11
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
12
|
Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z, Zhang L. Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:976-987. [PMID: 38491273 PMCID: PMC10994848 DOI: 10.1038/s41564-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-β-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
13
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Ziaunys M, Mikalauskaite K, Sakalauskas A, Smirnovas V. Investigating lysozyme amyloid fibril formation and structural variability dependence on its initial folding state under different pH conditions. Protein Sci 2024; 33:e4888. [PMID: 38151910 PMCID: PMC10804668 DOI: 10.1002/pro.4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
Protein fibril formation and accumulation are associated with dozens of amyloidoses, including the widespread and yet-incurable Alzheimer's and Parkinson's diseases. Currently, there are still several aspects of amyloid aggregation that are not fully understood, which negatively contributes to the development of disease-altering drugs and treatments. One factor which requires a more in-depth analysis is the effect of the environment on both the initial state of amyloidogenic proteins and their aggregation process and resulting fibril characteristics. In this work, we examine how lysozyme's folding state influences its amyloid formation kinetics and resulting aggregate structural characteristics under several different pH conditions, ranging from acidic to neutral. We demonstrate that both the initial state of the protein and the solution's pH value have a significant combined effect on the variability of the resulting aggregate secondary structures, as well as their stabilities, interactions with amyloid-specific dye molecules, and self-replication properties.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius UniversityVilniusLithuania
| |
Collapse
|
15
|
Alves França B, Falke S, Rohde H, Betzel C. Molecular insights into the dynamic modulation of bacterial ClpP function and oligomerization by peptidomimetic boronate compounds. Sci Rep 2024; 14:2572. [PMID: 38296985 PMCID: PMC10830462 DOI: 10.1038/s41598-024-51787-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Bacterial caseinolytic protease P subunit (ClpP) is important and vital for cell survival and infectivity. Recent publications describe and discuss the complex structure-function relationship of ClpP and its processive activity mediated by 14 catalytic sites. Even so, there are several aspects yet to be further elucidated, such as the paradoxical allosteric modulation of ClpP by peptidomimetic boronates. These compounds bind to all catalytic sites, and in specific conditions, they stimulate a dysregulated degradation of peptides and globular proteins, instead of inhibiting the enzymatic activity, as expected for serine proteases in general. Aiming to explore and explain this paradoxical effect, we solved and refined the crystal structure of native ClpP from Staphylococcus epidermidis (Se), an opportunistic pathogen involved in nosocomial infections, as well as ClpP in complex with ixazomib at 1.90 Å and 2.33 Å resolution, respectively. The interpretation of the crystal structures, in combination with complementary biochemical and biophysical data, shed light on how ixazomib affects the ClpP conformational state and activity. Moreover, SEC-SAXS and DLS measurements show, for the first time, that a peptidomimetic boronate compound also induces the assembly of the tetradecameric structure from isolated homomeric heptameric rings of a gram-positive organism.
Collapse
Affiliation(s)
- Bruno Alves França
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a, Notkestraße 85, 22607, Hamburg, Germany
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Build. 22a, Notkestraße 85, 22607, Hamburg, Germany.
| |
Collapse
|
16
|
Garaeva N, Fatkhullin B, Murzakhanov F, Gafurov M, Golubev A, Bikmullin A, Glazyrin M, Kieffer B, Jenner L, Klochkov V, Aganov A, Rogachev A, Ivankov O, Validov S, Yusupov M, Usachev K. Structural aspects of RimP binding on small ribosomal subunit from Staphylococcus aureus. Structure 2024; 32:74-82.e5. [PMID: 38000368 DOI: 10.1016/j.str.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.
Collapse
Affiliation(s)
- Nataliia Garaeva
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Bulat Fatkhullin
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France; Institute of Protein Research RAS, 4 Institutskaya, Pushchino 142290, Russian Federation
| | - Fadis Murzakhanov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Alexander Golubev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Aydar Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Maxim Glazyrin
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation
| | - Bruno Kieffer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France
| | - Vladimir Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Albert Aganov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Oleksandr Ivankov
- Joint Institute for Nuclear Research, Dubna 141980, Russian Federation
| | - Shamil Validov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation
| | - Marat Yusupov
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67400 Illkirch, France.
| | - Konstantin Usachev
- Laboratory for Structural Analysis of Biomacromolecules, Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan 420111, Russian Federation; Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russian Federation.
| |
Collapse
|
17
|
Selvasingh JA, McDonald EF, Neufer PD, McKinney JR, Meiler J, Ledwitch KV. Dark nanodiscs for evaluating membrane protein thermostability by differential scanning fluorimetry. Biophys J 2024; 123:68-79. [PMID: 37978799 PMCID: PMC10808023 DOI: 10.1016/j.bpj.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Measuring protein thermostability provides valuable information on the biophysical rules that govern the structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently developed nonfluorescent membrane scaffold protein to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs loaded with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) lipids show a complex biphasic thermal unfolding pattern with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5°C and 77.5°C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a DMPC and DMPG nanodisc. To extend the utility of this method, we evaluate and compare the thermostability of DsbB in different lipid environments. We introduce this method as a new tool that can be used to understand how compositionally and biophysically complex lipid environments drive membrane protein stability.
Collapse
Affiliation(s)
- Jazlyn A Selvasingh
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Eli F McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Preston D Neufer
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Jacob R McKinney
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, Leipzig, Germany.
| | - Kaitlyn V Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
18
|
Pinotsis N, Krüger A, Tomas N, Chatziefthymiou SD, Litz C, Mortensen SA, Daffé M, Marrakchi H, Antranikian G, Wilmanns M. Discovery of a non-canonical prototype long-chain monoacylglycerol lipase through a structure-based endogenous reaction intermediate complex. Nat Commun 2023; 14:7649. [PMID: 38012138 PMCID: PMC10682391 DOI: 10.1038/s41467-023-43354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.
Collapse
Affiliation(s)
- Nikos Pinotsis
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Anna Krüger
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Claudia Litz
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Simon Arnold Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Garabed Antranikian
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Hamburg Clinical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
19
|
Parker JL, Kato T, Kuteyi G, Sitsel O, Newstead S. Molecular basis for selective uptake and elimination of organic anions in the kidney by OAT1. Nat Struct Mol Biol 2023; 30:1786-1793. [PMID: 37482561 PMCID: PMC10643130 DOI: 10.1038/s41594-023-01039-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023]
Abstract
In mammals, the kidney plays an essential role in maintaining blood homeostasis through the selective uptake, retention or elimination of toxins, drugs and metabolites. Organic anion transporters (OATs) are responsible for the recognition of metabolites and toxins in the nephron and their eventual urinary excretion. Inhibition of OATs is used therapeutically to improve drug efficacy and reduce nephrotoxicity. The founding member of the renal organic anion transporter family, OAT1 (also known as SLC22A6), uses the export of α-ketoglutarate (α-KG), a key intermediate in the Krebs cycle, to drive selective transport and is allosterically regulated by intracellular chloride. However, the mechanisms linking metabolite cycling, drug transport and intracellular chloride remain obscure. Here, we present cryogenic-electron microscopy structures of OAT1 bound to α-KG, the antiviral tenofovir and clinical inhibitor probenecid, used in the treatment of Gout. Complementary in vivo cellular assays explain the molecular basis for α-KG driven drug elimination and the allosteric regulation of organic anion transport in the kidney by chloride.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Takafumi Kato
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Oleg Sitsel
- Department of Biochemistry, University of Oxford, Oxford, UK
- Max Planck Institute of Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Reys V, Kowalewski J, Gelin M, Lionne C. w TSA-CRAFT: an open-access web server for rapid analysis of thermal shift assay experiments. BIOINFORMATICS ADVANCES 2023; 3:vbad136. [PMID: 37822724 PMCID: PMC10562953 DOI: 10.1093/bioadv/vbad136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Motivation The automated data processing provided by the TSA-CRAFT tool enables now to reach high throughput speed analysis of thermal shift assays. While the software is powerful and freely available, it still requires installation process and command line efforts that could be discouraging. Results To simplify the procedure, we decided to make it available and easy to use by implementing it with a graphical interface via a web server, enabling a cross-platform usage from any web browsers. We developed a web server embedded version of the TSA-CRAFT tool, enabling a user-friendly graphical interface for formatting and submission of the input file and visualization of the selected thermal denaturation profiles. We describe a typical case study of buffer condition optimization of the biologically relevant APH(3')-IIb bacterial protein in a 96 deep-well thermal shift analysis screening. Availability and implementation wTSA-CRAFT is freely accessible for noncommercial usage at https://bioserv.cbs.cnrs.fr/TSA_CRAFT.
Collapse
Affiliation(s)
- Victor Reys
- Centre de Biologie Structurale (CBS), CNRS UMR 5048, Université de Montpellier, INSERM U 1054, 34090 Montpellier, France
| | - Julien Kowalewski
- Centre de Biologie Structurale (CBS), CNRS UMR 5048, Université de Montpellier, INSERM U 1054, 34090 Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS UMR 5048, Université de Montpellier, INSERM U 1054, 34090 Montpellier, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), CNRS UMR 5048, Université de Montpellier, INSERM U 1054, 34090 Montpellier, France
| |
Collapse
|
21
|
Custódio TF, Killer M, Yu D, Puente V, Teufel DP, Pautsch A, Schnapp G, Grundl M, Kosinski J, Löw C. Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat Commun 2023; 14:5696. [PMID: 37709742 PMCID: PMC10502012 DOI: 10.1038/s41467-023-41420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
PHT1 is a histidine /oligopeptide transporter with an essential role in Toll-like receptor innate immune responses. It can act as a receptor by recruiting the adaptor protein TASL which leads to type I interferon production via IRF5. Persistent stimulation of this signalling pathway is known to be involved in the pathogenesis of systemic lupus erythematosus (SLE). Understanding how PHT1 recruits TASL at the molecular level, is therefore clinically important for the development of therapeutics against SLE and other autoimmune diseases. Here we present the Cryo-EM structure of PHT1 stabilized in the outward-open conformation. By combining biochemical and structural modeling techniques we propose a model of the PHT1-TASL complex, in which the first 16 N-terminal TASL residues fold into a helical structure that bind in the central cavity of the inward-open conformation of PHT1. This work provides critical insights into the molecular basis of PHT1/TASL mediated type I interferon production.
Collapse
Affiliation(s)
- Tânia F Custódio
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Dingquan Yu
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Collaboration for joint PhD degree between EMBL, and Heidelberg University, Faculty of Biosciences, 69120, Heidelberg, Germany
| | - Virginia Puente
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Daniel P Teufel
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Alexander Pautsch
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Marc Grundl
- Boehringer Ingelheim Pharma, Birkendorferstraße 65, 88397, Biberach, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
| |
Collapse
|
22
|
Hagströmer CJ, Hyld Steffen J, Kreida S, Al-Jubair T, Frick A, Gourdon P, Törnroth-Horsefield S. Structural and functional analysis of aquaporin-2 mutants involved in nephrogenic diabetes insipidus. Sci Rep 2023; 13:14674. [PMID: 37674034 PMCID: PMC10482962 DOI: 10.1038/s41598-023-41616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
Aquaporins are water channels found in the cell membrane, where they allow the passage of water molecules in and out of the cells. In the kidney collecting duct, arginine vasopressin-dependent trafficking of aquaporin-2 (AQP2) fine-tunes reabsorption of water from pre-urine, allowing precise regulation of the final urine volume. Point mutations in the gene for AQP2 may disturb this process and lead to nephrogenic diabetes insipidus (NDI), whereby patients void large volumes of highly hypo-osmotic urine. In recessive NDI, mutants of AQP2 are retained in the endoplasmic reticulum due to misfolding. Here we describe the structural and functional characterization of three AQP2 mutations associated with recessive NDI: T125M and T126M, situated close to a glycosylation site and A147T in the transmembrane region. Using a proteoliposome assay, we show that all three mutants permit the transport of water. The crystal structures of T125M and T126M together with biophysical characterization of all three mutants support that they retain the native structure, but that there is a significant destabilization of A147T. Our work provides unique molecular insights into the mechanisms behind recessive NDI as well as deepens our understanding of how misfolded proteins are recognized by the ER quality control system.
Collapse
Affiliation(s)
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
23
|
Kotov V, Killer M, Jungnickel KEJ, Lei J, Finocchio G, Steinke J, Bartels K, Strauss J, Dupeux F, Humm AS, Cornaciu I, Márquez JA, Pardon E, Steyaert J, Löw C. Plasticity of the binding pocket in peptide transporters underpins promiscuous substrate recognition. Cell Rep 2023; 42:112831. [PMID: 37467108 DOI: 10.1016/j.celrep.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Collapse
Affiliation(s)
- Vadim Kotov
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Maxime Killer
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Hamburg, Germany
| | - Katharina E J Jungnickel
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jian Lei
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany; State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Giada Finocchio
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Josi Steinke
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Kim Bartels
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Strauss
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - Florine Dupeux
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - José A Márquez
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs CS 90181, 38042 Grenoble Cedex 9, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Christian Löw
- Center for Structural Systems Biology (CSSB), Notkestraße 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
24
|
Sanders E, Csondor R, Šulskis D, Baronaitė I, Smirnovas V, Maheswaran L, Horrocks J, Munro R, Georgiadou C, Horvath I, Morozova-Roche LA, Williamson PTF. The Stabilization of S100A9 Structure by Calcium Inhibits the Formation of Amyloid Fibrils. Int J Mol Sci 2023; 24:13200. [PMID: 37686007 PMCID: PMC10488161 DOI: 10.3390/ijms241713200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The calcium-binding protein S100A9 is recognized as an important component of the brain neuroinflammatory response to the onset and development of neurodegenerative disease. S100A9 is intrinsically amyloidogenic and in vivo co-aggregates with amyloid-β peptide and α-synuclein in Alzheimer's and Parkinson's diseases, respectively. It is widely accepted that calcium dyshomeostasis plays an important role in the onset and development of these diseases, and studies have shown that elevated levels of calcium limit the potential for S100A9 to adopt a fibrillar structure. The exact mechanism by which calcium exerts its influence on the aggregation process remains unclear. Here we demonstrate that despite S100A9 exhibiting α-helical secondary structure in the absence of calcium, the protein exhibits significant plasticity with interconversion between different conformational states occurring on the micro- to milli-second timescale. This plasticity allows the population of conformational states that favour the onset of fibril formation. Magic-angle spinning solid-state NMR studies of the resulting S100A9 fibrils reveal that the S100A9 adopts a single structurally well-defined rigid fibrillar core surrounded by a shell of approximately 15-20 mobile residues, a structure that persists even when fibrils are produced in the presence of calcium ions. These studies highlight how the dysregulation of metal ion concentrations can influence the conformational equilibria of this important neuroinflammatory protein to influence the rate and nature of the amyloid deposits formed.
Collapse
Affiliation(s)
- Ella Sanders
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rebecca Csondor
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Darius Šulskis
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ieva Baronaitė
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Luckshi Maheswaran
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jack Horrocks
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rory Munro
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Christina Georgiadou
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Istvan Horvath
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
25
|
Szal T, Chauhan SS, Lewe P, Rachad FZ, Madre M, Paunina L, Witt S, Parthasarathi R, Windshügel B. Efflux Pump-Binding 4(3-Aminocyclobutyl)Pyrimidin-2-Amines Are Colloidal Aggregators. Biomolecules 2023; 13:1000. [PMID: 37371580 PMCID: PMC10296211 DOI: 10.3390/biom13061000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Efflux pumps are a relevant factor in antimicrobial resistance. In E. coli, the tripartite efflux pump AcrAB-TolC removes a chemically diverse set of antibiotics from the bacterium. Therefore, small molecules interfering with efflux pump function are considered adjuvants for improving antimicrobial therapies. Several compounds targeting the periplasmic adapter protein AcrA and the efflux pump AcrB have been identified to act synergistically with different antibiotics. Among those, several 4(3-aminocyclobutyl)pyrimidin-2-amines have been shown to bind to both proteins. In this study, we intended to identify analogs of these substances with improved binding affinity to AcrA using virtual screening followed by experimental validation. While we succeeded in identifying several compounds showing a synergistic effect with erythromycin on E. coli, biophysical studies suggested that 4(3-aminocyclobutyl)pyrimidin-2-amines form colloidal aggregates that do not bind specifically to AcrA. Therefore, these substances are not suited for further development. Our study emphasizes the importance of implementing additional control experiments to identify aggregators among bioactive compounds.
Collapse
Affiliation(s)
- Tania Szal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Philipp Lewe
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Fatima-Zahra Rachad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
| | - Marina Madre
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Laura Paunina
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (M.M.); (L.P.)
| | - Susanne Witt
- Centre for Structural Systems Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), 22607 Hamburg, Germany; (P.L.); (S.W.)
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, Toxicoinformatics & Industrial Research CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; (S.S.C.); (R.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, 22525 Hamburg, Germany; (T.S.); (F.-Z.R.)
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
26
|
Chen YP, Li Y, Chen F, Wu H, Zhang S. Characterization and expression of fungal defensin in Escherichia coli and its antifungal mechanism by RNA-seq analysis. Front Microbiol 2023; 14:1172257. [PMID: 37389349 PMCID: PMC10306309 DOI: 10.3389/fmicb.2023.1172257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Invasive fungal infections (IFIs) are fatally threatening to critical patients. The fungal defensin as an antifungal protein can widely inhibit fungi. Methods In this study, eight antifungal genes from different filamentous fungi were optimized by synonymous codon bias and heterologously expressed in Escherichia coli. Results and discussion Only the antifungal protein (AFP) from Aspergillus giganteus was produced, whereas the AFP from its mutation of the chitin-binding domain could not be expressed, thereby suggesting the importance of the motif for protein folding. In addition, the recombinant AFP (rAFP, 100 μg/mL) pre-heated at 50°C for 1 h effectively inhibited Paecilomyces variotii CICC40716 of IFIs by 55%, and no cell cytotoxicity was observed in RAW264.7 cells. After being pre-heated at 50°C for 8 h, the fluorescence emission intensity of the rAFP decreased and shifted from 343 nm to 335 nm. Moreover, the helix and β-turn of the rAFP gradually decreased with the pre-heated treatment temperature of 50°C via circular dichroism spectroscopy. Propidium iodide staining revealed that the rAFP could cause damage to the cell membrane. Moreover, the corresponding differentially expressed genes (DEGs) for downregulation such as amino sugar and nucleotide sugar metabolism, as well as mitogen-activated protein kinase (MAPK) signaling pathway involved in the cell wall integrity were found via the RNA-seq of rAFP treatment. By contrast, the upregulated DEGs were enriched in response to the oxidative stress of Biological Process by the Gene Ontology (GO) database. The encoding proteins of laccase, multicopper oxidase, and nitroreductase that contributed to reactive oxygen species (ROS) scavenging could be recognized. These results suggested that the rAFP may affect the integrity of the cell wall and cell membrane, and promote the increase in ROS, thereby resulting in fungal death. Consequently, drug development could be based on the inhibitory effect of the rAFP on IFIs.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, China
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingying Li
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, China
- Department of Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
| | - Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, China
| | - Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
27
|
Woods H, Schiano DL, Aguirre JI, Ledwitch KV, McDonald EF, Voehler M, Meiler J, Schoeder CT. Computational modeling and prediction of deletion mutants. Structure 2023; 31:713-723.e3. [PMID: 37119820 PMCID: PMC10247520 DOI: 10.1016/j.str.2023.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha motif domain and investigated the structural and thermodynamic changes using 2D NMR spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to model and classify observed deletion mutants. We show a method using AlphaFold2 followed by RosettaRelax performs the best overall. In addition, a metric containing pLDDT values and Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this method on other datasets and show they hold for proteins known to harbor disease-causing deletion mutations.
Collapse
Affiliation(s)
- Hope Woods
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Dominic L Schiano
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan I Aguirre
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Kaitlyn V Ledwitch
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Eli F McDonald
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Markus Voehler
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany.
| | - Clara T Schoeder
- Center of Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Institute for Drug Discovery, Leipzig University Medical School, 04103 Leipzig, Germany.
| |
Collapse
|
28
|
Högg E, Rauh C. Towards a Better Understanding of Texturization during High-Moisture Extrusion (HME)-Part I: Modeling the Texturability of Plant-Based Proteins. Foods 2023; 12:1955. [PMID: 37238773 PMCID: PMC10217560 DOI: 10.3390/foods12101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
This study focused on predicting high-moisture texturization of plant-based proteins (soy protein concentrate (SPC), soy protein isolate (SPI), pea protein isolate (PPI)) at different water contents (57.5%, 60%, 65%, 70%, and 72.5% (w/w db)) to optimize and guarantee the production of high-moisture meat analogs (HMMA). Therefore, high-moisture extrusion (HME) experiments were performed, and the texture of the obtained high-moisture extruded samples (HMES) was sensory evaluated and categorized into poorly-textured, textured, or well-textured. In parallel, data on heat capacity (cp) and phase transition behavior of the plant-based proteins were determined using differential scanning calorimetry (DSC). Based on the DSC data, a model for predicting cp of hydrated, but not extruded, plant-based proteins was developed. Furthermore, based on the aforementioned model for predicting cp and DSC data on phase transition behavior of the plant-based proteins in combination with conducted HME trials and the mentioned model for predicting cp, a texturization indicator was developed, which could be used to calculate the minimum threshold temperature required to texturize plant-based proteins during HME. The outcome of this study could help to minimize the resources of expensive extrusion trials in the industry to produce HMMA with defined textures.
Collapse
Affiliation(s)
| | - Cornelia Rauh
- Department of Food Biotechnology and Food Process Engineering, Technische Universität Berlin (TU Berlin), 14195 Berlin, Germany
| |
Collapse
|
29
|
Selvasingh JA, McDonald EF, Mckinney JR, Meiler J, Ledwitch KV. Dark nanodiscs as a model membrane for evaluating membrane protein thermostability by differential scanning fluorimetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539917. [PMID: 37214798 PMCID: PMC10197605 DOI: 10.1101/2023.05.08.539917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Measuring protein thermostability provides valuable information on the biophysical rules that govern structure-energy relationships of proteins. However, such measurements remain a challenge for membrane proteins. Here, we introduce a new experimental system to evaluate membrane protein thermostability. This system leverages a recently-developed non-fluorescent membrane scaffold protein (MSP) to reconstitute proteins into nanodiscs and is coupled with a nano-format of differential scanning fluorimetry (nanoDSF). This approach offers a label-free and direct measurement of the intrinsic tryptophan fluorescence of the membrane protein as it unfolds in solution without signal interference from the "dark" nanodisc. In this work, we demonstrate the application of this method using the disulfide bond formation protein B (DsbB) as a test membrane protein. NanoDSF measurements of DsbB reconstituted in dark nanodiscs show a complex biphasic thermal unfolding pattern in the presence of lipids with a minor unfolding transition followed by a major transition. The inflection points of the thermal denaturation curve reveal two distinct unfolding midpoint melting temperatures (Tm) of 70.5 °C and 77.5 °C, consistent with a three-state unfolding model. Further, we show that the catalytically conserved disulfide bond between residues C41 and C130 drives the intermediate state of the unfolding pathway for DsbB in a nanodisc. We introduce this method as a new tool that can be used to understand how compositionally, and biophysically complex lipid environments drive membrane protein stability.
Collapse
Affiliation(s)
- Jazlyn A. Selvasingh
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Eli Fritz McDonald
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob R. Mckinney
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Kaitlyn V. Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Lead contact
| |
Collapse
|
30
|
do Nascimento MA, Leão RA, Froidevaux R, Wojcieszak R, de Souza ROA, Itabaiana I. A new approach for the direct acylation of bio-oil enriched with levoglucosan: kinetic study and lipase thermostability. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
31
|
Niebling S, Burastero O, García-Alai M. Biophysical Characterization of Membrane Proteins. Methods Mol Biol 2023; 2652:215-230. [PMID: 37093478 DOI: 10.1007/978-1-0716-3147-8_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Membrane proteins are responsible for a large variety of tasks in organisms and of particular interesting as drug targets. At the same time, they are notoriously difficult to work with and require a thorough characterization before proceeding with structural studies. Here, we present a biophysical pipeline to characterize membrane proteins focusing on the optimization of stability, aggregation behavior, and homogeneity. The pipeline shown here is built on three biophysical techniques: differential scanning fluorimetry using native protein fluorescence (nano differential scanning fluorimetry), dynamic light scattering, and mass photometry. For each of these techniques, we provide detailed protocols for performing experiments and data analysis.
Collapse
Affiliation(s)
- Stephan Niebling
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - María García-Alai
- European Molecular Biology Laboratory Hamburg, Hamburg, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
| |
Collapse
|
32
|
Sanchez TW, Ronzetti MH, Owens AE, Antony M, Voss T, Wallgren E, Talley D, Balakrishnan K, Leyes Porello SE, Rai G, Marugan JJ, Michael SG, Baljinnyam B, Southall N, Simeonov A, Henderson MJ. Real-Time Cellular Thermal Shift Assay to Monitor Target Engagement. ACS Chem Biol 2022; 17:2471-2482. [PMID: 36049119 PMCID: PMC9486815 DOI: 10.1021/acschembio.2c00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Determining a molecule's mechanism of action is paramount during chemical probe development and drug discovery. The cellular thermal shift assay (CETSA) is a valuable tool to confirm target engagement in cells for a small molecule that demonstrates a pharmacological effect. CETSA directly detects biophysical interactions between ligands and protein targets, which can alter a protein's unfolding and aggregation properties in response to thermal challenge. In traditional CETSA experiments, each temperature requires an individual sample, which restricts throughput and requires substantial optimization. To capture the full aggregation profile of a protein from a single sample, we developed a prototype real-time CETSA (RT-CETSA) platform by coupling a real-time PCR instrument with a CCD camera to detect luminescence. A thermally stable Nanoluciferase variant (ThermLuc) was bioengineered to withstand unfolding at temperatures greater than 90 °C and was compatible with monitoring target engagement events when fused to diverse targets. Utilizing well-characterized inhibitors of lactate dehydrogenase alpha, RT-CETSA showed significant correlation with enzymatic, biophysical, and other cell-based assays. A data analysis pipeline was developed to enhance the sensitivity of RT-CETSA to detect on-target binding. RT-CETSA technology advances capabilities of the CETSA method and facilitates the identification of ligand-target engagement in cells, a critical step in assessing the mechanism of action of a small molecule.
Collapse
|
33
|
Xu Y, Dang S. Recent Technical Advances in Sample Preparation for Single-Particle Cryo-EM. Front Mol Biosci 2022; 9:892459. [PMID: 35813814 PMCID: PMC9263182 DOI: 10.3389/fmolb.2022.892459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cryo-sample preparation is a vital step in the process of obtaining high-resolution structures of macromolecules by using the single-particle cryo–electron microscopy (cryo-EM) method; however, cryo-sample preparation is commonly hampered by high uncertainty and low reproducibility. Specifically, the existence of air-water interfaces during the sample vitrification process could cause protein denaturation and aggregation, complex disassembly, adoption of preferred orientations, and other serious problems affecting the protein particles, thereby making it challenging to pursue high-resolution 3D reconstruction. Therefore, sample preparation has emerged as a critical research topic, and several new methods for application at various preparation stages have been proposed to overcome the aforementioned hurdles. Here, we summarize the methods developed for enhancing the quality of cryo-samples at distinct stages of sample preparation, and we offer insights for developing future strategies based on diverse viewpoints. We anticipate that cryo-sample preparation will no longer be a limiting step in the single-particle cryo-EM field as increasing numbers of methods are developed in the near future, which will ultimately benefit the entire research community.
Collapse
Affiliation(s)
- Yixin Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- *Correspondence: Shangyu Dang,
| |
Collapse
|
34
|
Khan MA, Siddiqui MQ, Kuligina E, Varma AK. Evaluation of conformational transitions of h-BRCA2 functional domain and unclassified variant Arg2502Cys using multimodal approach. Int J Biol Macromol 2022; 209:716-724. [PMID: 35413318 DOI: 10.1016/j.ijbiomac.2022.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Breast cancer type 2 susceptibility (BRCA2) protein plays an essential role in the repair mechanism of DNA double-strand breaks and interstrand cross-links by Homologous recombination. Germline mutations identified in the BRCA2 gene confer an increased risk of hereditary breast and ovarian cancer. Missense mutations are identified all over the gene, including the DNA binding region of BRCA2 that interacts with FANCD2. However, the majority of these missense mutations are classified as 'Variants of Uncertain Significance' due to a lack of structural, functional and clinical correlations. Therefore, multi-disciplinary in-silico, in-vitro and biophysical approaches have been explored to characterize an unclassified missense mutation, BRCA2 Arg2502Cys, identified from a case-control study. Circular-dichroism and Fluorescence spectroscopy show that the Arg2502Cys mutation in hBRCA2 (residues 2350-2545) decreases the α-helical/β-sheet propensity of the wild-type protein and perturb the tertiary structure conformation. Molecular dynamics simulations revealed alteration in the intramolecular H-bonds, overall compactness and stability of the hydrophobic core were observed in the mutant protein. Principle component analysis indicated that Arg2502Cys mutant exhibited comparatively large conformational transitions and periodic fluctuation. Therefore, to our conclusion, BRCA2 Arg2502Cys mutant perturbed the structural integrity and conformational dynamics of BRCA2.
Collapse
Affiliation(s)
- Mudassar Ali Khan
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - M Quadir Siddiqui
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Present address: Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Ekaterina Kuligina
- N.N. Petrov Institute of Oncology, Laboratory of Molecular Oncology, RU-197758, Pesochny-2, St.-Petersburg, Russia
| | - Ashok K Varma
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
35
|
Burastero O, Niebling S, Defelipe LA, Günther C, Struve A, Garcia Alai MM. eSPC: an online data-analysis platform for molecular biophysics. Acta Crystallogr D Struct Biol 2021; 77:1241-1250. [PMID: 34605428 PMCID: PMC8489228 DOI: 10.1107/s2059798321008998] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
All biological processes rely on the formation of protein-ligand, protein-peptide and protein-protein complexes. Studying the affinity, kinetics and thermodynamics of binding between these pairs is critical for understanding basic cellular mechanisms. Many different technologies have been designed for probing interactions between biomolecules, each based on measuring different signals (fluorescence, heat, thermophoresis, scattering and interference, among others). Evaluation of the data from binding experiments and their fitting is an essential step towards the quantification of binding affinities. Here, user-friendly online tools to analyze biophysical data from steady-state fluorescence spectroscopy, microscale thermophoresis and differential scanning fluorimetry experiments are presented. The modules of the data-analysis platform (https://spc.embl-hamburg.de/) contain classical thermodynamic models and clear user guidelines for the determination of equilibrium dissociation constants (Kd) and thermal unfolding parameters such as melting temperatures (Tm).
Collapse
Affiliation(s)
- Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina
- IQUIBICEN–UBA/CONICET, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina
| | - Stephan Niebling
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Günther
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Angelica Struve
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maria M. Garcia Alai
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
36
|
Politou AS, Pastore A, Temussi PA. An "Onion-like" Model of Protein Unfolding: Collective versus Site Specific Approaches. Chemphyschem 2021; 23:e202100520. [PMID: 34549492 DOI: 10.1002/cphc.202100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
Approximating protein unfolding by an all-or-none cooperative event is a convenient assumption that can provide precious global information on protein stability. It is however quickly emerging that the scenario is far more complex and that global denaturation curves often hide a rich heterogeneity of states that are largely probe dependent. In this review, we revisit the importance of gaining site-specific information on the unfolding process. We focus on nuclear magnetic resonance, as this is the main technique able to provide site-specific information. We review historical and most modern approaches that have allowed an appreciable advancement of the field of protein folding. We also demonstrate how unfolding is a reporter dependent event, suggesting the outmost importance of selecting the reporter carefully.
Collapse
Affiliation(s)
- Anastasia S Politou
- Faculty of Medicine, University of Ioannina.,Institute of Molecular Biology and Biotechnology-FORTH, Ioannina, Greece
| | - Annalisa Pastore
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the, Maurice Wohl Institute of King's College London, 5 Cutcombe Rd, London, SE5 9RT, United Kingdom
| |
Collapse
|
37
|
Missel JW, Salustros N, Becares ER, Steffen JH, Laursen AG, Garcia AS, Garcia-Alai MM, Kolar Č, Gourdon P, Gotfryd K. Cyclohexyl-α maltoside as a highly efficient tool for membrane protein studies. Curr Res Struct Biol 2021; 3:85-94. [PMID: 34235488 PMCID: PMC8244287 DOI: 10.1016/j.crstbi.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.
Collapse
Affiliation(s)
- Julie Winkel Missel
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Nina Salustros
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Eva Ramos Becares
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Jonas Hyld Steffen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Amalie Gerdt Laursen
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Angelica Struve Garcia
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Maria M Garcia-Alai
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607, Hamburg, Germany.,Centre for Structural Systems Biology, Notkestrasse 85, D-22607, Hamburg, Germany
| | - Čeněk Kolar
- Glycon Biochemicals GmbH, Im Biotechnologie Park TGZ 1, D-14943, Luckenwalde, Germany
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark.,Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden
| | - Kamil Gotfryd
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
38
|
Kellner R, Malempré R, Vandenameele J, Brans A, Hennen AF, Rochus N, Di Paolo A, Vandevenne M, Matagne A. Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:473-490. [PMID: 33611612 DOI: 10.1007/s00249-021-01510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Among various factors, the direct environment (e.g. pH, buffer components, salts, additives, etc.…) is known to have a crucial effect on both the stability and activity of proteins. In particular, proper buffer and pH conditions can improve their stability and function significantly during purification, storage and handling, which is highly relevant for both academic and industrial applications. It can also promote data reproducibility, support the interpretation of experimental results and, finally, contribute to our general understanding of the biophysical properties of proteins. In this study, we have developed a high throughput screen of 158 different buffers/pH conditions in which we evaluated: (i) the protein stability, using differential scanning fluorimetry and (ii) the protein function, using either enzymatic assays or binding activity measurements, both in an automated manner. The modular setup of the screen allows for easy implementation of other characterization methods and parameters, as well as additional test conditions. The buffer/pH screen was validated with five different proteins used as models, i.e. two active-site serine β-lactamases, two metallo-β-lactamases (one of which is only active as a tetramer) and a single-domain dromedary antibody fragment (VHH or nanobody). The formulation screen allowed automated and fast determination of optimum buffer and pH profiles for the tested proteins. Besides the determination of the optimum buffer and pH, the collection of pH profiles of many different proteins may also allow to delineate general concepts to understand and predict the relationship between pH and protein properties.
Collapse
Affiliation(s)
- Ruth Kellner
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Romain Malempré
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - Alain Brans
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | | | - Noémie Rochus
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium
| | - Alexandre Di Paolo
- Eurogentec S.A., Rue Bois Saint-Jean, 5, 4102, Seraing, Belgium.,Xpress Biologics SA, Accessia Pharma Site, Avenue du Parc Industriel, 89, 4041, Milmort, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6C, Quartier Agora, Allée du 6 Août, 13, 4000, Liège (Sart-Tilman), Belgium.
| |
Collapse
|
39
|
Kotov V, Mlynek G, Vesper O, Pletzer M, Wald J, Teixeira‐Duarte CM, Celia H, Garcia‐Alai M, Nussberger S, Buchanan SK, Morais‐Cabral JH, Loew C, Djinovic‐Carugo K, Marlovits TC. In-depth interrogation of protein thermal unfolding data with MoltenProt. Protein Sci 2021; 30:201-217. [PMID: 33140490 PMCID: PMC7737771 DOI: 10.1002/pro.3986] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Protein stability is a key factor in successful structural and biochemical research. However, the approaches for systematic comparison of protein stability are limited by sample consumption or compatibility with sample buffer components. Here we describe how miniaturized measurement of intrinsic tryptophan fluorescence (NanoDSF assay) in combination with a simplified description of protein unfolding can be used to interrogate the stability of a protein sample. We demonstrate that improved protein stability measures, such as apparent Gibbs free energy of unfolding, rather than melting temperature Tm , should be used to rank the results of thermostability screens. The assay is compatible with protein samples of any composition, including protein complexes and membrane proteins. Our data analysis software, MoltenProt, provides an easy and robust way to perform characterization of multiple samples. Potential applications of MoltenProt and NanoDSF include buffer and construct optimization for X-ray crystallography and cryo-electron microscopy, screening for small-molecule binding partners and comparison of effects of point mutations.
Collapse
Affiliation(s)
- Vadim Kotov
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Georg Mlynek
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Oliver Vesper
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Marina Pletzer
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| | - Celso M. Teixeira‐Duarte
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Maria Garcia‐Alai
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular SystemsUniversity of StuttgartStuttgartGermany
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - João H. Morais‐Cabral
- Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal
| | - Christian Loew
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- European Molecular Biology Laboratory (EMBL)Hamburg UnitHamburgGermany
| | - Kristina Djinovic‐Carugo
- Department of Structural and Computational Biology, Max Perutz Labs ViennaUniversity of ViennaViennaAustria
- Department of Biochemistry, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB)HamburgGermany
- Institute for Structural and Systems BiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)HamburgGermany
- German Electron Synchrotron Centre (DESY)HamburgGermany
| |
Collapse
|