1
|
Krom J, Meister K, Vilgis TA. Simple Method to Assess Foam Structure and Stability using Hydrophobin and BSA as Model Systems. Chemphyschem 2024; 25:e202400050. [PMID: 38683048 DOI: 10.1002/cphc.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The properties and arrangement of surface-active molecules at air-water interfaces influence foam stability and bubble shape. Such multiscale-relationships necessitate a well-conducted analysis of mesoscopic foam properties. We introduce a novel automated and precise method to characterize bubble growth, size distribution and shape based on image analysis and using the machine learning algorithm Cellpose. Studying the temporal evolution of bubble size and shape facilitates conclusions on foam stability. The addition of two sets of masks, for tiny bubbles and large bubbles, provides for a high precision of analysis. A python script for analysis of the evolution of bubble diameter, circularity and dispersity is provided in the Supporting Information. Using foams stabilized by bovine serum albumin (BSA), hydrophobin (HP), and blends thereof, we show how this technique can be used to precisely characterize foam structures. Foams stabilized by HP show a significantly increased foam stability and rounder bubble shape than BSA-stabilized foams. These differences are induced by the different molecular structure of the two proteins. Our study shows that the proposed method provides an efficient way to analyze relevant foam properties in detail and at low cost, with higher precision than conventional methods of image analysis.
Collapse
Affiliation(s)
- Judith Krom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Konrad Meister
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho, 83725, United States
| | - Thomas A Vilgis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Ren H, Chen H, Kang Y, Liu W, Liu Y, Tao F, Miao S, Zhang Y, Liu Q, Dong M, Liu Y, Liu B, Yang P. Non-fibril amyloid aggregation at the air/water interface: self-adaptive pathway resulting in a 2D Janus nanofilm. Chem Sci 2024; 15:8946-8958. [PMID: 38873054 PMCID: PMC11168098 DOI: 10.1039/d4sc00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/27/2024] [Indexed: 06/15/2024] Open
Abstract
The amyloid states of proteins are implicated in several neurodegenerative diseases and bioadhesion processes. However, the classical amyloid fibrillization mechanism fails to adequately explain the formation of polymorphic aggregates and their adhesion to various surfaces. Herein, we report a non-fibril amyloid aggregation pathway, with disulfide-bond-reduced lysozyme (R-Lyz) as a model protein under quasi-physiological conditions. Very different from classical fibrillization, this pathway begins with the air-water interface (AWI) accelerated oligomerization of unfolded full-length protein, resulting in unique plate-like oligomers with self-adaptive ability, which can adjust their conformations to match various interfaces such as the asymmetric AWI and amyloid-protein film surface. The pathway enables a stepwise packing of the plate-like oligomers into a 2D Janus nanofilm, exhibiting a divergent distribution of hydrophilic/hydrophobic residues on opposite sides of the nanofilm. The resulting Janus nanofilm possesses a top-level Young's modulus (8.3 ± 0.6 GPa) among amyloid-based materials and exhibits adhesive strength two times higher (145 ± 81 kPa) than that of barnacle cement. Furthermore, we found that such an interface-directed pathway exists in several amyloidogenic proteins with a similar self-adaptive 2D-aggregation process, including bovine serum albumin, insulin, fibrinogen, hemoglobin, lactoferrin, and ovalbumin. Thus, our findings on the non-fibril self-adaptive mechanism for amyloid aggregation may shed light on polymorphic amyloid assembly and their adhesions through an alternative pathway.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Huan Chen
- First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an 710061 China
| | - Yu Kang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Fei Tao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Yingying Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Qian Liu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Aarhus C Denmark
| | - Yonggang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Bing Liu
- First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University Xi'an 710061 China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Polymeric Soft Matter, International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
3
|
Bouqellah NA, Farag PF. In Silico Evaluation, Phylogenetic Analysis, and Structural Modeling of the Class II Hydrophobin Family from Different Fungal Phytopathogens. Microorganisms 2023; 11:2632. [PMID: 38004644 PMCID: PMC10672791 DOI: 10.3390/microorganisms11112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The class II hydrophobin group (HFBII) is an extracellular group of proteins that contain the HFBII domain and eight conserved cysteine residues. These proteins are exclusively secreted by fungi and have multiple functions with a probable role as effectors. In the present study, a total of 45 amino acid sequences of hydrophobin class II proteins from different phytopathogenic fungi were retrieved from the NCBI database. We used the integration of well-designed bioinformatic tools to characterize and predict their physicochemical parameters, novel motifs, 3D structures, multiple sequence alignment (MSA), evolution, and functions as effector proteins through molecular docking. The results revealed new features for these protein members. The ProtParam tool detected the hydrophobicity properties of all proteins except for one hydrophilic protein (KAI3335996.1). Out of 45 proteins, six of them were detected as GPI-anchored proteins by the PredGPI server. Different 3D structure templates with high pTM scores were designed by Multifold v1, AlphaFold2, and trRosetta. Most of the studied proteins were anticipated as apoplastic effectors and matched with the ghyd5 gene of Fusarium graminearum as virulence factors. A protein-protein interaction (PPI) analysis unraveled the molecular function of this group as GTP-binding proteins, while a molecular docking analysis detected a chitin-binding effector role. From the MSA analysis, it was observed that the HFBII sequences shared conserved 2 Pro (P) and 2 Gly (G) amino acids besides the known eight conserved cysteine residues. The evolutionary analysis and phylogenetic tree provided evidence of episodic diversifying selection at the branch level using the aBSREL tool. A detailed in silico analysis of this family and the present findings will provide a better understanding of the HFBII characters and evolutionary relationships, which could be very useful in future studies.
Collapse
Affiliation(s)
- Nahla A. Bouqellah
- Department of Biology, College of Science, Taibah University, P.O. Box 344, Al Madinah Al Munawwarah 42317-8599, Saudi Arabia
| | - Peter F. Farag
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
4
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
5
|
Gallo M, Luti S, Baroni F, Baccelli I, Cilli EM, Cicchi C, Leri M, Spisni A, Pertinhez TA, Pazzagli L. Plant Defense Elicitation by the Hydrophobin Cerato-Ulmin and Correlation with Its Structural Features. Int J Mol Sci 2023; 24:2251. [PMID: 36768573 PMCID: PMC9916430 DOI: 10.3390/ijms24032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a β-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Fabio Baroni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-901, Brazil
| | - Costanza Cicchi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Manuela Leri
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | | | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| |
Collapse
|
6
|
Vergunst KL, Kenward C, Langelaan DN. Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Appl Microbiol Biotechnol 2022; 106:7831-7843. [DOI: 10.1007/s00253-022-12253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
7
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
8
|
Siddiquee R, Choi SSC, Lam SS, Wang P, Qi R, Otting G, Sunde M, Kwan AHY. Cell-free expression of natively folded hydrophobins. Protein Expr Purif 2020; 170:105591. [PMID: 32032769 DOI: 10.1016/j.pep.2020.105591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
Hydrophobins are a family of cysteine-rich proteins unique to filamentous fungi. The proteins are produced in a soluble form but self-assemble into organised amphipathic layers at hydrophilic:hydrophobic interfaces. These layers contribute to transitions between wet and dry environments, spore dispersal and attachment to surfaces for growth and infection. Hydrophobins are characterised by four disulphide bonds that are critical to their structure and function. Thus, obtaining correctly folded, soluble and functional hydrophobins directly from bacterial recombinant expression is challenging and in most cases, initial denaturation from inclusion bodies followed by oxidative refolding are required to obtain folded proteins. Here, we report the use of cell-free expression with E. coli cell lysate to directly obtain natively folded hydrophobins. All six of the hydrophobins tested could be expressed after optimisation of redox conditions. For some hydrophobins, the inclusion of the disulfide isomerase DsbC further enhanced expression levels. We are able to achieve a yield of up to 1 mg of natively folded hydrophobin per mL of reaction. This has allowed the confirmation of the correct folding of hydrophobins with the use of 15N-cysteine and 15N-1H nuclear magnetic resonance experiments within 24 h of starting from plasmid stocks.
Collapse
Affiliation(s)
- Rezwan Siddiquee
- The University of Sydney, School of Life and Environmental Sciences and SydneyNano, Australia
| | - Samuel Sung-Chan Choi
- The University of Sydney, School of Life and Environmental Sciences and SydneyNano, Australia
| | - Shirley Siuley Lam
- The University of Sydney, School of Life and Environmental Sciences and SydneyNano, Australia
| | - Patrick Wang
- The University of Sydney, School of Life and Environmental Sciences and SydneyNano, Australia
| | - Ruhu Qi
- Australian National University, Research School of Chemistry, Australia
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Australia
| | - Margaret Sunde
- The University of Sydney, School of Medical Sciences and SydneyNano, Australia
| | - Ann Hau-Yu Kwan
- The University of Sydney, School of Life and Environmental Sciences and SydneyNano, Australia.
| |
Collapse
|
9
|
Berger BW, Sallada ND. Hydrophobins: multifunctional biosurfactants for interface engineering. J Biol Eng 2019; 13:10. [PMID: 30679947 PMCID: PMC6343262 DOI: 10.1186/s13036-018-0136-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/19/2018] [Indexed: 11/10/2022] Open
Abstract
Hydrophobins are highly surface-active proteins that have versatile potential as agents for interface engineering. Due to the large and growing number of unique hydrophobin sequences identified, there is growing potential to engineer variants for particular applications using protein engineering and other approaches. Recent applications and advancements in hydrophobin technologies and production strategies are reviewed. The application space of hydrophobins is large and growing, including hydrophobic drug solubilization and delivery, protein purification tags, tools for protein and cell immobilization, antimicrobial coatings, biosensors, biomineralization templates and emulsifying agents. While there is significant promise for their use in a wide range of applications, developing new production strategies is a key need to improve on low recombinant yields to enable their use in broader applications; further optimization of expression systems and yields remains a challenge in order to use designed hydrophobin in commercial applications.
Collapse
Affiliation(s)
- Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
- Department of Chemical Engineering, University of Virginia, 214 Chem. Eng., 102 Engineers’ Way, Charlottesville, VA 22904 USA
| | - Nathanael D. Sallada
- Department of Biomedical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904 USA
| |
Collapse
|
10
|
Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:161-185. [DOI: 10.1007/978-981-13-9791-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ball SR, Kwan AH, Sunde M. Hydrophobin Rodlets on the Fungal Cell Wall. Curr Top Microbiol Immunol 2019; 425:29-51. [DOI: 10.1007/82_2019_186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Pichia pastoris is a Suitable Host for the Heterologous Expression of Predicted Class I and Class II Hydrophobins for Discovery, Study, and Application in Biotechnology. Microorganisms 2018; 6:microorganisms6010003. [PMID: 29303996 PMCID: PMC5874617 DOI: 10.3390/microorganisms6010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
The heterologous expression of proteins is often a crucial first step in not only investigating their function, but also in their industrial application. The functional assembly and aggregation of hydrophobins offers intriguing biotechnological applications from surface modification to drug delivery, yet make developing systems for their heterologous expression challenging. In this article, we describe the development of Pichia pastoris KM71H strains capable of solubly producing the full set of predicted Cordyceps militaris hydrophobins CMil1 (Class IA), CMil2 (Class II), and CMil3 (IM) at mg/L yields with the use of 6His-tags not only for purification but for their detection. This result further demonstrates the feasibility of using P. pastoris as a host organism for the production of hydrophobins from all Ascomycota Class I subdivisions (a classification our previous work defined) as well as Class II. We highlight the specific challenges related to the production of hydrophobins, notably the challenge in detecting the protein that will be described, in particular during the screening of transformants. Together with the literature, our results continue to show that P. pastoris is a suitable host for the soluble heterologous expression of hydrophobins with a wide range of properties.
Collapse
|
13
|
Valsecchi I, Dupres V, Stephen-Victor E, Guijarro JI, Gibbons J, Beau R, Bayry J, Coppee JY, Lafont F, Latgé JP, Beauvais A. Role of Hydrophobins in Aspergillus fumigatus. J Fungi (Basel) 2017; 4:jof4010002. [PMID: 29371496 PMCID: PMC5872305 DOI: 10.3390/jof4010002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/21/2023] Open
Abstract
Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA-RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus, conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus.
Collapse
Affiliation(s)
- Isabel Valsecchi
- Aspergillus Unit, Institut Pasteur, 75015 Paris, France.
- Unité de RMN des Biomolécules, Institut Pasteur, 75015 Paris, France.
| | - Vincent Dupres
- Centre for Infection and Immunity, Institut Pasteur de Lille-CNRS UMR8204-INSERM U1019-CHRU Lille-Université Lille, 59655 Lille, France.
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, 75006 Paris, France.
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 75006 Paris, France.
| | - J Iñaki Guijarro
- Unité de RMN des Biomolécules, Institut Pasteur, 75015 Paris, France.
| | - John Gibbons
- Biology Department, Clark University, Worcester, MA 01610, USA.
| | - Rémi Beau
- Aspergillus Unit, Institut Pasteur, 75015 Paris, France.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, 75006 Paris, France.
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, Université Paris Descartes, 75006 Paris, France.
| | - Jean-Yves Coppee
- Transcriptome et Epigénome, Institut Pasteur, 75015 Paris, France.
| | - Frank Lafont
- Centre for Infection and Immunity, Institut Pasteur de Lille-CNRS UMR8204-INSERM U1019-CHRU Lille-Université Lille, 59655 Lille, France.
| | | | - Anne Beauvais
- Aspergillus Unit, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
14
|
Przylucka A, Akcapinar GB, Bonazza K, Mello-de-Sousa TM, Mach-Aigner AR, Lobanov V, Grothe H, Kubicek CP, Reimhult E, Druzhinina IS. COMPARATIVE PHYSIOCHEMICAL ANALYSIS OF HYDROPHOBINS PRODUCED IN ESCHERICHIA COLI AND PICHIA PASTORIS. Colloids Surf B Biointerfaces 2017; 159:913-923. [DOI: 10.1016/j.colsurfb.2017.08.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/16/2017] [Accepted: 08/28/2017] [Indexed: 01/24/2023]
|
15
|
Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Sci Rep 2017; 7:45863. [PMID: 28393921 PMCID: PMC5385502 DOI: 10.1038/srep45863] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 11/08/2022] Open
Abstract
Class I hydrophobins are functional amyloids secreted by fungi. They self-assemble into organized films at interfaces producing structures that include cellular adhesion points and hydrophobic coatings. Here, we present the first structure and solution properties of a unique Class I protein sequence of Basidiomycota origin: the Schizophyllum commune hydrophobin SC16 (hyd1). While the core β-barrel structure and disulphide bridging characteristic of the hydrophobin family are conserved, its surface properties and secondary structure elements are reminiscent of both Class I and II hydrophobins. Sequence analyses of hydrophobins from 215 fungal species suggest this structure is largely applicable to a high-identity Basidiomycota Class I subdivision (IB). To validate this prediction, structural analysis of a comparatively distinct Class IB sequence from a different fungal order, namely the Phanerochaete carnosa PcaHyd1, indicates secondary structure properties similar to that of SC16. Together, these results form an experimental basis for a high-identity Class I subdivision and contribute to our understanding of functional amyloid formation.
Collapse
|
16
|
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem 2017; 86:585-608. [PMID: 28125290 DOI: 10.1146/annurev-biochem-061516-044847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Collapse
Affiliation(s)
- Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Ann H Kwan
- School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
| |
Collapse
|
17
|
Meister K, Bäumer A, Szilvay GR, Paananen A, Bakker HJ. Self-Assembly and Conformational Changes of Hydrophobin Classes at the Air-Water Interface. J Phys Chem Lett 2016; 7:4067-4071. [PMID: 27690211 DOI: 10.1021/acs.jpclett.6b01917] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use surface-specific vibrational sum-frequency generation spectroscopy (VSFG) to study the structure and self-assembling mechanism of the class I hydrophobin SC3 from Schizophyllum commune and the class II hydrophobin HFBI from Trichoderma reesei. We find that both hydrophobins readily accumulate at the water-air interface and form rigid, highly ordered protein films that give rise to prominent VSFG signals. We identify several resonances that are associated with β-sheet structures and assign them to the central β-barrel core present in both proteins. Differences between the hydrophobin classes are observed in their interfacial self-assembly. For HFBI, we observe no changes in conformation upon adsorption to the water surface. For SC3, we observe an increase in β-sheet-specific signals that supports a surface-driven self-assembly mechanism in which the central β-barrel remains intact and stacks into a larger-scale architecture, amyloid-like rodlets.
Collapse
Affiliation(s)
- Konrad Meister
- FOM-Institute for Atomic and Molecular Physics AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Alexander Bäumer
- Physical Chemistry II, Ruhr University Bochum , Universitätsstr. 150, 44801 Bochum, Germany
| | - Geza R Szilvay
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
| | - Arja Paananen
- VTT Technical Research Centre of Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland
| | - Huib J Bakker
- FOM-Institute for Atomic and Molecular Physics AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
18
|
Schor M, Reid JL, MacPhee CE, Stanley-Wall NR. The Diverse Structures and Functions of Surfactant Proteins. Trends Biochem Sci 2016; 41:610-620. [PMID: 27242193 PMCID: PMC4929970 DOI: 10.1016/j.tibs.2016.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 01/26/2023]
Abstract
Surface tension at liquid–air interfaces is a major barrier that needs to be surmounted by a wide range of organisms; surfactant and interfacially active proteins have evolved for this purpose. Although these proteins are essential for a variety of biological processes, our understanding of how they elicit their function has been limited. However, with the recent determination of high-resolution 3D structures of several examples, we have gained insight into the distinct shapes and mechanisms that have evolved to confer interfacial activity. It is now a matter of harnessing this information, and these systems, for biotechnological purposes. Interfacially active proteins fulfill a wide range of biological functions in organisms ranging from bacteria and fungi to mammals. Their physicochemical properties make interfacially active proteins attractive for biotechnological applications; for example, as coatings on nanodevices or medical implants and as emulsifiers in food and personal-care products. High-resolution 3D structures show that the mechanisms by which interfacially active proteins achieve their function are highly diverse.
Collapse
Affiliation(s)
- Marieke Schor
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jack L Reid
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Cait E MacPhee
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
19
|
Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 2016; 6:25288. [PMID: 27142249 PMCID: PMC4855151 DOI: 10.1038/srep25288] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/14/2016] [Indexed: 11/08/2022] Open
Abstract
Rice blast is a devastating disease of rice caused by the fungus Magnaporthe oryzae and can result in loss of a third of the annual global rice harvest. Two hydrophobin proteins, MPG1 and MHP1, are highly expressed during rice blast infections. These hydrophobins have been suggested to facilitate fungal spore adhesion and to direct the action of the enzyme cutinase 2, resulting in penetration of the plant host. Therefore a mechanistic understanding of the self-assembly properties of these hydrophobins and their interaction with cutinase 2 is crucial for the development of novel antifungals. Here we report details of a study of the structure, assembly and interactions of these proteins. We demonstrate that, in vitro, MPG1 assembles spontaneously into amyloid structures while MHP1 forms a non-fibrillar film. The assembly of MPG1 only occurs at a hydrophobic:hydrophilic interface and can be modulated by MHP1 and other factors. We further show that MPG1 assemblies can much more effectively retain cutinase 2 activity on a surface after co-incubation and extensive washing compared with other protein coatings. The assembly and interactions of MPG1 and MHP1 at hydrophobic surfaces thereby provide the basis for a possible mechanism by which the fungus can develop appropriately at the infection interface.
Collapse
|
20
|
Pille A, Kwan AH, Cheung I, Hampsey M, Aimanianda V, Delepierre M, Latge JP, Sunde M, Guijarro JI. (1)H, (13)C and (15)N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:113-118. [PMID: 24659460 DOI: 10.1007/s12104-014-9555-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
Hydrophobins are fungal proteins characterised by their amphipathic properties and an idiosyncratic pattern of eight cysteine residues involved in four disulphide bridges. The soluble form of these proteins spontaneously self-assembles at hydrophobic/hydrophilic interfaces to form an amphipathic monolayer. The RodA hydrophobin of the opportunistic pathogen Aspergillus fumigatus forms an amyloid layer with a rodlet morphology that covers the surface of fungal spores. This rodlet layer bestows hydrophobicity to the spores facilitating their dispersal in the air and rendering the conidia inert relative to the human immune system. As a first step in the analysis of the solution structure and self-association of RodA, we report the (1)H, (13)C and (15)N resonance assignments of the soluble monomeric form of RodA.
Collapse
|
21
|
Lienemann M, Grunér MS, Paananen A, Siika-aho M, Linder MB. Charge-Based Engineering of Hydrophobin HFBI: Effect on Interfacial Assembly and Interactions. Biomacromolecules 2015; 16:1283-92. [DOI: 10.1021/acs.biomac.5b00073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Lienemann
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Mathias S. Grunér
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
- Department
of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O.
Box 16100, Fi-00076 Aalto, Finland
| | - Arja Paananen
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Matti Siika-aho
- VTT Technical Research Centre of Finland, Tietotie 2, Fi-02150 Espoo, Finland
| | - Markus B. Linder
- Department
of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, P.O.
Box 16100, Fi-00076 Aalto, Finland
| |
Collapse
|
22
|
Applications of hydrophobins: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:1587-97. [PMID: 25564034 DOI: 10.1007/s00253-014-6319-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023]
Abstract
Hydrophobins are proteins exclusively produced by filamentous fungi. They self-assemble at hydrophilic-hydrophobic interfaces into an amphipathic film. This protein film renders hydrophobic surfaces of gas bubbles, liquids, or solid materials wettable, while hydrophilic surfaces can be turned hydrophobic. These properties, among others, make hydrophobins of interest for medical and technical applications. For instance, hydrophobins can be used to disperse hydrophobic materials; to stabilize foam in food products; and to immobilize enzymes, peptides, antibodies, cells, and anorganic molecules on surfaces. At the same time, they may be used to prevent binding of molecules. Furthermore, hydrophobins have therapeutic value as immunomodulators and can been used to produce recombinant proteins.
Collapse
|
23
|
Lo VC, Ren Q, Pham CLL, Morris VK, Kwan AH, Sunde M. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. NANOMATERIALS 2014; 4:827-843. [PMID: 28344251 PMCID: PMC5304692 DOI: 10.3390/nano4030827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
Abstract
Hydrophobins are small proteins secreted by fungi and which spontaneously assemble into amphipathic layers at hydrophilic-hydrophobic interfaces. We have examined the self-assembly of the Class I hydrophobins EAS∆15 and DewA, the Class II hydrophobin NC2 and an engineered chimeric hydrophobin. These Class I hydrophobins form layers composed of laterally associated fibrils with an underlying amyloid structure. These two Class I hydrophobins, despite showing significant conformational differences in solution, self-assemble to form fibrillar layers with very similar structures and require a hydrophilic-hydrophobic interface to trigger self-assembly. Addition of additives that influence surface tension can be used to manipulate the fine structure of the protein films. The Class II hydrophobin NC2 forms a mesh-like protein network and the engineered chimeric hydrophobin displays two multimeric forms, depending on assembly conditions. When formed on a graphite surface, the fibrillar EAS∆15 layers are resistant to alcohol, acid and basic washes. In contrast, the NC2 Class II monolayers are dissociated by alcohol treatment but are relatively stable towards acid and base washes. The engineered chimeric Class I/II hydrophobin shows increased stability towards alcohol and acid and base washes. Self-assembled hydrophobin films may have extensive applications in biotechnology where biocompatible; amphipathic coatings facilitate the functionalization of nanomaterials.
Collapse
Affiliation(s)
- Victor C Lo
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Qin Ren
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| | - Vanessa K Morris
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia.
| | - Ann H Kwan
- School of Molecular Bioscience, The University of Sydney, Sydney NSW 2006, Australia.
| | - Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|